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This study presents a novel methodology that integrates piezoelectric actuation and sensing with 
regression models and neural networks for high-accuracy detection and localization of multiple 
delamination and crack defects in composite laminates. An eight-layer graphite/epoxy composite 
plate, instrumented with piezoelectric patches, is excited using random voltage stimuli, generating 
structural responses captured by sensors. The proposed framework employs six regression techniques 
and artificial neural networks, achieving localization accuracy with R2 values exceeding 99.6%. 
Additionally, combining five signal decomposition methods with four classifiers enables defect 
type identification with up to 98.26% accuracy. The methodology demonstrates exceptional 
precision in detecting previously unseen delamination and crack defects down to the lamina level, 
optimized through grid search cross-validation. A comparative analysis highlights that piezoelectric 
sensor voltage signals outperform acceleration signals for defect characterization. This integrated 
piezoelectric-regression/neural network framework establishes a robust foundation for non-destructive 
evaluation, offering significant potential for real-time structural health monitoring applications.
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The remarkable mechanical and thermal properties of multi-layer composites have led to their increasing 
popularity across various industries, including construction, automotive, and aviation. Identifying and localizing 
structural defects in these composite materials can help prevent irreversible accidents and ease maintenance 
efforts. Therefore, it is essential to effectively detect, identify, and localize defects in composite structures to 
enhance accuracy and expedite the identification process1. Due to their outstanding mechanical and thermal 
characteristics, multi-layer composites are widely accepted in numerous sectors, particularly in automotive, 
construction, and aviation. Composite laminated plates are commonly utilized in contemporary aerospace 
structures2. The use of composite materials in passenger aircraft is evidently on the rise3. In the automotive 
industry, composite materials are gaining traction as traditional materials often prove to be too costly and 
inadequate4. Gheorghe et al.5 advocate for the use of composite materials in manufacturing doors and other 
components of the vehicle’s body structure.

Using a Laser Doppler Vibrometer with a mirror-tilting device, Jeon et al.6 were able to get the whole steady-
state wavefield using a single, fixed frequency stimulation from a mounted piezoelectric transducer. The depiction 
of damaged areas is then accomplished by mapping procedures based on local wavenumber filtering. Several 
tests are conducted on composite structures with various forms of damage, such as debonding and delamination 
on composite plates, in order to illustrate the suggested methodologies. The findings show that the methods can 
quickly check a range of composite structural components and are very successful at locating damage. A damage 
diagnosis method based on a genetic algorithm-based finite element model update is presented by Ashory et al.7, 
who also offer an assessment method with increased sensitivity for quantitative parameter detection. In order to 
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do this, a suitable objective function based on weighted strain energy has been created, which has the maximum 
degree of sensitivity when compared to the other damage detection techniques. It is shown that the accuracy of 
damage location and intensity identification is increased utilizing the suggested strategy.

Boyina et al.8 studied the nonlinear mechanical behavior of laminated composite structures through a 
numerical model grounded in damage mechanics. Their progressive damage analysis employs a numerical 
technique to model the accumulation of damage and the resulting failure behavior in composite structures 
under service loads. This model is capable of predicting the remaining strength and stiffness of laminates, 
regardless of their lay-up and geometry. The advanced progressive damage model uses stress-based Hashin-
type criteria along with appropriate ply discount degradation rules. The proposed model encompasses stress 
analysis, failure analysis, and the degradation of material properties. This project involves a detailed examination 
of a quasi-isotropic elliptical hole specimen to develop a failure model. Ghazali et al.9 conducted an extensive 
study on identifying and localizing various defects in 16-layer laminated composite plate structures. Their 
model effectively predicted both the type and location of defects, including delamination and cracks. To induce 
excitation in the composite structure, a random force is applied, with displacement responses on the free side 
serving as input for machine learning algorithms. The input for regression and neural network methods is derived 
from collecting the time signal for the free side displacement of a clamped laminated composite plate with 
different combinations of delamination and crack damage positions. The goal is to use the regression approach 
to accurately predict the location and characteristics of unknown damages that the machine has not previously 
encountered. The difference between their work and the present article is the lack of use of piezoelectric patches 
and the use of a composite with 16 layers.

Yang et al.10 proposed a vibration-based technique for detecting damage in delaminated plate-like structures 
using the modal frequency surface (MFS). This baseline-free method relies solely on the modal frequencies 
of the damaged structures. The analysis indicates that the detectability of delamination is more significantly 
affected by its through-the-thickness position than by its size. As the delamination moves from the detection 
surface toward the central plane, there is a quasi-exponential decrease in the level of modal frequency deviation. 
The amplitude of the signals received from both healthy and damaged structures over time plays a critical role in 
defect detection. It’s important to consider sensitivity to noise, and techniques like denoising or digital filtering 
can help reduce noise, particularly when the changes in signals due to damage are subtle. Hosni et al.11 employed 
a combination of piezoelectric accelerometers and strain gauge sensors for damage detection in steel frames. 
A numerical study using finite element modeling confirmed the method’s accuracy across various damage 
scenarios, including the loosening of bolts and nuts that lead to cracks.

Oliver et al.12 focused on delamination damage, which is a significant factor in the failure of multilayer 
composites due to tension and interlayer shear. They proposed a method that utilizes artificial neural networks 
along with modal data obtained from finite element analysis to detect and identify such damage. Their results 
showed that they could accurately pinpoint real damage locations and estimate severity, even in the presence of 
high measurement noise, achieving an accuracy rate of up to 95%. Soni et al.13 presented a novel approach for 
detecting damage in urban structures by employing a long short-term memory (LSTM) network. This LSTM-
based method surpassed one-dimensional convolutional neural networks in multi-class damage identification 
and localization based on structural vibration responses. Chaupal et al.14 implemented five different 
convolutional neural network models to differentiate between damaged and undamaged states in glass fiber 
composite sheets. They used microscopic examination and data augmentation techniques to provide input for 
models such as VGG-16, ResNet-101, NasNetMobile, MobileNet-V2, and DenseNet-201. The findings indicated 
that MobileNet-V2 was the most effective model in terms of accuracy, parameters, and computation time.

Khan et al.15 proposed a supervised machine learning framework aimed at classifying and predicting 
structural defects in smart composite sheets, focusing on issues like delamination (which accounted for 4.5% 
of the total area) and partial detachment of sensors. They explored a dynamic model for multilayer composites 
that included piezoelectric components, utilizing low-frequency structural vibration responses. The research 
examined four scenarios involving a healthy structure and 18 scenarios involving a damaged structure, all 
stimulated by random harmonic inputs from a piezoelectric actuator. Supervised machine learning methods, 
including linear discriminant analysis, achieved a remarkable 100% classification accuracy. However, to tackle 
the problem of overfitting, principal component analysis was employed, which reduced the accuracy in the 
transformed feature space to 95.9%, while still ensuring 100% predictive performance.

Khan et al.16 introduced a convolutional neural network (CNN) approach for assessing delamination defects 
in smart composite sheets, both globally and locally. By leveraging low-frequency structural vibration outputs 
along with short-time Fourier transform, their study achieved an impressive overall classification accuracy of 
90.1%. This CNN-based method eliminated the need for the lengthy process of selecting distinctive features, 
enhancing both efficiency and adaptability. Yessouf et al.17 developed a model for detecting damage in bridges 
using vibration data while accounting for temperature variations. Their hierarchical model, which combined a 
CNN-LSTM configuration with a traditional CNN model, achieved field accuracies exceeding 98% and 99%. 
Although the CNN-LSTM configuration converged more quickly and provided better matching, it required 
double the training time compared to the conventional CNN model. The CNN-LSTM model surpassed 
traditional CNN models and other machine learning techniques in bridge damage detection, achieving R2 
values of 99.0% and 99.6% for simulation and experimental datasets, respectively.

Nirandaisabieh et al.18 conducted a comparison of different machine learning algorithms aimed at 
predicting road pavement damage. The gradient boosting regression algorithm showed impressive results, with 
MAE = 0.02, RMSE = 0.03, and R2 = 99%, which suggests it can predict pavement damage with high 
accuracy. In another study, Viotti et al.19 explored a comprehensive machine learning strategy for detecting 
damage (specifically delamination) in sandwich composite structures. They utilized modal data from finite 

Scientific Reports |        (2025) 15:35681 2| https://doi.org/10.1038/s41598-025-19571-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


element analysis to train models for both damage localization and sizing, proving to be effective across a wide 
variety of damage scenarios in both regression and classification methods.

Using supervised machine learning techniques, such as regression and classification, Ghazali et al.20 precisely 
locate and identify local thickness reduction defects in cantilever beams. Five different mode decomposition 
techniques are applied in signal processing to break down each signal into its intrinsic mode functions (IMFs). 
To predict where defects will be found, they assess the effectiveness of ten regression techniques and five 
classification techniques. According to their findings, multi-class classification accuracies of up to 99.55% can be 
achieved by combining particular feature extraction and dimensionality reduction techniques with classification 
methods. Regression analysis is used by Avarzamani et al.21 to detect damage in sandwich composite structures 
with a lattice core. This technique can locate and identify multiple cracks and delaminations, as well as 
concurrent defects in the structure. They train different machine learning models using acceleration responses 
under random forces that were acquired using the finite element method. Regression (LGBM), k-Nearest 
neighborhood, and decision tree regression (DTR) were the most effective functions, according to the results. 
The damage classification models achieved an accuracy rate of roughly 98.8% in correctly identifying the damage 
and its location in the composite structure.

Ji et al.22 introduced the spatial gradient, a unique damage indicator that reflects the interplay between the 
wavefield and delamination. In order to drastically cut down on measurement time, they created a neural network 
that could immediately reconstruct the spatial gradient using high-sparsity Lamb wavefield data acquired at a 
very low spatial sampling rate. Comparing the presented method to the prior state-of-the-art methodologies, the 
reconstruction accuracy increases significantly, rising from 70% to 92% in the single-damage scenario and from 
14% to 72% in the multi-damage situation. Using the reconstructed spatial gradient field for damage imaging 
using spatial covariance analysis, the method shows its viability and generalizability across different damage sites. 
In order to enhance repair planning, maintenance, and performance, Azad et al.23 introduced an interpretable 
deep learning model for the SHM of composites that is based on an explainable vision transformer (X-ViT). 
Multiple health states of carbon fiber reinforced polymer (CFRP) composites have been used to validate the 
suggested methodology. Comparing the X-ViT model to other widely used techniques, the former demonstrated 
superior damage detection ability. Furthermore, by using the patch attention aggregation technique to anticipate 
each health state in composites, the X-ViT approach successfully highlighted the area of interest and emphasized 
their impact on the decision-making process.

The topic of identifying structural damages has received considerable attention in the studies mentioned 
earlier, resulting in the use of various machine learning techniques for accurate damage detection and 
localization. However, there remains a significant gap in tackling the specific challenges related to identifying 
the type of defect and accurately locating multiple defect types within structures at the same time. In this study, 
we aim to address these gaps by utilizing and comparing six regression and neural network methods: Random 
Forest Regression (RFR), Light Gradient Boosted Machine (LGBM), Bayesian Ridge Regression (BRR), Decision 
Tree Regressor (DTR), Feed Forward Neural Networks (FNN) and Multilayer Perceptron (MLP) for precise 
localization.

To tackle defect type detection, we integrate five mode decomposition methods: Empirical Mode 
Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical 
Mode Decomposition with Adaptive Noise (CEEMDAN), Empirical Wavelet Transform (EWT), and Variational 
Mode Decomposition (VMD). Additionally, we employ four classification methods-Stochastic Gradient Descent 
(SGD), Support Vector Machine (SVM), Random Forest, and Logistic Regression-on a laminated composite 
plate that includes delamination and cracks.

Input data for regression and classification methods consist of voltage readings from the surface of the 
piezoelectric patch attached to the composite laminate plate, which are collected from various combinations 
of delamination and crack damage positions. To assess performance, four distinct metrics are used: coefficient 
of determination (R2), mean absolute error (MAE), root mean squared error (RMSE) for regression methods, 
and accuracy for classification methods. In addition to identifying regression methods with the best R2, MAE, 
and RMSE, and finding the most accurate combination of mode decomposition and classification techniques, 
the main goals of the study include the intelligent identification and localization of local delamination and 
crack defects. Another objective is to utilize and compare regression and artificial neural network methods to 
accurately predict the location and type of new damages that the machine has not been trained on yet.

The study shows through evaluation metrics that acceleration signals from accelerometer sensors perform less 
accurately and have a higher error rate in identifying and localizing defects compared to those from piezoelectric 
sensors. What makes this study unique is its innovative use of regression methods for detecting multiple types of 
damage and accurately locating them. Key contributions of this research include the ability to predict the precise 
locations of two types of unseen defects: cracks and delamination. It also compares the accuracy and efficiency of 
various regression methods in pinpointing defect locations using evaluation parameters. Additionally, it assesses 
the classification accuracy of defects to determine the best classification method for composite plates that exhibit 
both crack and delamination defects simultaneously. This integrated piezoelectric-machine learning approach is 
applicable to other composite materials for detecting delamination and crack defects.

Methodology
In this study, an 8-layer composite laminated structure is excited and sensed using piezoelectric patches, and 
its temporal data is used for defect identification and localization purposes using machine learning methods. A 
summary of the study is shown in Fig. 1
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Mathematical modeling
This section discusses the development of a dynamic mathematical model that is electromechanically coupled 
for both intact and delaminated smart composite laminates. The models for the displacement and electric 
potential fields are founded on higher-order electric potential fields24 and an enhanced layerwise theory25. The 
governing equations of motion for these two fields are derived through variational principles and implemented 
using the finite element method.

Displacement field with delamination and crack
The displacement of a point with coordinates (x, y, z) in an N-layered laminated composite is represented by 
combining first-order shear deformation theory with layerwise functions as referenced in25,26.
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Fig. 1.  Summary of data extraction steps, data analysis methods, and results of the present study. The 
schematic is created in Abaqus/CAE 2022 (Dassault Systémes Simulia Corp., ​h​t​t​p​s​:​​/​/​w​w​w​.​​3​d​s​.​c​o​​m​/​p​r​o​d​​u​c​t​s​-​​s​e​
r​v​i​c​​e​s​/​s​i​m​​u​l​i​a​/​p​​r​o​d​u​c​t​s​/​a​b​a​q​u​s​/) and refined using Inkscape 1.3).
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Using the 4N constraint equations related to displacement and shear stress continuity conditions, the layerwise 
functions Ak

i (z), Bk
i (z), Ck

i (z), Dk
i (z), Ēk

i (z), F̄ k
i (z) for (i = 1, 2) are defined based on the material and 

geometric properties of the N-layered laminate24. In the presence of transverse cracks in the x − y plane, the 
displacement of additional degrees of freedom can be represented by Eq. (4).

	 uαζk(x, y, t) = Ψ(x, y)Ũαζkm(t) + Λs(x, y)Ũαζks(t) + Πhb(x, y)Ûαζkhb(t),� (4)

In this context, let s = 1, ..., NP
E  represent the number of enriched nodes within the plane that are affected 

by internal cracks, while m = 1, ..., NE  denotes the finite element nodes located on the plane. The enriched 
nodes at the crack tips are indicated by h = 1, ..., NQ

E , and the enriched nodes at the transverse crack tips are 
represented by b = 1, ..., NF . The nodal values for the in-plane finite element nodes, along with the additional 
freedoms introduced by the tips of the matrix cracks and the in-plane matrix cracks, are denoted as Ũαζkm(t), 
Ūαζks(t), and Ûαζkhb(t), respectively. The standard function, enriched function, and crack tip are represented 
by the symbols Ψm, Λs, Πh, respectively27.

Electric potential field
It is assumed that a cubic distribution of the electric potential filed along the thickness of piezoelectric patches 
will satisfy the charge conservation law and the surface boundary conditions of the applied voltages25. Equation 
(5) provides the higher-order potential field for the qth piezoelectric layer.
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The electric potential and electric field at the mid-plane of the qth piezoelectric patch are represented by the 
symbols ϕq

0 and Eq
z , respectively. The mid-plane position and thickness of the piezoelectric transducer are 

denoted by the terms zq
0  and hq , respectively. The potential difference between the top and bottom electrodes of 

the piezoelectric patches is indicated by the symbol ϕ̄q.

Finite element implementation
Equations (1–3) states that the variables u1 , u2,w, wy , wx, ϕ1, ϕ2 can be used to express the displacement field 
of a healthy laminated composite with N layers. On the other hand, the variables u1 , u2,w, wy , wx, ϕ1, ϕ2 , ūj

1 , 
ūj

2 , w̄j , w̄j
x , w̄j

y  can be used to express the displacement field of a delaminated composite. Alternatively, the 
variables ϕq

0, Eq
z  can be used to express the higher order electric potential field of piezoelectric patches. The finite 

element method is utilized to implement the two fields of Eqs. (1–5) for a plate element with four nodes. While 
the out-of-plane structural unknowns (w,w̄j  ) are interpolated using the Hermite cubic interpolation function 
(Hm,Hxm,Hym), the in-plane structural unknowns (u1 , u2, ϕ1, ϕ2, ūj

1 , ūj
2 ) and electrical unknowns (ϕq

0,Eq
z  ) 

are interpolated using the linear Lagrange interpolation function (Nm). The structural and electrical unknowns 
can thus be expressed in terms of nodal values and interpolation functions as
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1, ūj
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Equation of motion
The variational principles can be used to derive the governing equation of motion based on finite elements in 
the following way:
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In the context of the mechanical and electrical fields, δπu and δπϕ represent their respective energy functionals. 
The mass density is denoted by the symbol ρ, while the material damping constant is represented by γ. The 
charge density and traction vector components are indicated by ti and qe, respectively. The equations of motion 
are derived by substituting Eqs. (6–9) into Eqs. (10–11), with Eq. (12) presenting the results in matrix form.
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dϕ
} = { Fu
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where the terms du, dϕ stand for the displacement and electrical unknowns, respectively. The smart structure’s 
mass, damping, and stiffness matrices are denoted by the terms Muu , Cuu , Kuu , Kϕϕ , in that order. The 
stiffness matrices of the electromechanical coupling are indicated by Kuϕ, Kϕu.

Analysis of composite plate with delamination and crack defects
The structure discussed in this section features a multilayer plate composed of 8 composite layers, which are 
linked to two piezoelectric (PZT-5H) patches are located near the clamped end of the structure for both actuation 
and sensing purposes. The schematic representation of the structure is illustrated in Fig. 2.

In order to simulate finite elements, Abaqus software (version 2022) has been used. The placement of the 
layers is 0–90 degrees as shown in the Fig. 3.

The number of mesh elements used is 13227 quadrilateral meshes with 8 nodes. The schematic of the meshed 
structure is shown in the Fig.4.

In order to check the convergence of the mesh, the first five natural frequencies of the structure have been 
used. Fig. 5 shows the convergence check results. As the mesh size decreases to 3.5 mm, the first five natural 
frequencies undergo very small changes of 1% or less, so from this mesh size the convergence process of the 
natural frequencies begins. However, for mesh sizes larger than 3.5 mm, the percentage of changes in natural 
frequencies with changing mesh size is greater than 1%. Therefore, this study adopts a mesh element size of 
3.5 mm. To connect the layers of the composite plate and the piezoelectric patches to the composite plate, a tie 
connection is employed. The unbonded layer method28 has been utilized to model the delamination defect in 
the finite element approach.

In order to validate the finite element model used in this study, the first three natural frequencies of the 
cantilever 8-layer laminated composite plates expressed in 3 studies, including29–31, have been examined in Table 
1.

According to the results mentioned in Table 1, the natural frequencies obtained in the present study are very 
close to the values of previous studies, indicating the high reliability of the finite element method used.

The structure is clamped on one side as part of the boundary condition. Figure 6 illustrates the dimensions of 
the various components of the structure and the locations of the defects. The sizes of all cracks and delaminations 
are specified in Fig. 6, While their position relative to the clamped side is considered variable to allow for different 
scenarios of occurrence of these two defects. It is worth noting that the thickness of the piezoelectric patches is 
assumed to be 1 mm and their position is assumed to be in the middle of the plate width.

To create a vibration data bank that includes time series data and to analyze the time domain responses of both 
healthy and damaged composites, we first modeled the composite plate structure along with the piezoelectric 

Fig. 2.  Schematic of the laminated composite and two piezoelectric patches connected to the structure created 
in Abaqus/CAE 2022 (Dassault Systémes Simulia Corp., ​h​t​t​p​s​:​​/​/​w​w​w​.​​3​d​s​.​c​o​​m​/​p​r​o​d​​u​c​t​s​-​​s​e​r​v​i​c​​e​s​/​s​i​m​​u​l​i​a​/​p​​r​o​d​
u​c​t​s​/​a​b​a​q​u​s​/) and refined using Inkscape 1.3).
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sensors attached to it using Abaqus software (version 2022). The voltage-time response from the piezoelectric 
sensor was recorded over a duration of 1 second, with a time increment of 0.001 seconds, resulting in 1001 
data points for each time series. The data dimensions are (405 ∗ 1001), encompassing 404 damaged states, 
which include two types of cracks and delamination defects, as well as instances of only crack defects and only 
delamination defects, similar to the research conducted by Chaupal et al.14. Additionally, one state is designated 
as a healthy structure.

Piezoelectric elements are a promising choice for data collection from structures due to their ability to generate 
electric voltage in response to strain. They are cost-effective and eliminate the need for a shaker or accelerometer 
sensor for both stimulation and data acquisition. Initially, a piezoelectric actuator applies mechanical stimulation 
by introducing random voltage to its upper surface. This voltage creates strain in the piezoelectric structure, 
resulting in oscillating vibrations within the composite structure. The piezoelectric sensor then converts these 
vibrations into voltage signals, which reflect the vibration response of the structure.

To enhance the dataset for machine learning, 10 Gaussian white noise signals with signal-to-noise ratios of 
82, dB, 84, dB, 86, dB, 88, dB, 90, dB, 92, dB, 94, dB, 96, dB, 98, dB, 100, dB are added to the time signals. 
The application of Gaussian noise to improve machine learning datasets is supported by studies such as32 and33. 
As a result, with the addition of 10 Gaussian white noise signals to each original signal, the data dimensions 
expand to (4050*1001). A normalization method is employed to scale the features to a specified range, and this 
scaling transformation is then applied to the input data. The scaled features are stored in a new variable for use 
in machine learning methods. The normalization method is ‘Min Max Scaler’ and target range is [0,100].

To excite the piezoelectric (PZT-5H) structure, a band-limited Gaussian random white noise with frequency 
content of 0–400 Hz and sampling frequency of 1000 Hz was used due to the focus of the study on low-frequency 
vibrations of the composite plate. The actuator and sensor do not experience coupling interference because the 
excitation takes place at a frequency (0–400 Hz), which is less sensitive to the sensor, and the piezoelectric patch’s 
thickness is 1 mm, meaning that its resonant frequency range is around 1–10 MHz. The voltage waveform and 

Fig. 4.  Schematic of the mesh applied to the laminated composite created in Abaqus/CAE 2022 (Dassault 
Systémes Simulia Corp., ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​3​d​​s​.​c​​o​m​/​p​r​​o​d​u​c​​t​​s​-​s​e​r​v​​i​​c​e​s​/​s​​i​m​u​​l​i​​a​/​p​r​o​d​​u​c​t​s​/​a​b​a​q​u​s​/) and refined using 
Inkscape 1.3).

 

Fig. 3.  Schematic of 0-90 angle of placing the layers in the laminated composite created in Abaqus/CAE 2022 
(Dassault Systémes Simulia Corp., https://www.​3ds.com/prod​ucts-service​s/simulia/p​roducts/abaqus/) and 
refined using Inkscape 1.3 (https://inkscape.org/).
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power spectrum density shown in Fig. 7. It is important to note that the same random signal was applied to both 
healthy and defective states to effectively reveal the effects of different defects at various positions comparatively.

The mechanical properties of a single lamina of the composite laminate and piezoelectric properties are 
detailed in Tables 2 and 3.

For easy identification of various defects in the structure, a six-digit code is used to represent different states. 
The first two digits indicate the position of the delamination defect, the next two digits specify the delamination 
layer position, and the final two digits denote the crack fault position. For example, the code 23-05-18 indicates 
a delamination defect located 23 cm from the clamped side, with a delamination layer at 5, and a crack defect 18 
cm from the clamped side, as shown in Fig. 6. Another example, the code 25-02-00, represents a delamination 
defect at 25 cm with a delamination layer at 2 and no crack. Additionally, the code 00-00-17.5 signifies no 
delamination defect, with only a crack defect present at a distance of 17.5 cm.

The voltage detected by the piezoelectric sensor is also random, as illustrated along with its power spectrum 
density in Fig. 8. Since the first and third mode shapes are aligned solely with the direction of the piezoelectric 

Dimensions and mechanical 
properties of the plate structures Study

First natural 
frequency (Hz)

Second natural 
frequency (Hz)

Third natural 
frequency (Hz)

Length = 152 mm, width = 76 mm, 
thickness = 1.04 mm, number of layers = 8, 
stacking sequence: (0/45/ − 45/90/90/ − 45/45/0), 
E11 = 128 GPa, E22 = 11 GPa,
G12 = 4.48 GPa, G13 = 1.53 GPa, 
ν12 = 0.25, density = 1500 kg/m3

Crawley (Experimental)29 48.6 169 303

Crawley (FEM)29 55.58 175.4 345.3

Sinha et al.31 55.44 174.13 344.03

Current work 55.43 174.01 343.99

Length = width of plate = 0.25 m, 
thickness of plate = 0.00122 m, E11 = 132 GPa, 
E22 = 5.35 GPa, G12 = 2.79 GPa, 
ν12 = ν13 = 0.291, ν23 = 0.3,
 density = 1446.2 kg/m3  ,
 Layup: (0/90/45/90/90/45/90/0)

Ju et al.30 41.35 60.66 221.52

Sinha et al.31 41.16 60.52 220.44

Current work 41.16 60.55 220.58

Table 1.  Validation of this present frequencies (Hz) with those of studies29–31.

 

Fig. 5.  Changes of the first 5 natural frequencies (Hz) of the laminated composite in relation to the mesh 
element size (mm).
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patch excitation, peaks are only observed around these two frequencies in Fig. 8b, while other modes remain 
unexcited. The Fig. 8b primary objective is to precisely illustrate the existence of variations in PSD diagrams 
(differences in amplitude and frequency at the peak points) of various flaws, which result from variations in the 
position, layer, and severity of the faults.

To illustrate how the position of defects affects the natural frequencies of the plate, Table 4, obtained using 
simulation in Abaqus, is provided. It is worth noting that modes 1, 3, and 5 are bending, but modes 2 and 4 
are torsional. Table 4 shows that as the distance of the delamination from the clamped side increases, the first, 
second, and fifth natural frequencies also rise. Similarly, when the crack is positioned farther from the clamped 
side, the first and second natural frequencies increase as well. Notably, the impact of the crack defect on the 
increase of natural frequencies is more significant than that of the delamination defect. Furthermore, when both 
crack and delamination defects are present, having the crack closer to the free side and the delamination nearer 
to the clamped side results in higher first, second, and fifth natural frequencies compared to scenarios where the 
delamination is close to the free side and the crack is near the clamped side. However, this trend is reversed for 
the third and fourth natural frequencies.

In order to investigate the effect of crack length on the natural frequencies of the structure, we analyzed three 
crack lengths, 0.5 cm (10% of beam width), 1.5 cm (30%), and 3 cm (60%) and presented the results in Table 5. 
As expected, increasing crack length results in decreased natural frequencies due to reduced structural stiffness.

Fig. 7.  (a) Signal applied by the piezoelectric actuator. (b) Power spectral density of excitation signal.

 

Fig. 6.  The dimensions of the structure and the placement of defects in the structure for a state with two types 
of defects including a crack and a delamination.
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Machine learning methods
GridsearchCV
In this research, various machine learning models have been applied to the training dataset, raising the question 
of whether the parameter values chosen for each method yield the best results. This is where Grid search cross-
validation becomes essential. The aim is to enhance the model’s accuracy and efficiency in every possible way. 
The hyperparameters of these models are crucial to their performance; selecting the right values can lead to 
significant improvements. By using parameters that demonstrated better cross-validation performance, a new 
model was automatically fitted to the entire training dataset. This approach aids in achieving a more precise 
estimation of performance. In this method, part of the data is utilized in K-fold cross-validation to evaluate the 
model, while another part is used for fitting. The prediction error is then estimated from Eq. (13) using cross-
validation as follows:

	
CV (f) = 1

n

n∑
i=1

T (yi, f−k(i)(xi))� (13)

Mechanical property Symbol Value

Density (kg/m3) ρ 7500

Young module (Gpa) E1 60.60

Young module (Gpa) E2 60.60

Young module (Gpa) E3 48.309

Shear modulus (Gpa) G12 22.988

Shear modulus (Gpa) G13 22.988

Shear modulus (Gpa) G23 22.988

Poisson’s ratio ν12 0.3182

Poisson’s ratio ν13 0.0636

Poisson’s ratio ν23 0.3182

Piezoelectric Strain constants (×10−12mV −1) d31 -274

Piezoelectric Strain constants (×10−12mV −1) d32 -274

Piezoelectric Strain constants (×10−12mV −1) d33 593

Piezoelectric Strain constants (×10−12mV −1) d15 741

Piezoelectric Strain constants (×10−12mV −1) d24 741

Electric permittivity (×10−12F m−1) e11 3130

Electric permittivity  (×10−12F m−1) e22 3130

Electric permittivity  (×10−12F m−1) e33 3400

Table 3.  Mechanical properties of piezoelectric patches (PZT-5H)35.

 

Mechanical property Symbol value

Density (kg/m3) ρ 1788.5

Young’s modulus 
(GPa) E1 372

Young’s modulus 
(GPa) E2 4.12

Young’s modulus 
(GPa) E3 4.12

Shear modulus 
(GPa) G12 3.99

Shear modulus 
(GPa) G13 3.99

Shear modulus 
(GPa) G23 3.6

Poisson’s ratio ν12 0.275

Poisson’s ratio ν13 0.275

Poisson’s ratio ν23 0.42

Table 2.  Mechanical properties of laminated composite34.
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where k is the number of subsets, n is the dataset size, T is the loss function, and f−k(i) is the fitting function36. 
The grid search cross-validation method used in this study for model training and meta-parameter selection is 
shown in Fig. 9.

Regression methods
Regression is a statistical technique that identifies patterns in the relationship between a set of independent 
factors and a dependent variable. This method allows for the correlation of a dependent variable with one or 
more independent (explanatory) variables. The process involves selecting the best-fitting line, fitting the data to 
it, and observing its dispersion. The two main types of regression are multiple linear regression and simple linear 
regression. Multiple linear regression uses two or more independent variables to predict or explain the outcome 

Defect
 type

Defect 
positions

First 
natural 
frequency
 (Hz)

Second 
natural 
frequency
 (Hz)

Third 
natural
 frequency
 (Hz)

Fourth
 natural 
frequency
 (Hz)

Fifth 
natural 
frequency
 (Hz)

Healthy - 53.894 198.24 279.92 664.19 730.21

Delamination 01-01-00 54.781 188.86 295.03 715.63 725.92

Delamination 15-01-00 56.795 193.38 290.01 709.86 733.01

Delamination 24-01-00 57.553 195.13 299.7 735.63 745.66

Delamination 01-04-00 52.238 191.37 266.09 671.92 704.26

Delamination 15-04-00 53.234 197.07 278.07 665.69 730.34

Delamination 24-04-00 53.703 198.82 276.13 732.13 748.26

Delamination 01-07-00 53.783 188.01 296.94 665.65 807.2

Delamination 15-07-00 57.327 197.12 300.46 718.45 828.65

Delamination 24-07-00 57.988 198.89 308.07 745.42 837.51

Crack 00-00-04 67.974 246.58 393.21 824.6 1084.5

Crack 00-00-11 71.914 265.14 390.27 827.86 1035.8

Crack 00-00-19 73.787 263.33 361.99 808.66 1000.7

Crack 00-00-26 74.663 281.96 395.31 832.48 1043.86

Delamination and Crack 22-01-07 66.764 179.48 392.38 719.52 753.3

Delamination and Crack 03-01-28 69.336 276.41 391.46 713.13 809.31

Delamination and Crack 22-04-07 67.105 180.66 395.8 758.89 1003.2

Delamination and Crack 03-04-28 75.711 284.83 387.22 743.1 1005.4

Delamination and Crack 22-07-07 68.963 180.64 415.59 773.52 1044.9

Delamination and Crack 03-07-28 70.922 280.7 407.71 770.41 1082.1

Table 4.  Natural frequency of healthy and defected plate.

 

Fig. 8.  (a) Signal received by the piezoelectric sensor. (b) Power spectral density of sensor signal.
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of the dependent variable. In this study, the three independent variables used for prediction in the composite plate 
structure are the crack position, the delamination position, and the layer location of delamination occurrence37.

Decision tree regressor
Selective Regression Analysis is a widely used regression technique that employs a categorization strategy for data 
sets. The main components of decision trees are leaf, branch, and root functions. One of the most straightforward 
ways to understand the relationship between variables and identify the most significant one is through the 
decision tree model, which is easy to interpret and visualize. The decision tree divides nodes into subnodes 
based on all variables, choosing the split that creates the most uniform subnodes. At the end of each path, the 
leaf provides the prediction result of the tree. To determine the best combination of effective parameters for the 
performance of the DTR method, the GridSearchCV function from scikit-learn (version 1.6.1) has been utilized. 
After applying the GridSearchCV method, the optimal values for the parameters included max _depth (the 
maximum depth of the tree) = [None, 10, 20, 30], min_samples_leaf  (the minimum number of samples 
required at a leaf node) = [1, 2, 4], and min_samples_split (the minimum number of samples needed to split 
an internal node) = [2, 5, 10], resulting in values of 20, 1, and 2, respectively.

Random forest regressor
Machine learning techniques such as Random Forest Regressors (RFRs) are employed to tackle both regression 
and classification problems. They can be trained quickly using test data and help prevent overfitting38. RFRs 
consist of two main parameters: the number of variables used to build each tree and the total number of trees in 
the forest. They were developed to address limitations found in traditional decision tree methods. RFRs aim to 
reduce overfitting and enhance the speed of performance predictions38. The Random Forest algorithm utilizes 
bootstrapping and bagging to divide the training dataset into smaller subsets for training; it selects the optimal 
split rather than considering every variable. In this study, the RFR prediction method involved several steps: 

Fig. 9.  Tuning meta-parameters using five-category cross-validation36.

 

Crack 
length 
(mm)

Defect 
positions

First 
natural 
frequency
 (Hz)

Second 
natural 
frequency
 (Hz)

Third
 natural 
frequency
 (Hz)

Fourth 
natural 
frequency
 (Hz)

Fifth 
natural
 frequency
 (Hz)

3 22-04-07 67.105 180.66 395.8 758.89 1003.2

1.5 22-04-07 73.498 264.04 397.97 813.93 1053.02

0.5 22-04-07 75.612 290.61 398.41 826.67 1069.6

3 00-00-19 73.787 263.33 361.99 808.66 1000.7

1.5 00-00-19 75.396 289.93 394.91 838.19 1082.6

0.5 00-00-19 75.629 292.64 403.78 842.55 1100.1

Table 5.  Effect of crack length on natural frequencies.
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selecting a bootstrap sample from the training dataset, constructing a tree, and determining the best split from 
the subset for each bootstrap sample. By repeating the first two processes, multiple trees will be generated. The 
procedure for creating a Random Forest includes: for b trees in the forest, each tree receives a bootstrap sample of 
size n from the training set (row subsampling); m predictors are randomly chosen as candidates for splitting from 
p predictors in the training set (column subsampling); then, the best variable and split point are selected from the 
m predictors, dividing each node into two sub-nodes; finally, new data is forecasted by averaging the predictions 
from each tree. A structure Fig. 10 displays diagrams from the RFR model used in this investigation. In order 
to find the best combination of effective parameters in the performance of the RFR method, GridSearchCV36 
function from scikit-learn (version 1.6.1) has been used, so after using the GridSearchCV method, parameters 
included max_depth(The maximum depth of the tree):[None, 10, 20], n_estimators(The number of trees 
in the forest):[100, 150, 200] , min_samples_split(The minimum number of samples required to split 
an internal node):[1,2,3] , min_samples_leaf (The minimum number of samples required to be at a leaf 
node):[1,2,3] have optimum values of None, 100 , 2 ,1 respectively.

Light gradient boosted machine regressor
The LGBM is a gradient boosting framework that employs a tree-based learning algorithm and a leaf-wise 
approach to build trees vertically39. Before creating the LGBM dataset, categorical features are converted to integer 
types. LGBM then calculates the split value for these categorical features using a distinctive method. Thanks to 
the robust capabilities of LGBM, it is now possible to predict quantiles. The loss function, known as quantile loss 
or pinball loss, is what sets quantile regression apart from general regression. This article includes equations from 
Eqs. (14–15) and provides a clear explanation of pinball loss. To identify the optimal combination of effective 
parameters for the performance of the LGBM method, the GridSearchCV36 function from scikit-learn (version 
1.6.1) has been utilized. So after using the GridSearchCV method, learning_rate(Learning rate shrinks 
the contribution of each tree)= [0.01, 0.05, 0.1],max_depth(Maximum depth of the individual regression 
estimators)=[2, 5, 10],num_leaves (number of leaves in full tree)=[50, 100, 150], n_estimators(The number 
of boosting stages to perform)=[100, 150, 200] , boosting_type([’gbdt’, ’dart’, ’goss’, ’rf ’] ) have optimum values 
of 0.1 , 10 , 200 ,100 , goss respectively.

	 Lτ(y, z) = (y − z)τ if y ≥ z� (14)

Fig. 10.  Schematic diagram of the RFR method.
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	 Lτ(y, z) = (z − y)(1 − τ) if z ≻ y� (15)

where z is the expected value, y is the actual value, and τ  is the intended quantile.

Bayesian ridge regressor
The Bayesian ridge technique is employed to estimate a probabilistic model for the regression problem, 
incorporating regularization parameters. The goal is to determine yk  based on observations. The training 
sequence is denoted as (xi, yi), i = 1, ..., m, and during the initial k-fold split, (xj  of length k is utilized as 
the test fold. In practical applications, given the training sequence (xi, yi), where i = 1, ..., n − 1, the aim is to 
accurately predict yn for xn. According to the model, the number of objects and labels, represented by (xi, yi), 
is established by the rule40.

	 yi = ω × xi + β� (16)

The distribution of ω is represented as a random vector with a Gaussian parameterization characterized by its 
mean, covariance matrix, and N(0, (σ2/a)I); meanwhile, the distribution of β follows a N(0, σ2) pattern. 
Equation (17) provides the conditional distribution of the test label for the test object xn.

	 N(ŷn, (1 + gn)σ2)� (17)

This is gn := xn
′(X ′X + aI)−1xn, where X is the design matrix of the training sequence. At this point, the 

Bayesian prediction range is:

	 (BL, BU ) := (ŷn

√
(1 + gn)σε/2ŷn +

√
(1 + gn)σε/2)� (18)

In order to find the best combination of effective parameters in the performance of the BRR method, 
GridSearchCV36 function has been used, so after using the GridSearchCV method, compute_score(compute 
the log marginal likelihood at each iteration of the optimization) , fit_intercept(Whether to calculate 
the intercept for this model) , Maximum number of iterations:[True, False] , tol(Stop the algorithm if w has 
converged):[True, False] have optimum values of True , True, 200 , 0.0001 respectively.

Artificial neural networks
A neural network is made up of many neurons, which are basic processing units. Generally speaking, an artificial 
neural network (ANN) is a mathematical model or system made up of several parallel nonlinear artificial neurons 
that can be constructed as a single layer or several layers. Most ANNs consist of three layers: input, output, and 
hidden layers41. The literature has documented a wide variety of additional artificial neural network (ANN) 
types, including generalized regression neural networks (GRNNs), feed forward neural networks (FFNNs), and 
regression basis neural networks (RBNNs).

Feed forward neural networks (FNN)
The input, output, and hidden layers make up the FFNN’s minimum number of layers. Figure 11 displays the 
schematic diagram for an FFNN. After receiving weighted inputs from a layer below, neurons in the layer above 
exchange outputs with one another. Equation (19) calculates the sum of the weighted input signals, and Eq. (20) 
transfers this accumulation to produce a nonlinear activation function. Equation (21) is used to estimate the 
network error by comparing the network results with the actual observation findings42. Training is repeated until 
the error is within acceptable limits.

	
Ynet =

n∑
i=1

Xi.wi + w0� (19)

Fig. 11.  Structure of the FNN method.
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Y = f(Ynet) = 1

1 + e−Ynet
� (20)

	
Jr = 1

2 .

k∑
i=1

(Yi − Oi)2� (21)

Neuron input is represented by Xi, weight coefficient by wi, bias by w0, error between observed value and 
network response by Jr , and neuron i’s observed value by Oi.Neuron i’s response is Yi.

Furthermore, N (number of input variables) in Fig. 11 is equal to 1001, M (number of hidden neurons in the 
hidden layer) is equal to 100, and 3 (number of output layers) is indicated. In order to find the best combination 
of effective parameters in the performance of the ANN method, GridSearchCV36 function has been used, so after 
using the GridSearchCV method, parameters learning_rate:[0.001, 0.01, 0.1] , model_units(representing 
how many neurons in a particular layer):[(50, 50), (100, 100), (50, 100)] , model_epochs:[50, 100, 150] (the 
entire cycle of the algorithm’s interaction with the training data as it processes)have optimum values of 0.001 
,(100, 100) , 150 respectively.

Multilayer perceptron (MLP)
A feedforward neural network for function approximation (MLP) is the multilayer perceptron. According to43, 
the MLP outperformed the support vector machine and radial basis function network in estimating energy 
consumption for Canadian industrial industries. The input layer, hidden layers, and output layer make up the 
MLP. Figure 12 depicts the node i, or neuron, in an MLP network. Its activation function, g, is both nonlinear 
and summer.

The MLP network’s output, yi, i = 1, 2 , becomes

	
yi = g2(

3∑
j=1

wij
2g1(nj

1) + θj
2) =g2(

3∑
j=1

wij
2g1(

K∑
k=1

wkj
1xk+θj

1) + θj
2)� (22)

The set of input xk  in the input layer is passed through neurons or nodes and multiplied by weights wk  after 
being known from (22). The neurons nj  are then activated by adding it to bias j and activating functions g1 in the 
hidden layer and g2 in the output layer. We identified g1 as a ’tansig’ and g2 as a purelinear model in this work43. 
We used the Levenberg-Marquardt training technique and gradient descent optimization to determine and 
estimate the weights and biases of the final outputs, y1 and y2. In order to find the best combination of effective 
parameters in the performance of the MLP method, GridSearchCV36 function has been used, so after using the 
GridSearchCV method, parameters alpha:[0.001, 0.01] ,batch_size (Size of minibatches for optimizers):[16, 
32, 64],hidden_layer_sizes(The ith element represents the number of neurons in the ith hidden layer):[(100, 
50),(50, 50)] , learning_rate_init(The initial learning rate used):[0.001, 0.01], max_iter(Maximum number 
of iterations):[300, 400], validation_fraction (The proportion of training data to set aside as validation set for 
early stopping):[0.1, 0.2]have optimum values of 0.001, 16, (50, 50), 0.001, 300, 0.1 respectively.

Evaluation metrics
While there are many evaluation metrics available today, only a select few can effectively assess the performance 
of regression-based algorithms. This study illustrates the application of MAE, RMSE, and R2. A variety of 
evaluation criteria were taken into account. In this research, the MAE function is utilized to compute the mean 
absolute error, which serves as a risk indicator reflecting the expected level of absolute error loss44. The coefficient 
of determination, commonly known as R2, is derived using the R2 score function. This function reveals the 
proportion of variance in the dependent variable (y) that can be explained by the model’s independent variables. 
The percentage of explained variance is a measure of the model’s goodness of fit and indicates how well it can 

Fig. 12.  Structure of the MLP method.
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predict future, unseen data44. As the R-squared value increases, the model’s predictive power and sensitivity to 
changes in data quantity and weighting improve, as noted by Pearson’s correlation coefficient. According to44, 
RMSE provides results that are comparable to the best likelihood method. It is important to note that outliers can 
significantly influence RMSE. A lower RMSE signifies a better model. Metrics based on percentages offer clear 
insights into the accuracy of predictions and quantify the extent of errors in percentage terms. These metrics are 
defined in Eqs. (23–26)39.

	
MAE(y, y′) = 1

n

n−1∑
i=0

∣∣yi − yi
′∣∣� (23)

	

R2(y, y′) = 1 − SSRegression

SST otal
= 1 −

n∑
i=1

(yi − y′
i)

2

n∑
i=1

(yi − y)2
� (24)

	
As y = 1

n

n∑
i=1

yi and

n∑
i=1

(yi − y′
i)

2 =
n∑

i=1

∈2� (25)

	

RMSE =

√√√√ 1
n

n∑
i=1

(yi − y′
i)

2� (26)

In this case, the predicted variable is denoted by yi, the actual variable by y′
i, the mean value of the actual variable 

by y, and the total amount of data collected by n. Additionally, R2 should fall between 0 and 1, where positive 
and negative values indicate direct and inverse correlations, respectively. The range of [0, +∞] also includes 
RMSE and MAE. When R2 is high and both RMSE and MAE are low, it suggests that the model is effectively 
capturing real-world values and is accurate45.

Classification methods
In summary, signals are decomposed into N modes, or IMFs, through methods like VMD, EEMD, CEEMDAN, 
EMD, or EWT. Features from each mode are extracted, followed by the selection of specific features that form a 
set of inputs for the selected classifiers. This allows for the evaluation of each adaptive decomposition technique 
in terms of damage detection and classification by calculating performance metrics for every classifier.

Empirical mode decomposition (EMD)
The EMD’s flexibility makes it an attractive method since it doesn’t depend on assumptions like linearity or 
stationarity. This technique breaks down the analyzed signal into several intrinsic mode functions (IMFs), each 
of which must satisfy two fundamental criteria:

	 (I)	  The number of extrema and zero crossings should be equal or differ by at most one.
	(II)	  The envelope value must have a zero mean, determined by the local maxima and minima.

The sifting procedure outlined in Huang et al.’s46 algorithm for extracting IMFs consists of the following steps: 
Given a temporal series input f(t),

	(1)	  Identify the local maxima and minima of the temporal series.
	(2)	  Apply cubic spline interpolation to construct the envelopes (emax, emin) from the identified maxima and 

minima.
	(3)	  Use the formula mi(t) = (emax(t) + emin(t))/2 to find the envelope mean.
	(4)	  Remove the value from the previously identified signal: h(t) = f(t) − mi(t).
	(5)	 Check that the extracted signal h(t) meets the two IMF criteria (the number of maxima and minima and a 

zero mean). An IMF ci(t) = h(t) is established if this condition is satisfied. If not, repeat steps 1 through 
5 on the extracted signal.

	(6)	 This results in a new residue, r(t) = f(t) − ci(t). To identify the other IMFs, apply steps 1 through 5 again 
to the residue r.

The process concludes when it is no longer possible to derive an IMF from a residue, which is then referred to 
as the final residue rM . As shown in (27), the signal is thus decomposed into a specified number of IMF ci(t) 
along with the final residue rM .

	
f(t) = rM +

N∑
i=1

ci(t)� (27)

where N represents the total number of IMFs discovered. The first IMFs isolated by EMD correspond to high 
frequencies of the signal, and slower components are gradually extracted by the sifting process.
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Ensemble empirical mode decomposition (EEMD)
Averaging the decomposition results over a collection of noisy versions of the original signal produces the modes 
in the noise-assisted data analysis (NADA) method known as EEMD46. This approach aims to address the mode 
mixing problem while maintaining the physical uniqueness of the signals being decomposed. The procedure can 
be summarized as follows:

	(1)	 Increase the white noise level of the targeted input series.
	(2)	 Separate the output signal and noise from step 1 into distinct modulations.
	(3)	 Repeat steps 1 and 2 sequentially using different white noise signals.
	(4)	 Finally, calculate the ensemble means of the corresponding IMFs from the decompositions.

The CEEMDAN method was proposed to tackle these challenges46.

Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
The enhanced version of CEEMDAN is presented in this work46. Let w(i) represent a realization of unit variance 
and zero mean Gaussian white noise, IMFk  denote the extracted decomposition modes, Ek(.) be the operator 
that decomposes a signal into its k-th mode using EMD, and M(.) be the operator that calculates the signal mean. 
Below is a description of the algorithm for an input temporal series f(t):

	(1)	 Decompose the noise-added signal realizations using EMD I: f i(t) = f(t) + β0E1(wi). Next, compute 
the first residue as r1(t) =

⟨
M(f i(t))

⟩
.βk = εkstd(rk).

	(2)	 Compute IMF1(t) = f(t) − r1(t), which represents the first mode.
	(3)	 The second mode is derived as r1(t) =

⟨
M(f i(t))

⟩
.βk = εkstd(rk). The second residue is calculated by 

averaging the local means of the realizations r1(t) + β1E2(wi).
	(4)	 For k = 3,..., K, determine the k-th residue: rk(t) =

⟨
M(rk−1(t) + βk−1Ek(wi))

⟩
.

	(5)	 Identify the k-th mode: IMFk(t) = rk−1(t) − rk(t).
	(6)	 For the next k, revert to step 4. Continue this process until the residues, which can only contain one extreme 

at a time, can no longer be decomposed.

The pyEMD Python (version 3.10.7) package47 was used in this study to implement CEEMDAN, EEMD, and 
EMD.

Empirical wavelet transform (EWT)
The EWT approach, similar to EMD, focuses on the oscillatory amplitude (AM) and frequency (FM) components 
of a signal, aiming to extract them while ensuring compact Fourier support. It addresses some limitations of 
EMD, particularly the lack of a solid mathematical foundation. Before starting the analysis, a few important 
factors must be considered: (1) the signal must be real-valued to maintain symmetry; and (2) a normalized 
frequency axis with 2π periodicity is utilized, although Shannon’s sampling criterion restricts the analysis to the 
range [0, π].

1) Identify N distinct empirical modes.
2) Analyze the signal spectrum.
3) Find the local spectral maxima N − 1.
4) Define the boundaries ωn as the midpoints between two successive maxima.
5) Establish the EWT filter bank based on the defined ωn limits.
6) Apply this to extract N empirical modes from the input signal.
The limits ωn are established. Each segment’s boundaries are marked by a transition period with a width of 

2τn, centered at the corresponding ωn. The construction of the filters for each segment is linked to Littlewood-
Paley and Meyer wavelets (lowpass for ω0 and bandpass for the other segments)46. As a result, the approximate 
coefficients (for lower frequencies) and detailed coefficients (for higher frequencies) are defined by an empirical 
wavelet ψn(ω) and an empirical scale function ϕn(ω).

Variational mode decomposition (VMD)
The VMD approach addresses the limitations of EMD, such as its lack of a solid mathematical foundation and 
the somewhat inflexible filter bank boundaries of EWT. Tests focused on tone separation and detection indicated 
that VMD surpassed EMD46. The method begins by assuming that each mode k in the Fourier spectrum has a 
central frequency ωk  and a defined bandwidth. The following steps outline the process briefly.

1) Generate a single-side band analytic signal using the Hilbert transform of the original signal.
2) Complex harmonic mixing: this step involves multiplying the frequency spectrum of each mode by an 

exponential function, which is adjusted to the estimated center frequency of that mode, effectively shifting it 
into the baseband.

3) Determine the bandwidth by calculating the squared L2 norm of the gradient, or the H1 norm Gaussian 
smoothness of the demodulated signal.

The resulting constrained variational problem is expressed as min{uk}, {ωk}.

	
{
∑

k

||∂t[(δ(t) + j

πt
) ∗ uk(t)]e−jωkt||22}s.t.

∑
k

uk = f � (28)
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ωk  represents the corresponding center frequency, while uk  denotes the kth mode of the signal (ranging from 1 
to K). The complete set of modes and their associated center frequencies are indicated by uk  and ωk , respectively. 
The Dirac function is denoted by δ, and the input signal that needs to be decomposed is represented by f. 
Equation (28) can be transformed into an unconstrained problem by incorporating Lagrangian multipliers along 
with a quadratic penalty term. The following gives the augmented Lagrangian:

	

L({uk}, {ωk}, λ) := α
∑

k

||∂t[(δ(t) + j

πt
) ∗ uk(t)]e−jωkt||22}+

||f(t) −
∑

k

uk(t)||22 +

⟨
λ(t), f(t) −

∑
k

uk(t)..

⟩� (29)

All estimated modes in the frequency domain ûk  for each iteration n are obtained by applying ADMM to 
solve (29).

	
ûn+1

k (ω) =
f̂(ω) −

∑
i<k

ûn+1
i (ω)−

∑
i>k

ûn
i (ω) + λ̂n(ω)

2

1 + 2α(ω − ωn
k )2

� (30)

Equation (30) illustrates that modes are updated using a simple Wiener filter. The center of gravity for each 
mode’s spectrum can be utilized to determine the center frequencies.

	
ωn+1

k =
∫ ∞

0 ω|ûk(ω)|2dω∫ ∞
0 |ûk(ω)|2dω

� (31)

The complete breakdown of the initial signal, f(t), is represented by the resulting modes in the time domain, 
uk . Reference48 includes the entire constrained variational optimization problem, offering a more detailed 
explanation of the method.

In Fig. 13 six first IMF for (a) EMD, (b) EEMD, (c) CEEMDAN, (d) EWT, (e) VMD are plotted.

Feature extraction
The five methods mentioned earlier (EMD, EEMD, CEEMDAN, EWT, and VMD) can be seen as amplitude and 
frequency modulated signals used for feature extraction. Consequently, the spectral properties of each mode are 
leveraged to identify the extracted features. The initial feature extracted is the spectral power (SPow), as defined 
by Eq. (32).

	
Spow = 1

N

fs
2∑

f=0

PXX(f)� (32)

The mode PSD, calculated using Welch’s method46, is represented by PXX , while N denotes the total number of 
spectral coefficients. Equation (33) illustrates the Spectral Entropy (SEnt), which serves as the second feature.

	
SEnt = −

fs
2∑

f=0

P̄XX(f) log[P̄XX(f)]� (33)

Fig. 13.  Comparison of six first intrinsic mode function signals in a period of 1 second for different 
decomposition mode methods including (a) VMD, (b) EWT, (c) CEEMDAN, (d) EEMD, (e) EMD, where the 
x-axis is time and the y-axis is amplitude.
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The normalized PSD is denoted as P̄XX . The main frequency component of each mode links to the next three 
features. After identifying the global maximum of the PXX , the spectral peak (SP) and its associated frequency 
(f), which represent the third and fourth features, are utilized to compute the corresponding magnitude. The 
spectral centroid (SC) for the relevant mode, as outlined in Eq. (34), is the next feature.

	

SC =

fs
2∑

f=0
ω(f)M(f)

fs
2∑

f=0
M(f)

� (34)

where f is the frequency bin and ω(f) and M(f) represent the PSD of the central frequency and magnitude of f, 
respectively. The AM and FM bandwidths are defined by Eqs. (35–36)46.

	
B2

AM = 1
E

∫
(dA(t)

dt
)

2
dt� (35)

	
B2

F M = 1
E

∫
(dϕ(t)

dt
− ⟨ω⟩)

2
A2(t)dt� (36)

where, according to Eq. (37) , A is the analytic signal’s amplitude, E is its energy, and ⟨ω⟩ is the current mode’s 
center frequency.

	
⟨ω⟩ = 1

E

∫
dϕ(t)

dt
A2(t)dt� (37)

In addition, time-domain features like statistical moments and Hjorth parameters46 are extracted. Hjorth 
complexity (Comp) provides an estimate of the signal’s bandwidth, while Hjorth mobility (Mob) relates to the 
variance of the signal’s spectrum and is associated with the mean frequency of the signal46. These are defined in 
Eqs. (38–39):

	
Mob(x) =

√
V ar( dx(t)

dt
)

V ar(x(t))
� (38)

	
Comp(x) =

Mob( dx(t)
dt

)
Mob(x(t))

� (39)

where Var() is the variance and f(t) is the current signal component.
The skewness is calculated using the following equation and is related to the asymmetry of the signal 

distribution46:

	
S(x) = E[(x(t) − µ

σ
)3]� (40)

	
S(x) = E[(x(t) − µ

σ
)4]� (41)

The symbols σ and µ represent the standard deviation and mean, respectively, of the function f(t). The kurtosis, 
as given by (41), relates to the tails of the distribution produced by the signal.

The mass and stiffness of the structure are affected differently by different kinds of defects, such as cracks 
and delamination. The shapes of the vibration modes can be changed by various defects, which can also change 
the way energy is distributed throughout the structure when it oscillates. Spectral Power (SPow) and spectral 
Centroid (SC) features can be directly impacted by changes in defect type, which can move energy to different 
frequency bands or change the dominant frequencies. Spectral entropy (SEnt), particularly for more severe or 
complex damage types, will reflect increased randomness or disorder in the signal as defects alter the complexity 
and distribution of frequencies. Amplitude and frequency modulation (AM,FM) bandwidths may be widened 
by nonlinear or evolving defects, signifying more intricate or non-stationary vibration behavior. The type and 
progression of damage have an impact on both Hjorth Mobility and Complexity, which are sensitive to variations 
in the signal’s frequency content and complexity. Asymmetry or heavy tails are introduced into the vibration 
signal’s amplitude distribution by localized or impulsive defects (like abrupt cracks or impacts), which causes 
discernible changes in skewness and kurtosis.

Feature selection and classification
Feature selection and classification algorithms were carried out using functions from the scikit-learn package49. 
A feature selection or ranking method is necessary since each signal has a relatively high number of extracted 
features, and not all of these features are relevant for distinguishing between classes. In this study, recursive 
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feature elimination (RFE)50 was employed to select features using the radial basis function (RBF) support vector 
machine (SVM) classifier. After that, various classification techniques were evaluated:

	(1)	 Stochastic gradient descent (SGD)51,
	(2)	 support Vector Machine(SVM)52,
	(3)	 Random forest53,
	(4)	 Logistic Regression54.

Five-fold cross-validation was employed to confirm the performance of the classification algorithms. Accuracy 
(ACC) was used to evaluate performance.

Cross validation
Cross-validation is a statistical method used to compare and evaluate learning algorithms by dividing the data 
into two parts: one for training the model and the other for validating it. The simplest form of cross-validation is 
known as k-fold cross-validation. In this method, the data is divided into k segments or folds of equal (or nearly 
equal) size. Then, k iterations of training and validation are performed, where k-1 folds are used for training and 
one fold is set aside for validation. During each iteration, one or more learning algorithms create models based 
on the k-1 folds of data. After the models are trained, they are tested on the validation fold to make predictions. 
The performance of each learning algorithm on each fold is measured using a specific performance metric, 
such as accuracy. Once the process is complete, each algorithm will have k samples of the performance metric. 
The evaluation metrics mentioned in section “Evaluation metrics” represent the average of each performance 
parameter, and in this study, 5-fold cross-validation was applied to each method.

Result and discussion
This section presents the findings and observations, along with a part that illustrates dataset modeling and 
model outputs. It includes a comparison of the performances of the generated models and validates the best 
prediction model. Here, we describe how all regression techniques were implemented using Python (version 
3.10.7), showcasing the results in both numerical and graphical formats.

Modeling of datasets and model results
To evaluate the performance of the algorithms, the dataset was randomly split into training (70%), validation 
(15%), and testing (15%) sets. The proposed method utilizes an integrated model with several important 
parameters that require adjustment. To fine-tune these parameters and improve the accuracy of the results, 
a thorough grid search cross-validation (GridSearchCV) is employed55. The goodness-of-fit statistics for each 
model are detailed in the following sections, along with other relevant metrics for assessing performance and 
robustness, such as RMSE and MAE1. Key variables and regression fit statistics for the training and testing 
datasets are illustrated in Fig. 14.

In regression methods, a model that is underfitting will exhibit both high training error and high testing 
error. Conversely, an overfitted model will show low training error but high testing error. As illustrated in Fig. 14, 
the training and testing errors for the LGBM, BRR, DTR, RFR, FNN and MLP methods are both low and closely 
aligned, indicating that there is neither overfitting nor underfitting present.

To understand the relationships between variables and the data distribution, two widely used visualization 
techniques in data analysis and machine learning are the scatter plot and distribution plot. In this study, these 
plots were employed to illustrate the relationship between actual and predicted defect positions. Scatter plots 
depict the correlation between two actual defect positions (ground truth) and the predicted defect positions. By 
examining the data, one can visually assess how closely the actual and predicted defect positions align. Ideally, 
the points should cluster around a diagonal line, representing the line of perfect prediction, which indicates a 
strong predictive relationship.

Fig. 14.  Comparing the error value of different regression methods for training and testing datasets.
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Distribution plots, often referred to as density plots, illustrate the values of a single variable in a distributed 
format. To analyze the distributions in this context, individual distribution plots are created for both the actual 
and predicted defect positions. These plots can aid in interpreting the differences between the actual and 
predicted delamination and crack positions regarding their shape, spread, and central tendency. Changes in 
these distributions can provide insights into the model’s performance and highlight any systematic biases.

The scatter plot and distribution plot for 4 regression methods with the highest coefficient of determination 
(R2) are as follows.

Figures 15,  16,  17,  18 show scatter plot and distribution plot for RFR , LGBM , DTR and BRR methods 
respectively.

Comparative performance of the models
To evaluate the accuracy of each algorithm in predicting pavement degradation, various machine learning 
methods are compared using several performance metrics. Lower values of RMSE and MAE, along with a 
coefficient of determination (R2) approaching 1, indicate better model performance. In fact, R2 ranges from 
0 to 1, making it essential to choose the model with the highest R2 (i.e., closest to 1) when determining the 
best option. An ideal model not only has a high R2 but also exhibits low RMSE and MAE values. To assess the 
performance of the different regression models tailored for the various techniques, common performance criteria 
based on their average statistics were established. Additionally, to compare the coefficient of determination (R2) 
and the errors of each regression method in predicting the testing dataset, reference is made to Figs. 19 and 20.

As shown in Figs. 19 and 20, the random forest regressor, LGBM, and decision tree regressor achieve the 
highest R2 values of 99.80, 99.68, and 99.64, respectively. Moreover, the decision tree regressor, random forest 
regressor, and LGBM also have the lowest MAE values at 0.02, 0.04, and 0.09, respectively. In addition, the 
random forest regressor, LGBM, and decision tree regressor show the lowest RMSE values of 0.37, 0.47, and 
0.51, respectively.

Prediction of unseen scenarios of known defect types’ position
Given that the model used in this study was developed with limited datasets, it is essential to extend the methods 
discussed to predict new states that were not part of the training process. To achieve this, 12 untrained multiple 
defects were introduced to assess the model’s prediction accuracy, utilizing the LGBM method to determine 
the type and location of these defects. It is important to highlight that the data concerning these 12 defect types 
were not included in the training, validation, or testing datasets, making them completely unseen. The term 
“unseen” refers to defects absent from the training, validation, and test datasets, indicating that these cases were 
not represented in any of these datasets. Khan et al.56 similarly used a convolutional neural network (CNN) to 
predict unseen delamination cases. It is important to note that the primary distinction between unseen cases 
and those in the test dataset lies in the fact that the test dataset constitutes a portion (e.g., 15% in this study) of 
the input dataset, which may overlap with the training and validation datasets. In contrast, unseen cases, being 

Fig. 15.  Scatter plot of Actual and Prediction for three defect types positions: (a) delamination positions 
(mm), (b) delamination layer positions, (c) crack positions (mm) and distribution plot of actual and prediction 
for three defect types positions: (d) delamination positions (mm), (e) delamination layer positions, (f) Crack 
positions (mm) for RFR.
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absent from the input dataset, were not included in the training set used for machine learning model training. 
The prediction results for each of these unseen scenarios of known defect types position are presented in Table 6.

According to Table 6, when the predicted delamination layer is a non-integer, it is rounded to accurately 
reflect the layer number. Most predicted positions closely match the actual defect locations, with the lowest 
prediction error at 0% and the highest at 13.34%.

Fig. 17.  Scatter plot of Actual and Prediction for three defect types positions: (a) delamination positions 
(mm), (b) delamination layer positions, (c) crack positions (mm) and distribution plot of Actual and 
Prediction for three defect types positions: (d) delamination positions (mm), (e) delamination layer positions, 
(f) crack positions (mm) for DTR.

 

Fig. 16.  Scatter plot of Actual and Prediction for three defect types positions: (a) Delamination positions 
(mm), (b) delamination layer positions, (c) crack positions (mm) and distribution plot of Actual and 
Prediction for three defect types positions: (d) delamination positions (mm), (e) delamination layer positions, 
(f) crack positions (mm) for LGBM.
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Readers may wonder why a piezoelectric patch is used to excite the structure. The reason is that using a 
shaker for excitation and an accelerometer to measure the free side acceleration of the structure signal was 
not cost-effective. To assess the accuracy of the regression models using the structure’s acceleration signals, 
simulations were conducted without piezoelectric patches. The plate’s free side, or 30 cm from the clamped side, 
is where the accelerometer is situated. It is worth noting that the accelerometer measures vibrations solely in the 
Z direction and employs the same sampling strategy as the piezoelectric sensor. The results in Table 7 indicate 
that the coefficient of determination (R2) and the metrics (MAE, RMSE) demonstrate greater accuracy and 
lower error in the voltage signals from the piezoelectric sensors compared to the free side acceleration of the 
structure signals. This highlights the advantages of piezoelectric patches for sensing in composite structures over 
accelerometer sensors.

Classification using decomposition methods
The multi-class classification accuracy results, which pertain to various mode decomposition methods, feature 
extraction techniques, and classification methods, are illustrated in Figs. 21, 22, 23, and 24, as discussed in the 

Fig. 19.  Comparison of coefficient of determination (R2 )values for different regression methods.

 

Fig. 18.  Scatter plot of Actual and Prediction for three defect types positions: (a) delamination positions 
(mm), (b) delamination layer positions, (c) crack positions (mm) and distribution plot of Actual and 
Prediction for three defect types positions : (d) delamination positions (mm), (e) delamination layer positions, 
(f) crack positions (mm) for BRR.
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’Classification methods’ section of the description covering 5 mode decomposition methods, 8 statistical feature 
extraction methods, and 4 classification methods. Feature-decomposition/classifier combinations that achieved 
an accuracy below 50% (e.g., EMD and CEEMDAN with certain classifiers) were excluded from the results. This 
omission was made to enhance clarity and facilitate a meaningful comparison among methods with accuracies 
exceeding 50%.

By analyzing the results of the 4 figures above, it is understood that the combination of VMD , Logistic 
regression then VMD , SVM have 98.26% , 98.14% classification accuracy are the most accurate among the 
combination of different methods.

Conclusion
In this study, we introduced and validated a novel non-destructive evaluation method for detecting, classifying, 
and localizing defects in laminated composite structures. An eight-layer graphite/epoxy composite plate with 
delamination and crack defects served as the test specimen. Piezoelectric actuators applied random voltage 
stimuli to induce stress responses, which were captured by a network of embedded piezoelectric sensors. 
We systematically evaluated four regression techniques alongside artificial neural networks, as well as four 
classification methods, in conjunction with five mode decomposition techniques, to analyze the voltage 
signatures. Among the regression methods, random forest regression, light gradient boosted machine, and 
decision tree regression achieved the highest localization accuracy, with R2 values of 99.8%, 99.68%, and 
99.64%, respectively. Additionally, the feedforward neural network attained an R2 of 99.08%.

Variational mode decomposition, when combined with logistic regression and support vector machine 
classification, effectively identified defect types with classification accuracies of 98.26% and 98.14%, respectively, 
based on piezoelectric sensor data. Furthermore, the evaluation metrics demonstrated that regression analyses 
of piezoelectric sensor signals outperformed those based on structural acceleration responses collected 
from accelerometers. This methodology enables highly accurate defect localization down to the lamina level 
and distinguishes between delamination and crack defects with exceptional precision. The results highlight 
the significant potential of this approach for real-time structural health monitoring and condition-based 
maintenance.

With further optimization and validation across different composite materials and defect scenarios, this non-
destructive evaluation technique could enhance the safety and reliability of load-bearing composite structures. 
Future research will focus on extending this methodology to a wider range of composite materials and damage 
conditions to further improve its robustness and applicability.

Fig. 20.  Comparison of RMSE , MAE values for different regression methods.
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Regression 
method Signal type

Coefficient of 
determination
(R2%) RMSE MAE

LGBM Piezoelectric 
sensor voltage 99.68 0.47 0.09

LGBM Structure 
acceleration 98.96 0.72 0.24

DTR Piezoelectric 
sensor voltage 99.64 0.51 0.02

DTR Structure 
acceleration 98.67 0.09 0.07

RFR Piezoelectric
 sensor voltage 99.80 0.37 0.04

RFR Structure 
acceleration 98.54 0.79 0.21

BRR Piezoelectric
 sensor voltage 99.56 0.49 0.26

BRR Structure 
acceleration 78.81 2.48 1.57

MLP Piezoelectric 
sensor voltage 98.42 0.89 0.55

MLP Structure 
acceleration 83.88 1.96 1.01

FNN Piezoelectric 
sensor voltage 99.08 0.67 0.42

FNN Structure 
acceleration 83.30 2.05 1.08

Table 7.  Comparision of evaluation metrics for piezoelectric sensor signal and acceleration signal.
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Fig. 21.  Comparison of accuracy for different methods of mode decomposition in the SVM classification 
method.
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Fig. 22.  Comparison of accuracy for different methods of mode decomposition in the Logistic Regression 
classification method.
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Fig. 23.  Comparison of accuracy for different methods of mode decomposition in the Random Forest 
classification method.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request
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