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Artificial Intelligence (AI) holds promise for advancing the field of neurotechnology and accelerating its 
clinical translation. AI-driven clinical neurotechnologies leverage the power of non-linear algorithms 
to analyze complex brain data and enable adaptive, closed-loop neurostimulation. Despite these 
promises, the integration of AI into clinical practice remains limited, with lack of explainability 
being commonly cited as one main obstacle. This raises the question of whether opacity and lack of 
explainability also hinder the adoption of AI in closed-loop medical neurotechnologies. We investigated 
the attitudes, informational needs and preferences of clinicians regarding AI-driven closed-loop 
neurotechnologies and explored what forms of explanation they consider necessary for clinical use. 
We conducted semi-structured expert interviews with twenty clinicians (including neurologists, 
neurosurgeons, and psychiatrists) from Germany and Switzerland. Using reflexive thematic analysis, 
we explored their understanding of and expectations for explainability in the context of AI-driven 
closed-loop neurotechnology systems. Clinicians consistently emphasized the importance of context-
sensitive, clinically meaningful forms of explainability such as understanding what input data were 
used to train the system and how the output relates to clinically relevant outcomes. By contrast, 
detailed knowledge of the model’s inner architecture or technical mechanics were of limited interest. 
Several participants specifically called for Explainable AI (XAI) techniques, particularly feature 
importance and relevance measures, to support their interpretation of system outputs. Our findings 
suggest that the clinical utility of AI-driven neurotechnologies can be improved by focusing on 
intuitive, user-centered and clinically meaningful forms of explainability rather than full algorithmic 
transparency. Designing systems that meet these pragmatic needs may help bridge the translational 
gap between AI development and clinical implementation.
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Artificial Intelligence (AI) is rapidly transforming our ability to understand and intervene in brain function 
and dysfunction, particularly when integrated with neurotechnology1–4. AI-driven tools are being increasingly 
explored across a spectrum of neurotechnological applications, from Brain-Computer Interfaces (BCIs) that 
enable motor or speech restoration in individuals with paralysis5 to neuromodulation therapies such as deep 
brain stimulation (DBS) for treatment-resistant neurological disorders2 or repetitive transcranial magnetic 
stimulation (rTMS) for psychiatric disorders6. Many of these technologies rely on closed-loop architectures, 
in which AI models continuously analyze neural signals and adapt stimulation or decoding parameters in real 
time. In these contexts, AI has shown promise: for example, in DBS, it can support target identification and 
individualized stimulation protocols by detecting complex disease patterns in large-scale neural datasets7. 
Despite these advances, the clinical integration of AI into neurotechnology is still in its infancy7. A key barrier 
in medicine is the opacity of many state-of-the-art AI models8. This lack of transparency poses significant 
challenges for clinical adoption, particularly in applications that directly interact with the human brain. In such 
high-stakes settings, explainability is not only a technical concern but also an ethical requirement for ensuring 
patient safety, preserving autonomy, and fostering trust among clinicians and patients alike.

Explainable AI (XAI) has emerged as a response to these challenges, offering tools and methods that make 
AI outputs more interpretable to human users9–12. XAI techniques such as SHapley Additive exPlanations 
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(SHAP) can provide insights into model behavior and highlight the features most influential in AI decision-
making13. In clinical contexts, such methods may enhance validation and support informed decision-making 
across medicine14, spanning domains as diverse as radiology, nuclear medicine, cardiology, oncology, and 
psychiatry14–18. In direct comparison with conventional, opaque AI methods, using XAI can also increase 
physicians’ trust in AI, as has been demonstrated in the context of melanoma diagnosis19. Recent research is 
therefore also investigating which particular XAI techniques and visualizations are perceived as useful and 
practical by clinicians, particularly in fields such as radiology20.

While XAI is gaining traction in broader healthcare settings including diagnostic software for neurology21, its 
application in medical neurotechnology—particularly in closed-loop systems—remains underexplored22,23. XAI 
implementation in the field is further complicated by the difficulty of applying standard XAI models to time series 
data, such as electroencephalography (EEG), as recently stressed by two reviews24,25. Yet, developing meaningful 
models of explanations for AI-driven neurotechnology is especially pressing given ethical requirements and 
regulatory developments such as the European Union’s AI Act, which mandates the provision of meaningful 
explanations for high-risk AI models involved in decisions affecting individuals26. These regulatory shifts 
underscore the urgency of understanding what constitutes a meaningful explanation in clinical neurotechnology 
contexts27.

This study addresses that gap. We qualitatively investigate how clinicians working with closed-loop 
neurotechnologies conceptualize explainability: what forms of explanation they find meaningful, useful, or 
necessary for clinical practice. Drawing on semi-structured interviews with twenty clinicians in neurology, 
neurosurgery, and psychiatry across Germany and Switzerland, we aim to map clinician-centered requirements 
for explainability in the context of closed-loop neurotechnologies. To our knowledge, this is the first empirical 
study focusing on clinical explainability needs in the context of closed-loop systems for neurological and 
psychiatric disorders. Our findings aim to inform technology design, regulatory frameworks, and ethical 
guidelines to ensure that any AI-driven neurotechnology is both clinically robust and socially aligned.

Results
Qualitative results
Our qualitative analysis reveals a nuanced landscape of clinicians’ attitudes, informational needs and preferences 
concerning AI-driven closed-loop medical neurotechnology. To structure our findings, we organized clinician 
responses across three dimensions of the algorithmic system: its input (training data), its core architecture 
(algorithm), and its output (prediction and clinical decision). In addition, we also report their desiderates with 
view to user interfaces and XAI visualisations. We begin with clinicians’ views on the algorithm itself, given its 
centrality to current debates on explainability. The full overview of all explainability-related concepts can be seen 
in the concept map below (see Fig. 1).

Information about the algorithm
Feature importance & feature relevance
Counterfactual analysis

Explainability

AI user interface design requirements

Information about the input data
Representativeness of symptoms

Sample size
Data quality

Data bias
Data privacy

Information about the output
Patient benefit
Patient benefit source

Information about procedural elements 
Clinical validation

Contraindications and side effects
Link to current research

Fig. 1.  Explainability-related concept map. This explainability-related concept map illustrates the emerging 
themes based on our thematic analysis of the expert interviews.
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Algorithmic specifications and perceived relevance
A consistent theme across interviews was clinicians’ limited interest in the technical specifications of AI models 
embedded in closed-loop medical neurotechnological systems. Several participants (9/20) explicitly reported 
seeing little value in understanding technical details such as algorithm type, number of layers, or parameter 
counts. These aspects were generally perceived as overly technical, falling outside the their clinical expertise and 
responsibilities, and offering minimal practical or clinical utility for decision-making in patient care.

One participant noted that many doctors lack the expertise to distinguish between different machine learning 
(ML) algorithms, and several clinicians questioned whether explainability—and by extension, XAI methods—is 
even necessary in the context of closed-loop medical neurotechnology. Six out of twenty acknowledged the 
inherent opacity of AI models but expressed openness to use them nonetheless. One participant remarked 
that detailed understanding of the underlying AI model is rarely essential for physicians, while another 
observed that patients typically show little concern about algorithmic transparency. This pragmatic stance was 
echoed in comparisons to non-AI-driven interventions such as conventional deep brain stimulation (DBS) 
for Parkinson’s disease, which often prove clinically effective despite incomplete mechanistic understanding. 
Still, one clinician repeatedly emphasized that algorithmic transparency remains crucial for AI developers and 
engineers, particularly for system validation, safety assurance, and error detection. From this perspective, even 
if clinicians do not require direct algorithmic insight, they depend on technical and regulatory actors to ensure 
such understanding is firmly embedded at the system level.

Input data information request
Our analysis reveals that clinicians’ interest in input data is shaped by underlying concerns about clinical 
representativeness, data accessibility, data quality, and relevance to real-world therapeutic decision-making. 
Several interviewees highlighted the critical role of knowledge about input data in shaping clinicians’ trust in, 
and expectations of, future AI-driven medical closed-loop neurotechnologies.

Representativeness of training data
Clinicians (4/20) voiced scepticism about whether the full spectrum of neurological and psychiatric symptoms 
can be adequately captured by training datasets. In disorders such as Parkinson’s disease, where symptoms such 
as tremor vary widely across individuals, participants stressed the need to understand whether the AI models 
had been trained on data representative of their own patient populations.

Access to input data
Some research-oriented clinicians (3/20) emphasized the need for transparent access to the raw data that 
underpin AI decisions, to better understand AI and determine its applicability. Especially in high-stakes contexts 
like critical care, they expressed a desire to inspect and interpret input signals independently. This demand for 
data transparency was closely linked to clinicians’ need to validate AI-driven interventions and retain clinical 
oversight, especially when the treatment mechanism is not fully explainable even without AI.

Multimodal input and new biomarker
Multiple interviewees agreed (4/20) that neural activity data alone is insufficient for building and implementing 
high-performing closed-loop systems. Clinicians strongly advocated for the integration of complementary inputs 
such as wearable sensor data, video-based movement assessments, and subjective patient-reported outcomes, 
including measures of quality of life. One clinician even remarked that therapeutic efficacy does not require full 
mechanistic understanding, so long as the patient’s well-being improves. Consequently, clinicians also expressed 
a desire to know whether multimodal and subjective patient data was used to train a specific AI system. At the 
same time, four clinicians noted that certain biomarkers for neurological and psychiatric conditions are already 
too complex to be fully understood, even without the use of AI, with two of them reporting that parameter 
settings in some neurostimulation devices are often determined through trial and error. This highlights a shift 
toward outcome-oriented validation and supports the integration of multimodal data pipelines in AI system 
design.

High data quality and generalizability
Three out of twenty clinicians raised concerns about the noise and artifact susceptibility of brain data, particularly 
when acquired under clinical conditions. They emphasized the need for robust preprocessing pipelines and 
artifact removal to ensure that algorithms learn from signal rather than noise, and demanded that appropriate 
steps are reported. Additionally, one participant questioned the adequacy of existing datasets, citing small sample 
sizes and variability in patient condition, device configuration, and electrode placement as potential limitations.

Key information about the output
Clinicians expressed their strongest concerns (11/20) about the output of AI-driven systems, particularly in 
terms of safety, patient benefit and clinical relevance, and connected this to their informational needs and 
preferences. Many emphasized that their trust in AI is shaped not by insight into the algorithms themselves, but 
by the real-world consequences of their decisions and actions.

Safety of the output and operational transparency
Another concern raised by one clinician was the safety of algorithmic outputs, especially in scenarios where 
systems can autonomously adjust neurostimulation parameters in real time. Four out of twenty clinicians 
emphasized the need to understand not only the system’s accuracy, but also how its output is operationalized and 
translated into clinical action. This concern was particularly acute in sensitive or unpredictable environments 
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involving potential real-time interventions, such as seizure detection by responsive neurostimulation (RNS) 
systems. Seven out of twenty clinicians noted the importance of clearly defined safety boundaries to prevent 
outputs that could result in harmful or socially dangerous actions (e.g., during driving or unsupervised 
movement). Several participants stressed that AI models adjusting stimulation parameters autonomously must 
be constrained by hard safety limits, ensuring that output decisions cannot exceed clinically safe thresholds.

Alignment with clinical reasoning and evidence of patient benefit
Clinicians were more likely to trust AI models when the system’s recommendations were aligned with their 
clinical reasoning or “gut feeling”. In their view, trust was not gained through detailed algorithmic explanations, 
but rather through consistent congruence between AI recommendations and clinician intuition. Although most 
clinicians expressed optimism about AI’s future role in closed-loop systems, they voiced frustration at the current 
gap between technical potential and clinical application. Some (3/20) described the field as “overhyped,” arguing 
that claims of transformative impact lack sufficient empirical support. For example, one clinician cautioned 
that adding adaptive features to DBS treatment is unlikely to improve by more than 30%. While acknowledging 
the strengths of AI in data processing and predictive modelling, participants consistently emphasized that 
tangible patient benefits must be demonstrated through realistic, clinically grounded trials. Several noted that 
new implantable pulse generators (IPGs), which enable long-term neural data collection, present a valuable 
opportunity to generate the kind of real-world datasets needed to rigorously assess AI’s clinical utility. Ultimately, 
participants underscored that AI should be deployed only when it leads to clear, demonstrable improvements in 
patient outcomes, and that these benefits must be carefully evaluated through transparent and ethically sound 
clinical trials.

Meaningful clinician-AI interaction and clinical relevance
Eight participants emphasized that AI should support, not replace, clinical judgment. One clinician cautioned 
that AI models might identify statistically significant patterns that lack medical validity, reinforcing the need for 
clinicians’ oversight in defining use cases and validating model outputs. Several clinicians also emphasized that 
AI systems require clear hypotheses to address real clinical problems and cannot generate meaningful solutions 
in isolation.

AI user interface design requirements
Clinicians provided valuable insights on the design of user interfaces for AI-driven closed-loop neurotechnology 
when prompted, emphasizing the importance of intuitive, context-specific visualizations that support 
understanding without demanding technical expertise in ML.

Data transparency through visualization
There was broad agreement among participants (9/20) that descriptive statistics and visual summaries, such 
as charts, enhance understanding of the training data. These tools were considered essential for assessing the 
representativeness and relevance of the dataset to individual patient cases. One clinician suggested incorporating 
visualizations of symptom clusters to verify whether an individual patient matches specific subgroups in the 
training set.

Linking to scientific evidence
A clinician welcomed the idea of embedding hyperlinks to peer-reviewed publications that underpin model 
decisions. Such links could strengthen trust by showing that algorithmic outputs are grounded in established 
clinical knowledge and by allowing users to verify the underlying medical rationale.

Explainability tools
Only three out of twenty participants spontaneously expressed interest in formal XAI methods such as feature 
relevance, feature importance rankings, and counterfactual examples. Those who did valued the ability to 
identify top predictors or explore counterfactuals and what-if scenarios. One participant also called for access 
to source data within the interface, particularly for research or validation purposes. Interestingly, two clinicians 
preferred paper-based formats over digital dashboards when reviewing complex patient profiles, suggesting that 
interface flexibility remains crucial.

The limits of visualization
Despite general appreciation for transparency tools, several participants cautioned that data visualization alone 
does not fully resolve the challenges of algorithmic opacity. As a result, clinicians advocated not for complete 
transparency but for practical intelligibility: interfaces that convey enough information to safely and confidently 
integrate AI support into clinical workflows, without overwhelming users with unnecessary complexity.

Illustrative theme-specific quotes are presented in Table 1.

Discussion
These findings provide novel insights into how clinicians engage with, evaluate, and ultimately decide whether 
to trust AI-driven closed-loop medical neurotechnologies. This exploration of expectations around input 
data, algorithmic transparency, algorithm output, and interface design, offers a comprehensive view of what 
explainability means to clinicians. Two critical insights emerge from our study. First, clinicians’ trust in AI and 
perceived clinical utility of AI-driven neurotechnology do not depend on full algorithmic transparency but on 
the provision of context-sensitive, clinically meaningful forms of explainability. This shifts the emphasis from 
traditional XAI goals toward more pragmatic, user-centered approaches tailored to clinical reasoning.

Scientific Reports |        (2025) 15:34638 4| https://doi.org/10.1038/s41598-025-19510-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Second, our interviews revealed that explainability is not viewed by clinicians as a static technical property 
but rather as a dynamic and context-sensitive component of decision-making. Trust in AI models, therefore, 
is not built through detailed disclosures of algorithmic architecture but through system behaviours that 
align with clinical logic and patient outcomes. An emerging concern in this context was the tendency of AI 
models to learn and rely on epiphenomena, i.e. statistical artefacts or spurious proxies, rather than underlying 
pathophysiological mechanisms. This can result in seemingly accurate predictions that, while technically valid 
within the dataset, are clinically irrelevant or misleading. For instance, one clinician recounted a case where 
an AI model identified a hormone level as statistically significant for predicting an outcome, despite it being 
merely a proxy for medication use in severely ill patients. From a medical standpoint, this result was deemed 
to be “complete nonsense”, yet the data scientist regarded it as an interesting signal. Such cases exemplify the 
epistemic fragility of AI outputs when interpretability is lacking and when models exploit correlations that do 
not correspond to causal or physiologically meaningful relationships. This challenge underscores the importance 
of grounding explainability not just in clarity or transparency, but in the clinical meaningfulness and plausibility 
of the model’s outputs. In this high-stakes context, it is critical to distinguish between correlation and causation 
and to ensure that models reflect mechanisms clinicians can reason about and act upon. In broader terms, our 
findings reveal that clinicians want to know what data the system uses and how the output is relevant to their 
clinical goals, rather than how the algorithm operates internally. This challenges the prevailing one-size-fits-all 
model of XAI and points instead to the importance of designing neurotechnologies that embed intelligibility 
over interpretability.

Although most participants showed little interest in technical specifications or traditional XAI tools, this 
should not be mistaken for disinterest in transparency altogether. On the contrary, clinicians valued outputs 
that could support clinical reasoning such as feature importance scores, confidence estimates, or ranked outputs 
that align with medical judgment. In many cases, clinicians compared AI models to other medical tools whose 
mechanisms are not fully understood but are trusted based on demonstrated utility and effectiveness. This 
view resonates with London et al.’s observation that “[a]s counterintuitive and unappealing as it may be, the 
opacity, independence from an explicit domain model, and lack of causal insight associated with some of the 
most powerful ML approaches are not radically different from routine aspects of medical decision-making.”28. 
This challenge is further compounded by a fundamental distinction between neurotechnology and other clinical 
applications of AI. In more established clinical domains, such as outcome prediction or diagnostic support, the 
model inputs are themselves inherently interpretable, hence clinicians are already familiar with variables such as 
patient age, blood pressure, lab values, or imaging findings. In these cases, the primary opacity lies in the model’s 
internal reasoning, which XAI tools aim to elucidate. In contrast, neurotechnology introduces an additional 

Algorithmic specifications information request

“To be honest, as a doctor I don’t feel comfortable to really understand the differences between a random forest and a Support Vector Machine (SVM).” (P6)

“I don’t know whether I need to understand what the AI model is doing.” (P11)

“Well for the patients [AI and training data] is not relevant, I mean for 99,9% of all patients. But for me it is interesting […].” (P12)

“As with any technical solutions, there needs to be someone who can repair it […]. This is the same for AI-driven technology, so I believe that engineers and 
technicians need a good understanding of how to repair it and decide when to decommission it.” (P18)

“But verifying how the machine or the technology has derived the result, I think, is [for me] overrated. […] I think that’s certainly a different question for 
engineers and developers.” (P18)

Input data information request

“[…] There are a lot of clinical specifications, so therefore I would like to know if the training data is suitable to be used for certain situations.” (P12)

“[…] But there are a lot of [tremor] subtypes, e.g., for Parkinson’s disease patients this means many axial symptoms, and these are more difficult to be 
reduced by neurostimulation.” (P10)

“We need unrestricted access to the source data. We simply need to be able to obtain and analyze this source data without any time delay and, if necessary, 
to be able to model it with AI to really make a statement, as long as we don’t have this, we are a bit in a black box situation and only see the AI-driven 
output at some point […]. But that’s the important thing.” (P19)

“Closed-loop plays a big role in the sensory and motor symptoms domain. And in this area, we would say the main thing is it works, and the patient has a 
better quality of life.” (P7)

“Because we really don’t know, so it’s sometimes more like Frankenstein research, you try it and see what happens.” (P7)

“Reality is much more complex than all the, I'll say, training datasets you have and what looks great and works great in training datasets, as soon as you let a 
little more reality it starts to collapse.” (P7)

“We did a project with a start-up from the [blinded]. We wrote a Science paper together where, all of a sudden, a hormone level was statistically significant 
for the algorithm’s prediction. This was complete nonsense from a clinical perspective (although the data scientist liked the result) because this hormone 
level was a proxy for a certain medication for only very sick patients”. (P13)

Output information request

“Even if you don’t understand the system itself, you might at least be able to assess the consequences of using it.” (P7)

“With DBS, we have an extremely efficient therapy and all that without AI. The thing is, DBS is not going to improve by 30% because we all of the sudden 
have adaptive DBS […].” (P15)

AI user interface design requirements

“If the focus is too broad, this might lead to a cancelling out of the effects.” (P10)

“Just link the relevant publications to the findings to see the robustness of the features in other research as well.” (P13)

“As a researcher, I would like to have 100% transparency and access to the data.” (P7)

Table 1.  Illustrative quotes for the respective themes.
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layer of opacity: the input signals themselves, such as raw neural time series or local field potentials, may lack 
immediate clinical interpretability. Clinicians are not typically trained to interpret electrophysiological waveforms 
or spectral decompositions, nor are these signals intuitively linked to clinical symptoms or outcomes in the same 
way that, for instance, hyperglycemia might be linked to diabetic complications. This dual-layer opacity at both 
the input and algorithmic levels poses unique challenges for explainability and limits the applicability of many 
standard XAI techniques developed for structured or tabular data. A good example of that is closed-loop DBS, 
where clinicians routinely operate without full mechanistic understanding at neither input nor algorithm level. 
This underscores the need for novel, domain-specific explanation strategies that not only clarify the model’s 
decision pathway but also translate raw neurophysiological data into clinically meaningful concepts. From a 
design perspective, this means AI models must support functional intelligibility, not just interpretability. For 
example, while feature importance and SHAP values can be helpful, they may not be sufficient in isolation. 
Several participants proposed the development of interactive explanation tools, including LLM-based chatbots, 
that could engage clinicians in two-way conversation and adapt explanations to their level of expertise or context 
of use. Such tools could help bridge the gap between the technical language of AI developers and the clinical 
language of medical professionals. This gap that was repeatedly identified as a key barrier to trust.

Clinicians also emphasized that trust in AI systems for neurotechnology is ultimately earned through 
demonstrated performance, safety and relevance to patient care. They concurred that systems that consistently 
offer accurate, safe, and clinically relevant recommendations are more likely to gain acceptance, even if their 
inner workings remain partially opaque. Importantly, they cautioned that AI-generated outputs such as DBS 
stimulation parameters must be subject to the same scrutiny and regulatory oversight as any other clinical 
intervention, including drugs and other medical devices. Furthermore, algorithmic decisions must not bypass 
clinical accountability, regardless of their origin (see Table 1 for illustrative theme-specific quotes).

It is possible that the participants’ preference for user-centric framings of explainability also reflects the current 
stage of the field. Clinicians noted that AI remains underutilized in closed-loop medical neurotechnologies, and 
that the absence of validated, real-world systems limits both practical experience and demand for explainability. 
In this sense, the underuse of AI and the limited emphasis on explainability may reflect the same root cause: a lack 
of functional, validated AI applications in routine clinical practice. Many interviewees observed that the field is 
still in its early stages: many IPGs are just beginning to generate the large-scale data needed to train and validate 
ML models. Without such data, clinically meaningful AI applications remain underdeveloped, and questions of 
explainability remain largely theoretical. Open data concepts were also welcomed by the participants. However, 
the expectation for open access to training data was not considered always realistic in the current commercial and 
legal landscape. Companies may be reluctant to disclose proprietary data due to intellectual property concerns, 
competitive advantage, or compliance with national data protection laws, including regulations that restrict 
cross-border data sharing. These constraints highlight the need for balanced governance frameworks that can 
uphold the legitimate interests of stakeholders while still promoting sufficient transparency and trustworthiness 
for clinical deployment.

Participants also acknowledged clinicians’ limited technical training in AI and how this can challenge their 
efforts to seek explanations that are both clinically meaningful and actionable. This points to a dual responsibility: 
while AI developers are increasingly expected to design interfaces and systems that balance explainability with 
clinical relevance, clinicians—and the institutions that train them—may bear a corresponding responsibility to 
adapt medical education in ways that strengthen physicians’ capacity to interpret and critically engage with AI 
systems.

Several additional barriers to trust in AI-powered neurotechnology were also identified, including restricted 
access to input data. Clinicians expressed frustration that manufacturers often withhold valuable training 
datasets, which stifles collaborative validation and hinders transparency. This asymmetry in data access not only 
inhibits collaborative validation efforts but also impedes trust and limits feedback loops essential for continuous 
improvement. Bridging this gap will require incentives for data sharing, regulatory clarity, and the development 
of robust, testable proof-of-concept systems clinicians can evaluate firsthand.

Our findings have direct implications for AI design in neurotechnology settings. Bridging the gap between 
clinicians’ informational needs and the technical feasibility of current XAI methods clearly emerged as an open 
challenge for medical AI development. In light of our findings, one promising approach may be the use of hybrid 
explainability methods that combine statistical techniques (e.g., SHAP values, saliency maps) with case-based or 
example-based reasoning, such as presenting similar patient trajectories or prototypical cases to contextualize 
algorithmic outputs. These strategies align more closely with clinicians’ existing cognitive models and decision-
making processes. Equally important is the translation of empirical insights (including those collected in this 
study) into concrete design features, such as adaptive user interfaces that surface different levels of explanation 
depending on user expertise, or workflow-integrated visualizations that prioritize clinical relevance over 
algorithmic transparency. Embedding such human-centred considerations at the interface or system design 
stage may help ensure that XAI tools serve clinicians’ real-world needs rather than abstract technical ideals 
and may help reconcile technical opacity with the demand for clinical trustworthiness and oversight. Further 
research is needed to assess how these design principles can be operationalized across diverse clinical settings 
and neurotechnological applications.

Our findings also carry implications for ongoing AI policy development. By highlighting clinicians’ 
preference for context-sensitive, functionally intelligible outputs over full algorithmic transparency, our results 
suggests that regulatory frameworks such as the EU AI Act must account for domain-specific expectations of 
explainability that reflect real-world clinical reasoning, where trust is shaped more by outcome alignment and 
system reliability than by detailed technical interpretability. At the same time, clinical usability should not be 
the sole determinant of regulatory explainability standards. The AI Act rightly emphasizes transparency and 
the provision of “meaningful information” to users, while also enshrining key patient rights such as the right 
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to explanation, human oversight, safety, and protection from harm. Especially in high-risk applications like 
AI-enabled neurotechnologies, these rights underscore the importance of explanations that extend beyond 
clinical workflows. While clinicians may be satisfied with pragmatic, outcome-focused explanations that support 
decision-making, patients may require different forms of understanding, particularly when interventions involve 
autonomous systems that affect their mental or physical integrity. Accordingly, physician-centered explainability 
can enhance adoption and clinical implementation but may not fully circumscribe the explanatory arena for 
AI-driven medical management.

It should be emphasized that clinicians’ pragmatic preference for functional intelligibility does not seem to 
negate the ethical imperative associated with AI-driven neurotechnologies. On the contrary, the tenet that clinical 
neurotechnology, especially in implantable and closed-loop forms, constitutes a high-stakes setting is widely 
acknowledged among our participants and in the bioethics and neuroethics literature. Rather, this divergence 
underscores a crucial governance challenge: while clinicians may be satisfied with lean, context-specific forms 
of explanation, such forms may not be sufficient to address the full spectrum of ethical concerns posed by 
neurotechnological interventions. This raises another ethical and policy question: is functional intelligibility 
(however adequate it may be for clinical decision-making) sufficient for ensuring ethical accountability in 
the development and deployment of AI-enabled neurotechnologies? Especially in light of existing regulatory 
frameworks like the EU AI Act, the limits of physician-centered explainability must be critically examined.

One possible solution is prioritizing tiered or role-adapted explainability frameworks29, which tailor different 
types of explanations to different stakeholders; for instance: functional clarity for clinicians, accountability 
mechanisms for regulators, and rights-based justifications for patients. Policymakers could sustain these efforts 
by prioritizing flexible, stakeholder-informed approaches to explainability that reconcile ethical imperatives 
with practical constraints. Such approaches can enhance trust while ensuring that AI regulation meaningfully 
safeguards patient autonomy and well-being, without unduly impeding innovation in and clinical translation of 
valuable AI-based medical technologies (see Table 2).

Methods
We conducted semi-structured interviews with German-speaking clinicians working with closed-loop 
neurotechnologies for neurological and psychiatric conditions. The sample comprised 20 clinicians: 13 
neurologists, 5 neurosurgeons, and 2 psychiatrists based in Germany (n = 16) and Switzerland (n = 4). Participants’ 
clinical and academic ranks ranged, respectively, from resident physician to head of department, and from 
Doctor of Medicine (MD or Dr. med.) to Full Professor. After 20 interviews we achieved data saturation, the 
point at which no new information or themes emerge from the dataset, hence further data collection is unlikely 
to add value to the analysis and is therefore deemed unnecessary30. Consequently, we stopped recruitment of 
additional interview candidates thereafter. We identified participants using purposive snowball sampling. Initial 
candidates were selected through systematic screening of high-impact publications, institutional websites, 
and the German DBS registry (“THS-Zentren”) maintained by the Arbeitsgemeinschaft Tiefe Hirnstimulation. 
Additional interviewees were recruited via expert referrals. Inclusion criteria included a medical degree, at least 
one publication in the field, and clinical experience in one of the relevant specialties. Efforts were made to ensure 
diversity in gender, career stage, and institutional affiliation.

Interviews were conducted between August 2024 and January 2025 by the first author, a PhD candidate in 
biomedical ethics with a degree in data science. The interview guide was collectively developed by our team based 
on previously validated research protocols31. Prior to data collection, a pilot interview with a board-certified 
psychiatrist and neuroethics researcher, served as an internal pilot. Following six interviews, the interview guide 
was reviewed by the second and third author. This led to minor adaptations such as adding a prompt concerning 
the trade-off between algorithmic information and hands-on clinical familiarity with neurostimulation devices. 
All interviews (n = 20) were conducted in German via online call (n = 13), phone (n = 6), or in-person (n = 1). 
Interview duration varied between 20 and 43  min (mean duration: 34  min). Recordings were transcribed 

Design Focus Recommendations Rationale

Explainability Prioritize clinically relevant explanations (e.g., input–output logic, feature 
importance)

Clinicians value understanding how inputs relate to outputs over 
technical model details

User-centered interfaces
Design interfaces that visualize AI outputs and relevant features in an intuitive 
clinical format
Prioritize tiered and role-adapted explainability frameworks

Supports rapid interpretation and integration into clinical workflow
Promotes the provision of information based on stakeholder-
specific informational needs and ethical priorities

Transparency over full 
disclosure

Offer selective transparency tailored to user needs rather than full algorithmic 
transparency

Full technical detail is often irrelevant; actionable clarity is more 
effective

Context-specific XAI 
tools

Implement explainability methods such as SHAP adapted to the neuroclinical 
use case

Clinicians responded positively to familiar, task-specific 
interpretability tools

Clinical relevance 
assurance Ensure outputs align with clinical goals, terminology, and decision pathways Builds trust and promotes usability by linking AI reasoning to real-

world clinical logic

Iterative co-design Involve clinicians throughout the development lifecycle Incorporates real-world constraints and enhances acceptance 
through early stakeholder input

Ethical and regulatory 
alignment

Embed explainability features that meet legal standards and protect patient rights 
(e.g., EU AI Act, Article 86) Ensures compliance and mitigates future policy and liability risks

Table 2.  Recommendations for technology designers and developers of AI-driven closed-loop 
neurotechnologies.
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locally using MacWhisper software (version 2.20 (121)) and manually corrected for accuracy by the first author. 
Relevant excerpts were translated into English and independently reviewed by the second author. Thematic 
analysis was performed using a reflexive approach, and themes were inductively developed, labeled in English, 
and iteratively reviewed by the second and last author to ensure coherence and validity.

Prior to data collection, we obtained, on 1 March 2024, an ethics waiver (Unbendenklichkeitserklärung) for 
the expert interviews from the competent medical ethics committee at the Technical University of Munich. To 
adhere to established ethical standards, participants received an information sheet, provided written informed 
consent, and gave verbal consent to audio recording. Transcripts were de-identifyied and securely stored on an 
encrypted local device. The study was conducted in accordance with the Declaration of Helsinki and all relevant 
institutional and national research regulations. An overview of the participants gender, origin, main discipline 
and career level can be found in Table 3.

While this study provides valuable insights into clinicians’ perspectives on explainability in AI-driven closed-
loop medical neurotechnology, several limitations must be acknowledged. As with all qualitative research, the 
findings are not statistically generalizable and reflect the beliefs, attitudes, and experiences of a specific group of 
twenty German-speaking clinicians from Germany and Switzerland. Despite efforts to achieve gender balance, 
female participation was limited. Of the 26 female clinicians contacted, only two agreed to participate in the study 
(rounded 8% participation rate), compared to a 17% participation rate among male clinicians. Additionally, this 
study provides insights into end-user requirements in the context of requirements engineering, but is not a proof-
of-concept (PoC) of AI or XAI methods in the closed-loop medical neurotechnology. Furthermore, the primary 
interviewer’s expertise in the field may have subtly shaped the interview dynamics, potentially influencing 
participants’ responses through implicit cues or shared assumptions. While this positionality can enrich 
thematic depth, it may also introduce bias. Finally, although all expert interviewees work directly with closed-
loop medical neurotechnology, their technical understanding of AI and specific XAI likely varies. However, 
the aim of this study was not to evaluate technical proficiency in AI or XAI, but to explore clinician-centered 
end-user requirements without the need for a deep technical understanding of AI or XAI. We believe that this 
perspective remains critical for informing responsible and usable system design, and that these limitations do 
not diminish the novelty or relevance of our findings.

Conclusion
Our findings highlight the need for a paradigmatic shift in how explainability is approached in AI-driven closed-
loop neurotechnology. Rather than aiming for full algorithmic transparency through exhaustive XAI methods, 
developers should prioritize intuitive, clinically meaningful forms of explanation that align with how clinicians 
think, decide, and act. This demands moving beyond static technical definitions of explainability and embracing 
a more contextual, pragmatic design philosophy that considers the informational needs of end users such as 
the representativeness of symptoms in the input data and the clinical relevance of the output. Explainability 
should not be an afterthought or a one-size-fits-all checklist item. It must be embedded across system design: 
from transparent and collaborative data practices to interpretable and safety-conscious outputs, to interfaces 
that facilitate clinical reasoning through adaptive, user-specific interactions. Policymakers, too, must recognize 
that meaningful transparency is inherently relational, i.e. shaped by the user, the task, and the clinical setting. 
Regulatory frameworks should therefore support not just generic disclosure, but the development of clinically 
validated AI models that earn trust through demonstrable performance, clear benefits, and accountability 
mechanisms that mirror established clinical standards. Additionally, translating the promise of AI into real-
world clinical impact will depend on designing systems and more precisely end-user interfaces that clinicians 
do not merely understand but can confidently rely on throughout medical decision-making. To ensure the 
clinical viability of XAI methods in AI-driven closed-loop neurotechnology, our conceptual findings need 
to be translated to testable metrics, performance benchmarks, and technical features as well as to technical 
infrastructure that enables the kind of transparency that clinicians desire. Ultimately, future research efforts 
should also include patients’ perspectives and expectations regarding AI and its explainability to preserve patient 
autonomy and foster trust.

Characteristics Participants N = 20

Gender n (%)
Male 18 (90)

Female 2 (10)

Country n (%)
Germany 16 (80)

Switzerland 4 (20)

Main discipline n (%)

Neurology 13 (65)

Neurosurgery 5 (25)

Psychiatry 2 (10)

Career level n (%)

Professor 9 (45)

Head of Department 2 (10)

Attending Physician/Consultant 8 (40)

Resident physician 1 (5)

Table 3.  Participant characteristics.
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Data availability
The coded and deidentified quotes on which our findings are based have been made publicly available at Zenodo: 
https://doi.org/10.5281/zenodo.16528872.
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