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Green walls are a common biophilic design element in indoor environments, contributing to the 
improvement of individuals’ psychophysiological health. This study, utilizing virtual reality technology, 
constructed three different types of green walls: cool-colored flower, warm-colored flower, and non-
flower combined green walls, with no green wall serving as the control. The visual preference vote 
(VPV), subjective evaluations, and electroencephalogram (EEG) of 26 young adults were measured 
to investigate how varying levels of preference for green walls influence restoration. The study 
found that green walls reduced psychophysiological stress levels; however, significant individual 
differences were observed in visual preferences. High-preference green walls were associated with 
more positive emotional responses and more stable patterns of brain activity. Compared to medium- 
and low-preference conditions, the changes in brain oscillatory power were 1.39–2.96 times greater, 
and the effective delay time of alpha rhythms was 1.49–1.68 times longer, suggesting enhanced 
neural stability. Exposure to high-preference green walls induced smaller and faster neural avalanche 
activities. The avalanche criticality index (ACI), an indicator of how close brain activity is to a critical 
and balanced state, decreased by up to 30.31%, reflecting enhanced stability and comfort of neural 
dynamics. VPV was closely related to psychophysiological indicators (p < 0.05). A prediction model of 
green wall preference was constructed based on four EEG features, with the random forest classifier 
achieving an accuracy of 0.88. Among these, ΔACI was the most important predictor of VPV (weight: 
0.48). This study provides a method for predicting individual preferences for green walls, offering 
strong evidence for indoor green wall design.
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ANN	� Artificial neural network
ART	� Attention restoration theory
DT	� Decision tree
FE	� Fuzzy entropy
HP	� High-preference
LEC	� Laboratory environment control
MP	� Medium-preference
NFW	� Non-flower Combined Green Wall
POMS	� Profile of mood states
PSD	� Power spectral density
SD	� Standard deviation
SRT	� Stress recovery theory
VR	� Virtual reality
α	� Alpha brainwave (8–13 Hz) is linked to relaxation
τe	� The effective delay time of α

Rapid urbanization has resulted in an increasing number of people spending significant amounts of time indoors1,2. 
Prolonged exposure to visually monotonous environments can exacerbate mental stress, impair attention, and 
lead to mental disorders and sleep disturbances. According to biophilic design theory, incorporating greenery 
can enhance indoor quality, benefiting human psychophysiological health and improving work performance. 
Green walls, which occupy minimal space, are a common biophilic design element in indoor settings3,4.

An increasing number of studies have highlighted the advantages of indoor green walls, especially in 
enhancing air quality and thermal comfort5,6. However, as vision is a critical sense for recognizing and processing 
environmental information, few studies examined how visual exposure to green walls influences users7. Yeom 
et al.4 and Latini et al.7 investigated the benefits of indoor green walls on psychophysiological restoration from 
the perspective of visible area, but the number of studies is limited, and these studies deliberately avoided colors 
other than green to eliminate interference. The color of green walls also plays a significant role in stress recovery. 
Zhang et al.8 pointed out that cool-toned flowers and green leaves can create a more relaxing plant composition, 
better alleviating physiological stress, while warm-toned flowers and green leaves evoke more excitement and 
positive emotions. Furthermore, they emphasized that regardless of the inherent properties of the color, an 
individual’s preference for that color is crucial for psychophysiological restoration9. Overall, research on the 
visual stimuli of indoor green walls for psychophysiological restoration is lacking, and investigating how green 
walls of varying colors influence psychophysiological restoration based on visual preference is essential.

Comprehensive assessments combining psychological and physiological indicators have proven effective 
for evaluating psychophysiological restoration in indoor greening studies. Psychological responses are often 
measured using subjective tools such as the Profile of Mood States (POMS), which reflects emotional changes 
in both directions and has been shown to effectively capture the emotional effects of indoor greenery10,11. 
Additionally, based on stress recovery theory (SRT) and attention restoration theory (ART), some scholars have 
proposed the Perceived Restorativeness Scale (PRS), which evaluates the impact of indoor greening on perceived 
restorative levels from four aspects: being away, extent, fascination, and compatibility. This scale has been 
widely used12,13. The dimension of being away describes how effectively an environment enables individuals to 
mentally distance themselves from everyday stressors, work-related tasks, or mental burdens, thereby creating 
a psychological sense of distance from routine life14,15. Extent reflects how rich and coherent an environment is 
perceived to be, indicating whether it offers sufficient cognitive scope for exploration and immersive experience. 
This includes the diversity of environmental content and the degree to which its elements are harmoniously 
integrated to form the perception of a “whole world.” Fascination describes the environment’s ability to effortlessly 
capture involuntary attention without requiring conscious effort from the individual. This form of attention is 
considered “soft,” allowing for engagement without inducing mental fatigue16. Compatibility pertains to the 
alignment between the environment and the individual’s personal goals, preferences, or needs, and whether the 
setting supports the activities the individual intends to pursue. Collectively, these four dimensions constitute the 
subjective perception of an environment’s restorative potential15.

Common physiological response measurements include blood pressure, heart rate variability (HRV), and 
electroencephalogram (EEG). The benefits of indoor greening on psychophysiological improvement manifest 
as lower blood pressure17, dominance of the parasympathetic nervous system, and reduced stress levels of the 
autonomic nervous system18. Ma et al.19 found that green walls contribute to reductions in systolic blood pressure 
and heart rate, thereby alleviating cognitive stress. Sedghikhanshir et al.20 reported that exposure to green walls, 
compared to environments without green walls, enhanced parasympathetic nervous system (PNS) activity, 
indicating a stress-relieving effect. This was reflected by a significant rise in RMSSD and a notable reduction in 
LF/HF. The brain serves as a key regulator of psychophysiological functioning. The impact of indoor green walls 
on brain activity deserves in-depth research. EEG signals are synchronous electrical oscillations generated by 
the transmission of signals among cortical neurons. While autonomic nervous system (ANS) indicators such 
as blood pressure and HRV primarily reflect peripheral physiological responses, EEG is particularly effective 
in capturing the rapid dynamic changes in cortical activity. Compared to fMRI, EEG offers superior temporal 
resolution. Within EEG analysis, event-related potentials (ERPs) reflect brain responses that are time-locked to 
stimulus onset, whereas analyses of neural oscillations capture both time-locked (evoked) and non-time-locked 
(induced) activity. Therefore, oscillatory measures are particularly suitable for examining non-task-dependent 
brain dynamics. In this study, the term “EEG” specifically refers to the analysis of neural oscillatory activity. 
Therefore, EEG can accurately reflect the impact of indoor green walls on physiological stress levels. Moreover, 
numerous studies have demonstrated strong associations between EEG and psychological responses21,22. 
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Accordingly, this study focuses primarily on EEG to investigate how different types of green walls influence 
university students’ psychophysiological restoration. Among EEG frequency-domain features, the alpha band 
(α, 8–13 Hz) is one of the most widely used neural indicators in green wall research23. α oscillations are generally 
associated with relaxed wakefulness, reduced mental workload, and disengagement of attention4,19. Li et al.23 
found that exposure to green walls resulted in reduced overall EEG power and elevated alpha activity, indicating 
a state of greater relaxation and lower stress. Ma et al.19 further reported that compared to no green wall, exposure 
to green walls significantly enhanced alpha oscillations, particularly in the right hemisphere, reflecting improved 
emotional regulation and relaxed spatial attention. In addition, Yeom et al.4 found that, compared to large green 
walls, small green wall exposure elicited stronger alpha activity, especially in the parietal region, indicating greater 
efficacy in supporting cognitive restoration. As EEG application in indoor environment research deepens, some 
studies have pointed out that nonlinear dynamic features can better reflect complex brain activity. Frescura 
et al.24 noted that the effective delay time of α (τe) is closely related to preference, emotion, and comfort. Hu 
et al.25 proposed that fuzzy entropy can better reflect the overall disorder of brain activity, closely linked to 
subjective perception. These features describe brain oscillatory activity and mainly rely on linear analyses in 
the frequency domain, whereas the brain also exhibits avalanche activity, which is better characterized through 
nonlinear dynamic analyses. Lu et al.26 and Liu et al.27 pointed out that the nonlinear dynamic features of brain 
avalanche activity are strongly connected to psychophysiological comfort, with avalanche size (AS), avalanche 
duration (AD), branching parameter (σ), and avalanche critical index (ACI) serving as effective evaluation 
indicators. They also suggested that the closer avalanche activity is to a stable, healthy critical state, the lower 
the overall power of brain oscillations, allowing the brain to better process and integrate external information. 
Therefore, investigating how indoor green walls influence the multidimensional characteristics of brain activity 
is essential. Additionally, some scholars have achieved free control of green wall elements (such as shape and 
size) through VR simulation, avoiding interference from irrelevant indoor environment factors4,7. They have 
demonstrated that EEG, VR, and laboratory environment control (LEC) can effectively explore the impact of 
green walls on psychophysiological restoration23,28. Real-world green wall intervention research requires post-
construction studies, leading to increased research time and costs, with confounding factors such as plant decay 
being unavoidable. VR has been proven to achieve almost consistent perception with the real world, offering 
low-cost and flexible advantages, providing strong technical support for indoor green wall research29. In 
summary, the comprehensive psychological and physiological measurement methods used in indoor greening 
research provide strong support for studying the psychophysiological restoration benefits of indoor green walls. 
EEG signals can accurately indicate the influence of indoor green walls on psychophysiological restoration, but 
current research primarily focuses on the frequency domain features of brain oscillatory activity, with limited 
attention to avalanche activity and nonlinear dynamic features. Therefore, to better understand the neural effects 
of indoor green walls, a broader range of EEG indicators should be employed, and combining this with VR has 
become an effective means for pre-occupancy evaluation of green walls.

Intense academic demands often confine university students to indoor environments, limiting their exposure 
to natural settings. Reduced exposure to natural environments has been associated with decreased academic 
performance and heightened risks of mental health problems, such as depression and anxiety. Investigating how 
various types of green walls affect psychological and physiological health offers important insights for enhancing 
university students’ well-being. This study utilized VR equipment to present three different types of green walls: 
cool-colored flower combined green wall (CFW), warm-colored flower combined green wall (WFW), and non-
flower combined green wall (NFW). Participants rated their visual preference levels while EEG signals were 
measured and compared to data collected under no green wall (NW) conditions. The objectives of this study 
are: (1) To determine the effects of different types of green walls on university students’ subjective perceptions 
and brain activities. (2) To understand the relationship between green wall preferences and emotions as well 
as brain activities. (3) To explore the mechanisms linking brain activities to individual green wall preferences. 
The findings are intended to contribute to the theoretical understanding of indoor environmental optimization 
and psychophysiological recovery, and to serve as a reference for integrating green walls into interior design 
practices. The overall framework of the study is shown in Fig. 1.

Methods
Participants
Voluntary participants were recruited through the official website of the college at Qingdao University of 
Technology (QUT). They were screened by phone to ensure that they had no mental or physical health conditions 
and no history of traumatic brain injury. The required sample size was determined using G*Power, assuming 
α = 0.05, power = 0.80, and an effect size of 0.5, resulting in a minimum of 17 participants26. Considering the 
potential for data contamination during the experiment—such as signal distortion caused by poor electrode 
contact, ocular artifacts, or electromyographic interference—some EEG recordings of suboptimal quality 
were excluded from further analysis. As a result, a total of 26 young university students (male: 13, female: 13), 
aged between 18 and 28 years and with a body mass index (BMI) within the normal range (19–24.9 kg/m²), 
were ultimately selected to participate and complete the experiment. Table  1 presents the basic information 
of the participants. To obtain clean EEG data, participants were required to adhere to the following guidelines 
before and during the experiment: (1) On the day before the experiment, participants should not smoke, drink 
alcoholic or caffeinated beverages, or take neurogenic drugs, and they should ensure adequate sleep. (2) Two 
hours before the experiment, participants should avoid strenuous activities to ensure normal physiological 
indicators. (3) Ensure that the scalp is clean before the experiment. All participants had previous VR experience 
through VR games or other VR experiments, and none reported discomfort. This study was approved by the 
Ethics Committee of Qingdao University of Technology in January 2024 (QUT-HEC-2024150). All procedures 
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complied with relevant ethical guidelines and regulations, including the Declaration of Helsinki. Informed 
consent was obtained from all participants before the study commenced.

Experimental setup
The experiment was started from March 2, 2024, to May 4, 2024, daily from 9:00 AM to 11:00 AM, in a 
laboratory (5 × 4 × 2.6 m) at QUT (see Fig. 2). An indoor environmental quality (IEQ) monitoring sensor was 
centrally positioned in the laboratory at a height of 1.0 m from the floor, following the guidelines of ASHRAE 
Standard 55-201730. The thermal environment of the laboratory was controlled by a split air conditioner, 
ensuring Predicted Mean Vote (PMV) = ± 0.5, with no noise sources and an indoor sound pressure level not 
exceeding 40 dBA. Specific parameter settings are detailed in Table 2. The thermal resistance of participants’ 
clothing was standardized at 0.5 clo, consisting of a short-sleeved shirt, cotton trousers, and socks31. Throughout 
the experiment, all participants remained in a seated posture without engaging in additional physical activity, 
resulting in an approximate metabolic rate of 1.0 met32.

Different green walls
The green wall was virtual, constructed using the 3D design software SketchUp 2023 and rendered with the 
real-time visualization software Enscape 3.5.6, producing images at a resolution of 12,960 × 12,960 pixels36. All 
other rendering parameters were set to their default values37. Four green wall conditions were set: (a) no green 
wall (NW), (b) cool-colored flower combined green wall (CFW), (c) warm-colored flower combined green wall 
(WFW), and (d) non-flower combined green wall (NFW). A room measuring 2.7 m (H) x 6 m (W) x 4.5 m (L) 
was constructed for this study, containing a standard office desk and chair facing the green wall, which measured 
2.2 m (H) x 4 m (W). The base color of the green wall was green, featuring pothos plants, a common indoor plant 
known for effectively purifying air quality. The wall was adorned with pansies, a popular flower available in a wide 
range of colors9. Yellow and purple pansies were selected to create the CFW and WFW, respectively, covering 
50% of the plant wall area, with identical flower sizes and distribution positions except for the color. NW served 
as the baseline to better understand the psychophysiological responses of participants to different green walls. 

N

Age Height (cm) Weight (kg) BMI (kg/m²)

(Mean ± SD)

Male 13 22.08 ± 2.99 179.92 ± 5.30 77.92 ± 6.12 24.08 ± 1.78

Female 13 22.15 ± 2.58 164.00 ± 3.21 51.46 ± 3.15 19.15 ± 1.32

Total 26 22.12 ± 2.73 171.96 ± 9.18 64.69 ± 14.31 21.62 ± 2.95

Table 1.  The basic information of the participants. (SD: standard deviation)

 

Fig. 1.  Overview of the study framework. Participants viewed three green wall types and reported visual 
preferences. Subjective (Profile of Mood States, Perceived Restorativeness Scale) and EEG (overall power, the 
effective delay time of alpha oscillations, fuzzy entropy, avalanche critical index) responses were measured and 
compared to a no-green-wall baseline. An EEG-based model predicted preference with 0.88 accuracy, showing 
that visual preference influences psychophysiological outcomes.
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All other design factors, such as illumination and spatial configuration, were kept consistent (see Fig. 3). The 
visual observation point of the participants was 1.1 m above the ground in front of the desk, positioned 4.0 m 
from the green wall. To assess the realism of the virtual environment, participants completed the Igroup Presence 
Questionnaire (IPQ)38 after the VR exposure. The questionnaire consists of 14 items covering four dimensions: 
general presence, spatial presence, involvement, and experienced realism, with a total score ranging from 20 
to 100. The results showed average scores of 65.32 for general presence (IPQ-D1), 65.33 for spatial presence 
(IPQ-D2), 59.58 for involvement (IPQ-D3), and 58.42 for experienced realism (IPQ-D4), indicating that 
participants generally perceived the virtual green wall environment as immersive and realistic. The slightly lower 
score for “experienced realism” may be explained by the fact that the current VR exposure involved only visual 
stimuli and lacked additional multisensory cues (e.g., scent, temperature, airflow), which are known to enhance 
realism. These values are also comparable to those reported in previous VR studies on indoor environments—for 
example, Sedghikhanshir et al.20 reported scores of 66.07 for IPQ-D1, 60.97 for IPQ-D2, 53.12 for IPQ-D3, and 
54.53 for IPQ-D4. The somewhat lower IPQ-D1 score in our study compared to their findings may be attributed 
to the relatively simpler room scene used here, which was less enriched than the virtual environment in their 
study. By contrast, the scores for IPQ-D2-4 in our study were slightly higher, suggesting that participants still 
experienced a satisfactory level of immersion despite the simplified environment. These findings support the 
validity of the virtual model39.

Experimental procedure
The experimental procedure includes the preparation phase and the repeated measures phase (see Fig.  4)4. 
During the preparation phase, each participant was given 30 min to relax and equip the EEG device. Researchers 
provided a brief overview to the experimental process (about 5 min) and collected the participants’ personal 
information. During the repeated measures phase, participants wore the VR equipment (HTC Vive Pro), a VR 
headset with a head-mounted display, providing a total resolution of 2880 × 1660 pixels, a refresh rate of 90 Hz, 
and a field of view of 110°. Participants first viewed the NW for 5 min, then removed the VR equipment to 
complete a subjective evaluation and rest, serving as the baseline condition. Next, participants underwent 3 min 
of stress stimulation, consisting of a 1-minute Stroop test and a 2-minute arithmetic test. In the Stroop test, 
participants were shown words representing colors and required to state the font color instead of the word itself. 
After the Stroop test, participants were asked to quickly solve addition and subtraction problems within 1000. 
Upon completing the stress stimulation, participants viewed the designated green wall for 5 min, with the order 
of the CFW, WFW, and NFW being randomized. Subsequently, the VR headset was removed, and participants 
were asked to complete a subjective evaluation. During the repeated measures phase, participants remained 

IEQ parameter Set value Ref.

Air temperature 24 ± 0.5℃ 30,33

Relative humidity 50–60% 30

CO2 concentration < 800ppm 4,34

Illumination 300 lx, 4000 K 4,35

Air speed 0.05 m/s 33,34

Table 2.  Experimental parameter settings.

 

Fig. 2.  Experimental setup and equipments.
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seated, with continuous EEG signal measurement except during rest periods. After a 10-minute rest, the next set 
was initiated. This procedure ensured that participants experienced each green wall condition under controlled 
and consistent circumstances, allowing for the collection of reliable and comparable data on their psychological 
and physiological responses.

Psychological measures
The questionnaire survey in this study included three aspects: basic information, emotions, and visual preferences 
(see Fig. 5). Participants were required to complete a pre-experiment questionnaire collecting information on 
their height, weight, visual conditions, and potential sensitivity or discomfort related to VR. After each NW and 
different green wall exposure experiment, they completed the POMS and PRS. POMS is a method for evaluating 
emotional states40, using a 5-point Likert scale to assess both negative and positive emotions from six aspects: 
confusion (C), fatigue (F), anger (A), tension (T), depression (D), and vigor (V)41. Representative mood-related 
adjectives are used to facilitate the rapid assessment of an individual’s emotional state42. The emotional level was 

Fig. 4.  Experimental procedure.

 

Fig. 3.  (a-c) Different green walls and (d) virtual environment.
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calculated as the difference between negative and positive emotion scores (see Eq. (1)). A decrease in POMS 
scores is indicative of improved emotional state. The PRS, grounded in restorative environment theory, includes 
six selected items rated by participants on a 7-point Likert scale. Calculated as the average of six individual 
items, the PRS score represents perceived restorative potential, with higher scores denoting stronger restorative 
perceptions31. After completing the three green wall exposure experiments, participants voted on their visual 
preferences (VPV) for CFW, WFW, and NFW. Visual preference was assessed by asking, “Which green wall do 
you like the most?” Participants ranked the different green walls based on their preference, with the highest 
rank = 3 and the lowest rank = 1.

	 P OMS = (C + F + A + T + D − V ) /6� (1)

EEG measures
EEG were measured by the EPOC Flex Saline Sensor Kit (Emotiv Inc., USA), a portable 32-channel EEG device 
(sampling rate: 128 Hz, see Fig. 6(a)), with AFz and FCz serving as reference channels. Given the vulnerability 
of EEG signals to artifacts, preprocessing for noise reduction is essential before analysis. Figure 6(b) outlines the 
main steps: (1) Channel localization, matching EEG data to respective channels; (2) Re-referencing, typically 
using the common average reference; (3) Filtering, applying low-pass and high-pass filters to remove EEG 
signals outside the 1–45 Hz range; (4) Independent component analysis (ICA), to eliminate artifacts caused by 
eye movements, muscle tension, etc.; (5) Bad segment removal, discarding EEG signals of poor quality. If more 
than 50% of the EEG signal segments are of poor quality, they are excluded from subsequent analysis. The EEG 
signals of all 26 participants in this study met the inclusion criteria. EEG signals were segmented into epochs 
of 2 s with a 50% overlap. All preprocessing steps were completed using the EEGLAB toolbox in Matlab 2016b 
(Mathworks, USA).

Overall power
Overall power is a common frequency domain feature that reflects the intensity of brain oscillatory activity33. 
When the brain is stimulated by external factors, neuron interaction is activated, consuming more brain energy, 
which is associated with discomfort26,43. Conversely, when brain activity is in a comfortable state, the brain load 
is lower, and the overall power is also lower44,45. Fast Fourier Transform (FFT) was employed to convert EEG 

Fig. 5.  The questionnaire survey.
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signals from the time domain to the frequency domain, the power spectral density (PSD) within the 1–45 Hz 
range is summed to obtain the overall power (see Eq. (2))46. Because absolute power values are typically large, a 
logarithmic transformation is commonly applied (see Eq. (3)).

	
Overall absolute power =

j∑
n=i

∣∣F F Tn
2∣∣� (2)

	 Overall power = log10 (Overall absolute power)� (3)

Where, FFTn is the PSD extracted by FFT, i and j denote the minimum and maximum frequencies of EEG signal 
(1 and 45, respectively).

τe
The autocorrelation function (ACF) describes the degree of autocorrelation of EEG signals at different time lags, 
revealing patterns and periodic features in the brain activity time series47–49. ACF helps identify the intensity 
of specific frequency bands. α (8–13 Hz) oscillations often appear in a relaxed state, and if the α oscillatory 
activity contains obvious repeating patterns, the ACF will show distinct peaks at corresponding lag times24. The 
calculation method is shown in Eq. (4). The larger the effective delay time of α (τe), the longer the temporal 
correlation of the signal persists, which is associated with positive brain responses24.

	
ACF (τ) =

∑N−t

t (x (t) − x) (x (t + r) − x)∑N

t=1 (x (t) − x)2 � (4)

Where, N is the length of the EEG series, x(t) is the signal value at time t, 
−
x is the mean value of the series, and 

τ is the time lag. The τe refers to the time it takes for the signal to decay from its peak back to the initial level.

Fuzzy entropy (FE)
Brain activity is nonlinear, and dynamic feature analysis can offer a more complete understanding. Entropy is 
a nonlinear metric used to quantify the level of disorder or complexity within a system. Compared to sample 
entropy and approximate entropy, fuzzy entropy (FE) uses a fuzzy function, making it more robust in handling 
complex and noisy EEG data. Studies have shown that FE can effectively reflect the probability of repeating 
patterns in the time series of EEG, as shown in Eqs. (5–6)25. The more stable the brain activity, the less power it 
consumes, which corresponds to a smaller FE50.

	
F E (m, r) = − ln Bm+1

r

Bm
r

� (5)

	 r = SD (EEG data) /5� (6)

Where, m is the intrinsic dimension, here set as 2, r is the similarity threshold, set as 0.2-fold the SD of the 
original EEG data, and B represents the probability of self-similarity in m-dimensional patterns51.

Brain neural avalanche parameters
While the features mentioned above are typically used to characterize brain oscillations, the brain also 
demonstrates avalanche-like activity beyond these rhythmic patterns52. When the brain is subjected to stress 

Fig. 6.  (a) Channel distribution diagram of the device and (b) preprocessing framework.
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stimuli, large-scale chaotic activities occur, whereas under positive stimuli (such as green wall interventions), 
high-amplitude bursts of neuronal activity help transition the brain’s disordered activity to periodic, stable 
activity. This pattern of neuronal activity is known as neural avalanches53. Avalanche size (AS), avalanche 
duration (AD), and branching parameters (σ) are commonly used to quantify the features of avalanche activity. 
First, it is necessary to detect whether avalanche activity occurs within a time window, defined as activity 
exceeding a threshold. The time window used here is 31.2 ms, which is 4-fold the temporal resolution of the 
EEG signal sampling rate (128 Hz). The threshold is set as the mean value of the total EEG signals plus the SD. 
Instances where brain activity surpasses the threshold are marked as events, and sequences of consecutive events 
are grouped into time bins. Subsequently, the duration of consecutive events and the total count of events within 
that time window are calculated, representing the avalanche duration and size, respectively. The distributions 
of AS and AD follow a power-law form, and their corresponding power-law exponents are denoted as λ₁ (for 
size) and λ₂ (for duration), respectively. These exponents were estimated using maximum likelihood estimation 
(MLE), as shown in Eqs. (7–8)54,55.

	 P (AS) ∼ AS−λ1 � (7)

	 P (AD) ∼ AD−λ2 � (8)

The branching parameter (σ) is a crucial feature describing the stability of neural avalanche activity. This measure 
reflects the average number of follow-up activations triggered by a preceding event within an avalanche (see 
Eq. (9))56,57. If σ < 1, the system tends to decay, meaning the number of subsequent events gradually decreases, 
and the avalanche tends to reduce or shrink. If σ = 1, the system is in a critical state, implying that the number 
of subsequent events remains constant, resulting in stable avalanches with balanced growth and decay rates. If 
σ > 1, the system is in an unstable state, where the number of subsequent events grows exponentially, causing the 
avalanche to expand or grow58. Stable avalanche dynamics are linked to enhanced recovery of the brain toward 
a comfortable or relaxed state59.

	
σ = 1

N

∑N

i=1

ni+1

ni
� (9)

Where, ni is the count of events in the previous event box, ni+1 is the count of events in the following box, and N 
is the entire count of non-empty event boxes.

Analogous to the dynamics described by the Ising model60, where the magnetic field reaches a balance 
between order and disorder at a specific temperature, achieving the highest synergy between the magnet and the 
external magnetic field61, the brain’s neural avalanche activity also has a balance point. When this balance point 
is reached, the brain can quickly organize external information, and neuronal activity self-sustains to promote 
communication, maintaining a comfortable and healthy state. The avalanche critical index (ACI) is commonly 
used to reflect this critical state. A smaller ACI indicates that the brain is closer to the critical state62. Based on the 
power-law exponents of avalanche size (λ1) and avalanche duration (λ2), the calculated value (λ3) and the fitted 
value (λ4) of the average scale power-law exponent are obtained, with the difference between them representing 
ACI, as shown in Eqs. (10–12)54,55.

	 P
(
AS

)
∼ AS

−λ3 � (10)

	
λ4 = λ2 − 1

λ1 − 1 � (11)

	
ACI = |λ4 − λ3| =

∣∣∣λ2 − 1
λ1 − 1 − λ3

∣∣∣� (12)

Data analysis
This study initially categorized the 78 data sets—derived from three green wall conditions for each of the 26 
participants—based on VPV into three groups: low-preference (LP), medium-preference (MP), and high-
preference (HP). To eliminate the effects of repeated measurements and better reflect the efficiency of brain 
activity recovery, the ratio of the measured value (Indexafter) to the baseline value (Indexbaseline) was calculated 
for subsequent analysis (see Eq. (13))63. The Shapiro-Wilk test was then conducted, revealing that the data from 
each group followed a normal distribution. For variables that followed a normal distribution, paired-sample 
t-tests were used to examine whether the psychological and physiological indicators changed significantly before 
and after the green wall intervention (see Appendix A1 for details). To account for the repeated measures design, 
a linear mixed-effects model (LMM) was further employed for one-way analysis of variance. In this model, 
green wall preference level (LP, MP, and HP) was treated as a fixed effect, and participants were included as 
a random intercept. The degrees of freedom were calculated using the Satterthwaite approximation method. 
The model tested whether the changes in psychophysiological responses (ΔPOMS, ΔPRS, Δoverall power, Δτe, 
ΔFE, and ΔACI) differed significantly across preference levels (see Appendix A2). P < 0.05 was considered 
indicative of a significant difference. Next, Spearman correlation analysis was performed to investigate the 
relationships between VPV, ΔPOMS, ΔPRS, and Δoverall power, Δτe, ΔFE, and ΔACI. Correlation strength was 
interpreted as follows: |r| = 0.10–0.39 indicating a weak correlation, 0.40–0.69 moderate, and 0.70–1.00 strong. 
Above analyses were conducted using SPSS 27.0 (SPSS Inc., USA). Finally, a green wall preference prediction 
model was developed based on brain activity features using various machine learning classifiers. In this 
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study, five commonly used classification models were constructed: Decision Tree (DT), K-Nearest Neighbors 
(KNN), Naive Bayes (NB), Artificial Neural Network (ANN), and Random Forest (RF). Prior to modeling, 
all feature variables (e.g., Δoverall power, ΔACI, ΔFE, Δτe) were standardized using Z-score normalization to 
mitigate the influence of scale differences on model performance. To reduce feature redundancy and the risk 
of overfitting, feature selection was performed using the LASSO regression method, retaining only the features 
that contributed significantly to predictive performance. Model training and evaluation were conducted using 
five-fold cross-validation, and all evaluation metrics—accuracy, precision, recall, and F1-score—represent the 
average results across folds. To avoid data leakage due to repeated measures, we adopted a leave-one-subject-
out cross-validation scheme, ensuring that all data from a given participant appeared exclusively in either the 
training or validation set. The model specifications are as follows: DT: Constructed using the CART algorithm 
to generate a binary tree, with the Gini index as the splitting criterion; maximum tree depth was 5, and the 
minimum number of samples per leaf node was 3. KNN: The number of neighbors k was set to 5, with Euclidean 
distance used as the distance metric. NB: Gaussian Naive Bayes was used, assuming that the input features follow 
a Gaussian distribution. ANN: A three-layer feedforward neural network was implemented. The input layer 
contained nodes equal to the number of selected features, followed by a hidden layer with 8 nodes using ReLU 
activation, and an output layer with Softmax activation. The model was optimized using the Adam optimizer, 
and the loss function was categorical cross-entropy. RF: Consisted of 100 decision trees with a maximum depth 
of 10. For each split, √n features were randomly selected. Model accuracy was estimated using the Out-of-Bag 
score. All models were implemented using the Scikit-learn library in Python 3.9. The EEG data and code are 
available at https://github.com/zhangnan916/Green-wall-data.git.

	 ∆Index = (Indexafter − Indexbasiline) /Indexbasiline� (13)

Results
Visual preference vote
Figure 7(a) shows the results of visual preference vote (VPV). Individual differences exist in VPV for green walls 
with different tones. Among WFW, CFW, and NFW, 10 participants preferred WFW, 6 participants preferred 
NFW, 2 participants preferred CFW, and 2 participants found all three green walls to provide equally good visual 
perception. Interestingly, participants 4 and 14 preferred CFW and NFW, while participants 6 and 20 preferred 
WFW and NFW, and participants 13 and 18 had a higher preference for CFW and WFW compared to NFW. This 
indicates that different green walls have varying effects on individual visual perception. Based on VPV of the 
26 participants for the three green walls, the 78 data sets were divided into three groups (as shown in Fig. 7(b)), 
namely the low-preference group (LP, VPV = 1), the medium-preference group (MP, VPV = 2), and the high-
preference group (HP, VPV = 3). Most participants rated WFW and NFW highly, leading to 46.15% of the data 
falling into the high preference group. The LP and the MP groups included 20 and 22 data sets, respectively.

POMS and PRS
Paired t-tests indicated that positive emotions and perception recovery significantly improved after any green wall 
intervention compared to the baseline (p < 0.001, see Appendix A1). The HP group showed the best performance, 
with POMS significantly decreasing by 2.82 (p < 0.001, see Appendix A3) and PRS significantly increasing by 
2.19 (p < 0.001, see Appendix A5), indicating the greatest enhancement in psychological response. Figure 8(a) 
presents the effect of green walls with varying preference levels on ΔPOMS After the green wall intervention, 
ΔPOMS was less than 0, indicating a significant improvement in overall mood compared to the NW. As green 
wall preference increased, the reduction in POMS also significantly increased (p < 0.001, see Appendix A2). The 

Fig. 7.  (a) Visual preference votes (VPV) for three green wall types—warm-colored flowered (WFW), cool-
colored flowered (CFW), and non-flowered (NW)—by each participant. (b) Distribution of green wall types 
across low- (LP), medium- (MP), and high-preference (HP) groups. Results show clear individual differences 
in visual preference composition.
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fixed effects explained 32% of the variance, while including individual differences increased the overall explained 
variance to 56%. Notably, the ΔPOMS of the HP group was 1.11–1.25 times greater than that of the other two 
groups (see Appendix A4). Figure  8(b) shows the impact of varying preference green walls on ΔPRS. After 
the green wall intervention, ΔPRS ranged from 0.37 to 0.77, indicating significant subjective stress recovery 
improvement compared to the NW. ΔPRS significantly increased with higher green wall preference, showing 
statistical differences (p < 0.001, see Appendix A2). The PRS increase in the HP group was 1.28 times that of the 
LP group (p = 0.006, see Appendix A6) and 2.10 times that of the MP group. Overall, WFW, CFW, and NFW all 
helped to eliminate negative emotions and psychological stress4, and this positive effect increased with higher 
green wall preference.

Overall power
Figure 9 shows the plots of overall brain activity for different preference groups. As preferences increase, the 
color in the plots gradually fades, indicating a decrease in oscillatory activity. Changes in oscillatory activity are 
more significant in the right hemisphere, especially in the parietal lobe (area between Cz, CP2, CP6, C4, and 
FC2). Reduced oscillatory activity in the right hemisphere, which is associated with negative emotions, indicates 
a reduction in negative emotions64. The parietal lobe, related to complex thinking, shows decreased activity 
under high-preference green wall intervention, indicating restored top-down attention. Additionally, compared 
to the LP group, the HP group showed significantly reduced oscillatory activity in the T7 and F3 channels. 
While the temporal lobe primarily processes auditory information, it also plays a role in visual activities through 
a synergistic effect. Previous studies have also identified the frontal lobe as a key region reflecting emotional 
changes65.

Paired t-tests showed that, compared to NW, exposure to WFW, CFW, and NFW significantly reduced overall 
power by 2.14 µv² (p < 0.001, see Appendix A1), indicating that brain activity tended towards a comfortable 

Fig. 9.  The plots of overall power for different preference groups.

 

Fig. 8.  (a) Changes in Profile of Mood States (ΔPOMS) and (b) Perceived Restorativeness Scale (ΔPRS) across 
high- (HP), medium- (MP), and low-preference (LP) groups. Boxplots show that higher visual preference is 
associated with greater emotional improvement and perceived restoration. The effect of green wall preference 
on the ΔPOMS and ΔPRS was significant (p < 0.001).
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state. This change was related to green wall preference, with high-preference green wall exposure significantly 
reducing overall power by 2.89µv² compared to the baseline condition (p < 0.001, see Appendix A7), which is 
1.45–2.18 times greater than other preference green walls. As shown in Fig. 10, Δoverall power also indicated 
significant differences between different preference groups (p < 0.001, see Appendix A2). Individual differences 
increased the overall explained variance by 20%. Although the Δoverall power for different preference green 
walls ranged from − 0.08 to -0.24, indicating that brain activity was relaxed in all cases, the Δoverall power 
for the HP group was 1.39–2.96 times that of the LP and MP groups (see Appendix A8), effectively reducing 
unnecessary brain power consumption and more prominently promoting brain comfort. This demonstrates 
that green wall exposure helps reduce brain stress levels, with high-preference green walls performing better4,19.

τe
Figure 11 shows the plots of α oscillatory activity for different preference groups. As preferences increase, the 
plot’s color gradually deepens, indicating enhanced α oscillatory activity, especially in the right hemisphere. 
Enhanced α oscillatory activity in the right hemisphere is associated with better stress recovery66. Compared to 
the LP group, the HP group exhibited significantly increased α oscillatory activity in the frontal-parietal (FC1, 

Fig. 11.  The plots of α oscillatory activity for different preference groups.

 

Fig. 10.  Changes in overall EEG power (Δoverall power) across high- (HP), medium- (MP), and low-
preference (LP) groups. Lower visual preference was associated with greater increases in EEG power. The effect 
of green wall preference on the Δoverall power was significant (p < 0.001).
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FC2, and Cz), parietal-temporal (CP6 and TP10), frontal-temporal (F8 and FT10), and posterior parietal (Pz 
and P4) regions. High-preference green walls increased the connectivity of α oscillatory activity across various 
regions of the right hemisphere, resulting in more positive emotions.

The τe significantly increased after exposure to different green walls (p < 0.001, see Appendix A1). Compared 
to NW, τe significantly increased by 34.52 ms, 24.48 ms, and 21.00 ms for HP, MP, and LP groups, respectively 
(p < 0.05, see Appendix A9). Green walls activate α oscillations. As shown in Fig. 12, the Δτe increased by 0.04–
0.05 more under high-preference green wall exposure compared to low-preference and medium-preference, 
promoting the increase in the autocorrelation of α oscillatory activity (see Appendices 2 and 10). This indicates 
that high-preference green walls help improve the periodicity and intensity of α oscillatory activity4.

Fuzzy entropy (FE)
Green wall exposure helps prevent the brain from developing irrelevant new patterns, thereby reducing fuzzy 
entropy (FE). Compared to NW, FE significantly decreased by 0.84 after exposure to different green walls 
(p = 0.005, see Appendix A1), particularly in the HP group, where FE significantly decreased by 1.44 (p = 0.002, see 
Appendix A11). As shown in Fig. 13, green wall preference had a substantial impact on ΔFE (p = 0.027, Marginal 
R2 = 0.22, Conditional R2 = 0.38, see Appendix A2). Under high-preference and medium-preference green wall 
exposures, ΔFE was − 0.22 and − 0.09, respectively, while low-preference green wall exposure did not result 
in a significant change in FE (ΔFE = -0.01). The HP and LP groups showed statistically significant differences 
(p = 0.047, see Appendix A12). These findings indicate that the modulation of brain activity complexity by green 
walls is associated with individual visual preferences.

Avalanche activity
Figure 14 shows the avalanche sizes under different preference green wall exposures. Compared to low-preference 
green walls, high-preference and medium-preference green walls exhibited a lower probability of large-scale 

Fig. 12.  Changes in the effective delay time of alpha oscillations (Δτe) across high- (HP), medium- (MP), and 
low-preference (LP) groups. Higher visual preference was associated with longer α delay time, indicating more 
sustained neural processing. Group differences were significant (p < 0.001).
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avalanche activities. The λ₁ values were 1.51 and 1.52, respectively, which are closer to the theoretical value of 
1.5061. Smaller avalanche activities tend to propagate faster, facilitating the brain’s recovery to an optimal state67.

Figure 15 shows the avalanche durations under different preference green wall exposures. The probability of 
prolonged avalanche activities in the brain was lowest under high-preference green wall exposure (λ2 = 1.92), 
closest to the theoretical value of 2.061, while the probability was highest under low-preference green wall 

Fig. 14.  Power-law distributions of avalanche size (AS) for high- (HP), medium- (MP), and low-preference 
(LP) groups. The fitted exponents indicate reduced large-scale neural cascades in the LP group, suggesting 
diminished criticality under less preferred green wall exposure.

 

Fig. 13.  Changes in fuzzy entropy (ΔFE) across high- (HP), medium- (MP), and low-preference (LP) groups. 
Lower visual preference was associated with higher increases in EEG complexity. The effect of green wall 
preference on the ΔFE was significant (p < 0.05).
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exposure (λ2 = 1.75). The smaller the time difference between the first and last activation of neurons, the higher 
the efficiency of slowing down brain neural dynamics, which aids in stress recovery53.

To further explore how green walls with different levels of visual preference influence brain avalanche 
dynamics, the study examined individual variations in the power-law exponents of AS (λ₁) and AD (λ₂), as 
illustrated in Fig. 16(a). The distributions of λ1 and λ2 show an approximately linear pattern on the coordinate 
plane. Taking the mean values from the medium-preference group (λ1 = 1.51, λ2 = 1.78) as a central reference point, 
the plane was divided into four quadrants. Most data points from the high-preference group are concentrated in 
the upper right quadrant relative to this center. This region is characterized by reduced brain resource wastage 
and better cognitive ability to integrate and process external information, which can be considered a low power 
consumption zone. In this zone, 69.44% of the HP group participants were located (as shown in Fig. 16(b)). 
Conversely, 50.00% of the LP group participants were concentrated in the lower left quadrant, characterized 
by widespread and sustained neural instability, which imposes significant metabolic demands on the nervous 
system. The results suggest an association between green wall exposure and avalanche dynamics under different 
levels of visual preference. Specifically, exposure to highly preferred green walls was associated with more 
energy-efficient and stable brain activity patterns, which may reflect a higher level of cortical comfort.

The branching parameter (σ) reflects the propagation features of avalanches. As shown in Fig.  17, σ was 
greater than 1.00 under all green wall exposures, indicating that brain avalanche activity was diffusively 
propagated. However, compared to low-preference green walls, σ decreased by 0.04–0.05 under high-preference 
and medium-preference green wall exposures, bringing it closer to the theoretical value of 1.00. This suggests 
that brain avalanche activity had a more balanced growth and decay rate. Differences in avalanche propagation 
patterns were observed under green wall exposures with varying levels of preference. Under high-preference 

Fig. 16.  (a) Scatter plot of avalanche size (λ₁) and duration (λ₂) power-law exponents, divided into low and 
high power consumption zones. (b) Distribution of participants from high-preference (HP) and low-preference 
(LP) groups across the zones. HP participants were predominantly located in the low-power consumption 
zone, indicating more efficient neural activation.

 

Fig. 15.  Probability distributions of avalanche duration (AD) fitted with power-law functions for the high- 
(HP), medium- (MP), and low-preference (LP) groups. The exponents indicate heavier-tailed distributions in 
the HP group, suggesting more stable and sustained neural cascades during preferred green wall exposure.
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green wall exposure, the σ value was closer to the critical point, which may be associated with enhanced neural 
efficiency and the brain’s improved capacity for comfort-related recovery.

Paired t-tests indicated that, compared to NW, the ACI significantly decreased after exposure to WFW, CFW, 
and NFW (p < 0.001, see Appendix A1). The ACI decreased by 0.14, 0.06, and 0.01 for HP, MP, and LP groups, 
respectively (p < 0.01, see Appendix A13). Significant group differences in ΔACI were also observed, as shown in 
Fig. 18 (p < 0.001, see Appendix A2). The fixed effects explained 34% of the variance, while including individual 
differences increased the overall explained variance to 59%. High-preference green walls performed best, with 
the largest decrease in ACI (ΔACI = -0.35), and some individuals even reached around − 0.60. Compared to 
medium- and low-preference conditions, the high-preference green wall exposure resulted in a greater reduction 
in ACI (15.09–30.31%, p < 0.05, see Appendix A14). This finding suggests that high-preference exposure may 
be associated with brain activity patterns that are closer to the critical state. This indicates that as green wall 
preference increases, the decrease in ACI increases, allowing brain activity to approach a comfortable and 
positive critical state more quickly.

Correlation analysis
Figure 19 shows the correlation between subjective evaluations and brain activity. As VPV increases, ΔPOMS 
decreases, while ΔPRS increases, with r values of -0.620 and 0.905, respectively (p < 0.001). This indicates 
that higher green wall preferences are associated with improvements in negative emotions and stress levels. 
Additionally, a significant negative correlation was found between VPV and Δoverall power, ΔFE, and ΔACI 
(p < 0.05). Interestingly, there is also a significant positive correlation between Δoverall power and ΔACI, 
with an r value of 0.390 (p < 0.01). This supports previous research findings26, suggesting that approaching a 
critical state is associated with lower brain power consumption. Thus, subjective perception under green wall 
exposure is closely related to brain activity, with high-preference green walls often leading to more positive 
psychophysiological restoration4.

Fig. 17.  Branching parameter (σ) across high- (HP), medium- (MP), and low-preference (LP) groups. No 
significant group difference was found, although all values remained above the critical threshold (σ = 1), 
indicating a supercritical state of brain dynamics during green wall exposure.
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Individual green wall preference prediction model based on brain activity features
The study also evaluated the classification accuracy of various models trained on brain activity features to 
identify green wall preferences, as shown in Table 3. Using DT, KNN, NB, ANN, and RF classifiers, all effectively 
identified green wall preferences, with accuracies ranging from 0.61 to 0.88. The RF performed the best, 
achieving the highest accuracy of 0.88. The model parameters for the RF were set as follows: the criterion for 
node splitting was gini, the minimum samples for splitting a node and for leaf nodes were 2 and 1, respectively, 
the maximum number of features was set to auto, and bootstrapping with out-of-bag samples for testing was 
used. Among these brain activity features, ΔACI was the most important predictor of VPV (w = 0.48), as shown 
in Fig. 20. This indicates that Δoverall power, Δτe, ΔFE, and ΔACI can effectively identify green wall preferences, 
with the random forest classifier showing the best performance.

Discussion
Positive effects of indoor green wall on Psychophysiological restoration
The visual connection with indoor green walls contributes to psychophysiological restoration. Kaplan’s ART68 
and Ulrich’s SRT69 support this viewpoint. According to ART70, attention can be passively restored in natural 
environments through subconscious cognitive mechanisms. Unlike urban environments that impose continuous 
stress, nature elicits relaxation and enjoyment with minimal attentional effort71. Indoor green walls foster a sense 
of connection to nature through bottom-up processing, which occurs without the need for directed attention 
and supports restorative outcomes. SRT72 suggests that nature is viewed as a low-threat environment, leading 
to reduced activation of stress-related physiological responses. Indoor green walls contribute to stress recovery 
by providing a sense of safety, structure, and an environment free from perceived threats73. The study found 
that compared to no green wall, POMS decreased by 2.59 and PRS increased by 1.68 after green wall exposure, 
significantly improving emotional disturbance and psychological stress. Physiologically, the visual stimuli from 
green walls contributed to brain activity indicative of relaxation and stress recovery. The brain’s limbic system, 
including structures such as the hippocampus and amygdala, is involved in the emotional processing of visual 

Fig. 18.  Changes in avalanche criticality index (ΔACI) across high- (HP), medium- (MP), and low-preference 
(LP) groups. Higher visual preference was associated with greater reductions in criticality, suggesting a more 
relaxed brain state. The effect of green wall preference on the ΔACI was significant (p < 0.001).
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Model Item Accuracy Recall rate f1-score

DT

LP 1.00 0.70 0.82

MP 0.67 1.00 0.80

HP 1.00 1.00 1.00

Average 0.91 0.87 0.87

KNN

LP 1.00 0.57 0.73

MP 0.50 0.75 0.60

HP 0.83 1.00 0.91

Average 0.82 0.75 0.75

NB

LP 1.00 0.71 0.83

MP 0.60 0.75 0.67

HP 0.50 0.60 0.55

Average 0.74 0.69 0.70

ANN

LP 1.00 0.57 0.73

MP 1.00 0.25 0.40

HP 0.45 1.00 0.63

Average 0.83 0.63 0.61

RF

LP 1.00 0.71 0.83

MP 0.67 1.00 0.80

HP 1.00 1.00 1.00

Average 0.92 0.88 0.88

Table 3.  Performance of different prediction models.

 

Fig. 19.  The correlation between subjective evaluations and brain activity.
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stimuli from indoor green walls. By eliciting naturalistic associations, these stimuli can play a role in mitigating 
physiological stress responses4,19. The study found that compared to no green wall, brain oscillatory activity 
tended towards stability and comfort after green wall exposure, with overall power decreasing by 2.14 µv², FE 
decreasing by 0.84, and α oscillatory activity, associated with relaxation, significantly increasing. Additionally, 
τe increased by 28.22 ms, and brain avalanche activities exhibited short-duration, small-scale patterns, closer to 
the critical state, with ACI decreasing by 0.09. In summary, the comprehensive effects of psychophysiological 
mechanisms make indoor green walls an effective restorative measure, providing a strong reference for improving 
indoor environmental quality.

Visual preferences make a difference in improving psychophysiological restoration with 
green walls
Green therapy and color therapy support the positive effects of different colored green walls on psychophysiological 
health, but studies indicate that individuals have varying color preferences8. Hůla and Flegr74 found that purple 
is more popular than yellow, whereas Zhang et al.8 concluded the opposite. Elsadek and Fujii75 found that purely 
green plants promote greater relaxation than those with mixed green-red or green-white foliage. Additionally, 
Kexiu et al.76 found that Japanese people prefer green and green-white mixed plants, while Egyptians prefer light 
green and yellow-green plants. These findings highlight significant individual differences in visual preferences 
for different colored greenery, which this study also supports. From VPV, 10 participants preferred WFW, 6 
preferred NFW, 2 preferred CFW, 2 preferred both CFW and WFW, 2 preferred both CFW and NFW, 2 preferred 
both WFW and NFW, and 2 found all three green walls to provide equally good visual perception. Warm-
colored flowers can evoke strong, uplifting emotions; thus, WFW is invigorating and stimulating, helping to 
combat psychological health issues9. Haviland-Jones et al.77 and Hoyle et al.78 noted that flowers attract more 
visual attention. Green walls with flowers may be more beneficial for mental health compared to those with only 
leaves. More complex green walls tend to attract longer attention and have more significant restorative effects. 
However, the impact can vary among individuals, potentially bringing either negative or positive effects, which 
still requires further exploration9.

Fig. 20.  The weight value of EEG features.

 

Scientific Reports |        (2025) 15:35318 19| https://doi.org/10.1038/s41598-025-19425-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Research generally agrees that warm colors are invigorating, while cool colors are relaxing. Zhang et al.8 
found that cool-toned flowers, such as purple and blue, help with relaxation and stress recovery, while warm-
toned flowers, such as yellow and red, evoke more excitement and positive emotions. Neale et al.79 found 
similar results in a cross-cultural study. However, Stigsdotter and Grahn80 pointed out that in the early stages 
of recovery, calming cool colors might be important, while later on, bright warm colors play a more significant 
role in improving positive emotions. Therefore, more scholars believe that regardless of the inherent properties 
of color, an individual’s preference for that color is decisive for psychophysiological responses. Brengman et 
al.81 and Manav et al.82 observed that if a person’s favorite color is warm, warm-colored flowers, despite being 
thought to activate exciting emotions, still promote relaxation. As noted by Kuper et al.83, emotional experiences 
elicited by green walls are strongly shaped by subjective color preferences. This study found that compared 
to the LP and MP groups, the HP group had the lowest POMS (0.47) and the highest PRS (5.35) after green 
wall exposure. As preference increased, the reductions in overall power and FE after green wall exposure also 
increased (-2.89 to -0.91, -1.44 to -0.07), and Δτe gradually increased (21.00 to 34.52 ms), indicating more 
positive brain oscillatory activity in the HP group. During green wall exposure in the HP group, faster avalanche 
propagation and a power-law exponent (λ₂ = 1.92) closer to the theoretical critical value were observed, along 
with the lowest ACI (0.19). These results suggest that brain activity under this condition may be closer to the 
critical state, which is considered optimal for comfort and healthy functioning. Environmental preference is 
the emotional expression of an individual’s innate preference for a particular type of environment, influenced 
by individual differences. Kaplan et al. believed that environmental preference has a significant positive impact 
on environmental restorative evaluation16,70 because environments that individuals prefer are more likely to 
meet their needs, fostering a strong desire to immerse themselves in them. Experiences with preferred green 
walls are more likely to develop a strong emotional connection with the individual, enhancing identification 
and leading to restorative and pleasant experiences. Berto et al.84 pointed out that less attention is consumed 
in highly preferred environments compared to less preferred ones. When individuals interact with a biophilic 
environment that matches their natural affinity, they perceive the environment’s restorative quality as higher85,86. 
The results showed significant correlations between VPV and both ΔPOMS (r = -0.620) and ΔPRS (r = 0.905) at 
the p < 0.001 level. Additionally, VPV was negatively associated with Δoverall power, ΔFE, and ΔACI (p < 0.05). 
Overall, higher preference for indoor green walls leads to more positive psychophysiological responses.

The relationship between individual preferences for green walls and their psychophysiological impacts 
is complex87. On one hand, personality and emotions are essential components of individual features; while 
personality is generally stable, emotions are cyclical and can influence personal preferences88. On the other 
hand, the psychophysiological effects of green walls are complex, with the size and color of the green wall 
playing crucial roles in this process. Visual perception complexity is an important factor affecting preference; 
if the perceived complexity is too high, individuals may feel overwhelmed, whereas if it is too low, they may 
feel monotony. Solely relying on subjective evaluations to assess green wall preferences can be inaccurate and 
inefficient. To better evaluate green wall preferences, this study proposed a machine learning model based on 
brain activity features (Δoverall power, Δτe, ΔFE, and ΔACI). Comparing five classifiers—DT, KNN, NB, ANN, 
and RF—it was found that RF performed the best, achieving the highest accuracy (0.88), providing strong 
support for the personalized design of indoor green walls. In summary, green walls that are highly preferred 
exert a greater positive effect on psychophysiological well-being. Interior designers should offer opportunities 
for individuals to engage with green walls of different colors based on personal preferences to meet emotional 
needs at different times and cater to various individual preferences.

Limitations and future directions
This study provides a method combining EEG, VR, and LEC to investigate how green walls affect 
psychophysiological health. It confirms the potential of immersive virtual environments combined with green 
walls in psychophysiological stress recovery. Future research can extend this approach to indoor environments 
beyond offices, such as hospitals, classrooms, and underground spaces. The study also demonstrates that 
preferences influence the restorative benefits of green walls, independent of the inherent properties of the green 
wall colors. Therefore, it is necessary to provide personalized green wall interventions tailored to individual 
preferences in future applications.

However, this study has some limitations. The focus on university students, who spend long periods indoors 
and sedentary, may result in different psychophysiological responses compared to other populations (varying in 
age, occupation, etc.). Future research should explore brain activity features under green wall exposure in diverse 
populations to enhance the generalizability of the findings. Although we accounted for gender differences by 
setting a 1:1 gender ratio, the differences in visual preferences and brain activity between males and females 
were not further discussed, which warrants further investigation. In this study, a simplified version of the POMS 
was used for emotional assessment, wherein only a subset of representative mood adjectives was selected for 
subjective rating. This approach aimed to reduce participant burden during the experiment and minimize 
potential interference with continuous physiological measurements. However, this simplification may have 
limited the comprehensive characterization of emotional changes, particularly in dimensions such as tension, 
anger, and depression. Future studies are encouraged to employ the full version of the POMS to enhance the 
comprehensiveness and reliability of emotional assessments. This study primarily focused on three types of green 
walls; however, in everyday life, plants exhibit diverse colors, aromatic properties, and visual features. Future 
studies should measure the impact of a wider variety of colors, scents, and plant forms on visual preferences 
and brain activity. Although the IPQ questionnaire confirmed the immersive quality and perceived realism 
of the VR environment, the virtual green wall setting cannot fully replicate real-world conditions. In practice, 
the restorative effects of green walls may also be influenced by additional multisensory factors such as scent, 
temperature, humidity, and air movement. Therefore, psychophysiological responses in VR may differ from 
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those in actual green wall environments, warranting further investigation through on-site studies. This study 
offers novel perspectives on the link between visual preference and neural activity. However, as the research was 
correlational in nature, it does not allow for definitive conclusions regarding the causal effects of preference level 
on brain function. Future research should consider experimental or longitudinal designs to further examine 
the mechanistic impact of preference shifts on neural recovery efficiency. In addition, it should be noted that 
avalanche-based EEG measures, while offering valuable insights into the nonlinear dynamics of brain activity, 
are still relatively novel and complex. Therefore, their interpretation should be made with caution, and further 
replication studies are warranted to validate these findings.

Conclusion
This study recruited 26 young university students to explore the effects of cool-colored flower combined green 
wall (CFW), warm-colored flower combined green wall (WFW), and non-flower combined green wall (NFW) on 
subjective perception and brain activity. Previous research has indicated that the psychophysiological responses 
to plant colors are related to individual preferences. This study also found significant individual differences 
in visual preferences for WFW, CFW, and NFW. To further investigate the mechanisms by which green wall 
preferences influence psychophysiological restoration, all data were grouped according to visual preference vote 
(VPV) scores into high preference (HP), medium preference (MP), and low preference (LP) groups. The study 
utilized frequency domain and nonlinear dynamic features of electroencephalogram (EEG) signals to highlight 
variations in brain activity under exposure to green walls with different visual preferences and constructed a 
prediction model. The key conclusions are as follows:

	(1)	 After any green wall intervention, positive emotions and perception recovery significantly improved. The 
HP group showed the best performance, with profile of mood states (POMS) significantly decreasing by 
2.82 (p < 0.001) and perceived restorativeness scale (PRS) significantly increasing by 2.19 (p < 0.001). The 
ΔPOMS and ΔPRS were 1.11–1.25 times and 1.28–2.10 times greater, respectively, compared to the LP and 
MP groups.

	(2)	 Compared to NW, green wall exposure significantly reduced overall power by 2.14 µv² (p < 0.001), indicat-
ing a decrease in brain stress levels. The Δoverall power in the HP group was 1.39–2.96 times greater than 
in the LP and MP groups, showing stronger regularity in brain oscillatory activity. Green wall exposure also 
contributed to an increase in the effective delay time of α (τe, 21.00-34.52 ms). The Δτe in the HP group 
increased by 0.04–0.05 more than in the LP and MP groups, better activating the α oscillatory activity as-
sociated with relaxation. During this period, fuzzy entropy (FE) significantly decreased by 1.44 compared 
to NW (p = 0.002), with ΔFE at -0.22, indicating that brain activity tended towards stability, comfort, and 
health.

	(3)	 High-preference green wall exposure induced smaller and faster avalanche activities, with λ1 and λ2 values 
of 1.52 and 1.92, respectively. During this time, branching parameter (σ) was closer to 1.00 (1.13), indi-
cating more stable avalanche activity. This may be associated with the brain’s more efficient integration 
of information and its progression toward a stress recovery state. Compared to the MP group, 69.44% of 
participants in the HP group experienced reduced brain resource wastage and higher brain comfort. Under 
high-preference green wall exposure, the ACI exhibited a greater range of change (15.09–30.31%), which 
may reflect brain activity approaching the critical state between order and disorder.

	(4)	 Visual preferences significantly affect psychophysiological responses before and after green wall exposure. 
VPV was moderately negatively correlated with ΔPOMS (r = -0.620, p < 0.001) and strongly positively cor-
related with ΔPRS (r = 0.905, p < 0.001). VPV was also significantly negatively correlated with Δoverall pow-
er, ΔFE, and ΔACI (p < 0.05). High-preference green walls tend to bring about more positive psychophysio-
logical responses.

	(5)	 Training Decision Tree (DT), K-Nearest Neighbors (KNN), Naive Bayes (NB), Artificial Neural Network 
(ANN), and Random Forest (RF) classifiers using the frequency domain and nonlinear dynamic features 
of EEG signals can effectively identify green wall preferences, with accuracies ranging from 0.61 to 0.88. 
Among these, the RF performed the best, with ΔACI being the most important predictor of VPV (w = 0.48).

This study provides strong evidence from the perspective of neuroarchitecture for the practice of indoor biophilic 
design, offering a reference for enhancing indoor environmental quality and improving human well-being.

Data availability
The data and code are available at https://github.com/zhangnan916/Green-wall-data.git.

Code Availability
The data and code are available at https://github.com/zhangnan916/Green-wall-data.git.
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