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Developing a novel artificial intelligence (AI) system that can automatically detect pulmonary arterial 
hypertension (PAH) after correcting the ventricular septal defect (VSD) and to help clinicians make 
reasonable treatment plans. We analyzed data from 1,316 patients under 1 year old who underwent 
VSD surgery at Women and Children’s Hospital, Qingdao University and Qingdao Central Hospital 
from January 2017 to December 2023. Pediatric patients were classified into two groups based on 
postoperative echocardiography and cardiac catheterization results: a normal pulmonary artery 
pressure group (NG) and PAH after correcting VSD group (CD). We trained and validated a multimodal 
multipath AI system (MMAI) using echocardiography (Echo) and chest digital radiography (DR) dataset. 
Dice similarity coefficient (DSC) is used to measure the effectiveness of the model in automatic 
contour segmentation of images. We assessed the recognition performance of MMAI using the area 
under the receiver operating characteristic curve (AUC), accuracy, and F1-score through internal and 
external test sets. The ResNet-50 model demonstrates good performance in automatic cardiac contour 
segmentation, with DSC values of 0.950 ± 0.017 (Echo) and 0.946 ± 0.020 (DR). Compared to single 
image types, the multimodal model based on the ResNet-50 model performs better in the binary 
classification task in the training and validation sets, with both AUC and accuracy exceeding 90%. In 
multipath detection, the MMAI system performs well in the NG and CD by combining internal and 
external test set detection, with AUC, accuracy, and F1-score all exceeding 0.9. Our preliminary study 
developed an MMAI system using Echo and chest DR images, showing potential for assisting in the 
detection of CD in VSD patients under 1 year of age prior to surgery. Further validation is needed to 
confirm clinical applicability.
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Pulmonary arterial hypertension related to congenital heart disease (PAH-CHD), a crucial type of pulmonary 
hypertension (PH), is the leading cause of PH in children1. PAH progression involves pathological changes such 
as elevated pulmonary blood flow and pressure, damage to endothelial cells, intimal hyperplasia, and thickening 
of elastic fibers. Ventricular septal defect (VSD) is the most common form of CHD and is strongly associated 
with PAH2.

Hemodynamically mediated PAH, characterized by increased pulmonary blood flow, may normalize after 
surgery. Following VSD repair, reduced pulmonary blood flow and vascular resistance often allow the recovery 
of the associated PAH. An abnormal increase in pulmonary flow in PAH after a surgically corrected VSD (CD) 
can cause endothelial cell damage under shear stress, leading to vascular reconstruction and transformation into 
obstructive PH3,4. Once PAH advances to Eisenmenger syndrome (a surgical contraindication), correcting the 
VSD can worsen the condition and cause right heart failure5. Nonetheless, patients with VSD undergoing defect 
correction face significant risks such as extended periods of mechanical ventilation, prolonged intensive care 
unit stays and hospitalizations, high costs, and substantial resource demands. From an etiological perspective, 
patients with CD may be more inclined to have primary PAH, and their prognosis may be similar to or even 
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worse than that of patients with primary PAH. Therefore, early identification and individualized PAH therapy 
are crucial for patients with CD.

Clinical decision-making is challenging and requires doctors to efficiently translate medical knowledge into 
swift, accurate, and personalized treatment plans. For the PAH-VSD subtype CD, preoperative diagnosis and 
prognosis assessment based on experience alone are challenging. Furthermore, precise drug regimen control 
remains elusive. Artificial intelligence (AI), specifically machine learning, has the potential to improve patient 
care, from detection and diagnosis to treatment planning, streamlining, and personalizing clinical decisions. 
Owing to significant progress in computer vision, AI has been at the forefront of the development of information 
extraction from medical images. Convolutional neural networks (CNNs) have made remarkable strides in the 
identification of medical images, including object detection, disease classification, and prognosis prediction6.

Right heart catheterization remains the gold standard for the diagnosis and evaluation of PAH. However, it 
has some drawbacks: its invasiveness and cost limit its accessibility in resource-limited settings, and it cannot 
predict prognosis. Echocardiography (Echo) has emerged as the primary screening and evaluation tool for 
PAH, offering insights into cardiac anatomy and hemodynamics. Echo is noninvasive, cost-effective, operator-
friendly, accurate, and has high specificity and sensitivity. Moreover, Echo is the preferred method globally for 
diagnosing PAH, with a mean pulmonary arterial pressure (mPAP) > 20 mmHg as an established criterion3,7. 
Echo can reveal right atrial and ventricular dilation, as well as the main pulmonary artery. Compared with 
traditional radiography, chest digital radiography (DR) offers superior image quality and resolution, providing 
more detailed information. Chest DR typically shows right heart enlargement, dilated pulmonary arteries, and 
prominent hilar shadows8. Our study developed a multimodal multipath artificial intelligence system (MMAI) 
by integrating Echo and DR, achieving noninvasive medical image recognition and segmentation through a 
novel multipath architecture. The system demonstrated breakthrough performance in CD diagnosis, providing 
a robust, multicenter-validated AI solution for early screening.

Methods
Study overview
This study was divided into the following key steps: First, based on clinical requirements, we established the 
inclusion and exclusion criteria for patient selection and divided the dataset into training and test groups. 
Subsequently, medical imaging data were systematically collected, and standardized preprocessing was 
performed. During the model development phase, the optimal base network architecture was selected by 
evaluating the image segmentation performance on the training set using cross-validation methods. Next, the 
model was further optimized by integrating the Transformer attention mechanism and the bidirectional short-
term memory (Bi-LSTM) temporal modeling module. The best hyperparameter combinations were determined, 
and the appropriate experimental hardware environment was configured. Finally, after achieving satisfactory 
performance in the training set validation, the model was systematically evaluated on an independent test set to 
comprehensively assess its clinical applicability and generalization capability.

Study dataset
This retrospective study included 1,316 VSD patients who were under1 year of age who underwent surgery 
at Women and Children’s Hospital, Qingdao University and Qingdao Central Hospital from January 2017 to 
December 2023. PAH was diagnosed per 2015 European Society of Cardiology (ESC) Guidelineswhen mean 
pulmonary artery pressure (mPAP) ≥ 20 mmHg3, initially assessed intraoperatively or by. Echo. Patients with 
abnormal preoperative pulmonary pressures underwent confirmatory cardiac catheterization.

Patients with VSD who underwent surgical correction and achieved normal pulmonary artery pressure were 
included in the normal group (NG). The inclusion criteria for the CD group: Patients who have undergone surgical 
repair and no longer have shunt in the heart, but still have residual PAH for more than 1 year or pulmonary artery 
pressure that has increased again several months after surgery1,3. During clinical practice, this investigation 
monitored each patient’s progress at least once every 3 months for a period of 1 year or longer. During the follow-
up period, stable patients underwent Echo to assess the tricuspid regurgitation velocity (peak > 3.4 m/s) as a PAH 
indicator2. Cardiac catheterization was repeated if PAH symptoms worsened or treatment adjustments were 
required. Final grouping was based on ≥ 1-year postoperative data from Echo and catheterization. NG required 
two consecutive Echo-confirmed PASP ≤ 40 mmHg after discontinuing PAH therapy.

Exclusion criteria: Preoperative complications include primary PAH according to the guidelines of ESC; 
Other types of CHD and VSD who have not undergone surgery; Severe myocarditis, cardiomyopathy, and other 
organic heart diseases; Hypertension and hyperthyroidism.

Image acquisition
Echo examination: Ultrasound diagnostic instrument (Philips, iE33), probe frequency is 2.5–3.5  MHz. The 
patient is placed in a supine or left lateral position, and the maximum tricuspid regurgitation velocity (V) is 
measured three times in the apical four chamber section. The average value is taken, with pulmonary artery 
systolic pressure (PASP) = 4 × V2 + right atrial pressure. Chest DR examination: Chest DR were obtained by using 
DRX-Evolution Plus (Reichert), with fully automatic exposure. The parameter is set to 110 kv, 8 mAs.

All Echo and Chest DR images were taken from the last examination before VSD surgery. The hospital 
medical imaging system exports all Echo and Chest DR images in JPEG format and they are then reviewed by 
two experienced ultrasound or imaging physicians with 5 years of expertise. This study excluded unqualified 
images based on the following criteria: ①Images with poor quality, such as blurring or noise, were not considered; 
②Any images depicting unrelated lesions, such as pneumonia, were disregarded; ③Duplicate images were also 
excluded.
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Ethical and information governance approvals
This retrospective study has received approval from the Hospital Ethics Committee (No. QFELL-KY-2016-22) 
and follows the ethical guidelines of medical research with human participants, as outlined in the Helsinki 
Declaration. The need for consent was waived owing to the retrospective nature of the study. Consent forms 
for the surgery in this study have been signed by the parents of all selected patients. Identify and censor any 
confidential patient information from image data, including name, date of birth, year of admission, admission 
number, and image number. All authors had access to the research data and have reviewed and approved the 
final manuscript.

Construction of AI model
We developed an MMAI to identify CD in patients with VSDs using Echo and/or chest DR images. This 
study employed Transformer’s global learning to construct a semantic segmentation network that blended 
the concepts of Transformer and ResNet. The network is structurally similar to the U-Net model9, comprising 
an encoder, decoder, and skip connections. The encoder is designed using ResNet and Vision Transformer. A 
multilayer ResNet feature extraction structure is used to segment the input medical images into image blocks. 
The segmented image blocks are merged to form a series of image blocks, subsequently fed into a Transformer-
based encoder to extract global features. It then enters a CNN-based decoding layer to upsample the extracted 
multilevel features and fuses them with multiscale features during the downsampling process through skip 
connections to restore the feature map to the approximate resolution size of the input image. Finally, pixel-level 
segmentation predictions are performed.

The optimization training difficulties faced by deep neural networks can be effectively addressed by the concept 
of residual blocks in a residual network. We designed and employed five single-modal residual convolutional 
networks (ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152) to evaluate the effectiveness of the 
multimodal model. To effectively classify CD using Echo or chest DR images, we utilized the DCNN-LSTM 
model to incorporate the interpretation of multimodal images. The interaction between the Echo or chest DR 
images was modeled using an attention-based Bi-LSTM network, as shown in Fig. 1.

The proposed MMAI system comprises three components: region of interest (RoI) extraction, image 
segmentation, and automatic diagnostic assessment. Four resident physicians with expertise in medical imaging 
were recruited and instructed to delineate the cardiac contours of the Echo and chest DR images. In the final 
quality-control phase, all segmentation labels were comprehensively evaluated by the same senior radiologist. To 
ensure diagnostic validity, this verification process incorporated correlations with clinical imaging interpretations 
and relevant clinical outcomes when available. These delineations were used as RoI labels for training the model 
and as criteria for evaluating the effectiveness of the automated delineation. The self-attention mechanism of 
the Transformer enables global context modeling across image regions, allowing it to capture long-range spatial 
dependencies that improve contour precision in segmentation tasks. A training set is necessary for transformer-
based models because they must be equipped with appropriate positional embeddings. However, acquiring 
precise annotations of medical images is not only expensive but also arduous.

Experimental environment
Patients were randomly divided into training and validation sets (80%) and test set (20%) using a fixed random 
seed (1, 2, 3). The training data (DATA I; n = 1,052) comprised patients with VSD from the Women and Children’s 
Hospital, Qingdao University. The test set (DATA Ⅱ) included an internal cohort (n = 130, same hospital) and an 
external cohort (n = 134, Qingdao Central Hospital) in a 1:1 ratio.

Our study utilized a 12-core Intel (R) Xeon (R) Platinum 8255C CPU and a GeForce RTX 3090 GPU 
environment with PyTorch (Python-based) as the framework (random seed = 1024). Image upscaling was 
performed using the PyTorch transformation module. During the ResNet model training process, a weighted 
random sampling approach and a weighted cross-entropy loss function were used to address the effect of data 
imbalance on performance degradation. Through systematic ablation experiments, we identified the optimal 
weight constraint range as [0.5, 5.0] from seven candidate intervals ([0.1, 2.0], [0.1, 5.0], [0.1, 10.0], [0.5, 5.0], 
[0.5, 10.0], [1.0, 5.0], and [1.0, 10.0]). This range was validated over 100 training epochs on the internal dataset, 
demonstrating the best balance between model stability and segmentation performance. Its overall performance 
significantly surpassed that of the focal loss approach. We set the training step to 400 epochs, batch size to 4, and 
initial learning rate to 0.001. The MMAI was trained using the training and validation sets (DATA Ⅰ), covering 
RoI extraction, image segmentation, and rule-based diagnostic evaluation (Fig. 2). Ten-fold cross-validation 
and the Adam optimizer with a grid search were employed. The final model was selected based on the lowest 
validation loss over 100 epochs. The cross-validated average loss decreased from an initial 1.25 to 0.38, with the 
optimal model achieving a validation loss of 0.32 ± 0.05.

Clinical labeling
The diagnosis and evaluation criteria for PAH were established considering Echo reports, chest DR reports, 
surgical records, follow-up data, and expert reviews. Four resident physicians collected Echo reports, chest DR 
reports, surgical records, and medical follow-up data. To avoid adverse effects, each resident physician was only 
responsible for gathering and extracting one type of information.

The Echo and chest DR images were resized and cropped to 256 × 256 pixels to standardize the input image 
size. Because 256 (2^8) is a power-of-two dimension, it perfectly aligns with the pooling and downsampling 
operations in CNN architectures, ensuring precise feature map size matching across all network layers. The 
256 × 256 pixels represent a well-validated technical balance in medical image analysis, allowing the simultaneous 
optimization of the computational efficiency, feature preservation10, and domain adaptability11,12. Moreover, 
we augmented the images using random horizontal flipping, center cropping, and random vertical flipping 

Scientific Reports |        (2025) 15:35676 3| https://doi.org/10.1038/s41598-025-19584-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2.  The MMAI system incorporates region of interest (RoI) extraction, advanced image segmentation, and 
rule-based diagnostic evaluation capabilities.

 

Fig. 1.  Flowchart of the study design. The construction of multimodal, multipath artificial intelligence 
(MMAI) procedure included images for training, validation and testing. CD: correcting the defect; Echo, 
echocardiography; DR, digital radiography.
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operations to mitigate overfitting. Compared to the 512 × 512 pixels, the 256 × 256 pixels achieves a 3.2 × training 
acceleration on the RTX 3090 GPU, with a 73% reduction in GPU memory usage (P < 0.01). In sensitivity 
analysis, the Kullback–Leibler divergence of the grayscale value distribution in the RoI region between the 
256 × 256 pixels and the original image shows no significant difference compared to the 512 × 512 pixels (0.037 
vs. 0.029, P > 0.05).

General information
Doctors were considered the gold standard for manual contour segmentation, and the effectiveness of automatic 
network contour segmentation was measured using the Dice similarity coefficient (DSC). With a DSC of 0–1, the 
closer the value is to 1, the closer the automated segmentation aligns with the manual segmentation, suggesting a 
greater level of predictive precision13. The formula for calculating DSC is as follows:

	 DSC(A, B) = 2 × |A ∩ B| ÷ (|A| + |B| ) , 0 ≤ DSC ≤ 1

where A is the area manually segmented by the doctor, and B is the automatically segmented area. The Wilcoxon 
signed-rank test was used to identify significant differences in the data using paired samples and a nonparametric 
approach. Statistical significance was set at P < 0.05.

We integrated fusion gradient-weighted class activation mapping (GradCAM) into the multimodal model to 
analyze attention14. This improved the interpretability of the MMAI and bolstered the trust of the medical experts 
in their prognostications. Global average pooling was performed on the last convolutional layer of the trained 
AI model using classification activation maps. The weights allotted to each output in the global average pooling 
layer during training represent the relevance of the feature maps derived from the preceding convolutional 
layers. These weights are subsequently utilized to modulate the corresponding feature maps, thereby producing 
saliency maps. The test set (DATA Ⅱ) was used to evaluate the performance of the MMAI system.

Results
Dataset consistency verification results
The study enrolled 1,316 patients with VSD (47.94% male; mean age 7.90 ± 2.42 months, weight 9.13 ± 0.55 kg). 
Baseline measurements included VSD size (11.52 ± 3.89 mm) and PASP (62.56 ± 10.42 mmHg), with a follow-up 
of 40.19 ± 17.56 months. The clinical classifications were as follows: 828 cases (62.9%) in the NG group and 488 
cases (37.1%) in the CD group. The training set (DATA I) included 1,052 patients (NG: n = 652, CD: n = 400) 
from the Women and Children’s Hospital, Qingdao University. No age/gender differences existed between the 
NG and CD groups in DATA I (P > 0.05); however, weight, VSD size, and preoperative PASP differed significantly 
(P < 0.05; Table 1).

In the test dataset (DATA Ⅱ), 264 patients from two medical centers were included, with 176 in the NG 
group and 88 in the CD group. There were no significant differences in the overall clinical characteristics between 
patients in the external and internal test sets, indicating good consistency (Table 2).

Differences in automatic image segmentation between different ResNet network models
In DATA Ⅰ, the DSC for cardiac segmentation accuracy of Echo and chest DR images in ResNet-50 were 
0.950 ± 0.017 and 0.946 ± 0.020, respectively, significantly higher than those of ResNet-18, ResNet-152, and 
ResNet-101 (Table  3). The ResNet-50 segmentation contours exhibited high agreement with the manual 
annotations (Fig. 3), prompting its selection for MMAI development.

Performance of MMAI in distinguishing CD
Bi-LSTM was utilized to integrate a hybrid model, which could predict CD in patients with VSD using either 
Echo or chest DR images in our study. In DATA I, the hybrid model integrating Echo and chest DR data predicted 

Age (months) Weight (kg) VSD size (mm) PAPS (mmHg) NG (n,%) CD (n,%)

Internal data (n = 130) 7.97 ± 2.53 9.33 ± 0.42 11.57 ± 4.01 62.21 ± 10.38 80 (61.5%) 50 (38.50%)

External data (n = 134) 8.15 ± 2.08 8.98 ± 0.52 11.66 ± 3.69 62.23 ± 9.21 96 (71.6%) 38 (28.4%)

t/χ2  − 1.003  − 1.105  − 0.297  − 0.023 4.000

P 0.302 0.271 0.767 0.982 0.261

Table 2.  Comparison of internal and external basic information in the test set (DATA Ⅱ).

 

Male (n) Age (months) Weight (kg) VSD size (mm) Preoperative PAPS (mmHg)

NG (n = 652) 324 8.48 ± 1.46 8.44 ± 0.69 10.60 ± 1.37 60.95 ± 8.54

CD (n = 400) 184 8.51 ± 1.56 8.69 ± 0.79 10.78 ± 1.46 63.53 ± 7.44

t/χ2 1.499  − 0.332 3.268  − 2.059  − 4.995

P 0.221 0.740 0.001 0.040 0.000

Table 1.  Baseline characteristics of NG and CD groups in Dataset I.
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CD with area under the curve (AUC) = 0.94 and accuracy = 0.94, outperforming unimodal approaches (Table 4, 
Fig. 4). In the analysis of the Echo and chest DR images, the hybrid model prioritized the pulmonary artery 
region using heatmap visualization (Fig. 5).

MMAI performance in test sets
MMAI maintained robust performance across internal (AUC = 0.916, accuracy = 0.91) and external (AUC = 0.905, 
accuracy = 0.90) test sets, with balanced sensitivity/specificity (0.90–0.91) and F1-score (0.90; Table 5, Fig. 6).

Fig. 3.  Automatic and manual delineation of cardiovascular regions in Echo and Chest DR images. The 
segmentation contours generated by ResNet50 showed high morphological congruence with manual 
segmentations. (A) the original image, (B) the manual sketching effect, (C) the ResNet50 automatic sketching 
effect.

 

ResNet18 ResNet152 ResNet101 ResNet50

Echo 0.926 ± 0.030* 0.939 ± 0.023* 0.941 ± 0.026* 0.950 ± 0.017

Chest DR 0.912 ± 0.030* 0.918 ± 0.025* 0.940 ± 0.019* 0.946 ± 0.020

Table 3.  DSC of multimodal heart segmentation accuracy in the DATA Ⅰ. DSC, dice similarity coefficient; * 
represents comparison with ResNet50, P < 0.05.
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Discussion
In this paper, AI technology was applied to identify CD from Echo and/or chest DR images. The proposed 
MMAI model demonstrated effective performance in identifying CD in patients with VSD under one year of 
age, though further validation is warranted.

PAH is a frequently encountered disease that ultimately leads to chronic heart failure and significantly 
reduces life expectancy. Often asymptomatic in early stages, PAH is frequently misdiagnosed, making early 
detection crucial for timely intervention, disease progression delay, and mortality reduction. Children with VSD 
typically exhibit significant left-to-right cardiac shunts with systemic pulmonary circulation imbalance, often 
accompanied by PAH. Infants are at a disadvantage because their organs are not yet fully developed, making 
them more susceptible to congestive heart failure and frequent respiratory infections, which can lead to a critical 
state7,15. PAH-VSD includes various clinical subtypes with distinct symptoms, cardiac functions, hemodynamics, 
and medium- to long-term survival rates. Patients with CD still require anti-PAH medication after VSD surgery, 
and early intervention may explain their better prognosis.

PAH diagnosis currently involves both invasive and noninvasive methods. Although cardiac catheterization 
remains the gold standard, its prognostic limitations, high cost, complexity, and the risk of complications 
restrict its widespread use. Noninvasive techniques include Doppler Echo, computed tomography, and chest 
radiography. Echo measures the maximum tricuspid regurgitation velocity for PAH assessment16. Chest DR 
reveals increased pulmonary blood flow, pulmonary artery elevation, right lower pulmonary artery thickening, 
and right ventricular hypertrophy7,8.

AI applications in Echo and DR image analyses enable automatic PAH-VSD detection, offering improved 
sensitivity (reducing missed diagnoses) and specificity (avoiding unnecessary referrals), thereby optimizing 

Fig. 4.  Performance of multipath system to distinguish CD in the DATA Ⅰ. (A) Confusion matrix of Echo-
path model. (B) Confusion matrix of Chest DR-path model. (C) Confusion matrix of the hybrid model. (D) 
Receiver Operating Characteristic of the hybrid model.

 

AUC (%) 95% CI Accuracy (%)

The Echo-path model 0.86 0.83–0.88 0.85

The chest DR-path model 0.84 0.81–0.86 0.84

The hybrid model 0.94 0.90–0.96 0.94

Table 4.  Comparison of CD recognition performance using multipath system in DATA Ⅰ.
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resource allocation and minimizing errors. Previous study utilized AI models pretrained on ImageNet 
databases for congenital heart disease diagnosis17. ResNet-18 exhibited the highest sensitivity (0.970), specificity 
(0.982), and AUC (0.948) in this study, significantly improving the diagnostic accuracy of radiologists. In our 
previous study, the ResNet-50 model was trained on chest DR images from 831 patients with VSD, which 
allowed us to retrospectively predict the development of postoperative PAH. In the independent test set, 
ResNet-50 significantly outperformed the physicians (AUC = 0.81 vs. 0.65)15. The performance of the MMAI 
system developed by our institute has been further improved, with an AUC > 0.9 in the validation and test 
sets. GradCAM enhances model interpretability by generating heatmaps (e.g., highlighting pulmonary artery 
segments in ResNet-50). However, these heatmaps only indicate correlation, not causality, and may deviate 

Fig. 6.  Binary classification performance using the proposed Multimodal Multipath Artificial Intelligence 
(MMAI) system on Internal test set (A) and External test set (B).

 

AUC (%) Accuracy (%) Sensitivity (%) Specificity (%) F1-score

The internal test set(n = 130) 0.916 0.91 0.90 0.90 0.90

The external test set(n = 134) 0.905 0.90 0.90 0.91 0.90

Table 5.  Performance of MMAI in different test sets.

 

Fig. 5.  The hybrid path model prioritizes the pulmonary artery region by utilizing a heatmap visualization in 
Echo (A) and Chest DR (B) images.
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from clinicians’ diagnostic criteria, necessitating physician validation. GradCAM has become a standard tool 
in visual interpretability research because of its lightweight design and compatibility with existing models. 
Diller et al. analyzed 405 individuals diagnosed with PAH, 308 patients with right ventricular enlargement but 
without PAH, and 67 healthy subjects. They trained a deep learning network to segment the heart cavity in Echo 
images and extracted geometric information from the cardiac cycle with a sensitivity of 100% and specificity 
of 95% for detecting PAH18. GradCAM demonstrated that the ResNet-50 model focused on the pulmonary 
artery segment, demonstrating good interpretability15. The heatmaps generated using GradCAM only indicate 
regions of correlation that the model focuses on, but cannot establish a causal relationship between these regions 
and pathological outcomes. There may be discrepancies between the saliency in heatmaps and clinicians’ visual 
diagnostic criteria. Therefore, the heatmap results require cross-validation by physicians, in conjunction with the 
medical imaging characteristics.

The evaluation using Echo has limitations, and the PAH evaluation is based on the degree of tricuspid 
regurgitation. In the absence of significant or severe tricuspid regurgitation, an accurate PASP cannot be obtained 
by Echo16. Multiple data modalities often exhibit a certain degree of complementarity, which can provide more 
comprehensive information and help solve complex problems. This study utilized MMAI technology to efficiently 
identify and evaluate the PAH-VSD subtypes by drawing on multimodal image data from Echo and chest DR.

Limitations: While demonstrating promising results, our study has several important limitations that warrant 
discussion. ①Computational and Clinical Constraints: The deep learning framework employed carries inherent 
limitations in generalizability. Although sensitivity analysis is essential for clinical applicability evaluation, 
comprehensive assessments were precluded by: (a) GPU memory constraints impacting computational capacity, 
and (b) logistical challenges in multicenter clinical data acquisition. ②Although our study determined the 
hyperparameter combination through cross-validation and grid search, the hyperparameter optimization 
was solely based on conventional methods (e.g., validation loss minimization) without further robustness 
verification via sensitivity analysis. The grid search range might not fully cover potentially superior parameter 
spaces. Future work could enhance model reliability through systematic hyperparameter validation. ③Several 
critical validation gaps remain in the clinical verification requirements: Given the heterogeneity of CHD types 
associated with CHD-PAH and the limited data size of this study, external validation with larger cohorts is 
necessary. Although the proposed MMAI system showed a promising classification performance, rigorous 
clinical validation is required before its deployment to ensure safety and efficacy. While the annotations by 
senior radiologists help ensure diagnostic quality, there is a lack of quantitative inter-rater reliability assessments. 
We emphasize that all AI-based diagnostics must be integrated with the following: comprehensive patient 
symptoms, physical examination findings, and relevant auxiliary test results. The current MMAI model is strictly 
an auxiliary decision-support tool that requires clinician supervision.

Conclusions
Our preliminary study demonstrates that the MMAI system, developed based on preoperative Echo and chest 
DR images from VSD patients under 1 year of age, shows potential for assisting in preoperative classification of 
CD prior to surgery. These findings warrant further validation through larger-scale clinical studies.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper. Should any 
raw data files be needed in another format they are available from the corresponding author upon reasonable 
request.
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