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Recently, Software-Defined Networking (SDN) has emerged as an increasingly popular network 
paradigm due to its virtualization capabilities and flexibility. However, its robustness in link 
connectivity is threatened by Link Flooding Attacks (LFAs). To launch LFAs, adversaries use probing 
tools to infer network topologies and identify target links with bottlenecks. Thus, protecting 
SDN topologies against disclosure is crucial to ensure system security and preserve infrastructure 
functionality. We propose TEPS (Tunnel-Enabled Programmable Switches), a proactive defense 
system that dynamically obfuscates network topologies to defend against adversarial reconnaissance 
in SDN. TEPS generates false topologies by leveraging the flexibility of emerging programmable 
switches to construct customized tunnels and manipulate probing packets using the P4 language. 
This prevents adversaries from obtaining accurate knowledge of network topologies, making it 
difficult to reconstruct the true topologies. Furthermore, TEPS counters Round-Trip Time (RTT)-
based fingerprinting attacks by dynamically adjusting packet delays and routing traffic to conceal 
RTT variations. Our evaluation demonstrates that TEPS effectively reduces the distribution of 
link importance in network topologies compared to the latest proactive defense method, thereby 
concealing bottlenecks and disrupting adversarial topology reconnaissance, including thwarting 
RTT-based fingerprinting attempts. Furthermore, by leveraging the capabilities of P4 switches, 
TEPS introduces minimal network overhead, with at most a 3% reduction in throughput and a 9.57% 
increase in resource utilization, showing practical feasibility under real-world operational constraints. 
By implementing TEPS, network administrators can enhance the security of their SDN infrastructures 
against LFAs and maintain robust connectivity through a lightweight approach.
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Software-Defined Networking (SDN) has emerged as a transformative approach to modern networking due 
to its ability to address scalability, flexibility, and management challenges. By abstracting and separating the 
control and data planes, SDN provides flexible programmability over network protocols and topologies while 
simplifying network management. As a result, SDN is establishing itself as the next-generation networking 
paradigm 1. Protecting the network topology structure from disclosure is essential in SDN to prevent security 
breaches and unauthorized access to network infrastructure, ensuring that only authorized entities can access 
critical details. This strengthens resilience and improves the ability to effectively manage and control network 
resources in SDN.

However, SDN faces the threat of Link Flooding Attacks (LFAs)2–4, a new type of distributed denial-of-
service (DDoS) attack. Unlike conventional DDoS attacks, LFAs aim to overwhelm the bandwidth of critical 
network links, potentially causing large-scale network paralysis, and leverage legitimate low-rate traffic that is 
difficult to distinguish from benign traffic. Adversaries first attempt to identify the network topology, often using 
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path tracing and packet capture tools like Traceroute5to implement a successful LFA. They gather information 
on previously unknown topologies and analyze flow density by observing Round-Trip Time (RTT) through this 
probing process, allowing them to identify potential bottlenecks that could become target links. To disrupt the 
reconnaissance of the topology of LFAs in the SDN environment, a wide range of techniques have been proposed, 
including reactive defenses6–13and proactive defenses14–25. Although reactive defenses are activated only after an 
attack occurs, proactive defenses are designed to prevent attacks before they cause significant damage. These 
defenses take preemptive actions to increase the difficulty and cost of carrying out an attack, making it less likely 
that adversaries will attempt the attack in the first place and reducing the likelihood of successful attacks. Recent 
advancements in proactive defenses leverage machine learning for probing detection (e.g., ProTO19), dynamic 
topology obfuscation (e.g., NetObfu20, EqualNet25), and integrated deception frameworks (e.g., BottleNet18). 
These approaches adaptively disrupt adversarial reconnaissance by altering flow densities, mutating paths based 
on leakage thresholds, and combining multiple obfuscation techniques.

To achieve more effective proactive defense, we introduce the concept of tunneling. Tunneling is a crucial 
technique for secure transmission, often used to conceal information and protect privacy and anonymity. At its 
core, a tunnel encapsulates packets within new headers. Network forwarders process the encapsulated packets 
based solely on the instructions in the new headers without inspecting the original content. As a result, packets 
only need information about the entrance and exit points of the tunnel without requiring knowledge of the 
forwarding path (e.g., Google B426, which leverages IPv4-in-IPv4 tunnels for cross-regional communication). 
This idea can also be applied to proactive defenses against topology reconnaissance, which relies on node 
responses along the path. By encapsulating probing traffic within a tunnel, the underlying physical links remain 
concealed, making it significantly more difficult to gather sufficient evidence to infer the entire topology. 
Furthermore, the emergence of programmable switches and protocol-independent switching architecture 
(PISA)27 has brought enhanced flexibility to SDN, enabling the application of tunneling techniques28–39. Network 
operators can customize processing pipelines and packet headers through Programming Protocol-independent 
Packet Processors (P4)40, a Domain-Specific Language (DSL) tailored for network programming. Building upon 
this foundation and the principles of tunneling theory, encapsulating probing traffic in the SDN data plane using 
a P4 program is feasible.

In this paper, we propose tunnel-enabled programming switches (TEPS), a proactive defense system 
designed to prevent network topology inference in SDN. TEPS encapsulates probing traffic directly in the data 
plane using custom special P4-programmed tunnels, which manipulate the header and forwarding behavior of 
probing packets to obfuscate reconnaissance efforts aimed at revealing the entire topology. Additionally, TEPS 
records probing packets as they enter and exit the tunnel to locate malicious bots and take further action to 
limit their behavior. Moreover, to counteract adversarial end-to-end topology inference, such as fingerprinting 
based on RTT or Network Tomography (NT)41, TEPS employs a mechanism that manipulates RTT in tunnel 
mode to increase the randomness of timing metrics. These mechanisms increase the complexity and difficulty 
of adversarial topology inference. Simulation results from several sets of real-world networks demonstrate that 
TEPS effectively defends against topological inference based on network tomography and prevents the leakage 
of topological information.

In summary, this paper makes contributions as follows. TEPS (Tunnel-Enabled Programmable Switches), a 
novel proactive topology obfuscation solution implemented on programmable switches, constructing a tunnel 
for probing packets using P4 language to protect SDN topologies from reconnaissance attacks is proposed. 
Experiments on the TEPS prototype are conducted using real network topologies, demonstrating its effectiveness 
in defending against reconnaissance attacks and its robustness against time-based fingerprinting. Furthermore, 
an in-depth analysis of existing proactive LFA defense methods is presented, along with a discussion of their 
potential improvements.

The organization of this paper is outlined below. The Background section provides background information, 
while the Related Work section surveys previous research on attacks targeting SDN and their countermeasures. 
The Methodology section presents a detailed explanation of the TEPS processing pipeline, and the Evaluation 
section shows the evaluation metrics and corresponding results. The Discussion section discusses the remaining 
issues, and we conclude the paper in the Conclusion and Future Work section. A complete list of abbreviations 
used in this paper is provided in Table 1.

Background
This section provides background information on concepts related to SDN and LFAs.

PISA and P4
SDN abstracts physical devices as data planes and enables decision-making through a logically centralized virtual 
controller, which communicates with data planes via southbound APIs such as OpenFlow42 and P4Runtime43. 
With the emergence of PISA27, the development of OpenFlow slowed after its latest specification44. Enabled by 
the P440 language, PISA provides an ideal architecture for autonomous processing pipelines in the data plane, 
eliminating the need for continuous controller involvement. PISA extends programmability to the data plane, 
allowing customization of packet headers and actions based on the P4 language standard45, thereby achieving 
protocol independence without relying on predefined protocol suites. Using inherent hardware advantages, PISA 
provides high-speed, line-rate performance while maintaining cost-effectiveness. Fig. 1 shows the evolution of 
SDN.

Time-to-Live and Traceroute
Traceroute, as strictly defined by IP and ICMP46, is crucial for measuring network performance. It relies on the 
TTL (Time-to-Live) field, sending a series of packets starting with a TTL values of 1, which increases by 1 with 
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each subsequent packet. Routers along the path decrement the TTL value by 1, return their IP addresses and RTT, 
and forward the packet to the next hop. When the TTL value reaches zero, the router discards the packet and 
sends an ICMP_time_exceeded message (ICMP Type=11, Code=0). In traditional networks, the TTL decrement 
functionality is employed only by Layer 3 (Network Layer) devices, such as routers. Openflow-1.0 SDN47 initially 
lacked support for TTL decrement, but subsequent updates introduced this functionality, enabling Traceroute in 
OpenFlow. In addition, OpenFlow switches now support most of the functions of Layer 3 routers, which allows 
the possibility of launching Traceroute-based attacks in SDN.

Link flooding attacks
Coremelt2, Crossfire3, Crosspath4 are three different types of LFAs, as shown in Fig. 2. Coremelt and Crossfire 
are applicable in both traditional networks and SDN, while the Crosspath attack is specific to SDN environments 
with in-band control mode. Fig. 3a shows the in-band control mode, where the control channel shares the same 
physical or logical path as the data traffic in the data plane, resulting in shared links. In contrast, Fig. 3b shows 
the out-of-band control mode, where the control channel is separated from the data plane and carried over 
independent paths. Coremelt and Crossfire use universal tracing tools to identify target links with high traffic 
on the paths. In the Crosspath scenario, adversaries use Adversarial Path Reconnaissance (APR) to locate these 

Fig. 1.  Evolution of P4-based SDN.

 

Abbreviation Full Term

SDN Software-Defined Networking

LFA Link Flooding Attack

DDoS Distributed Denial-of-Service

RTT Round-Trip Time

PISA Protocol-Independent Switching Architecture

P4 Programming Protocol-Independent Packet Processors

DSL Domain-Specific Language

TEPS Tunnel-Enabled Programmable Switches

NT Network Tomography

TTL Time-to-Live

APR Adversarial Path Reconnaissance

EL Ensemble learning

HCF Hop Count Filtering

LDOS Low-rate Denial of Service

QoS Quality of Service

IDP Intelligent Data Plane

ML Machine Learning

DNN Deep Neural Network

ECMP Equal-Cost Multi-Path

LISP Locator/ID Separation Protocol

CRC Cyclic Redundancy Check

GED Graph Editing Distance

Table 1.  List of abbreviations.
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Fig. 3.  SDN control channel.

 

Fig. 2.  Simplified models of various types of LFAs.
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shard links as targets. When installing reactive rules in OpenFlow-based SDN, the first packet of a flow is sent 
to the controller for rule inquiry and installation. Once the rule is installed, subsequent packets follow this rule 
until a hard timeout expires. Adversaries can measure the difference in RTT between the first two packets, both 
before and after a short burst of traffic. As the burst disrupts the flow, causing a noticeable variation in the RTT, 
a significant discrepancy between the two cases implies the presence of shard links.

Related work
A wide range of methods have been proposed to counter LFA attacks, with some approaches using P4 
programming in SDN environments.

Centralized reactive defenses against LFAs
Centralized reactive approaches are activated once LFAs occur and rely on a central controller to send 
operational instructions to the data plane. SPIFFY10 proposed a temporary expansion of the bandwidth on the 
target link. They argued that bots would not increase their low rate to avoid detection, while benign hosts would 
increase their speed, making it possible to distinguish bots from legitimate hosts. Similarly, bots that do not 
adapt the routing are exposed through constant forced rerouting because the attack flows must remain at their 
original destination11. Among the several representative centralized reactive defenses6–9,13, CrossGuard is an 
OpenFlow-based SDN reactive defense designed to prevent control channel congestion. It prioritizes control 
traffic and limits the rate of attack data traffic to prevent bandwidth exhaustion. In addition, it employs an 
iterative dichotomy method to slice the mask and identify malicious traffic within subnets. ONSET12 uses optical 
topology programming to dynamically adjust the network topology and mitigate congestion.

Proactive defenses against LFAs
Reactive defenses focus on addressing the flooding phase of LFA attacks, whereas proactive defenses aim to 
obstruct the probing phase by interfering with the adversary’s ability to locate network bottlenecks.

Rerouting probing flows to avoid bottlenecks. Linkbait15 introduces a set of unimportant links that act 
as bait, directing probing packets to these links and thus hiding the actual bottleneck link to avoid attacks. 
SDNHoneyNet16 deploys honey nodes and exposes a fake honey topology to adversaries, forcing traceroute 
flows with a TTL value of 1 to be directed to the honey topology. This concept is similar to the honeypot 
approach. Another approach22,23 involves adding a virtual cloud or overlay network to the physical topology. 
This virtual network expands the probing view, redirecting probing flows to a reflection topology connected by 
a GRE tunnel, which extends from actual nodes. Mirage14 interferes with APR to thwart cross-path attack by 
allocating alternate paths to control traffic. If no alternate paths are available, the short-lived rule treats the initial 
packets as new and sends them to the controller. The core concept behind this is that interference with the RTT 
calculation prevents adversaries from detecting shared links.

Comprehensive topology deception. NetHide17 computes a secure and usable virtual topology and deploys 
the obfuscated topology within the physical network. This is achieved by manipulating the TTL fields in traceroute 
packets through programmable switches to prevent probing flows from expiring or bypassing nodes, while also 
adding virtual links to ensure that probing results align with the virtual topology. ProTO19 employs machine 
learning algorithms to detect probing behavior, which is then followed by proactive obfuscation of the topology. 
The system delays all identified probing packets on the data plane via programmable P4 switches. NetObfu20 
also calculates a secure virtual topology, causing different nodes to respond to packet probes and altering flow 
density. AntiTomo21 includes both a candidate forest generation algorithm and a network topology obfuscation 
algorithm. BottleNet18 is a comprehensive topology deception system that integrates various techniques such as 
redirecting probing flows, manipulating probing packet headers, and deploying virtual topologies. EqualNet25 
continuously monitors the path-tracing flows and dynamically obfuscates the network whenever the level of 
topology leakage exceeds a specified threshold. This is done by generating path-tracing responses that include 
both real IP addresses of popular nodes and virtual IP addresses of ordinary nodes, making all links appear 
equal even when they are not. In addition, a comprehensive scheme is proposed that includes alternate routing 
for probing flows and random TTL decreases for probing packets24. These strategies prevent effective topology 
mapping and bandwidth throttling, mitigating bottleneck measurement.

Limitations of existing works
Selective skipping of important nodes17 or random assignment of TTL decrements24 introduces the risk of being 
fingerprinted by adversarial network tomography, which is based on time metrics. These methods can reveal 
realistic timings and underlying physical paths, making it easier for adversaries to reconstruct the network 
topology. Such attacks leverage inconsistent or anomalous evidence from the RTT series table48, allowing 
adversaries to infer the topology despite obfuscation efforts.

Miscellaneous cyber defenses via P4-based SDN
DDoS mitigation.

Poseidon49 and Jaqen50 provide network administrators with interactive, modular APIs, as well as high-level, 
developer-friendly policy expression primitives for forming strategies and runtime management. These systems 
instruct switches to execute different P4 programs based on the type of DDoS attack detected. SmartCookie28 
integrates P4 switches with an agent server to monitor cookies and connection statuses within the data plane. 
It responds with a normal ACK to benign SYN requests while blocking malicious stream requests such as SYN 
flood attacks, one of the most prevalent DDoS attack.

LFAs mitigation.
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Ripple51 and Mew52 leverage interactive APIs, high-level primitives, and runtime management. Ripple builds 
on existing OpenFlow-based SDN defenses and implements these on P4 switches, introducing new policies for 
enhanced protection. However, Mew implements distributed storage in the band for flows, significantly reducing 
the memory pressure on the switches and applying detection and mitigation modules to combat LFAs effectively. 
PLUTO53 leverages tree-based ensemble learning (EL) algorithms (XGBoost, RandomForest, LightGBM) to 
achieve robust Low-rate Denial of Service (LDoS) attack detection. EL models analyze time domain (e.g. TCP 
bandwidth degradation) features extracted from aggregate flow statistics. The choice of EL ensures high accuracy 
without feature normalization and aligns with P4’s match-action paradigm.

Other attacks mitigation. NETHCF54 filters spoofed IP traffic, a common method used in DDoS attacks, by 
implementing the Hop Count Filtering (HCF) scheme on programmable switches. It maintains an IP-to-Hop-
Count mapping table that helps identify spoofed IP traffic by comparing the number of hops in the table with 
the hops in the incoming packets. P4Control39 provides policies against cross-host attacks, utilizing expressive 
network control primitives. These primitives allow the definition of defense policies that match cross-host flows, 
triggering appropriate counteractions to mitigate such attacks. Furthermore, SDN is also considered a key 
enabler for Quality of Service (QoS) and security in next-generation wireless sensor networks and is expected to 
create significant synergy when integrated with Machine Learning (ML) technologie1,55.

Learning-based programmable switches.
The integration of AI with P4-programmable switches has emerged as a paradigm to address real-time 

security challenges in SDN. NetBeacon56 pioneers an intelligent data plane (IDP) by embedding lightweight 
ML models (e.g., decision trees) directly into the programmable switches, It employs multi-phase sequential 
models to dynamically analyze flow-level features (e.g., packet size variance) and per-packet attributes, achieving 
line-speed traffic classification for multiple security policies (e.g., covert channel identification). By optimizing 
model representation via range marking, NetBeacon reduces hardware resource consumption while maintaining 
high accuracy. NetNN57 adopts deep neural networks (DNNs) in the data plane, eliminating manual feature 
engineering by processing raw packet bytes. It distributes DNN computations across switches via packet-
carried intermediate results, achieving very high intrusion detection accuracy. Both works highlight the shift 
from control-plane-centric ML to data-plane-native inference, enabling microsecond-level response to attacks. 
PLUTO53 leverages EL. This encoding-based mapping converts tree paths into ternary matching tasks, enabling 
efficient in-network inference. EL’s ensemble approach enhances detection robustness, contributing to PLUTO’s 
superior performance in AUC, F1, and Recall metrics.

Encapsulation in P4-based data plane
ONTAS36 enables the anonymization of packet fields, providing operators with a policy language that allows them 
to express anonymization tasks for specific fields. SPINE37 and PINOT38 encapsulate the packet header through 
an IPv6-in-IPv4 tunnel, preserving the original fields for information concealment. However, these solutions 
require encryption and decryption mechanisms in coordination with the controller. SmartCookie28 securely 
computes and verifies cookies using cryptographically robust hash functions to establish verified connections 
from end to end. Bhatnagar et al.35 implemented cryptographic measures to secure the SDN control channel. 
Although these measures ensure the integrity, authenticity and confidentiality of control traffic messages, control 
channels on shared links remain vulnerable to cross-path attacks4 and APR.

Advanced technology
Olanrewaju et al.58 demonstrate how blockchain-based immutability can mitigate side-channel attacks in IoT 
mobility scenarios, providing valuable insights that directly inform TEPS’s topology obfuscation strategies 
against reconnaissance-driven link flooding attacks (LFAs). Adaptive routing models59,60 apply ant colony 
optimization for trust-based path selection on blockchain networks, offering SDN controllers a bio-inspired 
approach to dynamically manage encrypted tunnels. When integrated with P4’s match-action pipelines, these 
approaches enable real-time adjustment of obfuscation parameters in response to adversarial traffic analysis. 
Game-theoretic frameworks provide systematic methods for addressing adversarial behavior in programmable 
networks. For example, the Strategic Game Model (SGM)61 introduces formal techniques for detecting node 
misbehavior in IoT-cloud ecosystems, which could extend TEPS’s defense capabilities by modeling attacker-
defender interactions through SDN telemetry. Likewise, multi-agent layered game formulations62 and collusion-
resistant strategies 63 further enhance SDN’s ability to preempt multi-vector attacks—particularly relevant for 
P4-based data planes where low-latency responses to flow rule manipulation are critical.

Methodology
In this section, we outline the threat model and detail the pipeline of TEPS, focusing on its operational algorithms.

Design considerations and threat model
Design considerations. Existing topology obfuscation techniques with target certainty17,18,20,21,25 often rely on 
pre-made target effects with specific topologies. However, if adversaries are aware of the defensive goal (e.g., 
maximizing the difference), the original topology can be easily reversed. Thus, a defense designed solely to 
obstruct adversarial observation, without specific constraints for topological deception and lacking an explicit 
mapping between real and virtual topologies, would result in lower operational costs and higher robustness.

By manipulating the transmission path and the RTT values of the probing packets, the uncertainty in the 
timing-based metrics can be significantly increased. Our approach uses the concept of tunneling, which hides 
the underlying physical links. By encapsulating probing packets into tunnels, we can control the response 
of physical devices, increasing the difficulty of adversaries reconnaissance. This also complicates efforts for 
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adversaries that rely on RTT-based NT, as they would need a comprehensive series of RTT across multiple hops 
to gather sufficient evidence.

Modern programmable switches with PISA27 and P440, are suitable for: (1) the construction of customized 
packet headers and pipelines directly in the data plane, moving beyond the traditional OSI 7-layer model; (2) 
the guarantee of high line rate performance at Tbps speeds, regardless of the packet manipulation programs, 
significantly improving performance; (3) programmable switches are cost-efficient, providing comparable speed 
with lower cost and reduced power consumption. We construct a special tunnel on programmable switches 
under the instruction of the P445 language.

Threat model. We assume that an attacker controls a set of bots capable of using Traceroute to locate all 
routers. By sending packets with incrementing TTL values from zero to the destination and collecting “timeout” 
information returned by nodes along the way, the attacker can map the forwarding path of packets. In the 
NT model based on RTT41, adversaries exploit the RTT measurements between various nodes to infer the 
underlying links. In addition, we assume that the attacker will not launch a blind attack that does not rely on 
topology mapping results.

System overview and design
Figure 4 illustrates the architecture and workflow of the TEPS system. Hollow arrows passing through dashed 
lines represent that probing packets are transmitted via virtual tunnels, while solid arrows passing through solid 
lines represent that normal data packets are transmitted via real physical links. The data plane devices are all 
programmable switches that support the P4 programming language, allowing each switch to execute the compiled 
P4 program independently. Normal data traffic entering the network with TEPS implemented is transmitted 
based on predefined routing algorithms and link paths. In contrast, probing packets are encapsulated at the 
tunnel’s entrance and forcibly forwarded to the tunnel’s exit. At the tunnel exit, these packets are decapsulated 
and then transmitted as normal data traffic, with the TTL starting to decrease from this point. In addition, a 
counter inside the tunnel records the source IP addresses of the transmitted probing packets. This information 
is analyzed by the controller, which monitors packet transmissions. If the number of probing packets from a 
specific IP exceeds a predefined threshold within a certain time, the source IP can be identified as a bot and 
subsequently blocked.

The TEPS processing pipeline is described in detail in Algorithm 1. Upon receiving a packet, the switch first 
checks its type. If a Traceroute packet is based on TCP, a protocol that prioritizes transmission reliability, or UDP, 
a protocol that prioritizes transmission speed, the switch applies specialized tunnel-forwarding mechanisms 
regardless of the protocol used. Although traceroute packets traverse the actual underlying physical links, 
intermediate devices along the path do not generate responses until the packet reaches its final destination. These 
intermediate devices do not decrease the TTL value, preventing the host from receiving response messages that 
disclose each hop’s IP address and RTT. Instead, the TTL value is reduced only when the traceroute packet leaves 
the tunnel, generating a single response at that point. As a result, the probing host perceives the existence of an 
additional, seemingly direct path from the edge switch to the destination.

In tunnel mode, ECMP (Equal-Cost Multi-Path)64 and LISP (Locator/ID Separation Protocol)65,66 play 
significant roles in mitigating RTT-based topology fingerprinting. The ECMP algorithm uses the CRC (Cyclic 
Redundancy Check) hash function to determine the forwarding path for packets among multiple equal-cost 
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paths. This process introduces variability in the RTT, which complicates adversaries’ attempts to infer network 
topology based on timing metrics. On the other hand, LISP separates the IP address space into locators and 
identifiers, adding an abstraction layer that obscures the actual network layout. By decoupling endpoint identifiers 
from routing locators, LISP obfuscates the mapping of RTT data to specific network structures. These probing 
mechanisms increase RTT unpredictability, effectively thwarting adversarial attempts at topology fingerprinting.

In the Anti-RTT-based fingerprinting mechanism, operations on these timing metrics do not affect the 
normal data packets because only probing packets initiate this mechanism to disrupt their delay, making 
adversaries elusive and lacking sufficient and effective time evidence to speculate on paths. Therefore, there is 
no significant end-to-end measurable latency overhead addition for normal data packets. The application of 
CRC allows for data packet routing based on actual network traffic patterns, making it difficult for adversaries 
to trace the actual flow of data. By incorporating CRC validation, each packet is appended with a checksum 
that ensures data integrity during transmission. This not only improves the reliability of data delivery, but also 
provides a foundation for sophisticated routing strategies. The combination of CRC checksums and topology 
obfuscation creates a robust defense mechanism against adversaries that attempt to eavesdrop or analyze 
network traffic. By constantly altering the routes and validating the integrity of each packet, the actual data 
flow becomes elusive, thwarting attempts to map out or intercept sensitive information. In essence, this strategy 
leverages the intricacies of modern networking to ensure that the flow of data remains secure and anonymous, 
making it virtually impossible for adversaries to pinpoint the origin, destination, or exact path of the transmitted 
information.

Note that an out-of-band control mode is also available for connections between controller and data 
plane devices. To eliminate the impact of shared links and mitigate the potential risk of APR, we focus on the 
Traceroute-based probing phase in the in-band mode. For simplicity, TEPS does not incorporate any cipher-
related operations.

Algorithm 1.  TEPS operation of Traceroute packets.
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Evaluation
This section presents the evaluation metrics for assessing the effectiveness of TEPS and provides a detailed 
analysis of the topology obfuscation results.

Topology obfuscation effect metrics
We denote our notation symbols and explain the definition with the objectives in Table 2. N is the set of all nodes 
in a physical network topology, which consists solely of P4 programmable switches. L ⊆ N × N represents the 
underlying links in the physical topology. Tin and Te refer to the ingress (entrance) and egress (exit) of tunnels 
established to transmit traceroute probing packets, respectively, and T⃗  is the tunnel vector. P = (N, L) denotes 
the real physical topology, consisting of real nodes (switches) N and real links L, while V = (N ′, L′) represents 
the virtual topology, which includes virtual links introduced by the tunnel.

An LFA attacker aims to disrupt as many normal users as possible. The importance of a specific link increases 
with the number of paths that incorporate it, making it a prime target for the attacker. Given that an attacker 
can detect the path between any ingress and egress nodes, we measure the importance of links based on how 
frequently they appear on paths between ingress and egress nodes. Assuming that all switch nodes in the 
topology function as edge switches at the network boundary, all end hosts capable of sending probing packets are 
connected, allowing each switch to be viewed as the entrance to the tunnel. Although probing packets traverse 
the invisible underlying physical links, there are actual links hidden under the tunnel, along with the added 
virtual tunnel links. For any link l ∈ L, Fl is the frequency of link l that appears in all links in L. The topology 
entropy H(P) can be used to measure the difficulty of identifying critical links in a network. It is calculated as 
follows:

	
H(P ) =

∑
l∈L

Il · ln Il, � (1)

	
Il =Fl ÷

∑
l∈L

Fl, � (2)

Il is the ratio of the importance of the link l to the total importance of all links. The topology entropy H(P) 
quantifies the security of critical links in the network topology P. A lower value of H(P) indicates a greater 
discrepancy in the importance of individual links in the network topology P, which makes it easier to identify 
key links. In contrast, a larger H(P) suggests less discrepancy in link importance, reducing the likelihood of 
identifying critical links in the network.

TEPS forces traceroute probing packets into tunnel forwarding through virtual links by manipulating the 
TTL value in the header, while commanding programmable switches to provide silent feedback. This approach 
hides the bottleneck links as much as possible and reduces their importance. Furthermore, it decreases the 

Notation symbol Explanation

N ⊆ {n1, n2, ..., nn} Nodes in physical topology

L ⊆ N × N Links between physical nodes

Tin ∈ {n1, n2, ..., nn} Tunnel ingress

Te ∈ {n1, n2, ..., nn} Tunnel egress

T⃗ ∈ Tin × Te Tunnel vector from ingress to egress

P = (N, L) Physical topology

N ′ ∈ {Tin, Te} Nodes in virtual topology

L′ ⊆ {T⃗ } Virtual links created by tunnel

V = (N ′, L′) Virtual topology

Fl Importance of link

H(P) Topology entropy of the topology P

Il Importance ratio of link l

Favg(P ) Importance average of links in topology P

Fvar(P ) Importance variance of links in topology P

F Ravg(P ) Rate of decline of importance average

F Rvar(P ) Rate of decline of importance variance

sim(P, V ) ∈ [0, 1] Similarity score between topology P and V

BC(n) Betweenness Centrality, BC

CC(n) Closeness Centrality, CC

Table 2.  Notation symbol and explanation.
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frequency of the bottleneck link that appears on the path and prevents them from being visible to adversarial. 
As a result, the links along all the paths, from the tunnel entrance to the exit, appear equally significant. We use 
Favg(P ) and Fvar(P ) to represent the average and variance of link importance in the topology P, respectively. 
The rates of decline of these metrics after obfuscation are denoted by F Ravg(P ) and F Rvar(P ):

	
F Ravg(P ) = 1 −

Favg′ (P )
Favg0(P ) ,� (3)

	
F Rvar(P ) = 1 − Fvar′ (P )

Fvar0(P ) ,� (4)

Favg0(P ) and Favg′ (P ) refer to the average importance of the links before and after obfuscation, respectively, 
with the same meaning applied to the variance.

To make the evaluation more intuitive, we compared the similarities between the obfuscated and actual 
topologies. A common method of measuring similarity between two topologies is Graph Editing Distance 
(GED), which refers to the sum of the minimum edit operations required to transform a given topology graph 
into a target topology graph. Specifically, the similarity can be expressed in terms of similarity scores, denoted 
as sim(P, V ) ∈ [0, 1]:

	
sim(P, V ) = 1 − GED(P, V )

GED(P, P0) + GED(V, V0) ,� (5)

GED(P, V) refers to the GED between the physical topology P and the virtual topology V, while GED(P, P0) 
and GED(V, V0) refer to the GED for constructing a topology graph P or V from a zero-node tree. These values 
represent the cost required to remove all elements and create a complete topology. The range of similarity scores 
sim(P, V) is [0,1], where a higher score indicates greater similarity, and a lower score indicates more differences. 
As defined by Hou et al. 19, the benchmark for the average similarity score between the real network topology 
and a randomly generated topology is 0.6. The closer the obfuscation solution is to this value, the more effective 
it can be considered.

BC(n) (Betweenness Centrality) and CC(n) (Closeness Centrality) are static indicators used to determine the 
importance of an individual note in the topology, as defined by Kim et al.18.

	
BC(n) =

∑
a̸=b∈N

Lab(n)
Lab

, � (6)

	
CC(n) = 1÷

∑
a̸=b∈N

Ls−→n, � (7)

Lab refers to the reachable paths between nodes a and b, while Lab(n) represents the paths that pass through 
node n. Ls−→n denotes the shortest distance from any node s to node n. The higher the values of BC and CC 
for a node, the more important that node is in the network. Considering research67, which demonstrates that 
traceroute packets directed toward near nodes with high BC and CC values are highly suspicious, these metrics 
provide an effective means of evaluating the effectiveness of defense methods.

Testbed setup and prototype
Our experimental environment is based on Ubuntu 20.04 LTS. TEPS is implemented using P4 45 on the target 
software switch simple_switch_grpc  68, with its syntax conforming to the v1model architecture 69. We employ 
the ONOS controller 70, which supports both P4 and P4Runtime 43, as the control-plane API to interface with 
the data plane. The network topology is constructed using Mininet 71, and the environment is configured with 
Python 3.8, Protobuf 24.0, and gRPC 1.3.2. We used three real-world network topologies of varying sizes, 
available on Topology Zoo72, with details shown in Table 3 and Fig. 5.

We assume that each node in the topology can function as an edge switch with at least one end host 
connected. While Traceroute enables adversaries to determine the hop count along the path to the destination, 
TEPS provides only a direct mapping from the edge switch to the destination. Adversaries send traceroute 
probing packets from compromised end hosts located at various points on the network to a desired destination 
IP address. We conducted experiments on these three topologies to investigate the relationship between the 
portion of nodes designated as edge switches and the indicators mentioned above.

Name of topology Compuserve Gambia SwitchL3

Number of nodes 14 28 42

Number of links 17 28 63

Table 3.  Topology information.
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Result and effectiveness
Murtuza et al.24 proposed a defense method to disrupt topology mapping by randomly reducing the TTL value 
by an integer between 0 and 3. This approach introduced randomness in the concealment or addition of nodes 
within the topology. In our evaluation, we compare TEPS with their method using various quantitative metrics 
to assess performance and effectiveness.

Fig. 6 illustrates the rate of decline in the average and variance of the importance of the link across the three 
topologies. Regardless of the proportion of edge switches, the TEPS shows a significantly higher rate of decline in 
importance. The decline reaches approximately 0.25 for the importance average, while it drops by as much as 0.5 
for the importance variance. Furthermore, the decline rates show a consistent upward trend as the proportion 
of edge switches increases, except in the small-scale network topology Compuserve, where the decline rate in 
variance decreases again when the proportion of edge switches reaches 1. In contrast, Murtuza et al. method 
achieves only 0.07 and 0.2 reductions in importance average and variance, respectively, and does not exhibit any 
discernible pattern based on the edge switch proportion.

Fig. 7 illustrates the similarity score between the inferred topology and the real topology by edge-switch 
proportion. For all types of inferred topologies, the similarity score approaches 0.6 as the TEPS deployment 
increases from partial to complete. This result indicates that adversaries are unable to gather sufficient evidence 
to reconstruct the real topology and instead obtain a random inferred topology. In contrast, the similarity score 
for the Murtuza et al. method generally remains significantly higher than that for TEPS. Although there are cases 
where it exhibits lower similarity scores, the distribution appears irregular.

Modifying the portion of edge switches will increase the importance of virtual links while decreasing the 
importance of critical links in real networks. Thus, it is crucial not only to reduce the importance differences 
between links, but also to increase the structural entropy of the topology. Fig. 8 shows the change in the topology 
entropy. TEPS shows a gradual increase in the topology entropy as higher levels of obfuscation are applied. 
However, in the case of Compuserve, the entropy peaks at a proportion of 0.6 and then shows a decreasing 
trend thereafter. These experimental results indicate that, in small-scale networks, a higher application of TEPS 
technology increases the significance of virtual links compared to the underlying real links. This results in 
greater differences in link importance, leading to a decrease in topological entropy and a decrease in the rate 

Fig. 6.  Comparison of decline rates of importance metrics.

 

Fig. 5.  Topology structure.
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of importance. However, based on the results from most topologies, which show that the application of TEPS 
makes it increasingly challenging to infer the real topology, TEPS remains effective in obscuring the topology.

Table 4 presents the numerical ranges of the values used in the figures comparing Murtuza et al.’s approach 
with TEPS. Overall, TEPS shows a higher decline rate in link importance and greater topology entropy, 
indicating more effective disruption of adversarial inference. While Murtuza et al.’s method occasionally yields a 
lower similarity score, TEPS consistently maintains a narrower range of similarity scores, suggesting more stable 
and reliable obfuscation. These numerical results align with the visual observations from the figures and further 
demonstrate the effectiveness of TEPS.

Due to invisibility in the tunnel, TEPS manipulates the RTT of the packets secretly. Fig. 9 illustrates the RTT 
values based on the BC and CC values. Typically, nodes with high BC and CC values in a network tend to exhibit 
high RTT averages when measured from other nodes in the network. This RTT value increases linearly with the 
complexity of the node. Additionally, due to the external invisibility of the tunnel in TEPS, adversaries are unable 
to detect the paths of probing packets. As a result, performing network tomography by analyzing the RTT values 
becomes difficult, even when those values are similar to the true RTT. Also, various factors, such as asymmetric 
feedback, forwarding paths, internal routing protocols, and loopbacks, can also exist within the tunnel. These 
factors depend on both static and dynamic computations of the links and nodes, which significantly enhance the 
randomness of the RTT. TEPS can effectively disrupt these patterns, strengthening its resilience against RTT-
based fingerprinting techniques.

To assess TEPS’s impact on legitimate traffic, we quantify routing deviations and end-to-end delay distributions 
across diverse scenarios. As shown in Fig. 10, it demonstrates that TEPS lightweight operation in software-based 
P4 environments, throughput shows marginal decrease (98→95 Mbps, <3% dropped) and resource utilization 
highlights computational overhead 15-20% increased. This contrast validates TEPS’s lightweight nature–
maintaining network performance while introducing controlled resource costs under operational constraints. 
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Fig. 10.  Computational overhead.

 

Fig. 9.  Distribution of RTT values for each node.

 

Metrics TEPS Murtuza et al.

Decline rate of importance average

–Compuserve 0.05~0.08 0.02~0.04

–Gambia 0.06~0.22 0.05~0.06

–SwitchL3 0.07~0.23 0.05~0.07

Decline rate of importance variance

–Compuserve 0.09~0.22 0.11~0.17

–Gambia 0.14~0.49 0.09~0.18

–SwitchL3 0.13~0.45 0.10~0.17

Similarity Scores

–Compuserve 0.68~0.71 0.63~0.83

–Gambia 0.67~0.68 0.68~0.74

–SwitchL3 0.65~0.66 0.57~0.71

Topology Entropy

–Compuserve 2.9~3.2 2.6~3.2

–Gambia 3.3~3.9 3.3~3.3

–SwitchL3 4.5~4.9 4.3~4.7

Table 4.  Comparison of Metrics between TEPS and Murtuza et al. methodologies.
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Additionally, there was no significant negative impact on the average latency of normal data packets. While this 
aligns with software-level SDN approaches like Murtuza et al.’s, hardware P4 switches inherently outperform 
traditional SDN devices in scalability and overhead. For instance, P4-programmable ASICs (e.g., ©Intel® 
TofinoTM switches73) achieve line-rate forwarding at 6.5 Tbps with sub-microsecond latency (Bosshart et al., 
201440), whereas conventional SDN switches incur 10–100× higher processing delays for dynamic policies. This 
architectural advantage positions TEPS for efficient deployment in large-scale networks without compromising 
throughput. These results underscore TEPS’s ability to harmonize security enforcement with QoS guarantees 
by leveraging lightweight path adjustments and predictive load balancing. The controlled trade-offs align with 
ISP operational priorities. Based on the results, the marginal throughput reduction (3%) and increased resource 
utilization (15–20%) under TEPS primarily stem from its security-driven packet processing. TEPS introduces 
lightweight in-network checks to distinguish probing packets from legitimate traffic, requiring additional 
header inspections and path validation. This verification process, coupled with predictive load-balancing 
computations for rerouting suspicious flows, incurs minimal but measurable computational overhead. However, 
P4’s programmability optimizes these operations via parallelized pipelines, ensuring most forwarding remains 
at line rate. The trade-off is intentional: TEPS prioritizes attack mitigation with controlled resource costs while 
preserving QoS for legitimate traffic. Hardware P4 switches (e.g., Tofino73) further minimize overhead via ASIC 
acceleration, making such trade-offs negligible in practice.

Fig. 11 illustrates the original topologies and the topologies inferred by the adversaries. Since TEPS conceals 
intermediate information and diminishes the importance of each link, making it difficult for adversaries to infer 
an accurate topology. Important links remain undetected or are overwritten by newly added virtual links, and 
even if they are detected, they are assigned much less importance. Consequently, TEPS’s obfuscation increases 
the complexity and uncertainty of the topologies, weakening adversaries’ ability and willingness to analyze the 
inferred topology and carry out subsequent attacks.

Discussion
In this section, we discuss additional functions and potential limitations of TEPS. First, TEPS is capable of 
detecting adversaries attempting malicious probing. Legitimate probe packets are typically distributed 
uniformly across hop counts, whereas malicious packets tend to concentrate at specific hop values 67. To detect 

Fig. 11.  Original topology versus inferred topology. The importance of each link is expressed by the thickness 
of the line.
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such behavior and locate adversaries, TEPS places counters at the entrance and exit of each tunnel to record 
the number of probing packets sent to and received from each node. These statistics are then transmitted to the 
controller via the P4Runtime API 43. By analyzing this data, the controller can identify and isolate hosts that 
generate abnormal volumes of probing packets, revealing potential reconnaissance attempts.

Proactive defense operates on the principle of strategic cost imposition rather than absolute prevention. By 
dynamically obfuscating the attack surface, it compels adversaries to expend disproportionate resources on 
reconnaissance, analysis, and adaptation. Rational attackers, guided by cost-benefit considerations, are deterred 
when the effort required to penetrate defenses outweighs the potential gains. While persistent adversaries may 
eventually infer partial aspects of the system, extended time-to-compromise (e.g., months of sustained probing) 
and recurring adaptation cycles (e.g., tunnel reconfiguration) render such attacks economically unsustainable. 
This approach aligns with the “moving target” doctrine in cybersecurity, in which defenders leverage asymmetries 
in adaptation costs to erode attacker persistence and redirect their efforts toward alternative, softer targets 22. As 
a result, TEPS contributes to long-term system robustness and resilience.

Although TEPS effectively isolates probing-specific obfuscation from legitimate traffic, distinguishing benign 
diagnostic tools (e.g., traceroute) from adversarial reconnaissance remains a non-trivial challenge. Sophisticated 
attackers may mimic legitimate probing behaviors (e.g., incremental TTL scans) to evade detection. While 
adaptive thresholds are used to differentiate traffic patterns, they cannot fully infer user intent without contextual 
awareness (e.g., authentication, service dependencies). This limitation is inherent in packet-level feature-based 
defenses and motivates future work in protocol fingerprinting and machine learning-assisted intent inference. 
To mitigate operational risks, TEPS can be complemented with administrative policies, such as whitelisting 
authorized diagnostic IP addresses.

Many proactive defenses that reroute Traceroute packets can lead to unintentional service unavailability for 
legitimate users15,22,23. This typically results from generating fake topologies in advance, which may reroute 
or delay normal traffic and increase overall system load14,16,17. Moreover, identifying malicious users heavily 
depends on the accuracy of classification algorithms. Misclassifications may lead to false positives or negatives, 
compromising the reliability of the defense and disrupting legitimate network diagnostics 19. TEPS, in contrast, 
actively obfuscates topology only for probing packets. Issues related to legitimate diagnostics can be mitigated 
by enforcing centralized authorization policies or restricting access to trusted users. However, automated 
differentiation between malicious and legitimate Traceroute users remains an open challenge requiring further 
research.

While TEPS demonstrates strong performance in P4 software switches 68 using the v1model architecture69, 
transitioning to hardware platforms (e.g., Intel® TofinoTM switches73) introduces several challenges. Hardware 
resource constraints, such as limited TCAM memory and fixed-function pipeline stages, may restrict the 
frequency of topology mutations, and hardware-induced latency may impact the responsiveness of threshold-
triggered adaptations. These limitations can be partially addressed through optimized techniques. For example, 
excessive virtual path updates may exhaust memory if the size of the state table exceeds hardware capacity. 
Therefore, system compatibility and scalability must be evaluated based on the specific deployment environment. 
Additionally, packet processing delays introduced by hardware pipelines may limit responsiveness. Notably, 68% 
of the optimizations in TEPS stem from existing hardware-aware obfuscation techniques, indicating that current 
hardware capabilities already support substantial defenses. Future formalization efforts will aim to propose novel 
methodologies while also systematizing these empirically validated solutions.

Any operation that modifies or encapsulates packet headers may cause a loss of fine-grained information, such 
as the precise location of packet loss. This can be addressed by extending TEPS with supplementary functionality 
through a centralized controller. Furthermore, while TEPS assumes a deployment model in which traditional 
routers are replaced with programmable switches, full-scale upgrades may not be feasible in large networks due 
to cost constraints. In such scenarios, partial deployment becomes a viable option, particularly given that our 
evaluation demonstrates topology obfuscation improvements even in partially deployed environments.

The integration of SDN and P4 for active defense has been validated in both terrestrial and satellite networks. 
A representative example is the CONECT-PES project 74, which integrates SDN controllers, Mininet, and P4-
programmable switches to manage traffic within LEO satellite constellations. This architecture achieved dynamic 
QoS enforcement using GNU Radio for signal processing and P4 for packet forwarding logic, demonstrating 
scalability under varying network loads. For LFA mitigation, P4’s hardware compatibility ensures deployability, 
and modern switches such as Intel Tofino support up to 32K flow-table entries, which is sufficient for mid-
sized network obfuscation. Additionally, future work from the CONECT-PES project proposes FPGA-based 
P4 implementations to further improve throughput. These cases confirm that our virtualized experiments 
reflect real-world constraints and align with ongoing efforts to integrate large-scale SDN implementations, 
such as Huawei’s NCE controller. They also reinforce the practicality and scalability of our topology obfuscation 
framework. TEPS can thus be deployed in real-world networks equipped with P4 switches to proactively mitigate 
malicious probing and prevent subsequent network attacks.

Conclusion and future work
This paper presented TEPS, a proactive defense system designed to counteract adversarial reconnaissance. 
Implemented in a P4-based SDN with flexible programmable switches, TEPS leveraged the concept of tunneling 
for secure transmission, forwarding traceroute probing packets through a specialized tunnel to obstruct adversary 
reconnaissance. Experimental results demonstrated that TEPS significantly achieved topology obfuscation in 
realistic network topologies, strengthening resistance against RTT-based fingerprinting and enhancing the 
security of the SDN system.

For future work, we plan to integrate advanced AI technologies to enhance TEPS by enabling automated 
tunneling of packets suspected to be malicious, extending its capabilities beyond Traceroute-based detection 
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to proactively counter a broader range of attacks beyond LFAs. Additionally, we aim to leverage state-of-the-
art AI models for real-time attack detection in SDN, allowing programmable switches to identify and mitigate 
emerging threats autonomously. By incorporating these AI-driven capabilities, TEPS can significantly improve 
the accuracy of malicious packet identification and the adaptability of SDN defenses, further strengthening 
network security against evolving cyber threats.

Data availability
All data generated and/or analyzed during this study are included in this published article. Detailed information 
about the network topologies used in this study can be accessed from the Internet Topology Zoo ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​
b​.​c​o​m​/​s​k​2​/​t​o​p​o​l​o​g​y​z​o​o​​​​​)​.​​
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