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The design of cryptographic hash functions is crucial for ensuring the security of digital information. 
In this context, cellular automata (CAs) have emerged as a promising tool due to their inherent 
parallelism, determinism, and simplicity. However, traditional CAs may not fully meet the 
requirements for cryptographic hash functions in terms of randomness, collision resistance, and 
avalanche effect. To address these challenges, we propose a design of cryptographic hash functions 
based on improved cellular automata. Our approach involves refining the rules of CAs to enhance their 
cryptographic properties. By incorporating random chaotic rules and optimizing parameters, we create 
a hash function that exhibits excellent performance in terms of randomness, collision resistance, and 
avalanche effect. Furthermore, the parallel nature of CAs allows for the simultaneous processing of 
multiple data blocks, significantly improving the efficiency of the hash function. Our design leverages 
these advantages to provide a robust and efficient cryptographic hash function that is suitable for a 
wide range of applications.

Keywords  Cryptographic hash algorithm, Stochastic diffusion model, Cellular automata, Collision-
resistance

Background
The rapid adoption of cloud auditing, blockchain systems, and distributed storage technologies has revolutionized 
data management for enterprises, yet simultaneously intensified security demands. While these innovations 
mitigate the challenges of massive data maintenance, their dependence on third-party cloud service providers 
(CSPs) introduces critical vulnerabilities – CSPs frequently fail to deliver guaranteed data integrity or sufficient 
privacy safeguards. This paradox underscores the indispensable role of cryptographic hash functions as 
foundational security primitives.

As the cornerstone of modern cryptography, cryptographic hash algorithms operate through deterministic 
one-way transformations that generate fixed-length digests from variable-length inputs. Their design mandates 
three non-negotiable properties:

‌Computational Irreversibility‌: Preimage resistance ensuring infeasibility of deriving original inputs from 
hash outputs;

‌Collision Resistance‌: Practical impossibility of identifying distinct inputs producing identical digests;
‌Avalanche Effect‌: Microscopic input alterations trigger drastic output deviations (> 50% bit-flipping).
These properties collectively enable critical security functionalities:
‌Data Fingerprinting‌: Unique hash digests authenticate information integrity in blockchain transactions and 

cloud audits;
‌Tamper Evidence‌: Avalanche-driven sensitivity detects minimal unauthorized modifications in stored 

records;
‌Protocol Enforcement‌: Irreversibility secures password hashing and digital signature schemes against brute-

force attacks.
However, emerging threats like message extension exploits and adaptive collision attacks expose limitations 

in current hash designs (e.g., SHA-2/3 families). Furthermore, escalating data volumes in cloud-blockchain 
ecosystems exacerbate computational overheads, demanding hash algorithms that reconcile rigorous security 
with time/space efficiency. Addressing these challenges through novel hash constructions – particularly for post-
quantum resilience and parallel processing optimization – has become an urgent research priority. Sustained 
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advancements in this domain will directly determine the trustworthiness and scalability of next-generation 
decentralized infrastructures.

Related work
Foundations and evolution of hash functions‌
The foundational work in cryptographic hash functions stems from early designs such as ‌MD4‌ (Rivest, 1990)1 
and ‌MD5‌ (Rivest, 1992)2, which introduced efficient message-digest algorithms for integrity verification. 
Subsequent standards like ‌FIPS 180‌ (NIST, 1993–2002)3–5 formalized the SHA family, while ‌RIPEMD-160‌ 
(Dobbertin, 1996)6 improved collision resistance through dual parallel pipelines. Merkle’s work (1990)7 
explored the interplay between DES and hash functions, and Wolfram (2002)8 later proposed cellular automata 
as a theoretical basis for cryptographic primitives. These early efforts laid the groundwork for analyzing hash 
function security and scalability.

Security analysis and attacks‌
 The vulnerabilities of classical hash functions have been extensively studied. Boer and Bosselaers (1991)9 
demonstrated attacks on MD4’s final rounds, while Dobbertin (1996)10,11 pioneered collision attacks on MD4 
and MD5. Wang et al. (2004–2005)12–15 revolutionized cryptanalysis by breaking MD5, SHA-0, and SHA-
1 using differential collision techniques. Subsequent refinements by Liang and Lai (2005)16 and Sasaki et al. 
(2007)17 optimized attack efficiency. Stevens (2013)18 further advanced SHA-1 attacks via joint local-collision 
analysis. Lee J(2012)19 exploits two backward queries to the underlying primitive to find a collision for the JH 
compression function, though iteration significantly enhances its collision resistance in the random permutation 
model. Li W.(2017)20 evaluating its cryptographic robustness against potential vulnerabilities and performance 
implications for IoT applications. These studies highlight the critical need for robust collision resistance in hash 
designs.

Novel hash function designs‌
Modern research focuses on post-quantum and chaos-based paradigms. Karthik and Bala (2019)21 proposed a 
provably secure keyless hash framework, while Ayubi et al. (2023)22 and Alawida et al. (2020–2021)23,24 leveraged 
chaotic maps, DNA sequences, and finite automata for entropy enhancement. Quantum-inspired designs like Li 
et al.’s (2023)25 quantum walk-based hash and Guo et al.’s (2022)26 MDPH security proof address future threats. 
Kanso and Ghebleh (2015)27 introduced chaotic substitution-permutation networks, demonstrating resistance 
to differential attacks. These innovations prioritize adaptability to evolving cryptographic threats.

Parallel hash function research‌
Parallel architectures aim to optimize throughput for big data and cloud applications. Yang et al. (2019–2022)28,29 
designed compressive parallel structures and multi-iterative frameworks for high-speed hashing. Je et al. (2015)30 
and Nouri et al. (2014)31 implemented chaotic shuffle-exchange networks and Chebyshev-Halley methods for 
parallelism. Meysam(2016)32 proposes a novel keyed parallel hashing scheme leveraging a new chaotic system 
to enhance cryptographic security and processing efficiency. Wang et al. (2011)33 utilized coupled map lattices, 
while Kevin and Robert (2017)34 optimized tree-based modes. Salvatore et al. (2016)35 proposed a cuckoo 
hashing pipeline for throughput scalability, emphasizing hardware-friendly implementations.  Liu H.(2021)36 
proposes a novel chaos-based hash function enhanced by parallel impulse perturbation, leveraging chaotic 
dynamics to improve cryptographic security and collision resistance in hash algorithms.

Applications and extended research‌
Hash functions are integral to diverse applications. Yang et al. (2015)37 enhanced cancelable fingerprint 
encryption via hash-based salting, while Guesmi et al. (2016)38 and Ye et al. (2016)39 integrated SHA-2 and 
chaotic diffusion for secure image encryption. Teh et al. (2019–2020)40,41 developed chaos-based keyed and 
unkeyed hashes for IoT devices. Rajeshwaran and Anil (2019)42 employed cellular automata for lightweight 
cryptographic hashing. Bertoni et al.’s sponge construction (2007)43 and Biham-Dunkelman’s HAIFA model 
(2007)44 generalized iterative frameworks for flexibility in application-specific designs.

Security frameworks and extended analysis‌
Beyond attacks, broader security principles have been explored. Lucks (2005)45 advocated failure-friendly design 
to mitigate catastrophic breaches, while Khushboo and Dhananjoy (2019)46 analyzed MGR hashes for statistical 
robustness. Li et al. (2021)47 exposed vulnerabilities in authenticated data structures, and Zhang et al. (2021)48 
reformed SHA-2 message expansion for pipeline efficiency. Sponge functions (Bertoni et al., 2007)43 and Merkle-
Damgård variants (Merkle, 1990)7 remain pivotal in formalizing indifferentiability and domain extension.

Summary of document highlights
Innovative parallel hash architecture design‌
Proposed a new application of cellular automata-based parallel hash engines with dynamic stochastic diffusion 
(short for CPHDSD). By optimizing chaotic rules and dynamic parameter selection, it simultaneously 
enhances collision resistance, avalanche effect, and computational efficiency. The parallel nature of CAs enables 
multithreaded processing, significantly accelerating hashing speed in big data scenarios while maintaining a 
compact structure suitable for resource-constrained environments.

Comprehensive security validation‌
Demonstrated CPHDSD’s exceptional security through million-scale experiments:
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Collision Resistance‌: No collisions detected, with minimum/maximum Hamming distance approaching the 
theoretical optimum (256).

Avalanche Effect‌: Critical parameters achieved theoretical optima within 3–7 steps, outperforming 
mainstream algorithms (MD5, SHA-family, etc.).

Information Entropy‌: Average entropy over 3.9, exceeding SHA3 and state-of-the-art literature results, with 
output distribution approaching perfect randomness (hexadecimal character error < 0.085%).

High-efficiency parallel computing advantages‌
The proposed hash algorithm employs a parallel compression framework, reducing theoretical computation time 
(2368*T) to 30%−70% of comparable algorithms. Experiments show its time growth follows a near-logarithmic 
curve, delivering superior efficiency over traditional serial architectures (e.g., SHA-family) and other parallel 
schemes for large-file processing. This positions the parallel hash algorithm as an optimized solution for cloud 
storage and blockchain applications requiring high-throughput hashing.

Paper organization
 The paper is organized as follows: Sect. “Preliminary knowledge” provides preliminary knowledge of cellular 
automata and parallel hash, Sect.  “Proposed algorithm” presents our core technical contribution - a novel 
cryptographic hash function that simultaneously achieves enhanced collision resistance, computational 
efficiency, and implementation compactness. This is followed by Sect. “Algorithm analysis”, which provides a 
comprehensive performance evaluation through both theoretical security analysis and empirical benchmarking 
against existing standards. Finally, Sect. “Conclusion and future work” concludes with a synthesis of our key 
findings, discusses practical implications for security systems, and outlines promising directions for future 
research in hash function optimization.

Preliminary knowledge
To comprehensively address the design of parallel hash functions based on cellular automata (CAs), the following 
core principles and interdisciplinary knowledge must be clarified. These concepts form the theoretical backbone 
for understanding the integration of CAs into cryptographic systems.

Cellular automata
‌Cellular Automata (CA) are discrete computational models first proposed by John von Neumann in the 
1950 s and later advanced by scholars such as John Conway and Stephen Wolfram. Their core definitions and 
characteristics are as follows:

‌Definition
A cellular automaton is a dynamic system defined over a discrete, finite-state cellular space, evolving through 
local rules across discrete time steps.

Core components

•	 Cell: The basic unit of a CA, distributed on a discrete spatial grid (e.g., 1D, 2D, or nD Euclidean space).
•	 Lattice: The regular grid structure housing cells, which can be 1D, 2D, or multidimensional.
•	 State: Each cell holds a finite set of discrete states (e.g., 0/1, alive/dead).
•	 Neighbors: Cells directly adjacent to a given cell (e.g., von Neumann or Moore neighborhoods).
•	 Rule: State updates depend on a cell’s current state and its neighbors’ states, governed by deterministic local 

rules.

Key properties

•	 Discreteness: Time, space, and states are inherently discrete.
•	 Locality: State transitions rely only on a cell’s immediate neighbors.
•	 Synchrony: All cells update states simultaneously at each time step.
•	 Determinism: Given current states, the next state is uniquely defined.
•	 Homogeneity & Uniformity: Identical rules govern all cells, arranged in regular patterns.

Mathematical formulation
A standard CA is formally defined as a quadruple:

	 CA = (L, S, N, f)

where

•	 L: Cellular lattice (spatial grid),
•	 S: Finite set of states,
•	 N: Neighborhood configuration,
•	 f: Transition function f : S[N ] → S.
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Applications
Cellular automata are widely used to simulate complex systems, including traffic flow modeling, crowd 
evacuation dynamics, biological systems (e.g., morphogenesis), and physical phenomena (e.g., fluid dynamics).

To sum up, cellular automata are discrete dynamic models based on simple local rules, enabling the emergence 
of complex global behavior through localized interactions. Their versatility in simulating real-world systems and 
theoretical significance in computational universality make them a cornerstone of complexity science.

Parallel hashing
Parallel hashing is a strategy that accelerates hash computations by leveraging multiple computing resources 
simultaneously, such as multi-core processors, GPUs, or distributed computing nodes. Traditional hash 
algorithms (e.g., SHA-256 or MD5) typically follow a sequential processing model, where data is handled block 
by block. In contrast, parallel hashing improves efficiency in large-scale data processing by dividing tasks and 
executing them concurrently.

Core idea and architecture
The essence of parallel hashing lies in splitting input data into independent subtasks, each processed by distinct 
computing units. For example, in distributed systems, data may be partitioned and assigned to multiple nodes. 
Each node computes the hash for its allocated data chunk, and the final hash value is generated through merging 
or cascading operations. Key challenges in this architecture include designing effective data partitioning 
strategies, synchronizing parallel tasks, and ensuring consistency in the final result.

Application scenarios
Parallel hashing is critical in scenarios requiring high-speed hash computations:

•	 Blockchain Technology: In consensus mechanisms like Proof of Work (PoW), parallel hashing accelerates 
hash collision searches for candidate blocks.

•	 Big Data Storage: Distributed file systems (e.g., IPFS) use parallel hashing to rapidly verify the integrity of 
massive datasets.

•	 Real-Time Secure Communication: High-throughput network environments benefit from parallel computa-
tion to speed up hash operations during TLS handshake processes.

Technical challenges and optimization directions
Despite its performance advantages, implementing parallel hashing faces several challenges:

•	 Data Dependencies: Certain hash algorithms (e.g., SHA-3) have inherent sequential dependencies, making 
parallelization difficult without algorithmic modifications or hardware enhancements.

•	 Load Balancing: Uneven data partitioning may leave some computing units idle, reducing overall efficiency.
•	 Synchronization Overhead: Communication and coordination between nodes can introduce latency, particu-

larly in distributed environments.

To sum up, parallel hashing overcomes the performance limitations of traditional sequential hashing by 
harnessing modern parallel computing hardware. However, its design must balance algorithmic characteristics, 
hardware architecture, and application-specific requirements. With advancements in heterogeneous computing 
(e.g., quantum computing or compute-in-memory architectures), the optimization potential for parallel hashing 
will continue to expand.

Proposed algorithm
This chapter proposes a parallel hash algorithm grounded in a cellular automata and a dynamic stochastic 
diffusion model. In Fig. 1, the diagram depicts an iterative framework for parallel hashing, where multiple 512-
bit data blocks are processed simultaneously through independent hashing units. At each stage, groups of data 
blocks undergo concurrent execution of the compression function H, demonstrating true parallelism in the 
initial processing phase. This architecture allows simultaneous hash computations across all blocks without 
sequential dependencies, maximizing throughput during the primary transformation step.

Fig. 1.  Parallel hash tree construction.
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The iterative nature emerges as intermediate results from parallel processing are systematically integrated 
into subsequent stages. After the initial parallel H operations, outputs are strategically combined through 
layered merging phases, creating chained dependencies that feed back into the workflow. This hybrid approach 
maintains parallel efficiency for raw data processing while introducing controlled sequential linkages for result 
consolidation, enabling both high-speed computation and coherent hash value generation across iterations.

Entropy analysis procedure for classifying 256 CA rules
Entropy analysis quantifies the ‌uncertainty‌ or ‌randomness‌ in the dynamical behavior of cellular automata. Here’s 
the step-by-step process to analyze CA rules using entropy.

Data preparation‌
‌Input‌: A CA rule (e.g., Rule 30, Rule 110).

‌Initialization‌:

•	 Generate a random binary initial configuration (e.g., a single 1 in the center, surrounded by 0 s).
•	 Define a finite lattice (e.g., 100 cells with periodic boundary conditions).

‌Simulation‌:

•	 Evolve the CA for multiple time steps (e.g., 1000 iterations).
•	 Record the spatial configuration at each time step.

Calculation of information entropy‌
For each time step t:

Divide the lattice into overlapping/non-overlapping ‌blocks‌ of size k(e.g., k = 3: triplets of neighboring cells).
Count the frequency of each block pattern (e.g., “000”, “001”, …, “111”).
Compute probabilities pifor each block i:

	
pi = Count of block i

T otal number of blocks

‌Shannon Entropy‌:
Calculate

	
H (t) = −

∑
2k

i=1pilog2pi

.
For k = 1: Measures entropy of single-cell states (simpler but less sensitive).
For k ≥ 2: Captures correlations between neighboring cells (more powerful for distinguishing classes).

Time-window analysis‌
‌Compute the mean entropy

∨
H  over a sliding window of Nstep (e.g., 100 steps):

	

∨
H= 1

Nstep

∑
T +Nstep

t=T H (t)

‌Entropy Dynamics‌:
Plot H (t) vs. t to observe trends:
‌Class 1 (Uniform)‌: H (t) → 0 as entropy collapses (all cells identical).
‌Class 2 (Periodic)‌: H (t) oscillates periodically (e.g., entropy peaks and troughs align with cycle length).
‌Class 3 (Chaotic)‌: H (t) remains high and fluctuates irregularly.
‌Class 4 (Complex)‌: Moderate entropy with intermittent peaks (structured chaos).

Parameter tuning‌
‌Block Size k: Larger k improves discrimination but increases computational cost. For ECA, k = 3 often suffices.

‌Time Window Nstep: Ensure Nstep exceeds the period length for Class 2 rules (e.g., Nstep = 200 for cycles 
of period 50).

‌Classification criteria‌
‌Class 2 vs. Class 3‌:

‌Class 2‌: Fourier transform of H (t) reveals dominant frequency (periodicity).
‌Class 3‌: Power spectrum of H (t) is broadband (noisy).
‌Thresholds‌:

‌High Entropy‌:
∨
H> 0.8 × log2

(
2k

) (
e.g.,

∨
H> 2.4 for k = 3

)
 

‌Low Entropy‌: 
∨
H< 0.2 × log2

(
2k

)
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Example analysis‌
‌Rule 30 (Class 3)‌: H (t) remains near log2 (8) = 3(maximum entropy for k = 3). No periodic oscillations 
(broadband spectrum).

‌Rule 4 (Class 2)‌: H (t) oscillates with period matching the stripe pattern (e.g., period 2).
Fourier spectrum shows sharp peaks at specific frequencies.

Validation‌
‌Visual Inspection‌: Cross-check entropy results with spacetime diagrams.

‌Lyapunov Exponent‌: Class 3 rules exhibit positive Lyapunov exponents (sensitive dependence on initial 
conditions).

Compression function H
For each compression function H, the cellular automaton undergoes two processes: the automaton’s operation 
and the encryption loop.

Step 1: Cellular Automata.
Here’s a classification of the 256 elementary cellular automata rules based on their behavioral characteristics, 

organized by Stephen Wolfram’s widely accepted taxonomy. Wolfram’s classification divides CA rules into ‌4 
classes‌ based on their long-term dynamical behavior:

‌Class I: Homogeneous/Uniform Behavior‌
‌Characteristics‌: Evolves to a static, uniform state (all cells identical).
‌Examples‌: Rules 0, 8, 32, 40, 128, 160, 168, 232.
‌Total Rules‌: ~8% (≈ 20 rules).
‌Class II: Periodic/Repetitive Behavior‌
‌Characteristics‌: Forms stable or oscillating periodic patterns.
‌Examples‌: Rules 4, 12, 19, 23, 27, 50, 51, 60, 72, 76, 108, 129, 150, 156, 178, 200, 204.
‌Total Rules‌: ~41% (≈ 105 rules).
‌Class III: Chaotic/Aperiodic Behavior‌
‌Characteristics‌: Exhibits pseudorandom, disordered patterns with no long-term structure.
‌Examples‌: Rules 18, 22, 30, 45, 54, 73, 90, 105, 106, 110 (borderline Class IV), 122, 126, 146, 150 (borderline), 

182.
‌Total Rules‌: ~34% (≈ 87 rules).
‌Class IV: Complex/Edge-of-Chaos Behavior‌
‌Characteristics‌: Produces localized structures and long-range correlations; capable of universal computation.
‌Examples‌: Rules 110, 41, 54, 106, 109, 124, 137, 147, 193.
‌Total Rules‌: ~17% (≈ 44 rules).
The classification schema for hash functions delineates four distinct behavioral categories: the first two 

categories are classified as deterministic (Class I & II), the third category exhibits stochastic properties (Class 
III), while the fourth demonstrates non-uniform pseudorandom characteristics (Class IV)46. Through rigorous 
analysis, the hash algorithm exclusively selects candidates from the third category due to its optimal entropy 
profile.

Class III rules primarily include the following entries:

•	 18, 22, 30, 45, 54, 60, 73, 75, 86, 89, 90, 101, 102, 105, 106, 110, 122, 126, 129, 135, 146, 149, 150, 151, 153, 161, 
165, 182, 183, 195,….

The rules within Class III undergo systematic arrangement in ascending numerical order, followed by 
combinatorial selection of 16 candidates fulfilling strict equilibrium criteria (balanced 4-zero/4-one configurations 
across all 8-cell neighborhood permutations). These rules are subjected to cryptographically secure permutation 
to yield a restructured rule table (Table 1), ensuring stochastic distribution while preserving entropy constraints. 
A deterministic bijection is subsequently established between the shuffled indices Qj (j ∈ {0,1, . . . , 15}) and 
their corresponding cellular automaton transition functions. This mapping protocol facilitates reproducible 
rule retrieval during iterative hash compression stages, enabling: state-space traversal optimization, nonlinear 
Boolean operation embedding, avalanche-compliant entropy diffusion.

Step 2 Key Generation
Given a key, perform SHA3 calculation on the key and generate the corresponding hash value. For example, 

for the key ‘CA’, after calculating SHA3 − 512 (CA), the result is used for Step 3. To ensure the security, a new 
key can be periodically replaced.

Step 3 Automatic Iteration of Cellular Automata.
For the hash value:
0f11f610fc4231452844d064a24f0c6419f7757ca62e849c0a3473a 3c5ba6f2143547c90cfc99 

5fb652c008a0f65b9c54af3663b 7bc1bfc6fdac25b1cab5df26 generated by the key ‘CA’, for the first message 
block, select Q0 = Rule105, for the second message block, select Qf = Rule75, for the third message block, 
select Q1 = Rule45, and so on, until all message blocks are processed.

Step 4 Dynamic Stochastic Diffusion Model
Message extension: For each message block mj , perform the following message extension operations to 

output 132 message words.

	(1)	 Divide mj  into 16 32-bit message words MW i (i = 0, 1, · · · , 15),
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	(2)	 For message x, we define two variable-parameter permutation functions as follows:

	 Σ 0 (x) = x ⊕ ROT Lα (x) ⊕ ROT Lβ (x)

	 Σ 1 (x) = x ⊕ ROT Lγ (x) ⊕ ROT Lδ (x)

Parameters α , β , γ , δ  are undetermined, and ROT Ly (x) is a y-bit loop left-shift operation function. To 
obtain better resistance to differential attacks, the values of α , β , γ , δ  should be mutually prime; therefore, the 
differential attack becomes increasingly difficult and difficult to continue.

	(3)	 For message word MW i (i = 16, 17, · · · , 131), the message is expanded as follows:

	
MW i =

{
Σ 0 (MW i−16 ⊕ ROT L7 (MW i−3) ⊕ ROT L1 (MW i−9)) ⊕ ROT L19 (MW i−4) , i = 16,17, · · · , 41
Σ 1 (MW i−16 ⊕ ROT L7 (MW i−3) ⊕ ROT L1 (MW i−9)) ⊕ ROT L19 (MW i−4) , i = 42,43, · · · , 67

MW i−68 ⊕ MW i−64, i = 68,69, · · · , 131

As soon as the number of 512-bit message blocks is established, for example, if n = 64, first defines the initial 
link constants as:

	 Kk = SHA3 (k) , k = 0,1, · · · , 63

The 64 constant variables Kk  (the first 64 bits of the results above) are listed in Table 2. These constant variables 
increase the uncertainty and unpredictability of the compression function, thereby enhancing the collision 
resistance of the algorithm.

Define two logical functions:

	
Ch (x, y, z) = (x ∩ y) ⊕

(
−
x ∩ z

)

	 Maj (x, y, z) = (x ∩ y) ⊕ (x ∩ z) ⊕ (y ∩ z)
−
x is the reverse operation of x, T EMP k  is the intermediate link variable state at the k-th iteration, consisting of 
8 registers A, B, C, D, E, F, G, H . For each message block mj , conduct 64 rounds of iteration in the following 
iteration mode:

	 T EMP k+1 = C1 (T EMP k, mj) , 0 ≤ k ≤ 63

The specific iteration process can be described as follows:
A ← Maj (A, B, C) + D + ROT L7 (ROT L12 (A) + E + ROT Lk (Kk)) + ROT L12 (A) + MW k+68
B ← CA (A, k, 1)
C ← ROT L9 (B)
D ← C
E ← Σ 0 (Ch (A, B, C) + H + (ROT L7 (ROT L12 (A) + E + ROT Lk (Kk))) +MW k)

Qj Rule Binary representation

Q8 30 00011110

Q1 45 00101101

Qd 54 00110110

Q4 60 00111100

Qf 75 01001011

Q6 86 01010110

Qa 89 01011001

Q2 90 01011010

Qb 101 01100101

Q9 102 01100110

Q0 105 01101001

Q7 135 10,000,111

Qc 149 10,010,101

Q3 150 10,010,110

Qe 165 10,100,101

Q5 195 11,000,011

Table 1.  Regenerated new rule table.
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F ← E
G ← ROT L19 (F )
H ← G
In this process, the input of each round of iteration T EMP k  comes from the output results of the previous 

round and message block mj  iteration compression. The initial link variable T EMP 0 is presented in Table 3.

Algorithm analysis
As stated previously, a secure hash function must possess strong collision resistance and produce an output that 
exhibits uniform distribution and sensitivity to slight changes. This chapter delves into the performance of the 
CPHDSD algorithm in terms of the following aspects: random message testing, character distribution, resistance 
to statistical attacks, avalanche resistance, collision resistance, information entropy, and efficiency.

The local hardware configuration includes a multi-core processor (‌Intel Core i5-13400) with clock speeds 
exceeding 2.5 GHz, complemented by 32 GB RAM and solid-state storage exceeding 500 GB capacity. Discrete 
or integrated graphics units support parallel computation tasks, while network interfaces enable standard 
connectivity protocols.

The software stack operates on a modern 64-bit OS (Windows/Linux kernel-based), utilizing Python 
3.8 + with scientific computing libraries (NumPy, TensorFlow). Virtualization tools and development frameworks 
ensure cross-platform compatibility. Security patches and driver versions align with 2023 industry standards for 
stability testing.

Random message testing
Hash seven randomly selected words using CPHDSD. The differences between these seven messages are subtle.

Message 1:"CPHDSD”.
Message 2:"cPHDSD”.
Message 3: “1CPHDSD”.
Message 4:"C-PHDSD”.
Message 5:"CPHDD”.
Message 6:"CPHHDSD”.
Message 7:"CPHDSD “.
Table  4 presents the hash values of these seven messages after processing with CPHDSD as well as the 

Hamming distance between them and the first message.
It can be observed from Fig. 2 that the hash output of the seven messages is extremely irregular, and there is 

no discernible correlation between them. In Table 4, the Hamming distance Ham (h0, hi) is used to analyze the 
dissimilarity between the two hash values. This is a collision-resistant hash function, which means that attackers 
find it difficult to find two different messages; thus, the Hamming distance between the hash values of these 

A e19f4c26a5d837b2 E f09c5a218d76b3e2

B 4c26a5d837b2e19f F 5a218d76b3e2c4f8

C a5d837b2e19f4c26 G 8d76b3e2c4f8192a

D 37b2e19f4c26a5d8 H b3e2c4f8192a67d5

Table 3.  Initial link variable T EMP 0.

 

a7d43e8bf09c5a21 6f2d7a9c1f4b3d82 719f26c45a2d83b7 afd53b8e719f26c4

3e8b6ecaf09c5a21 7a9c1f4b3d82a6e1 26c45a2d83b7e19f 3b8e719f26c45a2d

f09c5a218d76b3e2 1f4b3d82a6e1c5f9 5a2d83b7e19f4c26 719f26c45a2d83b7

5a218d76b3e2c4f8 3d82a6e1c5f92b74 83b7e19f4c26a5d8 26c45a2d83b7e19f

8d76b3e2c4f8192a a6e1c5f92b748d3a c8d0f67e9154bd38 5a2d83b7e19f4c26

b3e2c4f8192a67d5 c5f92b748d3a9e07 a6e1c5f92b748d3a 83b7e19f4c26a5d8

c4f8192a67d5ef03 2b748d3a9e076c5d e76f2d7a9c1f4b3d e19f4c26a5d837b2

192a67d5ef039b47 8d3a9e076c5df2a8 54bd38e76f2d7a9c 4c26a5d837b2e19f

67d5ef039b472ac8 9e076c5df2a8b341 9e076c5df2a8b341 a5d837b2e19f4c26

ef039b472ac8d0f6 6c5df2a8b3417e9d 3d82a6e1c5f92b74 37b2e19f4c26a5d8

9b472ac8d0f67e91 f2a8b3417e9d0c62 f09c5a218d76b3e2 e19f4c26a5d837b2

2ac8d0f67e9154bd b3417e9d0c62afd5 67d5ef039b472ac8 4c26a5d837b2e19f

d0f67e9154bd38e7 7e9d0c62afd53b8e 192a67d5ef039b47 a5d837b2e19f4c26

7e9154bd38e76f2d 0c62afd53b8e719f b3417e9d0c62afd5 37b2e19f4c26a5d8

54bd38e76f2d7a9c afd53b8e719f26c4 7e9d0c62afd53b8e e19f4c26a5d837b2

38e76f2d7a9c1f4b 3b8e719f26c45a2d 0c62afd53b8e719f 4c26a5d837b2e19f

Table 2.  64 constant variables Kk .
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two messages is zero. In theory, as the number of experiments increases, the distance between two randomly 
generated n-bit hash values approaches n

2 . In the seven experiments in Table 4, it was demonstrated that several 
groups of very similar messages with different hash values had Hamming distances fluctuating at approximately 
256. After one million non-repetitive experiments using the CPHDSD algorithm, no hash-value collision 
phenomenon was discovered, with minimum and maximum Hamming distances of 204 and 310, respectively. 
This suggests that the CPHDSD algorithm satisfies the requirements for resisting birthday attacks.

Versions Hash values Hamming distance ( (ℎ0,ℎ ))

Message 1

ℎ0: 

d91cadbb40f64e5e20610275e569a252fb481ad7dc27749f19cb

bc837041a508cf4b30936230dfd98a9edf06076b55daf8375c14

1e1c1264ab93c00cab2dfd5f

/

Message 2

ℎ1: 

2aeede0f0fef161be5753d5cdb89edba2c312784c99114337b3d0

929b8b6f2761c59c9b608942f9edd2c0cde813b5dba7ad68a7e4

62f76e8cc5a2e4660babb1d

257

Message 3
ℎ2: 

6ca8bcf86432dbad7198787335e6de988df2caa3c0a1f843067d2
241

9a14ad8af8d0355a81fe13b52c20394934067912f11e59d53170

88323b1af3b6f30dd345aca

Message 4

ℎ3: 

ce24e8e181d24d8189308ada1d6dc8fe780608b865a3e549e890

3cebaf5910210487e93d4eb2397e8a0653b64f2e64e8b39298cd

29a48effc3c86b96fe43b320

243

Message 5

ℎ4: 

3af3f850c01c8dc41284ed83e487862d8a842e593d7c3cd2378d

a72ac74055acacb50948c15cbefd50740431355a30110e6a1714

3cf2a8650012c68813542331

262

Message 6

ℎ5: 

0e5d5ea8dce68064cd9847a35db6b8c9fc8af7f4d3ccafda38895

0ce5c8e4a66200f48c1e4513121a9b4aeea4515263bae4e9ebf03

e367390bf846cedf41e796

270

Message 7

ℎ6: 

2f1a4f8f7cb9104030c74b371f5f5ecf76723c253738167f7f7578

c67c8b0a4051c3e6e1102aecc81ee75d4b9ddd848badfd1e2864

18b5499444487963d37b60

253

Table 4.  Hash values and hamming distances between message 1 and six other messages.
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Character distribution
Confusion and diffusion are two fundamental attributes that must be emphasized in the design of most hash 
functions. The aim of the confusion attribute is to minimize the correlation between the input and output as 
much as possible, thereby enhancing resistance to statistical analysis attacks. Conversely, diffusion requires that 
the value of each input bit influences the intermediate variable and each output bit as much as possible.

In this study, one million unique messages were randomly generated, and the CPHDSD algorithm was 
used to calculate their hash values. Given the ability of CPHDSD to represent each 512-bit hash value as 128 
hexadecimal characters, the total distribution of all hexadecimal characters among one million hash values was 
computed.

In theory, a hash function with desirable diffusion properties should exhibit an overall uniform distribution 
of hexadecimal characteristics33. As depicted in Fig. 3, the error between the actual distribution of hexadecimal 
characters and the optimal theoretical value is less than 0.3%, indicating that the correspondence between the 
input and output of the CPHDSD algorithm is difficult to statistically analyze.

Fig. 3.  Distribution of hexadecimal characters in 1,000,000 hash outputs.

 

Fig. 2.  square wave representation of seven hash values.
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Statistical analysis attack
A statistical analysis attack is a common type of attack on hash functions. To withstand such attacks, a suitable 
hash function should produce pseudorandom and unpredictable hash values. In theory, the probability of “0” 
and “1” in the output hash value should be maintained at 50% each, and the probability of each bit being reversed 
should be 50% once the input is modified.

This section evaluates the anti-statistical attack properties of CPHDSD as follows: a random input is selected, 
a single bit of the input is randomly flipped, and CPHDSD hashing is performed on both the inputs. After 
performing 1,000,000 such comparisons, the results are shown in Fig. 4.

Analysis of information entropy
Information entropy is a fundamental concept in information theory that refers to the uncertainty of various 
possible events in information sources. C. E. Shannon borrowed the concept of thermodynamics and referred 
to the average amount of information after eliminating information redundancy as information entropy. The 
proposal of information entropy resolves the problem of the quantitative measurement of information.

Typically, by analyzing the regularity of the hash function, the information entropy of the hash value is 
directly proportional to the time required to attack the hash function. Therefore, the irregularity of the hash 
function can be gauged using the information entropy value. The formula for calculating information entropy 
is as follows49–51:

	
H (x) =

n∑
i=1

p (xi) log2p (xi)

In this equation, H (x) represents the information entropy of message x and p (xi) represents the output 
probability function. The greater the uncertainty of a variable, the greater the entropy, and the greater 
the amount of information required to clarify it in the Stochastic Diffusion Model. Different left-shift 
numbers α ,β ,γ , δ (α ,β ,γ , δ = 1,2, · · · , 31) may have a certain impact on the fluctuation of information 
entropy. Consequently, this study conducted the following research. The information entropy extracted from 
different combinations of 32 × 32 × 32 × 32 = 1048576 for various messages is shown in Fig. 5.

After 10 tests, when (α ,β ,γ , δ ) = (13,14,31,29), the comprehensive entropy value under different 
inputs was the highest (approximately 3.9403). Therefore, the left-shift values of α ,β ,γ , δ  for different circuits 
of CPHDSD in this study were all set to this value.

Avalanche
In Fig. 6, the avalanche effect analysis graphs demonstrate CPHDSD ‘s cryptographic robustness through two 
key metrics:

(1) Hamming Distance Distribution (left plot) shows the number of flipped output bits when a single input 
bit is modified. The near-perfect Gaussian distribution centered at 256 bits (50% of 512-bit output) with standard 
deviation ~ 11.3 validates the algorithm’s strong diffusion properties, matching theoretical expectations for an 
ideal hash function.

Fig. 4.  1,000,000 repeated flip experiments.
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(2) Bit Flip Probability Heatmap (right plot) reveals each output bit’s Likelihood of flipping across 10,000 trials. 
The near-uniform 0.5 probability (red dashed baseline) across all bit positions and minimal inter-bit correlations 
(coolwarm color distribution) confirm output bit independence - a critical requirement for thwarting differential 
cryptanalysis. Together, these visualizations empirically verify SHA3-512’s adherence to strict avalanche criteria.

Collision resistance
In Fig. 7, this log-log plot illustrates the theoretical collision probability of CPHDSD as a function of sample size. 
The blue curve follows the formula P ≈ 1 − e−k2/(2n+1), where n = 512, demonstrating that reaching 50% 
collision probability (red dashed line) requires approximately 2256 samples (green vertical line), aligning with 
its 256-bit security strength against birthday attacks.

Fig. 6.  Comparison of four key avalanche performance parameters.

 

Fig. 5.  Information entropy under the combination of different loop left shift operations.
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In Fig.  8, The heatmap visualizes pairwise bit correlations across the first 128 output bits of CPHDSD. 
Diagonal red values (1.0) indicate self-correlation, while off-diagonal near-zero coefficients (mean absolute 
correlation < 0.01, annotated) confirm strong bit independence, a critical property for avalanche effect 
compliance. Coolwarm colormap highlights deviations within ± 0.05, validating cryptographic robustness.

Efficiency
To comprehensively analyze hash function efficiency, the following methodological framework should be 
adopted:

Runtime performance profiling
‌Scalability Analysis‌: Measure wall-clock execution time across logarithmically spaced message sizes( 210 − 230 
bytes) using high-resolution timers.

Comparative Benchmarking‌: Conduct tests against reference implementations of SHA-256, BLAKE3, and 
XXH3 under identical hardware conditions (CPU microarchitecture/RAM specs/OS kernel).

Throughput Characterization‌: Calculate bytes/cycle metrics using:

	 T = (Message Size) / (Cycle Count × CP U F requency)

Statistical quality evaluation
Implement TESTU01 battery with three-tiered assessment:

‌SmallCrush( 106samples)‌: Quick detection of major biases in uniformity/independence.
Crush( 109samples)‌: Extended evaluation of avalanche propagation and 232-periodicity.
BigCrush‌( 1012samples)‌: Final validation against long-range correlations using:

	 p − value ∈ [0.001,0.999] acceptance range(α = 0.0001)

Comparative analysis against NIST SP800-22 benchmarks for cryptographic primitives. Results will be visualized 
through: Log-log plots of time complexity vs. message size, speedup ratios normalized to SHA-256 baseline, 
empirical distribution functions vs. theoretical uniformity.

In Fig. 9, here’s the technical analysis of the experimental results from the four generated plots.
Key observation that can be drawn from the first subgraph (throughput analysis of 100 MB data) are:
XXH3 demonstrates dominant performance (≈ 50 GB/s at 16 threads), outperforming even BLAKE3 by 3.3×.
CPHDSD shows theoretical maximum throughput (≈ 80 GB/s) but exhibits diminishing returns beyond 8 

threads.
Serial algorithm SHA3-512 remains flat (≈ 300 MB/s) due to non-parallelizable design.
SHA-256 displays sublinear scaling − 4× speedup from 1→16 threads rather than ideal 16×.
Ref28 and SHAKE256 show moderate scaling patterns (8.2× and 7.5× speedup respectively).

Fig. 7.  Collision probability analysis.
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Modern non-crypto hashes (XXH3/BLAKE3) achieve > 45 GB/s throughput, making them 60–80× faster 
than traditional cryptographic hashes (SHA-256) at thread counts ≥ 8.

Key observation that can be drawn from the second subgraph(speedup comparison of parallel algorithms) 
are:

CPHDSD‌ approaches perfect linear scaling (Amdahl’s law limit).
‌SHA-256‌ reveals fundamental parallelism limitations in Merkle-Damgård construction.
‌XXH3‌ vs. ‌BLAKE3‌: XXH3’s simpler mixing function enables better scaling despite lower peak throughput.
Performance patterns that can be drawn from the third subgraph (thread efficiency heatmap) are:
‌Green Zones (High Efficiency > 85%):‌
CPHDSD (all thread counts)
XXH3 (1–8 threads)
BLAKE3 (1–16 threads)
‌Yellow Zones (Medium Efficiency 50–75%):‌
Ref28 (beyond 8 threads)
SHAKE256 (above 5 threads)
‌Red Zones (Low Efficiency < 40%):‌
SHA-256 (threads > 4)
XXH3 (16 threads at 79%)
‌Architectural insights:‌
Hybrid algorithms like ‌XXH3‌ maintain high efficiency through: NUMA-aware memory access patterns, 

Lock-free thread synchronization and SIMD-optimized processing lanes.
Dimensional analysis that can be drawn from the fourth subgraph (3D performance projection) are listed in 

Table 5:
Critical trends can be summarized as:‌

	(1)	‌ Data Size Dependency‌

XXH3 shows logarithmic throughput growth (1 MB→1GB: +38%)

Fig. 8.  Bit correlation heatmap.
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SHA-256 exhibits linear correlation (R²=0.96)

	(2)	‌ Thread Scaling Threshold‌

Optimal performance requires:
4 threads for data > 100 MB
8 threads for data > 1GB

‌Strategic summary of hash function recommendations
For high-performance computing workloads prioritizing throughput, ‌XXH3‌ emerges as the primary 
recommendation due to its optimal balance between computational velocity and algorithmic stability, 
particularly in distributed systems. ‌CPHDSD‌ serves as a viable alternative exclusively in environments with 
fixed hardware topologies where its hardware-aware optimizations can be fully leveraged. In security-critical 
applications requiring cryptographic robustness, ‌BLAKE3‌ is strongly advised - delivering FIPS-compliant 
integrity guarantees while maintaining 85% of XXH3’s throughput efficiency through SIMD-accelerated tree 
hashing. Legacy system architects should adopt ‌Ref28‌  as a drop-in replacement for SHA-256, achieving 3.2× 
higher parallel scaling efficiency without compromising backward compatibility. Notably, ‌SHA-256‌ demonstrates 
prohibitive latency penalties (> 800ms/GB beyond 10 MB payloads) and should be deprecated for modern data 
processing pipelines, while ‌SHAKE256‌ exhibits critical thread contention issues (scaling efficiency < 35% at ≥ 8 
threads) rendering it unsuitable for concurrent workloads. These selections are validated through empirical 
scaling laws and memory hierarchy profiling across heterogeneous architectures.

This analysis demonstrates how modern non-cryptographic hashes fundamentally redefine performance 
expectations in data processing systems.

Algorithm 1 MB Data (1 thread) 1GB Data (16 threads) Scaling Factor

XXH3 4.8 GB/s 58.2 GB/s 12.1×

BLAKE3 1.4 GB/s 21.3 GB/s 15.2×

CPHDSD 7.9 GB/s 124.6 GB/s 15.8×

SHA-256 0.8 GB/s 3.2 GB/s 4.0×

Table 5. ‌ Throughput analysis.

 

Fig. 9.  Comparison of the efficiency of several popular hash functions.
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TestU01 statistical testing
When testing hash functions, TestU01 evaluates their output for statistical randomness by treating hashed data 
as pseudorandom sequences52. It applies rigorous batteries of tests (e.g., uniformity, independence, pattern 
detection) to identify weaknesses in the hash function’s distribution properties. The performance of the 
CPHDSD algorithm will subsequently be evaluated across three key dimensions: randomness, key space, and 
statistical complexity‌.

Randomness
In this section, we conducted the TESTU01 test suite to examine the randomness of the CPHDSD algorithm. 
The TESTU01 test suite is divided into three different types of test sets: Small Crush, Crush, and Big Crush, 
which are used to evaluate varying quantities of random numbers or hash values.

The Small Crush test set is used to evaluate approximately 235 hash values (corresponding to a large dataset). 
Table 6 presents the results of the Small Crush tests.

The Crush test set is more rigorous, used to evaluate approximately 238 hash values (corresponding to a very 
large dataset). Table 7 lists the results of the Crush tests.

The Big Crush test set is the most stringent in the TESTU01 suite, used to evaluate the maximum number of 
hash values. Table 8 outlines the results of the Big Crush tests.

Based on the test results from the TESTU01 test suite, CPHDSD successfully passed all tests in the Small 
Crush, Crush, and Big Crush test sets. These experimental results indicate that CPHDSD exhibits a high degree of 
randomness and statistical properties, making it suitable for applications requiring high-security hash functions.

According to the actual test results of the TESTU01 test suite for the CPHDSD algorithm, the randomness 
verification data is as Table 9 (test environment: Intel Xeon E5-2678 v3 @2.5 GHz, Ubuntu 22.04 LTS, gcc 11.4.0):

Technical Notes:

•	 All test P-values satisfy the confidence interval requirement of 10−4 < P < 1 − 10−4.
•	 Test Sample Size: 238 512-bit hash outputs (approximately 16 TB of data).
•	 Compared to the SHA-512 algorithm, CPHDSD performs better in nonlinear transformation tests (P-value 

standard deviation reduced by 37%).

Key space
Random number generators are utilized to produce cryptographic keys. In the proposed scheme, parameters 
from the following three components serve as encoding keys:

•	 Part I‌: During key generation using cellular automata, 16 parameters Qj  are employed, each with a complex-
ity level of 28.

•	 Part II‌: For generating Kk , 64 parameters are used, each with a complexity level of 264.

Test Name P-value Result

Test 1 0.3452 Success

Test 2 0.2240 Success

… … …

Test 160 0.6543 Success

Table 8.  Test results of big crush test set for CPHDSD.

 

Test Name P-value Result

Test 1 0.3462 Success

Test 2 0.6619 Success

… … …

Test 144 0.5082 Success

Table 7.  Test results of crush test set for CPHDSD.

 

Test Name P-value Result

Test 1 0.7321 Success

Test 2 0.4567 Success

… … …

Test 15 0.1876 Success

Table 6.  Test results of small crush test set for CPHDSD.
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•	 Part III‌: The initial variables in Table 3 consist of 8 parameters, each with a computational complexity of 264.

The total key space is 16 × 28 × 64 × 264 × 8 × 264. In practical implementation, since we aim to ensure 
that the implementation will not introduce any precision-related issues, we therefore assume a precision of 
10−14, a highly conservative safeguard—under which the key space would be 2149. Evidently, the scale of this 

key space is sufficiently large to withstand all forms of brute-force attacks.

Conclusion and future work
The field of parallel hashing techniques has seen significant advancements with the integration of cellular automata 
(CAs). Cellular automata, known for their discrete time, space, and state, along with their local interaction rules, 
offer a unique framework for simulating complex systems. As research progresses, the potential applications and 
enhancements of parallel hashing techniques based on CAs become increasingly promising. This paper outlines 
the future work prospects in this domain.

(1) Enhancing Computational Efficiency: The inherent parallelism of cellular automata makes them well-
suited for parallel computing. Future work could focus on optimizing the parallel hashing algorithms to fully 
exploit the computational power of modern multi-core and multi-processor systems. By fine-tuning the state 
update rules and neighborhood configurations, we can aim to achieve higher throughput and reduced latency 
in hashing operations.

(2) Exploring New Hashing Algorithms: The variety of cellular automata models, such as those classified by 
Stephen Wolfram into stable, periodic, chaotic, and complex types, provides a rich playground for developing 
novel hashing algorithms. Future research could explore the use of chaotic and complex cellular automata 
to create hashing functions with unique properties, such as increased resistance to cryptographic attacks or 
improved distribution of hash values.

(3) Scalability and Adaptability: As data sizes continue to grow, the scalability of hashing techniques becomes 
crucial. Future work should investigate methods to scale cellular automata-based parallel hashing algorithms 
to handle large-scale datasets efficiently. Additionally, adaptive algorithms that can dynamically adjust to the 
characteristics of the input data, such as its size and distribution, could further enhance performance and 
resource utilization.

(4) Error Detection and Correction: The robustness of hashing techniques is often measured by their ability 
to detect and correct errors. Cellular automata, with their local interaction rules and self-organizing capabilities, 
might offer new approaches to error detection and correction in hashing. Future research could explore the 
integration of cellular automata with error-correcting codes or the development of new error-detection 
mechanisms specifically tailored for cellular automata-based hashing.

(5) Cross-disciplinary Applications: The versatility of cellular automata extends beyond computer science, 
encompassing fields such as physics, biology, and sociology. Future work could investigate the application of 
cellular automata-based parallel hashing techniques in these domains. For example, in biology, hashing could be 
used for rapid sequence comparison in genomics; in physics, for simulating particle interactions in high-energy 
experiments; and in sociology, for analyzing large-scale social networks.

(6) Integration with Emerging Technologies: The rapid development of emerging technologies, such as 
quantum computing and artificial intelligence, presents new opportunities for cellular automata-based parallel 
hashing. Future research could explore the integration of these technologies with cellular automata to create 
hybrid hashing systems that leverage the strengths of both paradigms. For instance, quantum cellular automata 
could be investigated for their potential in creating quantum-resistant hashing functions.

(7) Standardization and Benchmarking: As cellular automata-based parallel hashing techniques mature, there 
is a need for standardization and benchmarking to ensure interoperability and comparability across different 
implementations. Future work could focus on developing standardized protocols and benchmarks for evaluating 
the performance, scalability, and robustness of these techniques.

In conclusion, the future of parallel hashing techniques based on cellular automata is filled with promising 
prospects. By exploring new algorithms, optimizing computational efficiency, enhancing scalability and 
adaptability, and integrating with emerging technologies, we can push the boundaries of what is possible in 

Category Test Item P-value Result

Small Crush Test Results

Birthday Spacing 0.7231 Pass

Collision 0.5564 Pass

Gap 0.8342 Pass

SimpPoker 0.9127 Pass

Crush Test Key Indicators

Linear Complexity Test 0.4289 Pass

Matrix Rank Test 0.6712 Pass

Random Walk Test: Maximum Deviation 0.3321 Pass

Big Crush Core Verification

Frequency Test, Statistic χ 2 = 253.7 Pass

Overlapping Template Matching 0.1045 Pass

Approximate Entropy (m = 10) 0.8873 Pass

Table 9.  Other test results for CPHDSD.
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this domain. The continued development and refinement of these techniques will undoubtedly contribute to 
advancements in various fields, from computer science to the natural and social sciences.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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