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Data drift caused due to network changes, new device additions, or model degradation alters the 
patterns learned by ML/DL models, resulting in poor classification performance. This creates the need 
for a generalized, drift-resilient model that can learn without retraining in dynamic environments. 
To maintain high accuracy, such a model must classify previously unseen IoT devices effectively. In 
this study, we propose a three-tier incremental architecture (CNN-PN-RF) combining Convolutional 
Neural Network (CNN) for feature extraction, Prototypical Network (PN) for class embedding, and 
Random Forest (RF) for robust classification. The model utilizes six aggregated diverse IoT datasets.
Two similarly structured datasets (Dataset 1 and Dataset 2) were created from it, differing in training-
testing splits, with some device CSV files withheld to test on unseen classification. Phase 1 employs a 
stand-alone CNN-based model with L2 regularization, dropout, and early stopping, achieving 70.96% 
accuracy. Phase 2 integrates CNN with RF, using SMOTE for class balancing and PCA for dimensionality 
reduction, attaining 83.79% accuracy. Phase 3 introduces PN to finalize the CNN-PN-RF model, 
enhancing classification issue of feature clustering, intra-class separability, and small-class support. 
Final accuracy, precision, recall, and F1-score were 99.56%, 99.66%, 99.56%, and 99.59% for Dataset 
1, and 99.80% for all metrics on Dataset 2. The model was compared with state-of-the-art approaches 
and validated on unseen IoT subsets of both datasets, showing better generalization capability.
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Internet of Things (IoT) adoption is expected to grow to 75 billion devices by 20251. The need for efficient 
unseen device classifications has become increasingly important for device management, network security, and 
performance optimization in smart environments2–4. The classification task becomes complicated by the need for 
interoperability and changing network configurations5–7. Moreover, the increasing diversity of IoT devices and 
their data heterogeneity, along with each IoT device having its own set of requirements and Quality of Service 
(QoS) parameters, further complicates the process of unseen IoT device classification. AI-driven approaches, 
in particular machine learning (ML) and deep learning (DL), are widely used to process large datasets and 
networks, and to identify unique device patterns within data for efficient IoT device classification8,9. Their 
ability to detect hidden patterns strengthens anomaly detection, mitigates network congestion, and improves 
oversight within IoT ecosystems10,11. However, traditional ML/DL models often suffer from poor generalization 
when confronted with unseen/unknown/new IoT devices or exposed to shifting network behaviors, network 
upgrades, or natural model-accuracy degradation12,13. Additionally, these models often use the same data for 
training and testing. Their architectural design fails to capture real-world variations, leading to performance 
degradation over time14,15. Frequent retraining and continuous updates of ML/DL models are necessary to 
handle data distribution shifts (commonly known as data drifts)16. Failure to address these data drift effects can 
result in security vulnerabilities, resource inefficiencies, device misbehavior, and higher computational costs, 
which can prevent their large-scale deployment. Hence, a well-generalized model should be resilient to the 
data drift effect and must recognize previously unseen devices by leveraging learned patterns without having to 
constantly retrain or update externally17.

Recent studies have explored various approaches to investigate generalization in several single ML/DL models 
to reduce their retraining burdens18–20. While these models can perform well in controlled scenarios, they 
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remain ill-equipped to manage the continuous, large-scale data streams generated by diverse IoT environments. 
Likewise, most of the single ML models21,22, particularly those relying on manual feature engineering, hamper 
models scalability and adaptability in dynamic contexts. Eventually, single DL models have addressed a few 
limitations of ML models (getting control of the overlapping device category issue) by automatically extracting 
features from raw data, eliminating manual engineering, and providing better classification results23,24. Yet, 
they are still limited in IoT environments where complex nonlinear relationships exist in the data and also 
classification performance on small samples cannot be avoided. Furthermore, their practicality in real-world 
IoT deployments is hindered by the overfitting issue. They require large, diverse datasets for training along with 
robust hyperparameter optimization and significant computational resources25.

 CNNs are capable of learning effectively and efficiently even on non-image tasks, such as network traffic 
classification in IoT environments. They can learn spatially and temporally correlated patterns of features26,27 
fast and proficiently, especially when data is tabulated and presented as a statistical dataset.The statistical, 
temporal, and protocol-level features are structured directly into a matrix format for CNN input. This allows 
the convolutional filters to learn cross-feature interactions and local correlations that are not usually learned by 
dense networks. Thus, the CNNs can offer intra-class variability robustness, parameter efficiency due to weight 
sharing, and effective local pattern extraction28,29. CNN’s, when used as a feature extractor, can facilitate unseen 
device classification without the need for retraining. Additionally, CNNs are highly effective at extracting subtle 
features from input data, capturing key spatial and hierarchical patterns that are critical for accurate classification.

Prototypical networks, being a type of metric-based Few-shot learning, are utilized for classification 
techniques in various IoT scenarios30 that allow for significant generalization due to the similarity measure, such 
as the Euclidean distance, where distances are computed to prototypes of the classes31. Unlike the traditional 
models that require huge labeled datasets32, they can adapt to unknown instances. Likewise, previous authors33 
utilized them in a classification-by-class approach. They reduce retraining costs in the classification of IoT devices 
to designing generic representations of classes that place unseen data in categories based on their similarity to 
prototypes, which is accurate, flexible and successful34.

Random Forest (RF), a machine learning technique that builds an ensemble of decision trees to improve 
classification performance.They reduce overfitting by employing bagging and random feature selection35,36. RF 
performs well, particularly for IoT device classification, where specific network traffic metrics are extracted and 
used to differentiate devices37. Prior works have shown that RF handles heterogeneous and high-dimensional 
IoT traffic data with excellent accuracy.

Hybrid models combining ML and DL have also been explored38–40, showing improved classification in 
complex datasets. However, they still face issues such as overlapping device categories, nonlinear dependencies, 
and small-category imbalance41–43. Their unseen evaluation is often unjustified, limiting their cross-domain 
generalization.

To address these gaps, this research proposes a generalized hybrid CNN–PN–RF model that integrates CNN 
for feature extraction, PN for few-shot generalization, and RF for robust classification. The model is explicitly 
designed to handle unseen IoT devices and evolving network environments with minimal computational cost, 
improved scalability, and strong adaptability.

Main objective and contribution
This research aims to enhance unseen IoT device classification through a generalized three-tier hybrid CNN–
PN–RF model. The main contributions are: 

	1.	 An aggregated dataset was prepared by merging six publicly available datasets to create a generalized and 
diverse dataset comprising 82 features.

	2.	 An incremental hybrid model was developed starting from a standalone CNN with (70.96% accuracy), then 
CNN–RF with (83.79% accuracy), and finally CNN–PN–RF with (99.56% and 99.80% accuracy on two ag-
gregated datasets).

	3.	 The proposed model was validated on two datasets Dataset 1 and Dataset 2 with test and train subsets, ena-
bling unseen classification without retraining.

	4.	 Comparative analysis showed that the proposed hybrid model outperforms state-of-the-art across multiple 
evaluation metrics.

Research questions
The following RQs guide this study:

•	 RQ1: How to develop an effective three-tier incremental model from phase 1 to phase 2 and then to phase 3 
for unseen IoT device classification?

•	 RQ2: What are the additional tuning processes utilized at each phase, along with incremental evolution?
•	 RQ3: Does PN between CNN and RF enhance classification performance and generalization in phase 3?
•	 RQ4:How effective is this hybrid phase 3 CNN–RF-RF in comparison with phase 1 CNN and stage 2 CNN–

PN?
•	 RQ5: How does the proposed model compare with state-of-the-art methods on unseen device classification?

Research motivation and gap analysis
The motivation for this research originates from the limitations in the generalization capabilities of current 
machine learning (ML) as well as deep learning (DL) models for IoT device classification. They are unable to 
handle the concept of data drift and performance degradation caused by network changes, new device additions, 
or configuration updates12,13,44. These traditional single ML models tend to need frequent retraining. They are 
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not scalable or adaptable, while as single DL models are capable of better feature extraction45. Yet, they fail to 
achieve perfect generalization, even when used in combined/hybrid models46.

To overcome these challenges, this study proposes a generalized hybrid model that combines convolutional 
neural networks (CNN) for powerful feature extraction, prototypical networks (PN) for few-shot generalization, 
and random forests (RF) for robust and efficient classification. This CNN–PN–RF integration eliminates the 
need for manual preprocessing, feature engineering, protocol dependence, and frequent retraining, all of which 
are common shortcomings in prior work (detailed in the next section: Related Works). This proposed model is 
explicitly designed to handle unseen devices and evolving network environments with minimal computational 
cost and no performance drop, unlike traditional models that suffer performance decay over time47. This model 
was trained on six combined diverse IoT datasets spanning a wide range of device categories and communication 
protocols and was evaluated separately. It showed strong cross-domain generalization. Additionally, high 
accuracy was achieved without any dataset-specific tuning. The model not only offers superior scalability 
and long-term stability but also achieves reliable performance in real-world and resource-constrained IoT 
deployments. By bridging ML and DL techniques in a unified hybrid model with strong architectural design, 
this approach addresses a pressing research gap and sets a new benchmark for generalizable unseen IoT device 
classification, achieving high adaptability, reduced operational overhead, and improved real-world applicability.

Organization of the paper
The remainder of this paper is organized as follows. Section 2 reviews the related work, while Section 3 presents 
the proposed methodology. Section 4 describes the architectural design, and Section 5 discusses the incremental 
model development. Section 6 outlines the experimental tools and setup, followed by Section 7, which presents 
the results. Section 8 provides a comparison with state-of-the-art approaches, and Section 9 discusses the key 
findings. Finally, Section 10 concludes the paper and highlights future research directions.

Related works
The unseen classification of IoT devices has gained much attention in recent years, and numerous studies have 
been conducted over a very diverse range of models, including machine learning (ML) models, deep learning 
(DL) models, and hybrid models. Despite demonstrating high performancein certain limited experimental 
settings, a large proportion of these studies have experienced unremitting challenges in dealing with unseen 
classification with robust generalization. The issue includes factors such as low scalability, use of handcrafted 
features, or lack of dynamic environments, responsiveness of static features, and inadequate generalization of 
previously unseen devices. These studies have been classified into two main subsections as follows:

A. Feature engineering-based models
Cvitic et al.48 developed an ensemble-based machine learning solution to IoT device classification with 
network traffic features in a smart home. They also applied logistic regression and other supervised learning 
methodologies. They trained their model on a proprietary dataset comprising of 41 devices. Through the 
application of 13 important characteristics of network traffic, the framework dynamically classified devices and 
exhibited a high level of accuracy of classification with 99.79%. In spite of its good performance, the method 
had some weaknesses when it comes to implementation in real-life settings because it was limited by the device 
diversity, fixed test settings, and the inability to scale to dynamic network settings.

Kostas et al.49 used standard ML models, along with multistage feature selection and genetic algorithms, 
to maximize the performance of classification. They recorded an accuracy of 83.30% and 94.30%on the Aalto 
and UNSW datasets, respectively. The model that they used worked fairly well but was dependent on expertly 
designed features and did not generalize to previously unseen device types, limiting its applicability and 
robustness in open-world deployment.

The technique of Aqil et al.47 proposed a temporally aware method of identifying IoT devices based on 
robust statistical features. Their model presented an average accuracy of 85 percent 85% on IoT Traffic Traces 
(2018) and 96 percent 96% on IoT-FCSIT (2022) datasets. However, the suggested method was ineffective when 
working with encrypted traffic or very dynamic traffic, and they did not present critical evaluation parameters 
(e.g., precision, F1-score, or recall), needed for comprehensive evaluation.

Xu et al.50 introduced a fine and lightweight architecture of ML in resource-constrained settings. They 
obtained 99.08%, 98.15%, and 95.28% percent precision on the CIC, UNSW, and SMPS datasets, respectively. 
The model focused on efficiency in its performance, yet it did not consider behavior variability and encryption 
in network traffic. The test was also limited to semi-controlled environments and, therefore was not suitable for 
realistic implementations.

Fan et al.51 proposed a semi-supervised learning strategy using convolutional neural networks to reduce 
reliance on labeled data. On the UNSW dataset, the proposed method achieved 99% accuracy. However, recall 
and F1-score were not reported as key performance indicators, and therefore it did not demonstrate robustness 
in open-set conditions.

Niu et al.52 developed a stacked ensemble learning model trained on the UNSW and TMA-2021 datasets, 
reporting high performance with an accuracy of over 98% on both datasets. Despite these promising metrics, the 
models showed high computational complexity, required frequent retraining to include new devices, and lacked 
scalability for large-scale IoT deployments.

B. Architecture-based models
Kotak et al.53 studied deep learning approaches for IoT device identification using a public dataset with 10 
devices, achieving an accuracy of 99%. Although high accuracy was achieved, the evaluation was constrained 
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to a small set of known devices and did not address performance across multiple communication protocols or 
diverse device categories, thereby limiting the model’s generalization capabilities.

Deng et al.54 proposed a hybrid model integrating Transformer-based tokenization with clustering for 
open-set device identification, achieving 99.89% and 99.68% accuracy on the UNSW and YourThings datasets, 
respectively. Their model demonstrated strong performance on encrypted traffic. However, it was not validated 
against previously unseen devices, leaving its real-world applicability uncertain.

Bao et al.41 introduced a hybrid deep learning model combining supervised and unsupervised learning with 
clustering and dimensionality reduction. While their results showed an average accuracy between 81.8% and 
92.9%, other critical evaluation metrics were not reported. A key limitation was its reliance on easily spoofed 
features such as MAC addresses. Moreover, the model was data-integrity dependent and computationally 
intensive, making it unsuitable for real-time applications in resource-constrained environments. It also required 
frequent data updates to accommodate newly added devices.

Liu et al.55 proposed a 1D convolutional neural network using directional packet length sequences to reduce 
manual feature engineering and improve accuracy. Their model achieved promising results (99% across all 
metrics) while eliminating the need for handcrafted features. However, it relied solely on time-series-based 
features and did not consider payload, statistical, or header-based features. Additionally, the dataset used had an 
imbalanced distribution of data instances per device.

Yin et al.56 introduced GraphIoT, a lightweight identification model based on graph neural networks and 
incremental learning for IoT classification. With an F1-score of up to 96.37%, the model transformed traffic data 
into IoT Device Traffic Graph Representations (IoT-DTGRs), utilizing node, edge, and subgraph features for 
improved classification. The model adapts to new devices without retraining. However, it requires continuous 
hyperparameter tuning and involves complex graph construction, making it sensitive to changes in edge 
attributes and thus less practical for large-scale dynamic environments.

Table 1 provides a detailed summary of existing literature.In contrast, our proposed generalized three-tier 
hybrid CNN–PN–RF model offers full generalization and provides an end-to-end, protocol-agnostic solution for 
unseen IoT device classification. By integrating the deep feature extraction capabilities of Convolutional Neural 
Networks (CNN), the few-shot learning strengths of Prototypical Networks (PN), and the robust classification 
performance of Random Forest (RF), the model achieves strong class-wise identification and generalization. It 
has been validated on blind test data entirely excluded from training, demonstrating effectiveness in identifying 
previously unseen devices. Unlike conventional methods, this proposed approach does not require retraining, 
supports multi-protocol and multi-source data (spanning six diverse datasets), and operates effectively without 
extensive preprocessing or manual feature engineering.

Methodology
The detailed step-by-step methodology and corresponding subsections used to develop this generalized hybrid 
model are illustrated in Fig. 1.

Data collection
In this research, six widely used public datasets were utilized, which include: 

	1.	 UNSW Dataset: https://iotanalytics.unsw.edu.au/iottraces.html
	2.	 ShIoT Dataset: ShIoT Dataset Link
	3.	 Ping-Pong Dataset: ​h​t​t​p​s​:​​/​/​a​t​h​i​​n​a​g​r​o​u​​p​.​e​n​g​.​​u​c​i​.​e​​d​u​/​p​r​o​​j​e​c​t​s​/​​p​i​n​g​p​o​​n​g​/​d​a​t​a​/

Paper Type Dataset Summary Key Limitations/Target

A. Feature Engineering-Based Models

48(Cvitić et al., 2021) Ensemble Learning Personal dataset (Primary and secondary) 
– 41 devices

Limited device diversity, static dataset, feature selection constraints, only 4 
class types, high computational load, and limited real-world validation

49(Kostas et al., 2022) Machine Learning 2 Public Datasets – Aalto and UNSW Relies on handcrafted features, challenges with unseen devices

47 (Aqil et al., 2024) Statistical Analysis 2 datasets (Public IoT Traffic Traces (2018) 
and Private IoT-FCSIT) Manual feature engineering, not tested on unseen devices

50 (Z. Xu et al., 2025) Machine Learning CIC, UNSW, and SMPS datasets Lacks generalization across devices with changing behavior or encrypted traffic
51 (Fan et al., 2020) Semi-supervised CNN Public Dataset – UNSW Doesn’t test on unseen devices, limited adaptability to real-world scenarios
52 (Niu et al., 2024) Ensemble Learning Public Dataset – UNSW and TMA-2021 Increased complexity, requires continuous updates

B. Architectural-Based Models
53 (Kotak & Elovici, 2021) Deep Learning Public Dataset (10 Devices) Limited to known devices, struggles with multi-protocol environments

54(Deng et al., n.d.) Transformer & 
Clustering Public Dataset – UNSW and YourThings Complex architecture, not specifically tested for generalization to unseen 

devices

41 (Bao et al., 2020) Hybrid (DL+ML) 10 IoT device types from various sources Feature vulnerability, dependency, ongoing updates needed, large feature sets, 
deep network complexity

55(X. Liu et al., 2022a) Deep Learning 3 Datasets – Aalto, UNSW, IoTFinder Unbalanced dataset, high data requirement, high latency, lack of compatibility, 
no data augmentation

56 (Y. Yin et al., 2024) Graph Neural 
Network 2 Datasets – real-world and open-source Graph construction overhead, subgraph complexity, scalability, generalization 

to unseen behavior, flow/edge feature sensitivity

Table 1.  Summary of existing literature.
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	4.	 IoT Sentinel Dataset: https://github.com/andypitcher/IoT_Sentinel
	5.	 IoT Finder Dataset: https://yourthings.info/data/
	6.	 Home Mole Dataset: https://github.com/DongShuaike/iot-traffic-dataset

We analyzed these six datasets one by one and found that they lacked data variety, especially in the type of 
information presented in their columns. For example, the UNSW dataset mostly uses MAC and IP addresses, 
many of which are repeated frequently. In numerous packets, the same addresses appear as both the source 
and the destination. MAC addresses (like "ec:1a:59:79:f4:89”, "ec:1a:59:83:28:11”) and IP addresses (like 
"192.168.1.223”, ”192.168.1.193”) show up repeatedly across multiple packets. This repetition limits the data’s 
diversity within individual packets/files and across IoT device files, making it difficult for the model to learn 
varying network behaviors. Similar issues were observed in the ShIoT, Ping-Pong, IoT Sentinel, IoT Finder, and 
Home Mole datasets, a common limitation in many IoT-related studies, i.e., the failure to capture the richness 
of device interactions.

To improve generalization, a multi-dataset approach was adopted by integrating multiple sources to create 
a more representative dataset while maintaining consistency in common device categories. We selected six 
IoT device categories with variations in manufacturer specifications, firmware versions, and configurations. 
The corresponding datasets include raw IoT traffic and PCAP packet traces. For example, although Amazon 
Echo devices are present in both the UNSW and ShIoT datasets, differences in firmware and hardware result in 
different MAC and IP addresses for each, adding to dataset diversity. Similarly, IoT Finder’s D-Link DSC-50009L 
camera shares functional similarities with IoT Sentinel’s D-Link DayCam, but they are not the same device. By 
using all six datasets, we created a more diverse, representative, and reliable depiction of IoT network behavior, 
helping minimize biases and improve generalization in our findings.

Data preparation
To develop a robust and generalizable CNN model for classifying unseen IoT devices, we transformed raw PCAP 
network traffic into structured data through effective feature extraction. This step was essential for capturing 
diverse behavioral patterns and avoiding overfitting to specific device signatures. We used CICFlowMeter , an 
open-source tool widely adopted for flow-based network analysis. It extracts 82 standardized statistical features 
from packet captures, including flow duration, packet/byte counts, ports, protocol types, and timestamps, and 
outputs the structured data in CSV format. These features provided a comprehensive representation of each 
network flow in every dataset and served as the foundation for our analysis. The complete list of features used in 
our experiments is presented in Table 2.

Fig. 1.  Research methodology.
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This study integrated six publicly available IoT datasets: SHIoT, IoT Sentinel, UNSW, IoT Finder, Ping-Pong, 
and HomeMole. Initially, these datasets consisted of multiple CSV files corresponding to various IoT devices 
but lacked a consistent labeling scheme. To unify them, CICFlowMeter was used to extract flow-level features, 
after which each device was manually categorized into one of six functional categories: Smart Speakers, Media 
Streaming Devices, Home Automation, Home Security Cameras, Smart Home Hubs/Controllers, and Home 
Appliances. Following standardization, the datasets were merged while maintaining consistent category labels 
across all sources. This balanced composition was crucial to ensure that the model learned generalized patterns 
across device types rather than overfitting to individual devices.

To critically evaluate generalization, we generated two similarly structured datasets (Dataset 1 and Dataset 2) 
based on the same six source datasets, with identical classes and devices. Theydiffered in their training-testing 
splits; in each, we randomly withheld some device CSV files for testing only, to assess unseen classification,, but 
the withheld files were different in the two datasets. This approach tested the model’s ability to identify category-
level behavioral patterns instead of memorizing device signatures. The whole dataset collection and preparation 
details are illustrated in Fig. 2.

No. Name Description No. Name Description

1 src_ip Source IP address 42 bwd_iat_tot Total backward inter-arrival time

2 dst_ip Destination IP address 43 bwd_iat_max Maximum backward inter-arrival time

3 src_port Source port number 44 bwd_iat_min Minimum backward inter-arrival time

4 dst_port Destination port number 45 bwd_iat_mean Mean backward inter-arrival time

5 protocol Protocol used 46 bwd_iat_std Std deviation of backward IAT

6 timestamp Timestamp of the flow 47 fwd_psh_flags Forward push flags

7 flow_duration Duration of the flow 48 bwd_psh_flags Backward push flags

8 flow_byts_s Flow bytes per second 49 fwd_urg_flags Forward urgent flags

9 flow_pkts_s Flow packets per second 50 bwd_urg_flags Backward urgent flags

10 fwd_pkts_s Forward packets per second 51 fin_flag_cnt Count of FIN flags

11 bwd_pkts_s Backward packets per second 52 syn_flag_cnt Count of SYN flags

12 tot_fwd_pkts Total forwarded packets 53 rst_flag_cnt Count of RST flags

13 tot_bwd_pkts Total backward packets 54 psh_flag_cnt Count of PSH flags

15 totlen_fwd_pkts Total length of forwarded packets 55 ack_flag_cnt Count of ACK flags

15 totlen_bwd_pkts Total length of backward packets 56 urg_flag_cnt Count of URG flags

16 fwd_pkt_len_max Max forward packet length 57 ece_flag_cnt Count of ECE flags

17 fwd_pkt_len_min Min forward packet length 58 down_up_ratio Downstream to upstream ratio

18 fwd_pkt_len_mean Mean forward packet length 59 pkt_size_avg Average packet size

19 fwd_pkt_len_std Std dev of forward packet length 60 init_fwd_win_byts Initial forward window size

20 bwd_pkt_len_max Max backward packet length 61 init_bwd_win_byts Initial backward window size

21 bwd_pkt_len_min Min backward packet length 62 active_max Maximum active time

22 bwd_pkt_len_mean Mean backward packet length 63 active_min Minimum active time

23 bwd_pkt_len_std Std dev of backward packet length 64 active_mean Mean active time

24 pkt_len_max Maximum packet length 65 active_std Std dev of active time

25 pkt_len_min Minimum packet length 66 idle_max Maximum idle time

26 pkt_len_mean Mean packet length 67 idle_min Minimum idle time

27 pkt_len_std Std dev of packet length 68 idle_mean Mean idle time

28 pkt_len_var Variance of packet length 69 idle_std Std dev of idle time

29 fwd_header_len Forward header length 70 fwd_byts_b_avg Avg bytes bulk rate (fwd)

30 bwd_header_len Backward header length 71 fwd_pkts_b_avg Avg packets bulk rate (fwd)

31 fwd_seg_size_min Min forward segment size 72 bwd_byts_b_avg Avg bytes bulk rate (bwd)

32 fwd_act_data_pkts Forward actual data pkts 73 bwd_pkts_b_avg Avg packets bulk rate (bwd)

34 flow_iat_mean Mean flow IAT 74 fwd_blk_rate_avg Avg forward block rate

35 flow_iat_max Max flow IAT 75 bwd_blk_rate_avg Avg backward block rate

36 flow_iat_min Min flow IAT 76 fwd_seg_size_avg Avg forward segment size

37 flow_iat_std Std dev of flow IAT 77 bwd_seg_size_avg Avg backward segment size

38 fwd_iat_tot Total forward IAT 78 cwe_flag_count Count of CWE flags

39 fwd_iat_max Max forward IAT 79 subflow_fwd_pkts Subflow forward packets

40 fwd_iat_min Min forward IAT 80 subflow_bwd_pkts Subflow backward packets

41 fwd_iat_mean Mean forward IAT 81 subflow_fwd_byts Subflow forward bytes

42 fwd_iat_std Std dev of forward IAT 82 subflow_bwd_byts Subflow backward bytes

Table 2.  Common features extracted from each of the six datasets.

 

Scientific Reports |        (2025) 15:35388 6| https://doi.org/10.1038/s41598-025-19303-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Preprocessing
The first step was to load and merge the data of several CSV files into one data frame. This was crucial in forming 
a single dataset that can be used for model analysis and training. Data files were maintained in an organized 
manner in separate folders, reflecting the various categories of devices and a well-structured approach to data 
management. Reading of each CSV file into a DataFrame was performed by using Pandas functions such as pd.
read_csv(), after which they were concatenated to form a larger DataFrame. During this process, a column, 
the label column, indicating the category of each device, was kept, thus retaining the required data for supervised 
learning.

The load_data_from_folder() function reads the contents of each CSV file in a specific folder, 
iterates through each file, and labels it accordingly. In particular, it uses the library pandas to load each file as 
a DataFrame.

Considering an example, a file will be read when it is found in the directory by using 
Di = pd.read_csv(file_path).

Fig. 2.  Dataset Collection and Preparation.
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in which Di is the DataFrame of the ith file. This organized format allows loading the data efficiently so that 
further data manipulation and analysis would be more convenient.

On the second stage of data preprocessing, the file paths are used to extract the labels to categorize the 
files appropriately. As an example, files with the label ’smart_speaker’ are placed together. Once all the 
individual DataFrames are labeled, a final dataset of shape (N, M + 1) where N  is the total number of data 
entries and M  is the number of features in each file will be obtained by using pd.concat(). To ensure the 
quality of data, empty files are skipped.

	 S = {Di | Di ̸= ∅}� (1)

Rows with missing labels are removed using dropna(), ensuring data integrity and resulting in a dataset of 
shape (N ′, M + 1), where N ′ ≤ N .

In this research, missing values were handled using the SimpleImputer function with the strategy=’mean’ 
option. Any missing values are replaced by the mean of each numeric feature column using this function. 
Before this stage, non-numeric values were converted to numeric form and invalid entries such as NaN, inf, and 
-inf were standardized by replacing them with NaN. By ensuring that the imputation approach could be used 
consistently and accurately across the dataset, this maintained the data integrity for subsequent preprocessing 
and model training.

To improve model stability, features are standardized using StandardScaler(), ensuring a mean of 0 
And a standard deviation of 1. This step helps normalize the data and enhances the performance of machine 
learning models.

Categorical features are processed by separating the features and labels. The feature matrix is created using 
X = combined_df.drop(’label’, axis = 1), with a size of (N ′, M), while the label vector is extracted as 
y = combined_df[’label’], with a size of (N ′, 1). Labels are then converted into numerical values using 
LabelEncoder(), transforming categories into unique integers, where

	 yencoded ∈ {0, 1, 2, . . . , C − 1}� (2)

and C  represents the number of unique categories. For instance, if there are six classes, labels are assigned values 
from 0 to 5. Non-numeric features are converted into numeric values using LabelEncoder(), ensuring that 
all feature columns are in numerical format. Each non-numeric column is transformed separately, resulting in a 
fully numeric feature matrix represented as

	 Xencoded ∈ R(N′×M)� (3)

Table 3 displays a conceptual change made to the dataset during the preparation stage. The word ”conceptual” 
is used because the table is a sample abstraction meant to demonstrate how significant preprocessing steps were 
implemented, rather than a verbatim duplicate of the raw dataset. A simplified example is given for clarification 
because the collection’s size (more than X million entries) makes it impractical to display every value.

The adjustments shown include imputation of missing data, normalization, and category encoding. This 
conceptual approach provides a clear illustration of how unprocessed IoT traffic elements were systematically 
transformed into modeling-suitable inputs.

This consolidated dataset is then structured and formatted to be compatible with machine learning models in 
the final preprocessing stage. Xencoded and yencoded are transformed into numeric representations for training 
and classification purposes. Specifically, it Xencoded takes the form (N ′, M), where N ′ is the number of samples 
and M  is the number of extracted features. yencoded is a label vector of shape (N ′, 1), containing one encoded 
label per sample. This well-defined structure guarantees that the dataset is ready for input into standard machine 
learning pipelines.

Feature selection
IoT device classification is heavily influenced by feature selection, which shapes model accuracy and 
generalization57. In this phase, the dataset is refined to contain a well-defined yet complete set of features. For 
this study, all 82 original features were included, along with a labeling feature, resulting in a total of 83 columns 

Feature Before Preprocessing (Raw Dataset) After Preprocessing (Processed Dataset) Transformation Applied

Packet Size Missing values (NaN) in some records Missing values imputed with mean (e.g., 1200.0) Imputation using 
SimpleImputer (Mean)

Flow Duration Large heterogeneous values (e.g., 34,000 µs, 150,000 µs) Standardized values (z-score normalization, e.g., 
0.15, −1.20)

Standardization with 
StandardScaler

Protocol Text categories: {TCP, UDP, ICMP} Encoded as integers: {0, 1, 2} Encoding with LabelEncoder

Device Class (Target Variable) Semantic labels: {Smart Speaker, Smart Camera, Smart 
TV,...}

Encoded as integers: {0 = Smart Speaker, 1 = Smart 
Camera, 2 = Smart TV,...} Encoding with LabelEncoder

Other Numeric Features Raw values with varying scales (e.g., Bytes Sent, Packets/
sec) Standardized (mean = 0, std = 1) Standardization with z-score

Other Categorical Features Non-numeric labels (e.g., “Established”) Converted to numeric codes (e.g., 0 = No, 1 = Yes) Encoding with LabelEncoder

Table 3.  Dataset transformation: conceptual view of selected features before vs. after preprocessing.
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per device file. All features are important, as each brings a different perspective to the data, capturing fine-
grained patterns and relationships in IoT behavior. This comprehensive inclusion minimizes information loss 
and enables the model to learn from the full range of device characteristics. Additionally, exposure to diverse 
data patterns increases robustness, allowing the model to generalize well to unseen devices, which is crucial in 
the heterogeneous environment of IoT58. Moreover, by preserving all attributes, the model becomes resilient to 
changes in device behavior (e.g., data drift, new devices, and system upgrades), resulting in better predictive 
performance across heterogeneous datasets. Maintaining a wide feature set adds adaptability, ultimately 
improving classification accuracy and generalization, and making the classification more reliable in real-world 
IoT settings.

In this research, Principal Component Analysis (PCA) was adopted for feature transformation rather than 
feature selection, allowing the retention of all 82 original features’ variance in a reduced-dimensionality space. 
Recent studies59,60 support the effectiveness of PCA over traditional feature selection methods in maintaining 
model accuracy, generalization, and robustness across both binary and multiclass classification tasks.

Architectural design
This section defines the overall structure and workflow of the proposed hybrid three-tier CNN–PN–RF 
architecture. The model begins by feeding input data into a Convolutional Neural Network (CNN) to perform 
deep feature extraction, capturing essential patterns and representations from the data. The extracted features 
are then passed to the second (middle) layer, Prototypical Networks (PN), where they are further refined by 
organizing around “prototypes,” which are representative feature vectors for each class that enhance class 
separation. Finally, these refined features are sent to the third layer, a Random Forest (RF) classifier, which uses 
an ensemble of decision trees to classify the data accurately. This three-layered structure combines the strengths 
of the CNN for deep feature extraction, the PN for structured class representation, and the RF for robust and 
accurate classification. For clarity, this proposed architectural design is illustrated in three key layers, as shown 
in Fig. 3.

Tier 1: Feature extraction with CNN (CNN layer 1)
In this first tier, the CNN functions as the initial gatekeeper of the proposed generalized three-tier hybrid CNN–
PN–RF model.CNNs are highly effective at extracting subtle features from input data, capturing key spatial 
and hierarchical patterns that are critical for accurate classification. The CNN architecture includes several 
convolutional layers for feature extraction, max pooling layers to reduce dimensionality, and flattening layers 
before connecting to the dense layers. Regularization techniques and dropout are carefully applied to prevent 
overfitting, ensuring that the model generalizes well to unseen data.

Once training is complete, the CNN produces a set of rich feature vectors, high-level representations of the 
input data, which serve as the foundation for the subsequent stages of the classification framework. These feature 
vectors are then passed to the next stage of the prototypical network. Although CNN-based feature extraction 
reduces the semantic value of original features, but this trade-offis balanced by combining the CNN with the 
prototypical network (PN) in the next phases.

Tier 2: Prototypical network (Prototypical network layer 2)
Once the CNN completes feature extraction, the framework transitions seamlessly to the Prototypical Network61. 
In this tier, the concept of class prototypes is utilized by aggregating the feature representations generated by the 
CNN. Each prototype is computed as the mean feature vector of all instances belonging to a particular class, 
effectively serving as a representative point in the feature space. This approach facilitates efficient distance-based 

Fig. 3.  Three-tier/layered (CNN–PN–RF) architectural design.
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comparisons by enabling the model to assess how closely a new instance aligns with each class prototype. With 
Euclidean distance, the prototypical network measures similarity in an easily calculated and understandable 
way, which is essential to prototype-based classification. Once the prototypes are set, each test case is categorized 
by how close it is to the prototypes. The model provides the number of assignments by assigning the instance 
to the nearest class prototype, that is,  tthe class with the shortest distance in feature space. This mechanism 
improves the model’s capability to determine the best possible class for each instance and serves as an important 
precursor of classification to classification by the Random Forest.

Tier 3: Random forest classifier (RF layer 3)
In the final tier, the Random Forest (RF) classifier receives the output of the Prototypical Network, specifically, 
the distance vectors representing the similarity between test instances and the class prototypes. These distance-
based features, are rich and provide a concise description of the relationship of each instance to all classes. 
The Random Forest uses this information,  to improve the robustness of classification and to avoid overfitting 
owing to its ensemble character and its ability to work with non-linear decision boundaries. In this three-tier 
architecture, all components have a specific and significant role to play. The CNN performs deep hierarchical 
extraction, the prototypical network allows easy and fast multi-class classification by utilizing distance measures 
in feature extraction, and the RF classifier uses the generalizing capabilities of the RF to stabilize the final 
predictions. This interconnected learning approach is very important, as it enhances the predictive ability of 
the model. Intensive testing validated the effectiveness of this proposed architecture. Prototypical network is 
integrated for better performance in unseen classification. The fully hybrid model delivered the accuracy of 
99.56% on previously unseen devices, which is a notable improvement over the 70.96% accuracy obtained using 
the CNN alone and the 83.79% accuracy achieved by the CNN–RF hybrid. This optimal accuracy is mainly 
attributed to the prototypical network’s ability to produce class-representative prototypes, which enable fine-
grained class separation even in adversarial, unbalanced data scenarios. These better results not only confirm 
the high classification accuracy of the proposed model but also its strong generalization capability across diverse 
IoT device datasets. The effectiveness of this three-level hybrid model manifests the utility of combining deep 
learning and traditional machine learning methods to develop a scalable and reliable model that can be used in 
real-world device classification.

Incremental model development
This section discusses the systematic, incremental approach we took to build and refine this architecture for a 
generalized, unseen IoT device classification. This research employs a three-phase methodology to attain optimal 
accuracy and generalization capability. Phases 1 and 2 focus on experiments with the CNN and integrating the 
CNN with the RF. Phase 3 introduces the PN to improve generalization, resulting in a hybrid CNN–PN–RF 
model designed for classifying unseen IoT devices. In the final phase, the proposed three-tier model is evaluated 
against existing approaches. Results shown that it achieves high classification accuracy, better generalization to 
new devices, and greater resilience to data drift. These final high-accuracy outcomes demonstrate that this hybrid 
model’s unseen classification has outperformed current approaches in managing the dynamic IoT environment, 
making it a reliable choice for real-world network management and security. Figure 4 presents the incremental 
model development phases

Phase 1–Experiments with CNN
In Phase 1, the CNN neural network model starts with a convolutional layer that has 96 filters And a kernel size 
of 3, using the ReLU (Rectified Linear Unit) activation function to add non-linearity. Additionally, this layer also 
applies an L2 regularization set at 3.0645 × 10−3 to reduce models’ overfitting by penalizing the large weights. 
After this, there is a max pool layer with a pool size of 4 to make the data more dimensionally reduced while 
retaining the crucial features.

This is then fed to a dense layer of 256 neurons, where ReLU activation function and L2 regularization are 
applied to keep the model simple. Further to avoid overfitting, a dropout layer at a 30% rate is used, such that 
30% of the neurons are deactivated randomly in the training process.

Lastly, the model has a thick output layer with the number of neurons equal to the distinct classes in a 
target variable, having a softmax activation function. It yields a probability distribution over all classes, which 
sums to 1, and the most probable class is chosen as the model’s prediction; hence, it is applicable in multi-class 
classification. Even though the network is built using fully connected (dense) layers, it still handles sequential 
one-dimensional feature vectors like a 1D CNN. The model is built on Adam optimizer and the sparse categorical 

Fig. 4.  Incremental model development phases.
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cross-entropy loss. To further combat overfitting, an early stopping callback is used during training to monitor 
the validation loss and terminate training when the loss no longer decreases.

Regularization and dropout
L2 regularization acts as a form of prevention against overfitting by penalizing large weights, which forces the 
model to learn simpler and more general patterns. It introduces a penalty term in the loss function, which is 
proportional to the square of the magnitude of the weights. Consequently, the model is not encouraged to rely on 
one feature, and thus, its capability to identify more features is increased for bettergeneralization on unseen data.

The neural network begins with a fully connected Dense layer consisting of 256 neurons. This layer employs 
the ReLU activation function and applies L2 regularization with a coefficient of 0.01 to mitigate overfitting 
by penalizing large weight values. To further enhance generalization, a Dropout layer with a rate of 0.3 is 
introduced, randomly deactivating 30% of neurons during training. The final layer is another fully connected 
Dense layer, where the number of neurons corresponds to the total number of unique output classes. This output 
layer uses the Softmax activation function to provide normalized class probabilities, enabling effective multi-
class classification.

These configurations will make sure that big values of weight are penalized in the process of training, 
which will work to promote more generalized learning. Secondly, batch normalization is used to normalize the 
training by ensuring a similar distribution of activations in all the layers. The method can help to achieve faster 
convergence, and it can increase the performance of the model on unseen or novel IoT devices; thus, improving 
its generalization capacity.

Another type of regularization is dropout, which is employed to minimize the Likelihood of overfitting by 
discouraging the model from falling into the trap of overfitting. it is too dependent on particular neurons. We 
use a dropout rate of 0.3 so that 30 percent of the neurons are dropped in our implementation. Each iteration of 
training will randomly deactivate. This randomness compels the model to learn stronger and more generalized 
feature representations.  

Early stopping
One of the most important strategies to prevent overfitting during training of our model is early stopping. It 
halts the training process when the model no longer improves on the validation data, ensuring that training 
does not continue unnecessarily, which would otherwise reduce generalization to unseen data. In this hybrid 
model development, this technique, is crucial as achieving robust performance on unseen IoT devices requires 
balancing training efficiency with high classification accuracy.

After each epoch, the validation loss is monitored, and training stops when no progress is observed after five 
epochs (patience=5). We achieved a final unseen classification accuracy of  70.96% with our CNN model. 
The steps of Phase 1 (CNN) are explained in Table 4.

Table 4.   Phase 1 (CNN model) pseudo code details.
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Phase 2 – Merging CNN with random forest and hyperparameter tuning
The results of our previous phase (Phase 1–Experiments with CNN) were promising but failed to discover 
complex patterns in the dataset, along with poor generalization to new devices, leading to performance 
below acceptable standards for real-world IoT applications. The model proved to be unadaptable for better 
generalization, highlighting the weakness of the CNN architecture when handling unseen data. We therefore 
explored hybrid models (ML-DL) and found that combining CNN with Random Forest (RF) would improve 
performance effectively. CNN excels at feature extraction, while RF is well-suited for classification tasks. Hence, 
the proposed hybrid CNN-RF model aimed to leverage ID CNN’s ability to learn hierarchical features and RF’s 
strength in generalization, reducing the risk of overfitting.

To further improve performance, batch normalization was implemented along with the Synthetic Minority 
Oversampling Technique (SMOTE) to address class imbalance. Principal Component Analysis (PCA) was also 
used for dimensionality reduction. The use of SMOTE balanced the data by creating synthetic examples of 
underrepresented classes, whereas PCA assisted in transforming the features and removing noise, allowing ID 
CNN to put more focus on the most useful features. These methods collectively improved the overall accuracy 
and generalization ability of the CNN-RF model. The tuning details of Phase 2 are mentioned below:

Synthetic minority over-sampling technique (SMOTE)
In this study, the dataset exhibited class imbalance, with some classes containing many device files (.csv files), 
while others had few or none. Because of this skewed data, biased model performance was anticipated, wherein 
the majority classes were preferred and generalization became low.

To overcome this problem, the Synthetic Minority Over-sampling Technique (SMOTE) was applied likewise 
as in36,62. It deals with the issue of imbalance in classes by creating artificially generated minority classes and 
balancing out the classes. The method allows the model to learn better on the underrepresented classes and 
results in better predictive performance.

The SMOTE process can be mathematically represented as:

	 SMOTE(X, y) ⇒ (Xbalanced, ybalanced)� (4)

where X  denotes the original feature matrix and y represents the corresponding label vector. After applying 
SMOTE, Xbalanced and ybalanced denote the new, class-balanced feature set and labels, respectively. 

Principal component analysis (PCA)
Principal Component Analysis (PCA) is particularly advantageous in scenarios involving high-dimensional 
data. With many features (82 in our case), it becomes inefficient to analyze them all directly. PCA reduces the 
dataset to components that capture the most variance while addressing multicollinearity, a condition where 
original features are highly correlated. By removing redundancy, PCA simplifies the dataset, making it easier 
to interpret and improving model effectiveness in generalization. In this study, PCA was applied with the 
parameter n_components = 0.95, ensuring that 95% of the dataset’s total variance was retained while 
reducing dimensionality.

This is achieved by solving the eigenvalue problem of the covariance matrix:

	 Xpca = X · W � (5)

Where W  is the matrix of eigenvectors corresponding to the largest eigenvalues?
The goal was to transform 82 potentially correlated features into a smaller set of uncorrelated components 

while preserving as much variance as possible. Unlike feature selection methods, which discard features based 
on certain criteria, PCA converts the entire feature set into orthogonal principal components63,64. This ensures 
that the maximum amount of information is preserved, which in turn supports better model generalization 
and efficiency65–67. However, it comes with a trade-off that the transformed components may lose some 
interpretability and semantic meaning compared to the original features.

Additionally, the utilization of PCA over feature selection is another trade-off. To overcome this and support 
our PCA utilization, our PCA transformed Data Plot Fig. 5, shows noticeable improvement in class separation 
within the new feature space. Additionally, the PCA Cumulative Variance Plot Fig. 6 confirms that approximately 
the first 15 components captured nearly 90% of the variance, while extending to 20 components retained up 
to 95% overall.. This balance guaranteed minimal information loss and the least noise despite dimensionality 
reduction.

These results all provide credence to PCA’s value as a feature extraction method. Instead of relying on all of 
the original features, a smaller number of PCs, roughly 20, is sufficient to keep the majority of the underlying 
data. PCA not only fixes dimensionality problems but also boosts computing performance, reduces the risk of 
overfitting, and improves model generalization. Hence, PCA is more efficient than feature selection in this case 
for this dataset.

To support our PCA utilization over feature selection, previous research continues to recognize PCA as 
a robust method for dimensionality reduction, particularly when the focus is on maximizing classification 
accuracy rather than preserving the interpretability of individual features. Foundational reviews like68 remain 
influential for articulating PCA’s role in variance maximization and model generalization. Recent advancements 
reinforce this paradigm69 demonstrate that PCA and similar dimensionality reduction methods often maintain 
or even enhance classification accuracy in various scenarios. For complex, high-dimensional domains70 a more 
interpretable dimensionality reduction variant is introduced that still supports effective downstream prediction 

Scientific Reports |        (2025) 15:35388 12| https://doi.org/10.1038/s41598-025-19303-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


performance. This type of contemporary findings corroborate the choice of selecting the PCA71. These findings 
support our selection because predictive performance was the primary objective of this research.

Reshaping data for CNN
The final step in Phase 2 model development involved reshaping the data to match the input requirements of the 
1D CNN. CNNs typically expect inputs in the form of three-dimensional arrays: (samples, features, channels). 
Therefore, the data was transformed accordingly to ensure compatibility for training and evaluation.

After processing, the data is reshaped into a 3D array where each sample is represented as a feature matrix 
with a single channel:

	 Xreshaped ∈ Rn×m×1� (6)

Where n is the number of samples and m is the number of features?
This reshaping allows the 1D CNN to effectively process the structured data.
While the CNN-RF hybrid model delivered strong results, the pursuit of further improvement continued. 

The aim was to develop a more robust and fully generalized model for unseen classification tasks. To bridge 

Fig. 6.  PCA Cumulative Variance Plot.

 

Fig. 5.  PCA Transformed Data Plot.
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this gap, advanced techniques such as prototypical networks72 were explored. These are particularly effective in 
handling imbalanced datasets and multi-class classification problems.

Our CNN-RF model demonstrated a total unseen classification accuracy of 83.79%. The pseudo-code for 
Phase 3 (CNN–RF) is shown in Table 5.

Phase 3: Merging CNN, prototypical network, and random forest
In Phase 3, a prototypical network (PN) is inserted between the CNN and RF classifiers to improve classification 
accuracy. Prototypical networks are capable of learning with few examples, making them especially valuable in 
scenarios where only a limited number of labeled instances are available for each class.

We leverage this few-shot learning capability by integrating PN into the architecture. The PN computes a 
prototype (or centroid) for each class using a support set of labeled examples. These prototypes represent the 
mean vector of the embeddings for each class in the learned embedding space.

The CNN is defined as a function:

Table 5.  Phase 2 (CNN-RF model) pseudo code details.
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	 f : Rnv → Rnp � (7)

Which maps the input vector space Rnv  to an np-dimensional embedding space. In this space, intra-class 
samples are clustered closely together, while inter-class samples are well separated.

This embedding representation notably enhances the RF classifier’s ability to distinguish between classes, 
particularly in imbalanced and unseen data scenarios, thereby improving overall model generalization and 
accuracy.

For each class c, the prototype pc is computed by averaging the 1D CNN embeddings of the support examples 
Sc

e  from that class:

	

pc = 1
|Sc

e |
∑

(si,yi)∈Sc
e

f(si)� (8)

where |Sc
e | is the number of support examples in class c.

Given a query sample qt, we compute a distance d between its embedding and each class prototype to classify 
the query. We compute the probability that the query belongs to class c through the softmax function over the 
negative distances:

	
P (y = c | qt, Se, θ) = exp(−d(f(qt), pc))∑

n
exp(−d(f(qt), pn)) � (9)

The model is trained by minimizing the classification loss using stochastic gradient descent (SGD). After 
training, new query samples can be classified by identifying the nearest class prototype. Various ”processes” of 
the prototypical networks are discussed below :

Prototype calculation
The prototypical_network()function computes a prototype for each class using CNN-extracted 
features.

•	 Mean Feature Calculation: It calculates the mean feature for each unique class label in the training dataset. 
The prototype is stored as this average vector, which is the central tendency of the class in the feature space. In 
this way, we obtain a resulting array of prototypes with shape (num_classes, feature_dim), where num_
classes is the number of distinctive class labels and feature_dim is the dimensionality of the 1D CNN 
output.

Classification with prototypes
The classify_prototypes()function applies a distance-based classification method through:

•	 Euclidean Distance Calculation: For each test sample, Euclidean distances to all class prototypes are com-
puted using the cdist function from scipy.spatial.distance.

•	 Assignment: Each test sample is assigned to the class of the closest prototype, implementing a non-paramet-
ric method that captures data variations missed by traditional classifiers.

Distance features for RF
The distances computed from the prototypical network are used as features to train our random forest classifier:

•	 Robustness to Overfitting: Random Forest is an ensemble method that is resistant to overfitting and is par-
ticularly useful in high-dimensional and imbalanced classification problems.

•	 Performance: By using prototype distances as features, the random forest benefits from a refined representa-
tion that simplifies decision boundaries and improves generalization.

Overall, the advantages of using a prototypical network in this architectural design include adaptability to 
unseen classes, the addition of few-shot learning capabilities, minimal reliance on large labeled datasets, and 
high computational efficiency. This makes it particularly effective for IoT and cybersecurity domains, where 
real-time, robust, and scalable classification is essential73. The pseudo-code for Phase 3 (CNN–PN–RF) is shown 
in Table 6.

Training RF classifier
The random forest classifier is trained using distance-based features derived from the prototypical network.

•	 Training Phase: The features describing Euclidean distances from each test sample to the class prototypes 
are used to train the classifier. We employ 100 estimators (decision trees) to balance computational cost and 
model performance.

•	 Evaluation: After training, the classifier predicts the class labels of test samples based on the learned distance 
features. This enables robust multi-class classification by interpreting proximity to prototype representations.

Incorporating the prototypical network into the Phase 2 architecture transformed the model from a 2-tier 
to a 3-tier structure (CNN → Prototypical Network → RF). Our final CNN-PN-RF model demonstrated a 
total classification accuracy of 99.56%. The improvement is primarily attributed to the prototypical network’s 
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Table 6.  Phase 3 (CNN–PN–RF model) pseudo code details.
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ability to generalize effectively in scenarios with imbalanced or limited data. By summarizing class features into 
representative prototypes, the model exhibits increased adaptability, particularly for unseen device classification 
tasks in dynamic environments.

Experimental tools and setup
Initial experiments were conducted on a personal computer with an Intel Core i5-10210U CPU (1.60 GHz, 
boost up to 2.11 GHz), 8 GB RAM, and a 500GB hard drive, running on Windows 11 Home. Machine learning 
implementations were carried out using Python (Anaconda).

As computational demands increased, we transitioned to cloud-based resources using a Microsoft Azure 
(student free) account to efficiently process the data. Subsequently, we upgraded to Google Colab Pro to access 
more computational power And GPU support, necessary for training our large And hybrid machine learning 
model. The final phase of experiments was executed on a high-performance system equipped with An NVIDIA 
GeForce GTX 1060 (6 GB), optimized with CUDA for GPU acceleration.

Model’s unseen evaluation and metrics
The training set structure was followed by the test sub-dataset, which consisted entirely of unseen CSV files 
that had not been used during training. This separate test sub-dataset was used to determine the final accuracy 
validation. It ensures a fair estimate of the model’s generalization capability.

During training, we used a validation split of 20%, meaning that 80% of the data was used for training, while 
the remaining 20% was reserved for validation. The test sub-dataset was loaded from a separate folder (test_
data_path) and was never used in the training or validation phases. Model performance was monitored after 
each epoch, and overfitting was mitigated by applying early stopping.

The accuracy and generalization ability of the proposed model were evaluated using Dataset 1 and Dataset 2.

Evaluation metrics
The proposed model is evaluated in terms of accuracy, precision, recall, and F1-score74,75. A comparison of 
actual versus predicted values, which reflects the model’s performance, is carried out using a confusion matrix. 
It includes four key components: true positives (TP), true negatives (TN), false positives (FP), and false negatives 
(FN). Precision measures the percentage of predicted positive cases that are truly positive. The F1-score, which 
is the harmonic mean of precision and recall, ensures the model does not favor accuracy at the expense of 
precision.

The classifier’s performance at various threshold levels is visualized using a Receiver Operating Characteristic 
(ROC) curve, which plots the true positive rate (TPR) against the false positive rate (FPR). The area under the 
curve (AUC) serves as a single-value summary of classification effectiveness, with a higher AUC indicating 
better model performance.

Results
The results of this research provide a deeper analysis at the instance level, rather than just at the device level. Each 
row of data from the .csv files for each IoT device is classified individually. This method offers more detailed 
and granular insights for analysis.

Dataset 1 was used in most experiments throughout this research. However, Dataset 2 was also employed in 
Phase 3 to further validate the robustness and effectiveness of the proposed hybrid model.

Phase 1 Results–experiments with CNN (Dataset 1)
In this initial phase, a CNN achieved an accuracy of 70.96% while incorporating L2 regularization, batch 
normalization, dropout, and early stopping. This indicates the model’s ability to learn complex patterns while 
mitigating overfitting. L2 regularization penalized large weights, and batch normalization helped stabilize 
learning and accelerate convergence. Dropout increased robustness by preventing over-reliance on specific 
neurons, and early stopping ensured optimal performance by halting training at the right time.

Despite these enhancements, the CNN did not outperform expectations. It struggled to differentiate features 
across classes, especially with unseen IoT data, reducing its flexibility. This outcome underscores the need for 
hybrid models to enhance generalization, particularly for security-sensitive applications.

PHASE 1: Confusion matrix (Dataset 1)
Figure 7a highlights classification strengths and weaknesses. The highest number of correct predictions (297,024) 
occurred for Security Cameras. However, notable misclassifications were observed: 22,216 Home Appliances 
were wrongly identified as Security Cameras, and 29,577 Security Cameras were misclassified as Smart Speakers, 
likely due to overlapping features.

Home Appliances, though correctly classified 4,811 times, were misclassified as Security Cameras (1,179) 
and Smart Speakers (767). Streaming Devices had 1,618 correct classifications but were confused with Security 
Cameras 184 times. Minor categories Like Hubs and Controllers showed weak performance with only 9 correct 
predictions.

The CNN struggled with classes that share functional features (e.g., Security Cameras, Smart Speakers, and 
Home Appliances), leading to misclassifications due to non-linear relationships (e.g., voice control, network 
connectivity). High error rates in smaller categories indicated weak decision boundaries and model bias toward 
dominant classes. Overfitting to Security Cameras further limited adaptability.
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PHASE 1: ROC for classes (Dataset 1)
The multi-class ROC curve in Fig. 8 illustrates model performance across classes. Home Appliances achieved 
the highest AUC of 0.98,that is, 98%, suggesting near-perfect classification. Smart Home Hubs and Controllers 
also performed well (AUC = 0.87,, that is, 87%). Security Cameras and Smart Speakers achieved moderate AUC 
values (0.68, that is, 68%),, while Media Streaming Devices followed at 0.63 (that is, 63%). The Home Automation 
class had the weakest performance, with An AUC of 0.58 (that is, 58%), , near random guessing. Overall, the 
model demonstrated wide variability in classification capability across different categories.

PHASE 1: Performance metrics evaluation (Dataset 1)
Table 7 summarizes key performance metrics. The model achieved a precision score of 0.8238, indicating that 
82.38% of positive predictions were correct. This was affected by class confusion; for instance, Home Appliances 

Fig. 8.  Phase 1: ROC for Classes (Dataset 1).

 

Fig. 7.  Phase 1 Confusion Matrix (Dataset 1): Testing Evaluation.
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were often misclassified as Security Cameras. The recall score of 70% reflects the model’s ability to detect true 
instances, though affected by frequent misclassifications like Security Cameras as Smart Speakers or Streaming 
Devices.

The F1-score, balancing precision and recall, was 75%, showing a moderate overall performance. The final 
model accuracy was also 0.7096, meaning the model correctly classified 70.96% of instances, supported by strong 
performance in dominant classes like Security Cameras and Smart Speakers. However, lower performance in 
smaller categories, such as Home Automation, reduced the overall accuracy.

Phase 2 Results–merging CNN with random forest and hyperparameter tuning (Dataset 1)
To overcome the limitations observed in Phase 1, a hybrid CNN–Random Forest (CNN–RF) model was 
developed. This approach integrates the feature extraction capabilities of 1D CNNs with the classification 
strengths of random forests to enhance generalization and reduce misclassification, particularly among 
overlapping categories. Preprocessing techniques such as batch normalization and SMOTE were incorporated to 
stabilize training and address class imbalance. SMOTE synthesized samples from minority classes, while batch 
normalization accelerated convergence. Combined with optimal hyperparameters, this strategy achieved an 
accuracy of 83.79%, reflecting an improvement of over 13% from Phase 1. In addition to improved accuracy, the 
model also demonstrated enhanced interpretability and stability, making it suitable for real-world IoT security 
applications.

PHASE 2: Confusion matrix (Dataset 1)
As shown in Fig. 9, the model classified 375,139 Security Camera instances correctly, showing its strength in 
identifying dominant categories. However, misclassifications persisted, including 24,662 Security Cameras 
incorrectly labeled as Smart Speakers and 1,004 Home Appliances misclassified as Security Cameras, suggesting 
overlapping features remain a challenge.

Smart Speakers achieved 45,423 correct predictions but were commonly confused with Security Cameras, 
reflecting feature overlap in audio and connectivity traits. Streaming Devices showed improved performance 

Fig. 9.  Phase 2 Confusion Matrix (Dataset 1): Testing Evaluation.

 

Metric Value

Precision 0.8238

Recall 0.7096

F1 Score 0.7551

Accuracy 0.7096

Table 7.  Phase 1 Performance Metrics Evaluation (Dataset 1).
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with 1,841 correct predictions and only 155 misclassified as Smart Speakers. Hubs and Controllers (23 correct) 
and Home Automation devices (125 correct) still underperformed due to limited data representation.

The 1D CNN component contributed to robust feature extraction, while the RF classifier provided decision-
level robustness. Nonetheless, the model continued to exhibit overfitting towards dominant classes, such as 
Security Cameras. While classification improved over Phase 1, further refinement is needed for underrepresented 
and overlapping classes. Fine-tuning the Random Forest or using architectural enhancements could mitigate 
misclassifications where functional similarities exist, such as between Home Appliances and Smart Speakers.

PHASE 2: ROC for classes (Dataset 1)
The multi-class ROC curve shown in Fig. 10 evaluates the model’s discriminatory power across categories. 
Home Appliances (Class 0) exhibited the weakest performance with An AUC of 0.11 (11%), indicating very 
poor separability. Home Automation (Class 1) and Media Streaming Devices (Class 3) had AUCs of 0.50 (50%), 
equivalent to random guessing. Home Security Cameras (Class 2) followed with An AUC of 0.47(47%). Smart 
Home Hubs and Controllers (Class 4) slightly outperformed random with An AUC of 0.51 (51%). Smart Speakers 
(Class 5) showed the best AUC of 0.58 (58%), but still reflected weak predictive performance. In general, the 
model’s ROC values show limited capability to confidently distinguish between categories, particularly those 
with shared attributes.

Note: Class 0 = Home Appliances, Class 1 = Home Automation, Class 2 = Security Cameras, Class 3 = Media 
Streaming Devices, Class 4 = Smart Home Hubs and Controllers, and Class 5 = Smart Speakers. These classes 
reflect the diversity and overlapping functionalities in smart home environments.

PHASE 2: Performance metrics evaluation (Dataset 1)
Table 8 summarizes the evaluation metrics. The model achieved a precision of 0.8123, indicating that 81.23% of 
positive predictions were correct. A recall of 0.8379 reveals that the model successfully identified 83.79% of the 
actual relevant instances. The F1-score of 0.8229 (82%) demonstrates a strong balance between precision And 
recall. Finally, the overall accuracy also stands at 83.79%, signifying a robust performance. While false positives 
And class confusion persist, especially in overlapping categories, the results demonstrate clear improvements in 
both predictive reliability and class generalization compared to Phase 1.

PHASE 3 Results–merging CNN, prototypical networks and random forest (Dataset 1) and 
(Dataset 2)
The main objective of this research is addressed in this phase, which ultimately results in the development of 
a generalized, final hybrid CNN-based model and the implementation of optimizations, such as prototypical 
networks, to improve the accuracy of unseen device classification. Prototypical networks cluster features into 

Metric Value

Precision 0.8123

Recall 0.8379

F1 Score 0.8229

Accuracy 0.8379

Table 8.  Phase 2 Performance Metrics Evaluation (Dataset 1).

 

Fig. 10.  Phase 2: ROC for Classes (Dataset 1).
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contextual groups, effectively capturing non-linear dependencies and minimizing the misclassification of 
overlapping categories. Incorporating a prototypical network between the CNN and RF models has led to a 
significant accuracy boost in this strategic hybrid architecture.

For Dataset 1, accuracy improved by 15.77% from 83.79% to 99.56% (Phase 2 to Phase 3). Additionally, the 
model also achieved an exceptional accuracy of 99.80% for Dataset 2. These results emphasize the ability of this 
optimized model configuration to perform effectively across multiple datasets.

Results of dataset 1
PHASE 3: Confusion matrix (Dataset 1)
The confusion matrix (Fig. 11) highlights the model’s strong classification accuracy, particularly for Security 
Cameras, with 400,940 correct classifications. However, 1,000 Home Appliances and 31 Smart Speakers were 
misclassified as Security Cameras, indicating minor feature overlap. Home Appliances achieved 6,740 correct 
classifications, with only 17 misclassified as Security Cameras, demonstrating high precision. Home Automation 
recorded 127 correct classifications, though 7 instances were misclassified as Security Cameras, suggesting a need 
for refinement. Streaming Devices performed well, with 1,994 correct classifications and only 5 misclassified as 
Security Cameras. Smart Speakers had 59,066 correct classifications, although 1,001 Home Appliances were 
misclassified as Smart Speakers, hinting at shared feature characteristics. Hubs and Controllers had only 25 
correct classifications, reflecting challenges in identifying underrepresented categories.

In this phase, the hybrid model was enhanced by incorporating a CNN-Prototypical Layer (PN)–Random 
Forest (RF) architecture for generalized IoT device classification. This addressed the Limitations of Phase 2 
(CNN–RF model) and Phase 1 (CNN-only model). The prototypical layer improved generalization by refining 
intra-class feature similarities, thereby aiding RF in more accurately classifying unseen devices.

A significant reduction in misclassification was observed, especially for dominant categories. Security Cameras 
showed 400,940 correct classifications, with only 1,000 misclassified as Home Appliances and 31 as Smart 
Speakers, reflecting improved RF feature consistency. Overlapping device categories, such as Smart Speakers, 
also benefited, hence achieving 59,066 correct classifications, with just 1,001 misclassified as Home Appliances, 
therefore demonstrating the prototypical layer’s ability to distinguish devices with similar functionalities (e.g., 
audio and connectivity features).

Improvements were also evident in minority and underrepresented classes. Hubs and Controllers were 
correctly classified 127 times, while Home Automation achieved 25 correct classifications, showing enhanced RF 
sensitivity to small classes. Precision was high, with rare misclassifications minimized. For instance, Streaming 
Devices achieved 1,994 correct classifications with only 5 errors, indicating better-defined decision boundaries.

The model’s ability to manage complex, non-linear dependencies was strengthened, particularly for Home 
Automation and Streaming Devices.By enabling RF to extract deeper, more discriminative features without 
overfitting. Efficient generalization to unseen devices was achieved through the formation of representative class 
anchors, which reduced reliance on dominant class features and improved overall classification accuracy.

The model balanced accuracy across all classes by minimizing overfitting to frequent categories, avoiding 
bias toward dominant devices such as Security Cameras and Home Appliances. Lastly, the scalability of the 

Fig. 11.  Phase 3 Confusion Matrix (Dataset 1): Testing Evaluation.
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Prototypical Layer in multi-class IoT classification was evident in the model’s consistent performance across 
categories, ensuring adaptability to evolving device types while reducing classification complexity.

PHASE 3: Training and validation accuracy along with loss (Dataset 1)
The training and validation accuracy curves, as shown in Fig. 12, and the corresponding loss curves in Fig. 13, 
highlight the improved performance of the final-phase model. With the integration of Prototypical Networks, 
the model demonstrates consistent and stable improvement in both training and testing accuracy. Additionally, 
the clear reduction in loss values signifies effective model optimization and enhanced generalization to unseen 
data, indicating successful learning and minimal overfitting.

PHASE 3: ROC for classes (Dataset 1)
The ROC curve depicted in Fig. 14 illustrates the final model’s exceptional performance across all six smart 
home device categories. Each class, like Home Appliances (Class 0), Home Automation (Class 1), Home Security 
Cameras (Class 2), Media Streaming Devices (Class 3), Smart Home Hubs and Controllers (Class 4), and Smart 
Speakers (Class 5) achieved a perfect Area Under the Curve (AUC) score of 1.00 (100%). This shows that the 
model is capable of making perfect distinctions between positive and negative instances of each category. The 
ROC curves always touch the upper left corner of the graph, which is an ideal classification ability with zero false 
positives or negatives, which proves the model has good generalization to new/unseen data.

Fig. 13.  Phase 3 Training Loss (Dataset 1).

 

Fig. 12.  Phase 3 Training Accuracy (Dataset 1).
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PHASE 3: Performance metrics evaluation (Dataset 1)
Table 9 contains a summary of performance indicators of the final model. The score of the precision 0.9966 shows 
that 99.66 percent of all positive predictions were correct and this shows that the model is very reliable with the 
lowest number of misses. The recall value of 0.9956 indicates that the model was able to identify 99.56 percent 
of actual positive cases and this reveals that it successfully picked up relevant classes. The small discrepancy 
between the precision and recall implies there are minimal false negatives..

Furthermore, the F1-score of 0.9959 (99%)demonstrates a near-perfect balance between precision and recall, 
confirming the model’s robustness in handling both correctness and completeness of predictions. Lastly, the 
overall accuracy of 0.9956 indicates that 99.56% of all predictions across both positive and negative classes 
were accurate. This performance showcases the model’s excellent classification capability with only a very small 
proportion of misclassifications.

Results of dataset 2
Phase 3: Confusion matrix (Dataset 2)
The confusion matrix (Fig. 15) illustrates the model’s strong classification performance across device categories. 
Streaming Devices achieved 1,368,530 correct classifications, with minimal confusion, only 16 instances 
misclassified as Smart Speakers and 47 as Hubs and Controllers. Security Cameras also performed well, with 
8,323 correct classifications; however, 1,000 instances were misclassified as Streaming Devices, likely due to 
shared video-related functionalities.

Hubs and Controllers showed robust accuracy, with 8,407 correct classifications and very few misclassifications 
i.e 4 into Streaming Devices and 2 into Smart Speakers. Smart Speakers recorded 128,851 correct classifications, 
though 6 were misclassified as Security Cameras and 3,169 as Streaming Devices, suggesting partial feature 
overlap. Meanwhile, Home Automation devices (578,317 correct) exhibited minimal confusion, with only 13 
misclassifications into Streaming Devices.

Although major categories exhibit high accuracy, further refining feature extraction could enhance 
differentiation, particularly between Security Cameras, Streaming Devices, and Smart Speakers, which share 
overlapping functional traits.

Phase 3: Performance metrics evaluation (Dataset 2)
Table 10 reports the evaluation metrics of the final model on Dataset 2. The precision score of 0.9980 signifies 
that 99.80% of all positive predictions were accurate, indicating extremely low false positives. Similarly, the recall 

Metric Value

Precision 0.9966

Recall 0.9956

F1 Score 0.9959

Accuracy 0.9956

Table 9.  Phase 3 Performance Metrics Evaluation (Dataset 1).

 

Fig. 14.  Phase 3: ROC for Classes (Dataset 1).
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of 0.9980 shows that 99.80% of actual positive instances were successfully identified, implying negligible false 
negatives.

The F1 score of 0.9980 (99%) confirms a near-perfect balance between precision and recall, reinforcing 
the model’s ability to correctly and comprehensively identify each class. The overall accuracy of 0.9980 means 
that 99.80% of all predictions, whether positive or negative, were correct. These consistently high performance 
values demonstrate the model’s exceptional reliability and robustness in real-world multi-class IoT classification 
scenarios.

Phase-wise result interpretation in regard with OFSI, NLRI, and UI
The Phase-wise result interpretation regarding OFSI, NLRI, and UI from phase 1 (CNN) to phase 2 (CNN-RF) 
And then phase 3 (CNN-PN-RF) is presented in Fig. 16.The classification performance across Phases 1, 2, and 
3 reveals a progressive evolution of this model’s ability to distinguish between complex and overlapping IoT 
device categories. These phases demonstrate how iterative refinements and architectural adjustments impact the 
model’s learning capability, generalization, and robustness. Three primary challenges were identified and tracked 
across these three phases:

•	 Overlapping Feature Set Issue (OFSI)76,77

•	 Non-Linear Relationship Issue (NLRI)76,78,79

•	 Underperformance in Smaller Categories Issue (UI)80,81

The challenges associated with feature learning in classification tasks can be mapped to three key issues. Firstly, 
the Overlapping Feature Set Issue (OFSI) is closely tied to intra-class separability. When intra-class separability is 
poor, the feature distributions of different classes overlap notably, making it difficult for the model to distinguish 

Metric Value

Precision 0.9980

Recall 0.9980

F1 Score 0.9980

Accuracy 0.9980

Table 10.  Phase 3 Performance Metrics (Dataset 2): Testing Evaluation.

 

Fig. 15.  Phase 3 Confusion Matrix (Dataset 2): Testing Evaluation.
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between them effectively. Secondly, the Non-Linear Relationship Issue (NLRI) relates to feature clustering, 
where non-linear dependencies within the data disrupt simple clustering patterns. This requires the use of more 
complex models to accurately capture the underlying data structure. Lastly, the Underperformance in Smaller 
Categories (UI) issue corresponds to the need for small-class support. Smaller classes often suffer due to data 
imbalance, which can lead to disproportionately poor performance unless they are given specific attention 
during training.

Phase 1 interpretation
In the first phase, a standalone CNN model was employed to capture complex patterns and resolve overlapping 
feature similarities. However, the results indicate that the model faced significant limitations, particularly with 
Overlapping Feature Similarity Issues (OFSI). Notably, Smart Speakers were heavily misclassified as Security 
Cameras (27,138 instances), and conversely, Security Cameras were frequently predicted as Smart Speakers 
(72,342 instances). A similar trend was observed between Home Appliances and Security Cameras. These high 
bidirectional misclassification rates suggest that the CNN struggled to distinguish between these categories due 
to highly similar traffic characteristics such as continuous data flows, similar packet sizes, and temporal patterns 
typically observed in streaming or voice-based devices.

While CNNs are generally strong in handling overlapping classes in image or sequence data, in this case, 
the lack of spatial or temporal structure in the tabular network traffic features diminished the CNN’s ability to 
learn distinctive representations. Unlike image pixels or time-series segments, these features did not provide 
meaningful local dependencies for convolutional filters to extract. As a result, the CNN learned general but non-
discriminative patterns, leading to blurred class boundaries in the latent space.

The model also exhibited signs of Non-Linear Relationship Inefficiency (NLRI). For example, Security 
Cameras were incorrectly predicted as Home Appliances (2,216), Home Automation (180), and Streaming 
Devices (601), indicating that the CNN’s current depth and non-linearity were inadequate to disentangle such 
complex overlaps in feature space. The latent representations lacked sufficient expressive power to form well-
separated decision boundaries.

Additionally, Underrepresented Class Instability (UI) was evident in minority categories such as Home 
Automation and Hubs and Controllers, with only 0 and 12 correct predictions, respectively. Most samples from 
these underrepresented classes were redirected to dominant categories, a behavior indicative of class imbalance 
and sparse data learning. The CNN’s softmax output layer likely favored the majority classes when handling 
uncertain or ambiguous feature patterns from these low-frequency groups.

These limitations in Phase 1 highlight the need for architectural enhancements and advanced learning 
mechanisms to improve class separation, nonlinear feature mapping, and sensitivity to underrepresented 
categories.

Phase 2 interpretation
In Phase 2, a Random Forest (RF) classifier was integrated with 1D CNN outputs to leverage RF’s strength in 
handling non-linear class boundaries. This hybrid model demonstrated noticeable improvements over Phase 1, 
particularly in mitigating Overlapping Feature Similarity Issues (OFSI). The bidirectional confusion between 
Smart Speakers And Security Cameras improved notably. Misclassifications of Smart Speakers as Security 
Cameras increased from 27,138 to 45,423, while the reverse happened in the case of Security Cameras, which 
were misclassified as Smart Speakers, decreasing from 72,342 to 24,662. This reduction of nearly 40% in one 
direction illustrates RF’s effectiveness in refining decision boundaries that 1D CNNs alone could not adequately 
distinguish in high-dimensional feature spaces. The enhancement likely stems from RF’s ability to generate non-

Fig. 16.  Phase-wise result interpretation in regard with OFSI, NLRI, and UI.
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linear decision paths and capture complex feature interactions beyond what 1D CNN convolutional layers can 
isolate.

Furthermore, Phase 2 addressed Non-Linear Relationship Inefficiency (NLRI) with measurable progress. 
Misclassifications of Security Cameras into Home Appliances (1,004), Streaming Devices (858), and Hubs (244) 
were all notably lower than in Phase 1, indicating better non-linear feature discrimination. This improvement 
is attributed to RF’s ensemble-based decision process, which complements 1D CNN’s feature extraction but 
overcomes its linear classification constraints.

Despite these gains, Underrepresented Class Instability (UI) remained problematic. Home Automation, 
for instance, had 125 instances incorrectly labeled as Security Cameras and 9 as Smart Speakers, with zero 
correct predictions. Hubs and Controllers were also poorly predicted, with only 2 correct classifications out 
of 25 samples. These persistent misclassifications reflect the limitations of RF in dealing with imbalanced class 
distributions, where dominant categories continue to overshadow minority ones.

Overall, Phase 2 marked substantial progress in handling OFSI and NLRI, yet it revealed the need for further 
architectural improvements and data-level techniques to improve stability and accuracy for minority classes.

Phase 3 interpretation
Phase 3 introduced a CNN–Prototypical Network–Random Forest (CNN–PN–RF) hybrid architecture, notably 
resolving the shortcomings of the earlier phases. Most notably, the Overlapping Feature Similarity Issue (OFSI) 
between Smart Speakers and Security Cameras was nearly eliminated. Where Phase 1 had 27,138 Smart 
Speakers misclassified as Security Cameras and 72,342 Security Cameras misclassified as Smart Speakers, Phase 
3 reduced these to just 31 and 0 instances, respectively. This dramatic improvement is attributed to class-specific 
enhancements such as deeper feature extraction, prototype-based learning, and possible data augmentation 
strategies that enabled the model to more precisely differentiate overlapping classes.

Substantial gains were also observed in handling Non-Linear Relationship Inefficiency (NLRI). In Phase 
2, Security Cameras were misclassified into unrelated categories like Home Appliances (1,000) and Streaming 
Devices (858). In contrast, Phase 3 achieved 400,940 correct predictions for Security Cameras, with only minor 
errors (1,000 to Home Appliances and 5 to Streaming Devices). These results suggest the model effectively 
captured complex nonlinear dependencies using the prototypical layer’s ability to structure inter-class distances 
more meaningfully for RF to interpret.

Finally, Underrepresented Class Instability (UI) was substantially mitigated. Home Automation, which 
previously saw near-zero correct predictions, was correctly classified in 127 of 134 instances. Hubs and 
Controllers improved from just 2 correct predictions in Phase 2 to 25 out of 25 in Phase 3. This enhanced 
sensitivity to minority classes likely resulted from data balancing techniques (e.g., SMOTE, class-weighted loss 
functions) and the model’s increased capacity to learn from sparse data distributions.

Overall, Phase 3 demonstrates significant progress across all key challenges (overlapping categories, non-
linear separability, and class imbalance). The CNN–PN–RF framework successfully disentangled complex 
feature overlaps, improved boundary sharpness in high-dimensional space, and increased recognition of 
minority categories. These results underscore the value of integrating deeper neural architectures with prototype 
learning and ensemble classification to boost overall model robustness and generalizability.

Comparison with state-of-the-art approaches
The proposed hybrid CNN-PN-RF model outperformed and was more efficient than the state-of-the-art 
approaches. On Dataset 1, it obtained 99.56% accuracy, 99.66% precision, 99.56 % recall, And 99.59% percent 
F1-score. It achieved 99.80% on Dataset 2 on all measures, reflecting its adaptability and robustness with different 
network conditions.

Although the accuracy of most of the existing research works48,49,51,53–55 is high (ranging from 95 to 99 
percent), their effectiveness usually depends on known or fixed device sets, fewer training samples, and extensive 
feature engineering. For example,  48, considers 41 devices and 4 types of classes only, and does not do not 
validate on unseen devices. 49, and51 rely on publicly available data which deos not generalize to unobserved 
IoT behaviors. Several models, such as55 and54, employ deep or transformer networks but they are limited in 
flexibility or scalability due to latency or excessive complexity or the lack of support for diverse data sets and 
protocols.

On the contrary, our CNN-PN-RF hybrid model uniquely fills these gaps, adopting generalization directly, 
tested on completely unseen IoT devicesand utilizing 6 datasets, including the highest number of device 
classifications (> 316). It classifies devices into 6 categoriesand is independent on feature engineering. The model 
manages behavioral drift effectively, is protocol-agnostic and sustaining state-of-the-art. Moreover, it sustains 
zero retraining and scales well to dynamic settings, achieving high performance with small volumes of labeled 
data, making it real-life IoT device identification solution.

As shown in Table 11, the CNN–PN–RF model consistently outperforms existing approaches. On Dataset 
1, it achieved an accuracy of 99.56%, precision of 99.66%, recall of 99.56%, and F1-score of 99.59%, reflecting 
balanced and reliable performance. On Dataset 2, the model maintained outstanding consistency with an 
accuracy of 99.80%, precision of 99.80%, recall of 99.80%, and F1-score of 99.80%, demonstrating robustness 
across varying network conditions and device behavior.

Discussion
The progressive evaluations across Phases 1 through 3 clearly illustrate how strategic architectural and data-
centric interventions can effectively address real-world classification challenges inherent to IoT environments. 
The enhancements implemented in each of the phases were phase specific,   gradually increasing model 
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expressiveness, minimizing misclassifications, and addressing the key weaknesses, including overlapping feature 
space and poor representation of minority classes.

The phase 3 result is achieved by a combination of deeper learning architectures, combined methods, and 
class-specific mechanisms. The model demonstrated robust generalization capabilities,effectively not only the 
dominant categories but also weak and minority device types that were posing challanges in the previous phase.

By lowering the data dimensionality using CNN feature extraction and PCA, the CNN–PN–RF model 
minimizes computational overhead and attains low cost training. Training stability is also ensured via batch 
normalization, dropout, and prototype-based feature grouping, which mitigate overfitting and improve 
convergence. The approach enhances security, device management, and network efficiency while being 
appropriate for resource-constrained real-world deployments. Scalability is attained by the hybrid design, in 
which the prototype network enables the classification of unseen devices without retraining, while the Random 
Forest generates dependable predictions over a range of datasets.

The final configuration brings out the compound effect of methodical improvement in the precision and 
stability of this proposed model. In addition, this proposed research proved to be successful in critical situations 
where there are data imbalance and feature overlap conditions that are common in heterogeneous IoT networks. 
Results gathered at the first phase are used as guidelines for the creation of the second phase, and then lead to 
the development of the third phase accordingly, which is scalable, precise, and generalizable in nature. This 
model’s high application to the IoT sector demonstrates its relevance and effectiveness for real, dynamic IoT 
implementations.

After analyzing Fig. 17,we observe improved values from phase 1 to phase 2 and then phase 3 (Dataset 1). The 
transition from Phase 1 to Phase 2 using Dataset 1 reveals notable improvements across all performance metrics, 
emphasizing the advancements made in the proposed classification model.

An evaluation of precision revealed that the model achieved a value of 0.8238 in Phase 1, which slightly 
declined to 0.8123 in Phase 2. This marginal drop of approximately 1.15 percentage points suggests that, while 
the model continued to perform well, its ability to correctly identify relevant instances experienced a slight dip.

In terms of recall, the model demonstrated a notable improvement, rising from 0.7096 in Phase 1 to 0.8379 in 
Phase 2. This gain of around 12.83 percentage points indicates a significant enhancement in the model’s capacity 
to detect true positives, leading to better identification of relevant cases.

The F1 score, which provides a balanced measure of precision and recall, increased from 0.7551 to 0.8229 
between Phase 1 and Phase 2. This 6.78 percentage point improvement illustrates the model’s strengthened 
performance in maintaining balance between identifying relevant instances and avoiding false positives.

Regarding accuracy, the model achieved its most substantial improvement in this phase, growing from 
0.7096 to 0.8379. This represents a rise of 12.83 percentage points, reflecting the overall effectiveness of the 
enhancements applied in Phase 2 and confirming the model’s suitability for practical deployment.

Further improvements were evident in the transition from Phase 2 to Phase 3 using Dataset 1. Across all 
performance metrics, the enhanced classification model demonstrated significant gains.

Precision increased markedly from 0.8123 in Phase 2 to 0.9966 in Phase 3, marking an improvement of 18.43 
percentage points and showcasing the model’s heightened ability to accurately identify relevant items.

Similarly, recall rose from 0.8379 to 0.9956, An improvement of 15.77 percentage points, indicating a stronger 
capability to capture true positive cases.

The F1 score also advanced notably, moving from 0.8229 in Phase 2 to 0.9959 in Phase 3. This 17.30 
percentage point increase reflects the model’s improved balance between precision and recall, further confirming 
its reliability.

Finally, accuracy improved from 0.8379 to 0.9956, also representing a gain of 15.77 percentage points. These 
results collectively highlight the effectiveness of the applied techniques and confirm the model’s strong potential 

Method Precision Recall F1 Score Accuracy Dataset Diversity Model Type Model Design
Unseen 
Evaluation Others

State-of-the-Art Approaches

Cvitic et al48. 99.7–
99.9%

99.7–
99.9%

99.7–
99.9% 99.79% Medium- Only 41 IoT 

Devices Utilized Ensemble ML
Feature 
Engineering 
Innovation-based

No
Only 4 
classes/
Category 
Classification

Bao et al41. – – – 81.8–
92.9% Low (Only 10 devices used) Hybrid Supervised and 

Unsupervised Learning
Architectural 
Innovation-based No

Only 1 Class/
Category 
classification

Liu et al55. 99% 99% 99% 99% Medium- Only 3 Datasets 
Utilized with total 18 devices DL Approach Architectural 

Innovation-based No
7 Classes/
Category 
Classification

Proposed Hybrid CNN–PN–RF Model

This Proposed 
Model

99.66%, 
99.80%

99.56%, 
99.80%

99.59%, 
99.80%

99.56%, 
99.80%

High- Total 6 Datasets 
utilized, including more 
than 316 IoT devices

Incremental Hybrid 
(CNN-PN-RF)

Architectural 
Innovation-based

Yes–cross-
checked on 
two diverse 
datasets 
(Dataset 1 
And 2)

6 Class/
Category 
classification

Table 11.  Comparison with state-of-the-art approaches.
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for real-world implementation, demonstrating impressive progress across Phases 1 to 3. Further details of the 
improvements are presented in Table 12.

Conclusion and future directions
This study presented a high-accuracy, generalized hybrid model (CNN-PN-RF) for classifying unseen IoT 
devices, demonstrating significant improvements across three evaluation phases. By integrating convolutional 
neural networks, prototypical networks, and a random forest classifier, our model effectively captured inter-class 
similarities and improved feature clustering, resulting in superior generalization capabilities.

Model performance improved from 70.96% accuracy in Phase 1 to 83.79% in Phase 2, and finally to 99.56% 
in Phase 3, An absolute accuracy gain of 28.6% on Dataset 1. Similar improvements were observed on Dataset 2, 
further validating the model’s generalizability. The focus of this study was the classification of IoT devices using 
a generalized hybrid model, with particular emphasis on its ability to handle unseen device classification.

Threats to validity
Despite the promising results of the proposed model, many limitations are still there, which we consider as 
threats to validity. First of all, the dataset might not correctly reflect the range of real IoT scenarios due to 
bias imposed by its manual structuring. Second, the evaluation relied on self-prepared benchmark datasets 
that might not accurately reflect all traffic patterns and anomalies found in real-time implementations. Third, 
while unseen device generalization was tested under controlled conditions, performance may differ in large-

Metric Phase 1 → Phase 2 Phase 2 → Phase 3

Precision 82.38% → 81.23%
(−1.15%, decreased)

81.23% → 99.66%
(+18.43%, increased)

Recall 70.96% → 83.79%
(+12.83%, increased)

83.79% → 99.56%
(+15.77%, increased)

F1 Score 75.51% → 82.29%
(+6.78%, increased)

82.29% → 99.59%
(+17.30%, increased)

Accuracy 70.96% → 83.79%
(+12.83%, increased)

83.79% → 99.56%
(+15.77%, increased)

Table 12.  Performance evaluation improvement from Phase 1 to Phase 3.

 

Fig. 17.  Phase-wise performance improvement (Dataset 1).

 

Scientific Reports |        (2025) 15:35388 28| https://doi.org/10.1038/s41598-025-19303-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


scale, highly heterogeneous networks. These factors may affect the external validity of the results. Future studies 
should consider larger, more diverse datasets and real-world testing.

Future directions
Several future directions exist for improving and expanding our approach to overcome these threats to validity 
concerns. These include:

Refining manual data structuring and class formation
In our data preparation phase, we manually structured the dataset by grouping devices into classes based on 
domain knowledge. For instance, all camera-based devices were grouped under “Home Security Cameras,” and 
devices used for control functions were classified under “Home Automation.” However, this approach may not 
always be precise, as certain devices can belong to multiple categories.

For example, a “Smart Home Hub” could reasonably be classified under both “Home Automation” and 
“Home Security.” This ambiguity can lead to misclassifications. Future research could explore automated, data-
driven class formation, possibly using unsupervised learning techniques, which would allow the model to define 
logical groupings based on inherent device characteristics.

Exploring unstructured data and semi-supervised learning
Currently, our model relies on structured data with predefined classes. However, real-world data is often 
unstructured, presenting both a challenge and an opportunity for more realistic evaluation. Future studies could 
investigate unsupervised or semi-supervised learning approaches to handle such data directly. Techniques like 
clustering or graph-based learning could enhance the model’s ability to adapt to unseen devices and traffic 
behaviors without extensive labeling, improving flexibility and reducing reliance on manually curated class 
definitions.

Investigating meta-learning and few-shot learning
While hybrid models combining deep learning and classical machine learning methods offer high performance, 
they often introduce computational complexity. As an alternative, future research could explore meta-learning 
and few-shot learning approaches either in isolation or with lighter models. These methods promise faster 
training, lower resource usage, and the ability to quickly adapt to new, unknown devices with minimal retraining, 
potentially making them more suitable for constrained or real-time environments.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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