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Measuring soil moisture has a big impact on resource efficiency and decision-making in geotechnical 
engineering, agriculture, and environmental sustainability. This study presents a revolutionary Internet 
of Things-based method for predicting soil type and moisture in real time. Water content was verified 
using the traditional oven-dry method for accuracy evaluation, and capacitance measurements 
were gathered using a sensor to generate a custom dataset in the lab. The method outperformed 
linear regression in water content prediction, achieving 96.49% accuracy using an Excel logarithmic 
regression equation. Furthermore, a machine learning model that employed polynomial regression 
was able to measure the water content of the soil and predict values for fine, medium-coarse, and 
coarse sand types. With an R2 score of 0.79, the model can account for almost 79% of the variation in 
water content and produce 1.71% of MAE(Mean Absolute of Error), indicating a strong relationship 
between capacitance and water content. On the expanded dataset, Random Forest classifier was 
chosen for classification, which correctly identified the intended soil types with an accuracy of roughly 
97.77%. By combining sensor data with sophisticated algorithms, the suggested methodology makes 
it possible to analyze soil qualities effectively and non-destructively. This scalable method offers 
substantial potential for environmental management, soil monitoring, and precision agriculture and 
is flexible enough for the creation of mobile applications. Predictive modeling and real-time data 
processing combined improve resource management effectiveness while lowering the need for human 
intervention. In order to improve forecast accuracy and application and support more environmentally 
friendly farming methods and environmental monitoring, further research will surely give efforts 
to enrich the dataset, incorporate a variety of soil types, and take environmental elements like 
temperature and salinity into consideration.
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The moisture content of soil is essential to many physical, chemical and biological processes in both natural 
ecosystems and man-made structures. It indicates the percentage of water in the soil, and a deep understanding 
of its dynamics is necessary to maintain the fragile soil-water balance. Accurate and real-time soil moisture 
monitoring is essential to improve agricultural productivity, ensure infrastructure durability, and promote 
environmental sustainability. In agriculture, it is essential to maintain soil health, increase crop yields, and 
protect water supplies. Monitoring soil moisture is crucial in civil engineering to prevent freeze-thaw cycles and 
chloride intrusion from damaging structures. Therefore, in order to protect the integrity of the environment and 
the health of the infrastructure, precise and efficient methods for measuring soil moisture must be developed.

Soil moisture was crucial to increase crop productivity, soil health, and agricultural water use efficiency. 
Although traditional gravimetric methods were believed to be accurate, their inability to provide real-time data 
made them inappropriate for dynamic scenarios. Capacitance-based sensors were developed as a continuous and 
economical means of monitoring the dielectric behavior of soils that were affected by the presence of moisture 
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levels1. Those sensors translate moisture levels into measurable signals (e.g., frequency or pulse width modulation) 
for real-time monitoring. While2 proposes a new cylindrical electrode design for bulk materials, optimizing 
sensor geometry for granular media such as soil,3 evaluates the practical deployment challenges of such sensors 
in IoT-based irrigation systems, including calibration drift and field variability. Together, these studies highlight 
the trade-offs between sensor innovation2 and operational reliability3 in agricultural applications. Their long-
term dependability and suitability for clay and silty soils were still restricted. To develop universal, real-time 
sensing systems that might be used in a variety of agricultural contexts, more study was required. CWM-four 
and other calibration-free models demonstrated potential4. For the compaction management process in geo-
technical engineering, precise soil moisture measurement was essential. For fine-grained soils, capacitive and 
resistive sensors provide a portable, affordable, and real-time substitute for oven-drying methods. However, 
environmental elements such as soil type, compaction, porosity, temperature, and salt may affect their accuracy. 
These sensors demonstrated the ability to enhance geo-technical processes, despite problems with coarse-grained 
soils and calibration difficulties for various soil types5. Despite the dearth of existing calibration methodologies, 
it was demonstrated that volumetric water content accuracy was improved by soil-specific calibration, ensuring 
great repeatability and low variability. Small, high-frequency capacitive sensors can be used to assess the moisture 
content of urban soil6. Among gravimetrically calibrated soil moisture sensors, low-cost irrigation sensors were 
shown to have the lowest error, especially for sandy and sandy loam soils7.

The electromagnetic fields produced by electrodes, which were influenced by the dielectric characteristics of 
the soil, were tracked using capacitance-based sensors. Because of their adaptability, they were able to determine 
the moisture content of the soil at different depths8. Due to their accuracy, speed, and low energy consumption, 
these sensors were widely utilized in agricultural and grain storage9. However, their efficacy was occasionally 
hindered by salinity, soil texture, environmental diversity, and sensor-to-sensor variability6,10. It has been shown 
that calibration techniques like quadratic regression increase the accuracy of these sensors when compared to 
linear models, particularly when soil-specific changes are present11,12. In order to improve real-time monitoring 
and lower mistakes, techniques like logistic regression were used to lessen the impact of electrical conductivity 
(EC) on sensor accuracy, even in large agricultural settings. Despite being inexpensive, this method was 
ineffective in high-salinity and organic-rich soils and ignored elements such soil porosity and texture. Despite 
these limitations, the technique shown potential for accurate soil moisture monitoring13.

Recent studies (e.g.,3,12) have used piecewise linear regression and temperature compensation algorithms 
(e.g., based on Arrhenius equation adjustments) to mitigate sensor drift caused by temperature fluctuations 
(±0.5% accuracy loss per ◦C in uncontrolled environments). These refinements improved volumetric water 
content estimates across sand to loam ratios, though challenges persist in clay-rich soils.

For civil engineering projects to last, it was essential to keep an eye on soil moisture throughout freeze-
thaw cycles and chloride intrusion. Advanced methods such nuclear magnetic resonance (NMR), electrical 
impedance spectroscopy (EIS), and X-ray imaging were used to generate high-resolution data; nevertheless, 
their field applicability was constrained by their cost, intricacy, and limited usefulness14. Recent advancements 
have combined low-dimensional materials, like molybdenum disulfide (MoS2), with hybrid sensing techniques 
to increase sensor sensitivity and reliability across a range of environmental conditions15. In order to solve 
problems specific to soil, data-driven calibration methods and hybrid models that integrate machine learning 
and sensor data showed promise16. Water-cut meters for near-linear transfer functions17 , frequency-based 
grain probe moisture meters for agricultural use18, and Internet of Things-enabled hydroponic drip fertigation 
systems19are examples of recent advancements in capacitance-based technologies. The need for additional 
study was highlighted by the persistence of issues such soil-type dependence and decreasing sensitivity at high 
volumetric water content (VWC) in spite of these developments20. In a range of environmental conditions, new 
materials such carbon-based composites could improve sensor performance and stability21. Combining IoT-
enabled soil moisture monitoring with renewable energy sources increased the sustainability of agricultural 
practices22.

While existing studies demonstrate the efficacy of capacitance-based sensors for soil moisture monitoring1–7, 
several critical limitations remain unaddressed. First, most calibration models–such as linear or quadratic 
regression11,12–fail to capture the nonlinear relationship between capacitance and moisture across diverse soil 
types, particularly in high-plasticity or mixed-grain soils. Second, although hybrid machine learning and sensor 
approaches show promise16,19, they often overlook practical real-time deployment due to high computational 
complexity. Third, the classification of soil types using low-cost sensors is still underexplored in laboratory 
settings, despite its relevance to geotechnical and environmental engineering. Additionally, most IoT-based 
systems focus solely on moisture content and either assume the soil type is known or do not offer a mechanism 
for concurrent identification, limiting their adaptability in real-world field scenarios19,22.

This study is distinct in bridging these gaps through three key contributions: (i) it proposes a polynomial 
regression model tailored to nonlinear capacitance–moisture relationships, achieving improved accuracy 
(96.49%) over traditional linear/logarithmic models; (ii) it uniquely integrates real-time field measurements 
with laboratory-based soil classification using the same low-cost capacitance sensor, a feature not present in 
prior IoT-enabled systems; and (iii) it enables minimal recalibration needs through AI-driven adjustments, 
reducing the dependency on soil-specific calibration5,11. Unlike previous studies that treat moisture and soil 
type prediction as separate tasks, our approach offers simultaneous, dual-functionality–real-time water content 
estimation and soil type classification–within a unified, cost-effective framework. This makes it especially 
valuable for both agricultural applications and geotechnical evaluations.

The study presents a unique capacitance-based method for laboratory soil type detection and real-time, 
on-site soil moisture measurement. Using a custom dataset of three soil types and an AI-driven polynomial 
regression model, the process provides real-time water content readings on-site and predicts soil types in the lab 
with high accuracy. This approach, which has uses in environmental monitoring, agriculture, and geotechnical 
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engineering, blends complex calibration processes with machine learning algorithms to offer an economical and 
effective solution.

Methodology
In order to accurately detect and classify soil moisture, this study uses a methodical methodology to assess the 
performance of capacitive soil moisture sensors in combination with cutting-edge machine learning approaches. 
Key steps including sensor selection and calibration, soil sample preparation, controlled laboratory testing, and 
the use of both statistical and AI-driven models are all part of the technique, which is intended to guarantee 
reliable data collection and interpretation. Three different soil types are the specific focus of the study, and each 
phase is carefully planned to preserve scientific rigor and guarantee repeatability and reliability in measurements 
under a range of moisture circumstances.

Sensor identification and data recording process
Modern irrigation systems make considerable use of capacitive soil moisture sensors because of their remarkable 
dependability and longevity. These sensors’ electrodes are covered in materials that resist corrosion, guaranteeing 
their durability and reliable operation. Compared to resistive sensors, capacitive sensors provide greater precision 
and accuracy while retaining dependable performance in a variety of soil types and field circumstances. They are 
perfect for long-term irrigation management applications because of their continuous sensitivity to changes in 
temperature and salinity as well as their increased longevity because of materials that are resistant to corrosion23. 
An electromagnetic method called capacitive sensing uses capacitive coupling to gauge the soil’s dielectric 
permittivity. The apparent permittivity of soil is closely related to its water content because water’s relative 
permittivity (εr ∼80) is much higher than that of other soil components, including organic matter (εr ∼4), 
mineral soil (εr ∼2-9), and air (εr ∼1)5. Bogena et al.’s (2007)24 article goes into great detail into the electronic 
configurations and circuit diagrams of the majority of capacitive sensors.

The capacitance sensor’s (Fig. 1) integrated voltage regulator chip, which guarantees steady performance 
across a wide input voltage range of 3.3 to 5.5 VDC, makes it compatible with 3.3V Arduino main control 
boards. It offers an output voltage range of 0 to 3.0 VDC and a PH2.54-3P interface for convenient connection. 
The sensor is adaptable to a wide range of applications due to its small size (98 mm × 23 mm). Using less than 
5mA of current, the sensor produces about 1.5V for wet soil and 3.0V for dry soil when powered at 5V25.

Capacitance sensors solely provide analog output signals, and the collection of these raw signals adheres 
to a specified protocol. The sensors transform the physical attribute of capacitance into an electrical signal 
represented as voltage, which is then converted into digital data via an analog-to-digital converter (ADC) 

Fig. 1.  The capacitive soil moisture sensor (version 1.2) circuit diagram, which includes a signal conditioning 
connection (P1), resistors, capacitors, and a diode (1N4148). The circuit produces voltage signals that are 
appropriate for microcontroller-based processing and correlate to the moisture content of the soil.
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incorporated within an Arduino-compatible microcontroller board. This study employs the commonly deployed 
ESP32 microcontroller26.

The ESP32 microcontroller is integrated into the bespoke solution for the capacitive sensor. These cost-
effective, low-power 32-bit microcontrollers contain a 12-bit analog-to-digital converter (ADC), which simplifies 
the conversion of voltage levels from sensor output (ranging from 0 to 4.2 V) into 212 (4096) discrete values, 
assuring precise digital representation.

The system employs an ESP32 microcontroller to interact with a Capacitive Soil Moisture Sensor v1.2 for 
real-time monitoring of soil moisture. The analog output of the sensor is read by the ESP32, which is powered by 
a 3.7V 18650 lithium-ion battery. This battery is managed using a Battery Management System (BMS) to ensure 
safe operation27 . The ESP32 processes the sensor data before sending it over Wi-Fi to the Blynk server, where it 
is shown on the Blynk mobile app for remote control and monitoring (Fig. 2).

Soil properties
Four types of soil were selected for testing with water content sensors, consisting of four coarse-grained soils: 
Sand 1, Sand 2, Sand 3, and Sand 4. These soils are representative of materials commonly used in the construction 
of roadways, foundations, and embankment dams. Sand 1 and Sand 2 were sourced from a building construction 
site, while Sand 4 was previously utilized in a runway foundation in Rajshahi, Bangladesh. The grain size 
distribution of the soil samples was determined through sieve analysis, a standard method for characterizing 
coarse-grained soils. In this study, sieve analysis was conducted for Sand 1, Sand 2, Sand 3, and Sand 4. These 
soils are classified as uniform sands with minimal fine content. Sand 1 is coarse-grained, with a grain size (D50) 
of 0.439 mm, whereas Sand 2 is medium coarse-grained, with a grain size (D50) of 0.268 mm. Sand 3 and Sand 
4 are classified as fine sands, with grain sizes (D50) of 0.190 mm and 0.138 mm, respectively. Among these, Sand 
1 is well-graded, while the other sands are classified as poorly graded. After this for dataset purpose, Sand 3 and 
Sand 4 are merged. Fig. 3 presents the grain-size distribution curves of the selected soils.

Test configurations and methods
Laboratory-prepared specimens encompassing a wide range of water contents are used to test the moisture sensors 
for four sandy soil types. An auger or soil corer is used to gather soil samples from the field at predetermined 
depths and locations, guaranteeing an exact representation of the land being studied. Table 1 represents the 
physical properties of the selected soils used in this study, including their classification, fines content, and grain 
size distribution parameters.

Key terms:D50 = median grain size; Cu = uniformity coefficient (range of particle sizes); Cc= curvature 
coefficient (gradation smoothness).

Note:Soil samples are classified based on the Unified Soil Classification System (USCS). Sand 1 is well-graded, 
while Sand 2, Sand 3, and Sand 4 are poorly graded. Percent fines influence permeability and compaction. Bulk 
density and specific gravity indicate weight and mineral composition. Cu(> 4 for sands) measures the range 
of particle sizes, and Cc (1-3 for well-graded soils) assesses gradation smoothness.

Soil samples are placed on aluminum or ceramic plates, ensuring the containers are clean and dry to prevent 
contamination. The initial wet weight of each soil sample is determined using a precision balance, accounting for 
both soil particles and water content. The containers holding the soil samples are placed in an oven maintained 
at a constant temperature, typically 105 ◦ C (221 ◦ F). The samples are dried for a specified period, usually 
24 to 48 hours, or until their mass remains constant. Once the drying process is complete, the containers are 
removed from the oven and cooled in a desiccator to prevent moisture absorption from the air. After cooling, 

Fig. 2.  Circuit diagram of the IoT-based soil moisture monitoring system using an ESP32 microcontroller, 
capacitive sensor, and Blynk server for wireless data transmission.
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the dried soil samples are weighed to determine their dry weight. The soil moisture content can be found using 
the following formula:

	
Moisture Content (%) = Wet Weight − Dry Weight

Dry Weight
× 100

The difference between the initial wet weight and the dry weight represents the mass of water in the soil sample. 
Dividing this difference by the dry weight and multiplying the result by 100 yields the soil’s moisture content as 
a percentage. The oven-drying method is employed to calibrate the soil moisture measuring device. Achieving 
accurate results requires careful handling of the soil samples and precise control of the drying conditions, which 
can be time-intensive.

The sensor readings of each section of the soil sample is measured using the device(Fig. 4a and b). For each 
sample, the corresponding raw sensor readings (capacitance measurements) are recorded. A calibration curve is 
established by plotting the raw sensor readings on the x-axis and the associated moisture content values, derived 
from reference measurements, on the y-axis.

A calibration curve (logarithmic regression) correlates raw sensor readings (x-axis) with oven-dry moisture 
values (y-axis). This curve translates capacitance measurements into moisture content. The best-fit calibration 
curve is then used to derive an equation that relates soil moisture content to raw sensor readings (capacitance 
measurements). This equation serves as a tool to convert raw sensor data into meaningful soil moisture values 
during subsequent measurements.

The soil moisture content is determined by measuring the sensor readings (Fig. 5) of the samples and applying 
the calibration equation. To ensure the accuracy and reliability of the moisture readings, they are compared with 
reference measurements.

AI model implementation:
Linear regression
Linear regression is a machine learning method used to predict a continuous target variable based on one or 
more input features. It is categorized as a supervised learning algorithm, where labeled training data, consisting 
of input-output pairs, is utilized to train the model. The general representation of the linear regression model is 
given by: y=mx+b

In this equation, b represents the y-intercept, while m denotes the slope or coefficient of the line.

Soil type USCS Class % Fines % Sand Bulk density Sp. gravity D50 Cu Cc

(g/cc) (mm)

Sand 1 SW-Well graded 0.42 99.58 1.88 2.67 0.439 4.65 1.29

Sand 2 SP-Poorly graded 1.51 98.50 1.75 2.64 0.268 2.58 1.05

Sand 3 SP-Poorly graded 2.06 97.95 1.74 2.63 0.190 2.03 1.20

Sand 4 SP-Poorly graded 6.30 93.71 1.70 2.63 0.138 1.91 0.97

Table 1.  Physical properties of selected soil.

 

Fig. 3.  Variation in particle size and gradation characteristics based on the percentage passing versus particle 
diameter is depicted by the grain size distribution curves for Sand 1 (Coarse Sand), Sand 2 (Medium-Coarse 
Sand), Sand 3 (Fine Sand), and Sand 4 (Fine Sand).
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For capacitance-based moisture devices, the purpose of linear regression is to establish a linear relationship 
between capacitance measurements (input features) and the corresponding soil moisture levels (target variable).

Polynomial regression
Polynomial regression is applied after generating the dataset to model the relationship between variables with a 
polynomial equation. The general form of the polynomial regression model is:

	 Y = β0 + β1X + β2X2 + . . . + βnXn + ε

Where:

•	 YY represents the soil moisture content.
•	 XX denotes the capacitance measurement.
•	 β0, β1, β2...βn are the coefficients of the polynomial terms.
•	 ϵ is the error term.

The degree of the polynomial (n) is typically determined through testing or cross-validation, depending on the 
complexity of the relationship between capacitance and soil moisture.

In order to effectively estimate unknown data, machine learning models are used to forecast soil capacitance 
based on different percentages of water content. In order to examine the connection between soil capacitance 
and water content, a linear regression model is first implemented. A simplified polynomial regression model is 
then implemented to get predictive water content values.

Data points that correlate percentages of water content with the relevant values of soil capacitance are used 
in the training phase. The model forecasts soil capacitance for a variety of water content levels, including 2%, 

Fig. 5.  Monitoring soil moisture using the Blynk app. The mobile app shows the raw sensor value indicating 
water content after receiving real-time moisture data from the sensor embedded in the soil.

 

Fig. 4.  (a) External view of the assembled soil moisture sensing device using a capacitive sensor. (b) Internal 
layout showing the ESP32 microcontroller, lithium-ion battery, and supporting circuit components for data 
acquisition and transmission.
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4%, 6%, 8%, 10%, 12%, 14%, and 16%, when training is finished. If we want to perceive water content, we need 
to use a regression model.

The model uses the given training data to classify the kind of soil after predicting the soil capacitance. It 
designates particular classifications, such medium-coarse sand, coarse soil, etc. The model also produces a range 
of the soil and parameters that help to identify the soil type. This technology supports thorough soil analysis 
and related applications by enabling precise predictions of soil capacitance and efficient soil type classification.

Random forest classification
To predict soil types based on capacitance and water content parameters, a Random Forest classifier was used on 
the supplemented dataset. The mode of the classes (for classification) is the final prediction of the Random Forest 
ensemble learning technique, which builds several decision trees during training.

The following is a summary of a Random Forest classifier’s general methodology:

•	 Multiple decision trees are trained on random subsets of the training data and features.
•	 Each tree creates an independent prediction.
•	 The final classification output is determined by majority voting among the trees.

A dataset of different soil types is used to train the algorithm. Initially, we have to select whether we need to know 
water content or capacitance. If we need capacitance, we need to give the machine a classification model and 
then it will determine the soil type. This technique enhances generalization and lessens overfitting, particularly 
for small to medium-sized datasets. In our instance, the Random Forest model correctly and reliably categorized 
the appropriate soil types, achieving an accuracy of roughly 97.77% on the test set.

Method execution
A flowchart that graphically describes the process of applying machine learning models to forecast soil type and 
water content is shown in the Fig. 6. It describes how inputs are processed to provide either a soil categorization 
using a trained classifier or an estimation of the water content using regression, with a focus on capacitance data 
from an Internet of Things device. This framework’s two main functions are soil type recognition and water 
content prediction.

Fig. 6.  Flowchart showing the decision process for predicting either soil type or water content based on sensor 
capacitance readings and input parameters.
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Dataset preparation and augmentation for generalization
Three different soil types–fine sand, medium coarse sand, and coarse sand–were experimentally measured 
for moisture and capacitance in order to produce a specific dataset for this study. There were 120 samples of 
fine sand, 119 samples of medium coarse sand, and 218 samples of coarse sand in the original dataset. We 
used the Synthetic Minority Over-sampling Technique (SMOTE) to address the class imbalance problem and 
enhance the machine learning models’ capacity for generalization. Using their feature space, this technique 
creates new samples for the underrepresented classes in a synthetic manner. Following augmentation, each of the 
three classes received 218 samples, for a final dataset of 654 samples. In addition to avoiding overfitting during 
classification28, this augmentation step made sure the model was equally exposed to each type of soil, which 
improved the prediction robustness and dependability of the model in practical applications.

Selection of input:
The user starts the process by entering necessary data, such as capacitance readings from the Internet of Things 
device and other pertinent characteristics. The user’s goal–whether it’s to identify the type of soil or forecast the 
amount of water–determines the next stage. The flowchart’s course is determined by this choice.

Prediction for water content:
The user must enter the capacitance value and the necessary features if they decide to predict the water content. 
These inputs are processed by the regression model, which was trained on the relationship between capacitance 
and moisture, to determine the soil’s water content. To improve the prediction accuracy, both linear and 
polynomial regression models have been applied.

Soil type prediction:
When the goal is to estimate the kind of soil, the user inputs the capacitance values that correspond to known 
percentages of water content (e.g., 2%, 4%, 6%, up to 16%) together with other required information. The pre-
recorded capacitance patterns of various soil types under identical water content conditions are then compared 
with these input values. Using a machine learning-based classification process, the trained Random Forest 
Classifier determines the most likely soil type based on the closest match between the input pattern and the 
stored data.

Training and prediction of the model
The model was trained using datasets that showed the percentage of water content correlated with the 
corresponding capacitance values for various types of soils. The model determines the most likely soil category 
for soil type prediction by comparing the input capacitance to the training data. Additionally, we used SMOTE 
(Synthetic Minority Over-sampling Technique) to improve generalization, reduce the danger of overfitting, and 
augment the dataset after gathering all the data. We used label encoding to translate categorical soil categories 
into numerical labels for the classification job of predicting soil type based on capacitance or water content. 
We divided the dataset into training and testing sets using an 80-20 stratified split to guarantee that the class 
distribution held steady across subsets. Furthermore, to lessen bias and improve the robustness of our findings, 
we used Stratified K-Fold Cross-Validation (K=5). Given the short and perhaps unbalanced size of our dataset, 
our approach ensures that every fold preserves the original class distribution.

Generated insights:
To improve the accuracy of soil categorization, the model additionally produces a variety of related metrics in 
addition to the main outputs. These metrics offer more information about the properties and behaviors of soil.

This process is visually represented by the flowchart, which guarantees logical progression and clarity. This 
methodical technique allows for precise soil categorization and enables reliable estimates of soil capacitance and 
water content, making it appropriate for a variety of applications in geo-technical engineering, agriculture, and 
environmental monitoring.

Test results and analysis
The forecasts of soil capacitance and water content are compared in this part using two different approaches: 
machine learning (ML)-based predictions and manual computation using Excel-based datasets.

The first section provides a detailed analysis of the Excel results, emphasizing the direct correlations between 
capacitance values and percentages of water content in various soil types. By using established datasets, this 
method provides a baseline for evaluating prediction accuracy. The second section evaluates machine learning 
(ML) models trained on these datasets. Key metrics–including a confusion matrix and classification report–
assess their performance in predicting soil water content and type. These metrics offer a thorough evaluation of 
the model’s overall efficacy, recall, precision, and classification accuracy. To confirm the model’s effectiveness and 
spot any inconsistencies, the ML-based predictions are contrasted with Excel-based outcomes, highlighting the 
benefits and drawbacks of both methods for soil analysis and classification.

A linear regression analysis was conducted using capacitance sensor values (analog signals converted into 
digital numbers) as the independent variable (x-axis) and the corresponding water content values, expressed 
as percentages, as the dependent variable (y-axis). Furthermore, a computational algorithm was developed to 
predict water content based on a given capacitance value. The regression analysis was carried out using Microsoft 
Excel.

Figure 7 illustrate the relationships between sensor values and moisture content for Sand 1, Sand 2, Sand 3, 
and Sand 4, respectively. For each sand type, two types of regression equations were developed: a linear equation 
and a logarithmic equation.
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For Sand 1 (Fig. 7a), the logarithmic equation y = −18.24 ln(x) + 140.95 (R2 = 0.8783) outperforms the 
linear equation y = −0.0114x + 25.178 (R2 = 0.8107).

Similarly, for Sand 2 (Fig. 7b), the logarithmic equation y = −23 ln(x) + 177.67 (R2 = 0.9525) 
demonstrates a stronger correlation than the linear equation y = −0.0149x + 32.412 (R2 = 0.9214).

In Sand 3 (Fig. 7c), the logarithmic equation y = −22.38 ln(x) + 172.23 (R2 = 0.8605) again shows a 
better fit compared to the linear equation y = −0.0149x + 31.736 (R2 = 0.8096).

Lastly, for Sand 4 (Fig. 7d), the logarithmic equation y = −23.71 ln(x) + 182.17 (R2 = 0.9253) 
outperforms the linear equation y = −0.0153x + 32.499 (R2 = 0.8804).

The negative coefficients in the equations indicate that a decrease in water content corresponds to an 
increase in sensor values. Meanwhile, the intercept term represents the estimated water content when the sensor 
capacitance is zero. Although this intercept may lack direct physical significance, it is included for mathematical 
completeness. The coefficient of determination (R2) obtained from the regression analysis demonstrates a strong 
correlation between the sensor values and the corresponding water content for all sands. For all four sand types, 
the logarithmic equations consistently exhibit higher R2 values than their linear counterparts. This suggests that 
logarithmic models are more effective in capturing the relationship between sensor values and moisture content, 
making them the preferred choice for analysis. Therefore, the logarithmic equation is used as the calibration 
model for this device.

Testing and validation
Using a spreadsheet program, trendline fitting of the experimental data was utilized to develop the linear and 
logarithmic equations used for soil moisture prediction. Because the logarithmic equation was better able to 

Fig. 7.  Capacitance vs. Water Content in Sands. For (a) Sand 1 (Coarse Sand), (b) Sand 2 (Medium-Coarse 
Sand), (c) Sand 3 (Fine Sand), and (d) Sand 4 (Fine Sand), graphs illustrate the correlation between capacitance 
(sensor value) and water content (%). For every type of sand, linear and logarithmic trendlines are provided 
together with their equations and R2 values.
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capture nonlinear correlations between device readings and lab testing values, it attained a little greater accuracy 
(96.49%) than the linear equation (94.47%). The logarithmic model showed more consistency, with accuracies 
between 93.52% and 99.73%, while the linear model performed well, with accuracies ranging from 88.00% to 
99.61%, as indicated in Tables 2 and 3. These findings validate the dependability of the suggested IoT system 
for practical uses by demonstrating the logarithmic model’s stability and applicability for accurate soil moisture 
prediction.

Tables 2 and 3 show field data collected from the Rajshahi Airport runaway, where device readings were 
systematically compared with laboratory test results to evaluate accuracy and reliability.

Note: The accuracy of soil moisture prediction using a linear regression model is evaluated by comparing IoT 
device readings with lab-tested values. The linear model provides a baseline for assessing prediction performance 
but may not fully capture nonlinear soil moisture variations.

Note: The logarithmic regression model enhances prediction accuracy by capturing nonlinear relationships 
in soil moisture variations. This approach reduces error compared to linear regression, making it more suitable 
for real-world applications where soil moisture behavior is complex.

To create reliable predictive models for the classification of soil types and water content, the ML-based 
approach first trained data on soil datasets. Using test data, soil type and water content predictions were 
developed following the training phase. A confusion matrix (Fig. 8) and a classification report(Table 4) that 
emphasized important metrics including accuracy, precision, recall, and F1-score were used to assess the ML 
models’ performance29 . Based on the input capacitance values, these findings shed light on the model’s capacity 
to accurately forecast soil type.

In order to show the potential benefits of machine learning for accurate and effective soil analysis, this section 
evaluates the consistency and dependability of the predictions by contrasting the manual and ML-based results.

A comparison of the expected and actual water content using linear (blue) and polynomial (red) regression 
models is shown in Fig 9. The ideal 1:1 relationship, where model predictions and actual values match exactly, 
is shown by the diagonal dashed black line. Although there are noticeable variations, particularly at lower and 
higher water content levels, both models generally follow the optimum trend. In comparison to the linear model, 
the polynomial model shows a comparatively tighter grouping of points along the 1:1 line, indicating better 
prediction ability and less bias. This distribution demonstrates how well the polynomial regression model can 
reflect the dataset’s underlying nonlinear relationship.

The matrix indicates that the model showed high prediction skills for both Medium Coarse Sand and Fine 
Sand, despite the small number of misclassifications for Coarse Sand. In addition to the metrics shown in the 
classification report, this visualization offers a more thorough assessment of the model’s performance and 
identifies possible areas for development.

Table 4 presents the classification report for soil sample prediction, detailing precision, recall, and F1-score 
for different sand types, along with overall accuracy and averaged performance metrics.

Note: The classification report evaluates model performance in predicting soil types. Precision measures the 
proportion of correctly identified positive cases among predicted positives, recall assesses how many actual 
positive cases were correctly identified, and the F1-score balances precision and recall. The support column 
indicates the number of instances per class, providing insight into dataset distribution and model reliability.

The model did remarkably well for Fine Sand, attaining flawless precision, recall, and F1-score, according to 
the classification report. With a high F1-score and flawless recall, Medium Coarse Sand also showed excellent 
performance. The recall was high for Coarse Sand, though, suggesting that the model only occasionally 
misclassified a few occurrences that belonged to this group. The model’s overall accuracy was 97.73%, and its 
weighted and macro averages showed balanced performance for all soil types. These findings highlight how well 

Sample NO Device reading (%) Lab testing value (%) Accuracy(%) Average accuracy(%)

1 3.03 3.24 93.52

96.49

2 4.96 5.20 95.38

3 5.97 6.16 96.92

4 7.39 7.41 99.73

5 8.14 8.40 96.90

Table 3.  Device accuracy assessment via field and lab comparisons using a logarithmic equation.

 

Sample No Device reading (%) Lab testing value (%) Accuracy(%) Average accuracy(%)

1 2.85 3.24 88.00

94.47

2 5.22 5.20 99.61

3 6.40 6.16 96.10

4 7.95 7.41 92.71

5 8.74 8.40 95.95

Table 2.  Device accuracy assessment via field and lab comparisons using a linear equation.
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the model classifies soil types; however, there is still an opportunity for improvement in some areas, such as 
coarse sand.

Conclusion
An AI-driven polynomial regression model and a capacitance-based soil moisture sensor are combined in 
this study to provide a reliable and affordable method for real-time soil moisture assessment and soil type 
categorization. Utilizing the sensor’s non-destructive, in-situ measurement capabilities, the system showed 
great suitability for geotechnical engineering applications like foundation design and slope stability studies. The 
nonlinear relationship between capacitance values and moisture content was well captured by the polynomial 
regression model, which performed better than the linear model with an accuracy of 96.49% as opposed to 
94.47%. To further confirm this nonlinear pattern, a logarithmic regression model was employed.

With an overall accuracy of 98%, the Random Forest classifier demonstrated remarkable accuracy in 
classifying soil types. All three tested classes–Coarse Sand (Precision: 1.00, Recall: 0.93, F1-score: 0.96), Fine Sand 
(Precision: 0.94, Recall: 1.00, F1-score: 0.97), and Medium Coarse Sand (Precision: 1.00, Recall: 1.00, F1-score: 
1.00)–showed high consistency with the classifier. All evaluation indicators had weighted and macro averages 
of 0.98, which further supported the model’s generalizability and dependability. These findings demonstrate the 
model’s ability for precise and effective soil categorization and water content estimation under real-world field 
circumstances.

The findings highlight the importance of integrating capacitance-based sensors with machine learning 
algorithms to increase soil monitoring systems’ accuracy. To improve prediction performance and increase real-
world applicability in civil infrastructure, agriculture, and environmental monitoring, it is essential to choose 
regression models that take nonlinear behavior into consideration.

It is still to be confirmed how well the model performs on more complex soils like clay, silt, and high-
organic-content soils, even though it showed excellent accuracy across the investigated sand types–fine sand, 
medium coarse sand, coarse sand, and sand-silt mixture. In order to enable wider generalization, future work 

Class Precision Recall F1-score Support

Coarse sand 1.00 0.93 0.96 44

Fine sand 0.94 1.00 0.97 44

Medium coarse sand 1.00 1.00 1.00 44

Accuracy 0.98 132

Macro-avg 0.98 0.98 0.98 132

Weighted avg. 0.98 0.98 0.98 132

Table 4.  Classification report of soil sample prediction using a polynomial regression model in machine 
learning.

 

Fig. 8.  Confusion matrix showing how well the machine learning model classified three different types of 
sand–coarse, fine, and medium-coarse–using supplemented data. Rows reflect actual labels, whereas columns 
represent anticipated labels. While incorrect classifications are displayed in the off-diagonal cells, correct 
classifications are displayed along the diagonal. With only a few misclassifications (three cases of coarse sand 
being forecasted as fine sand, for example), the model demonstrated great accuracy. The number of forecasts in 
each category is shown by the color intensity.
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will concentrate on enlarging the dataset to cover various soil types. The effects of additional variables, including 
mineralogy, clay concentration, water chemistry, temperature, and salinity, will be investigated further. These 
improvements will further improve system accessibility and unlock more value for geotechnical, agricultural, 
and environmental applications when incorporated into clear, user-friendly applications.

Data availability
The dataset generated during this study is not publicly available but can be obtained from the corresponding 
author upon reasonable request.
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