

OPEN

Eragrostis curvula cultivars improve soil bacterial diversity, extracellular enzyme activities, and nutrition in grassland ecosystem soils

Nqobile Motsomane¹ & Anathi Magadlela^{1,2}✉

Research on *Eragrostis curvula* has focused primarily on its value for pastures and as a potential food source, while the contribution of its cultivars to soil nutrient cycling in nutrient-poor grassland ecosystems is still poorly understood. In this study, we assessed the effects of *E. curvula* cultivars on soil bacterial communities, enzyme activities, and soil properties in grassland soils. Soil samples were analysed for nutrient concentrations, pH, and enzyme activity. Pot trials with *E. curvula* Ermelo and Agpal cultivars were conducted over four months in a greenhouse. Pre- and post-harvest soils were assessed for changes in nutrient profiles, enzyme activities, and bacterial communities. There was an increase in the bacteria isolated from post-harvest soils compared to pre-planting soils. Soil growing the cultivars showed a significant increase in the nitrate reductase activity across all study sites. Soil N concentrations and pH increased in all post-harvest soils. The Pearson correlation coefficients between soil enzymes and nutrients showed that alkaline phosphatase, acid phosphatase and glucosidase were moderately positively correlated with phosphorus ($r=0.41, 0.40$, and 0.40 respectively) and negatively correlated with pH ($r= -0.33, -0.32$ and -0.34 respectively). A weak positive correlation was observed between nitrate reductase and soil nitrogen ($r=0.22$). These findings highlight how *E. curvula* cultivars shift the microbial profile over time while increasing N and pH in grassland ecosystem soils.

Keywords Nutrient cycling, Bacterial communities, Nutrient-poor soils, Cultivar effects

Eragrostis curvula, a C4 perennial grass species native to southern Africa^{1,2}, is widely distributed in natural and agricultural grasslands³. The wide distribution of *E. curvula* in grasslands is attributed to its ability to tolerate a wide range of environmental conditions⁴, fast germination^{5,6}, and water use efficiency⁷. While considered an invasive weed that threatens natural ecosystems in countries such as Chile, Europe, and Asia^{6,8}, in native southern Africa, *E. curvula* holds potential for diversifying food systems⁹ and is cultivated for pasture⁴. The benefits of utilising *E. curvula* as a food and for pasture extend beyond its forage value and food but may be linked to nutrient cycling. Brevedan et al.¹⁰ studied nitrogen (N) cycling in an ecosystem with *E. curvula* and reported that microbes might play a role in the immobilisation of N from dead *E. curvula* roots- showcasing an intricate interplay between the plant, soil microbiome, and nutrient cycling in ecosystems where *E. curvula* thrives.

Soil microorganisms and their associated enzyme activities play a significant role in the geochemical cycling of elements and their subsequent conversion into organic compounds¹¹. These microorganisms and their associated enzyme activities are influenced by environmental factors such as soil properties and other abiotic factors, as per the filter theory explained by Motsomane et al.¹². Plants influence soil microbial communities through root exudates, which supply energy and facilitate colonisation of the rhizosphere^{13–16}. The composition of these exudates varies across species and cultivars¹⁷, thereby shaping the microbial assemblages that establish in the rhizosphere and producing plant-specific community profiles¹⁸. This plant–microbe association is consistent with the hologenome theory, which proposes that a host and its microbiota constitute a single evolutionary unit—the holobiont, that collectively contributes to ecological fitness and niche adaptation^{12,19}.

While the influence of plants, microbial communities, and their associated enzymes on ecosystem functioning is widely studied in leguminous plants and economically significant annual plants, there is a notable

¹School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa. ²Centre of Global Change, Faculty of Natural and Applied Sciences, Sol Plaatje University, Private Bag X5008, Kimberley 8300, South Africa. ✉email: anathimagadlela@icloud.com

knowledge gap regarding perennial and native plants such as *E. curvula*¹⁸. Investigating nutrient cycling in *E. curvula* ecosystems and assessing how different cultivars improve nutrient cycling will fill the knowledge gap and provide insights into the hologenome dynamics of *E. curvula* cultivars in South African grasslands. The most prevalent *E. curvula* cultivar is the Ermelo cultivar, as Grunow et al.²⁰ reported that a high percentage of *E. curvula* pastures in South Africa are the Ermelo cultivar. In contrast to the Ermelo cultivar, the Agpal cultivar is a newer cultivar that is rarely reported in literature²¹. The lack of knowledge on the Agpal cultivar underscores the need for a comprehensive study on these cultivars' nutrient cycling roles and hologenome dynamics.

This study aims to determine the effects of *E. curvula* on soil bacterial communities, associated extracellular enzyme activities, and soil chemical properties. Also, this study aims to determine if these effects differ between the Ermelo and Agpal cultivars. The objectives of this study include (1) determining the soil characteristics (pH, exchange acidity, total cation, and nutrient concentrations) of soils collected at three sites in Heidelberg, pre-planting and post-harvest of *E. curvula* cultivars grown for over four months, (2) Identifying the nitrogen (N) fixing, phosphorus (P) solubilising, and N cycling bacteria found in the collected soils pre-planting and post-harvest of *E. curvula* cultivars, and (3) assaying the soil nutrient (N, carbon (C), and P) cycling enzyme activities in collected soils pre-planting and post-harvest of *E. curvula* cultivars.

Materials and methods

Study sites and soil collection

Soil samples were collected from three geographical sites in Heidelberg, Gauteng, South Africa. These sites included Jameson Park (26°26'31.7"S; 28°26'01.4"E), Kaydale (26°29'12.4"S; 28°23'02.1"E), and Rensburg (26°30'16.0"S; 28°26'11.3"E). Heidelberg is in Gauteng, which consists of savanna and grassland ecosystems²². In Gauteng, Heidelberg experiences summer rainfall followed by dry winters²². Annual temperatures range from 3 to 25 °C, and precipitation ranges from 600 to 700 mm per annum^{22,23}. The soil clay percentage for Jameson Park, Kaydale, and Rensburg soils was 29.25%, 29%, and 27.5%, respectively. The clay content of the study sites may be influenced by the study sites being near the Tsakane Clay grassland. From each site, 30 soil samples collected 2 m apart were mixed to form composite soils as per Magadlela et al.²⁴.

Pot trials

Eragrostis curvula, Ermelo and Agpal cultivars, seeds were sourced from AGT Foods, South Africa, and Agricol seeds, South Africa, respectively. Forty pots (25 cm diameter) were used; each pot contained four seeds. This randomized block experimental design was used for each site and cultivar. Seed germination and plant growth trials were conducted under ambient conditions in the greenhouse at the University of KwaZulu Natal, Westville Campus, South Africa. The greenhouse day temperatures were 22–37 °C and 12–17 °C at night. The pots were irrigated on alternative days. Every month, five pots per site for each cultivar were harvested. The soils collected from each replicate were mixed to form composite soil samples, three 500 g samples from each composite mix were sent for soil characteristic analysis at the Analytical Services Unit, KwaZulu Natal Department of Agriculture and Rural Development, Cedara, South Africa, and the remainder was stored at 4 °C for extracellular enzyme activity and bacterial extraction and identification. Chaparro et al.²⁵ reported that plant age influences root secretions, thus affecting microbial communities in rhizosphere soils. Alagbo and Chauhan²⁶ reported that *E. curvula* matures after four months. Thus, the study was conducted over four months (late Autumn, April-May, and early Winter, June-July).

Extracellular enzyme activities

Soil samples collected after each harvest were assayed for β -glucosidase, N-acetylglucosaminidase, acid phosphatase, and alkaline phosphatase activities (expressed as $\text{nmol h}^{-1}\text{g}^{-1}$) using the fluorescence-based method described by Jackson et al.²⁷ and Zungu et al.²⁸. Briefly, soil samples (10 g soil/100 ml autoclaved dH_2O) were homogenised at medium speed in a shaker for two hours and stored overnight at 4 °C. The supernatants were transferred into black 96-well microplates before adding their respective substrates. The sample run consisted of 200 μl soil aliquot and 50 μl substrate, alongside reference standards (200 μl bicarbonate buffer + 50 μl standard), quench standard (200 μl soil aliquot + 50 μl standard), sample control (200 μl soil aliquot + 50 μl buffer), negative controls (200 μl buffer + 50 μl substrate), and blanks (250 μl buffer). The 96-well plate was incubated at 25 °C for 2 h. Thereafter, the reaction was stopped by adding 5 μl of 0.5 M NaOH to each well. The fluorescence was measured at 450 nm on a Glomax Multi Plus microplate reader. The buffer and standard were adjusted to pH five before determining acid phosphatase activity.

Nitrate reductase activity (expressed as $0.1 \mu\text{mol h}^{-1}\text{g}^{-1}$) assays were done using a modified protocol described by Kandeler²⁹ and Ndabankulu et al.³⁰. A volumetric flask wrapped in foil was filled with 1 ml of 25 mM KNO_3 , 4 ml of 0.9 mM 2,4-dinitrophenol, and 5 ml of milliQ dH_2O . After that, 5 g of soil was added to the solution, and the flask was sealed with foil, shaken, and incubated in an oven at 30 °C for 24 h. After incubation, 10 ml of 4 M KCl was added to the soil mixture, succinctly mixed, and filtered using filter paper (Whatman number 1, Sigma-Aldrich, Darmstadt, Germany). The enzymatic reaction was initiated by adding 2 ml of the filtrate to 1.2 ml of 0.19 M ammonium chloride buffer (pH 8.5) and 0.8 ml of a colour reagent consisting of 1% sulfanilamide, 1 N HCl, and 0.02% N-(1-naphthyl) ethylenediamine dihydrochloride (NEDD). The solution was incubated at 30 °C for 30 min. The absorbance was measured at 520 nm using an 1800 UV spectrophotometer. The nitrite (NO_2^-) liberated into the medium was extrapolated from a prepared standard curve with KNO_3 .

Soil bacterial identification

To examine the effects of *E. curvula* cultivars on soil bacterial communities, experimental soils sampled before and after each harvest of *E. curvula* growth period over four months were used for bacterial extraction and identification as per protocols by Ndabankulu et al.³⁰. The soil samples were subjected to serial dilutions, and

50 μ L of each serial dilution were cultured in sterile Petri plates containing selective media (Pikovskaya's plate containing tricalcium phosphate (TCP) for P-solubilizing bacteria, Simmons citrate agar for N-cycling bacteria, and Jensen's media agar for N-fixing bacteria). Each selective media was replicated three times and incubated at 30°C for five days. Pure bacterial colonies were obtained by repeated streaking/subculturing. A small portion of the pure bacterial colonies was amplified through polymerase chain reaction (PCR) using the 16S ribosomal RNA gene primers: 63F (5' CAGGCCTAACACATGCAAGTC 3') and 1387R (5' GGGCGGTGTACAA GGC 3') from Inqaba Biotechnical Industries (Pty) Ltd (Pretoria, South Africa). The PCR amplification was performed using an EmaraldAmp GT Master Mix with the following conditions: Initial denaturation at 94°C for 5 min, followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 55°C for 30 s and extension at 72°C for 2 min, with additional extension at 72°C for 10 min. The PCR products were separated by electrophoresis on 1% (w/v) agarose gel and visualized under UV light to determine the correct product size amplification. The amplicons were sent for sequencing at Inqaba Biotechnical Industries (Pty) Ltd, Pretoria, South Africa. The DNA sequences were edited and compared to the nucleotide sequences of known bacteria in the GenBank database of the National Centre for Biotechnology Information (NCBI) by using the Basic Local Aligned Search Tool (BLAST) (<https://www.ncbi.nlm.nih.gov>, 19/12/23).

Soil chemical properties determination

Three subsamples of 500 g from pre-planting and post harvest soils were sent to the Analytical Services Unit, KwaZulu Natal Department of Agriculture and Rural Development, Cedara, South Africa, for soil characteristic analysis (nutrient concentrations, total cation concentration, exchange acidity, and pH). The characteristic soil analysis was performed per protocols Manson and Roberts³¹ explained. Ambic-2 solution containing 0.25 M NH_4CO_3 , 0.01 M Na_2EDTA , 0.01 M NH_4F , and 0.05 g/L superfloc (N100) was adjusted to pH 8 using concentrated ammonia solution and used to extract P, potassium (K), zinc (Zn), and copper (Cu)³¹. The extracts were filtered using Whatman no.1, and a 2 ml filtrate aliquot was used to determine the P concentration using a modified protocol of Murphy and Riley's³² molybdenum blue procedure. The K concentration was determined by diluting 5 ml aliquot of the filtrate with 20 ml de-ionised water using atomic absorption, and the remaining undiluted filtrate was used to determine the zinc, copper, and manganese concentration using atomic absorption spectroscopy³¹. The magnesium (Mg) and calcium (Ca) concentrations were determined by stirring sample cups containing 25 ml of soil sample and 25 ml of 1 M KCl solution in a multiple stirrer (400 rpm) for 10 min³¹. The stirred mixture was filtered with Whatman no.1 paper. Five millilitres of the filtrate was diluted with 20 ml 0.0356 M SrCl_2 , and Ca concentrations were determined using atomic absorption³¹. Soil nitrogen concentration was measured using the Automated Dumas dry combustion method with a LECO CNS 2000 (Leco Corporation, USA). Soil samples were weighed in a ceramic crucible, and 0.5 g vanadium pentaoxide was used as a combustion catalyst³¹. The crucible was placed in a horizontal furnace and burned in a stream of oxygen at 1350 °C, and soil nitrogen was measured as N_2 in a thermal conductivity cell³¹. Soil pH was determined by mixing 10 ml of soil sample and 25 ml of 1 M KCl in sample cups and stirring in a multiple stirrer at 400 rpm for 5 min. The suspension was left to rest for 30 min, and the pH was measured using a gel-filled combination glass electrode while stirring³¹.

Statistical analysis

The statistical software R (version 3.6.2) was used for all analyses. A two-way ANOVA was conducted separately for each site to assess the effects of cultivar (Ermelo and Agpal) and month of harvest (April, May, June, and July) on soil enzyme activities and soil characteristics. The stats package was used for core functions, and the car package was used for Levene's test of homogeneity. Assumptions of normality and homogeneity of variance were assessed using the Shapiro-Wilk and Levene's test, respectively³³. Where ANOVA results indicated significant effects, Tukey's HSD post hoc test was performed to separate the means. In cases where assumptions of normality or homogeneity of variance were violated, the data were log-transformed to stabilise variances and improve normality prior to analysis. Assumptions were re-assessed following transformation, and the two-way ANOVA was conducted on the transformed data where appropriate. Furthermore, relationships between soil nutrients and enzyme activities were determined using principal component analysis (PCA). The PCA was performed using the prcomp() function from base R, and visualisation was done using the ggplot2 package³⁴. The heatmap was generated in R using the ggplot2 package³⁴.

Results

Soil bacterial identification

Pre-planting soils from all sites had 2–3 bacterial isolates from *Bacillus*, *Flavobacterium*, and *Pedobacter* genera (Table 1). Post-harvest, bacterial diversity increased across all sites, with more than four isolates from Ermelo and Agpal soils, including genera such as *Arthrobacter*, *Pseudomonas*, and *Achromobacter* (Table 1).

Rensburg soils had the highest bacterial diversity post-harvest, and overall, both cultivars increased the bacterial diversity and abundance compared to pre-planting soils (Fig. 1).

Effects of month of harvest and cultivar on extracellular enzyme activities

The effects of *E. curvula* cultivars and month of harvest on soil extracellular enzyme activity over four months are represented in Table 2. In Jameson Park, the cultivar and month of harvest significantly affected β -glucosidase, alkaline phosphatase, acid phosphatase, N-acetylglucosaminidase, and nitrate reductase activities, with significant interaction effects observed for all enzymes. In Kaydale, the month of harvest significantly influenced β -glucosidase, acid phosphatase, alkaline phosphatase, and N-acetylglucosaminidase activities, while cultivar-month interactions were significant for β -glucosidase, acid phosphatase, and nitrate reductase. In Rensburg, harvest month had a significant main effect on β -glucosidase, acid phosphatase, alkaline phosphatase,

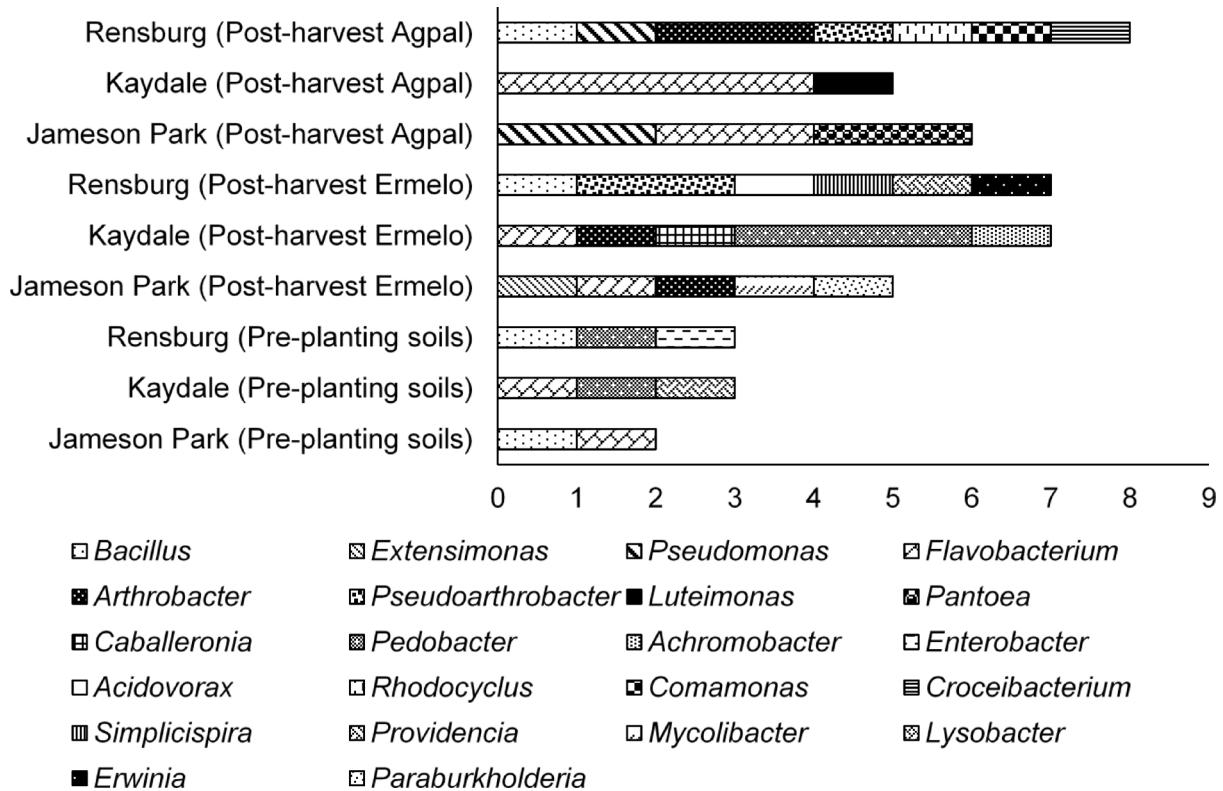

Treatment	Strain	Accession number	Similarity (%)
Jameson Park			
Pre-planting soils	<i>Bacillus zanthoxyli</i> strain 1433 <i>Flavobacterium anhuiense</i> strain D3	NR_164882.1 NR_044388.1	98.67 93.01
Ermelo	<i>Arthrobacter nitrophilicus</i> strain SJCon	NR_178397.1	100.00
	<i>Paraburkholderia guartelaensis</i> strain CNPSo 3008	NR_169402.1	99.93
	<i>Extensimonas perlucida</i> strain HX2-24	NR_169362.1	98.27
	<i>Mycolicibacter virginensis</i> strain MO-233	NR_149186.1	99.67
	<i>Flavobacterium anhuiense</i> strain D3	NR_044388.1	99.09
Agpal	<i>Pantoea ananatis</i> strain LMG 2665	NR_119362.1	99.50
	<i>Pantoea stewartii</i> subsp. <i>indologenes</i> strain CIP 104,006	NR_104928.1	99.07
	<i>Pseudomonas piscis</i> strain CMAA1215	NR_169429.1	99.92
	<i>Flavobacterium tistriatum</i> strain GB 56.1	NR_149282.1	96.32
	<i>Pseudomonas aylmerensis</i> strain S1E40	NR_169460.1	91.00
	<i>Flavobacterium anhuiense</i> strain D3	NR_044388.1	99.58
Kaydale			
Pre-planting	<i>Flavobacterium anhuiense</i> strain D3 <i>Pedobacter chitinilyticus</i> strain CM134L-2 <i>Lysobacter prati</i> strain SYSU H10001	NR_044388.1 NR_180020.1 NR_180692.1	99.90 98.41 97.38
Ermelo	<i>Caballeronia catudai</i> strain LMG 29,318	NR_145605.1	98.92
	<i>Achromobacter marplatensis</i> strain R-46,660	NR_117614.1	99.15
	<i>Arthrobacter pokkali</i> strain P3B162	NR_149802.1	99.96
	<i>Flavobacterium anhuiense</i> strain D3	NR_044388.1	98.48
	<i>Pedobacter frigiditerre</i> strain RP-1-13	NR_173500.1	89.92
Agpal	<i>Pedobacter chitinilyticus</i> strain CM134L-2	NR_180020.1	99.05
	<i>Pedobacter pollutisoli</i> strain TBBPA-24	NR_165750.1	99.29
	<i>Flavobacterium anhuiense</i> strain D3	NR_044388.1	100
	<i>Luteimonas lumbri</i> strain 1.1416	NR_170461.1	99.73
	<i>Flavobacterium amnigenum</i> strain I3-3	NR_169462.1	99.12
Rensburg	<i>Flavobacterium tistriatum</i> strain GB 56.1 16 S	NR_149282.1	99.89
	<i>Flavobacterium fluviatile</i> strain TAPY14	NR_163630.1	100.00
Pre-planting	<i>Enterobacter ludwigii</i> strain EN-119 <i>Pedobacter chitinilyticus</i> strain CM134L-2 <i>Bacillus subtilis</i> subsp. <i>subtilis</i> strain 168	NR_042349.1 NR_180020.1 NR_102783.2	98.65 99.37 96.92
Ermelo	<i>Acidovorax delafieldii</i> strain 133	NR_028714.1	99.57
	<i>Simplicispira soli</i> strain CA-16	NR_159921.1	99.98
	<i>Pseudarthrobacter encleensis</i> strain NIO-1008	NR_134699.1	97.52
	<i>Pseudarthrobacter niigatensis</i> strain LC4	NR_041400.1	92.59
	<i>Bacillus nakamurai</i> strain NRRL B-41,091	NR_151897.1	93.91
Agpal	<i>Erwinia phyllosphaerae</i> strain CMYE1	NR_181782.1	95.96
	<i>Providencia huaxiensis</i> strain WCHPr000369	NR_174258.1	98.03
	<i>Croceibacterium ferulae</i> strain SX2RGS8	NR_165000.1	97.88
	<i>Rhodococcus tenius</i> strain 2761	NR_025839.1	99.65
	<i>Comamonas terrae</i> strain A3-3	NR_108609.1	97.83
	<i>Pseudarthrobacter siccitolerans</i> strain 4J27	NR_108849.1	99.73
	<i>Bacillus subtilis</i> subsp. <i>subtilis</i> strain 168	NR_102783.2	98.51
	<i>Arthrobacter woluwensis</i> strain 1551	NR_044894.1	99.30
	<i>Arthrobacter alkaliphilus</i> strain LC6	NR_041401.1	96.28
	<i>Pseudomonas aylmerensis</i> strain S1E40	NR_169460.1	97.32

Table 1. Molecular identification of bacterial isolated from pre-planting, post Ermelo and post Agpal cultivar harvest from Jameson park, Kaydale and Rensburg soils collected from heidelberg, gauteng.

and N-acetylglucosaminidase, with cultivar-month interactions significantly affecting β -glucosidase, acid phosphatase, and nitrate reductase. Across all sites, enzyme activities were consistently higher in post-planting than pre-planting soils.

Extracellular enzyme activities of Ermelo and Agpal post-harvest soils

The extracellular enzyme activities of Ermelo and Agpal post-harvest soils across April, May, June, and July are presented in Table 3. In Jameson Park, nitrate reductase activity increased over time, peaking in July for both cultivars. N-acetylglucosaminidase and β -glucosidase activities decreased over the months. Alkaline phosphatase decreased in Ermelo soils, while Agpal showed a decrease in May and June followed by an increase in July. Acid phosphatase decreased in both cultivars, with Agpal showing a slight increase in July. In Kaydale, nitrate reductase increased monthly in Ermelo soils, while Agpal peaked in June and decreased in July. N-acetylglucosaminidase, acid phosphatase, and β -glucosidase activities decreased in June and July across both cultivars. In Rensburg, nitrate reductase decreased in Ermelo in May and June but increased in July; Agpal increased until June, then decreased. N-acetylglucosaminidase, acid phosphatase, and β -glucosidase activities decreased over time in both cultivars. Alkaline phosphatase decreased in Ermelo, with Agpal showing a decrease in May and June followed by an increase in July. Across all sites, enzyme activities were higher in post-planting compared to pre-planting soils.

Fig. 1. Species diversity and abundance of bacteria isolated from pre-planting and post Ermelo and Agpal harvest in soils collected from Jameson Park, Kaydale, and Rensburg soil, Heidelberg, Gauteng.

Effects of month of harvest and cultivar on soil nutrient concentrations and pH

The characteristics of soils collected in Jameson Park, Kaydale, and Rensburg, Heidelberg pre- and post *Eragrostis curvula* harvest are represented in Table 4. In Jameson Park soils, the month of harvest and cultivar used had significant main effects on the P concentrations. The month of harvest had a significant main effect on the N concentrations, while cultivar and month of harvest had significant interaction effects on the N concentrations. The month of harvest and cultivar used had significant main and interaction effects on the Mg concentrations and pH in Jameson Park soils. In Kaydale soils, the month of harvest had a significant main effect on the P concentrations. Month of harvest and cultivar had a significant interaction effects on the P concentrations in Kaydale soils. The month of harvest and cultivar used had a significant interaction effect on the N concentrations in Kaydale soils. The month of harvest and cultivar used had significant main and interaction effects on the Mg concentrations and pH in Kaydale soils. In Rensburg soils, The month of harvest and cultivar used had significant main and interaction effects on the P, N, and Mg concentrations in Rensburg soils. Month of harvest had a significant main effect on the pH in Rensburg soils, and there was a significant interaction effect between cultivar used and month of harvest for the pH in Rensburg soils.

Soil nutrient concentrations and pH of Ermelo and Agpal post harvest soils

The P, N, Mg and pH of Ermelo and Agpal post harvest soils is in Table 5. In Jameson Park, N concentrations were high in April and July for both cultivars. Phosphorus concentrations showed no significant changes in Agpal but decreased significantly in Ermelo in June and July. Magnesium concentrations in Ermelo soils were highest in April and declined over time, while Agpal soils decreased in May and June before increasing in July. Soil pH increased over time for both cultivars, peaking in May. In Kaydale, N concentrations increased in Ermelo soils, peaking in June, while Agpal soils showed a decrease with highest N in May and lowest in June. Phosphorus concentrations were lowest in July for Ermelo and in June for Agpal. Magnesium concentrations decreased in April and increased afterward in both cultivars. Post-harvest soil pH was higher than pre-planting, with highest values in May for both cultivars. In Rensburg, N concentrations peaked in July for Ermelo and in May for Agpal. Phosphorus concentrations declined over time, reaching their lowest in June (Ermelo) and July (Agpal). Magnesium concentrations were highest in July (Ermelo) and May (Agpal). Soil pH increased in Ermelo soils in May, then decreased in June and July. For Agpal, pH was highest in April and lowest in July.

Correlations between enzyme activities, soil nutrients and pH

Figure 2 displays Pearson correlation coefficients between enzyme activities and soil nutrient parameters. Alkaline phosphatase showed a moderate positive correlation with phosphorus ($r=0.41$), while acid phosphatase and glucosidase also correlated positively with phosphorus ($r=0.40$ and $r=0.40$, respectively). Nitrate reductase

Site			DF	F Value	p value
Jameson Park	Nitrate reductase (µmol/h/g)	Cultivar	1	19.77	<0.001
		Month of harvest	3	91.76	<0.001
		Cultivar: Month of harvest	3	21.72	<0.001
	N-acetylglucosaminidase (nmol/h/g)	Cultivar	1	8.776	0.005
		Month of harvest	3	19.633	<0.001
		Cultivar: Month of harvest	3	4.792	0.002
	Alkaline Phosphatase (nmol/h/g)	Cultivar	1	0.415	0.522
		Month of harvest	3	398.402	<0.001
		Cultivar: Month of harvest	3	275.019	<0.001
	Acid phosphatase (nmol/h/g)	Cultivar	1	4.085	0.0331
		Month of harvest	3	544.854	<0.001
		Cultivar: Month of harvest	3	362.618	<0.001
Kaydale	β-Glucosidase (nmol/h/g)	Cultivar	1	3.808	0.0566
		Month of harvest	3	586.038	<0.001
		Cultivar: Month of harvest	3	442.015	<0.001
	Nitrate reductase (µmol/h/g)	Cultivar	1	16.23	<0.001
		Month of harvest	3	440.19	<0.001
		Cultivar: Month of harvest	3	99.68	<0.001
	N-acetylglucosaminidase (nmol/h/g)	Cultivar	1	0.168	0.683
		Month of harvest	3	4.537	0.003
		Cultivar: Month of harvest	3	0.360	0.836
	Alkaline phosphatase (nmol/h/g)	Cultivar	1	3.52	0.067
		Month of harvest	3	988.66	<0.001
		Cultivar: Month of harvest	3	604.13	<0.001
Rensburg	Acid phosphatase (nmol/h/g)	Cultivar	1	0.636	0.429
		Month of harvest	3	837.111	<0.001
		Cultivar: Month of harvest	3	527.209	<0.001
	β-Glucosidase (nmol/h/g)	Cultivar	1	0.154	0.696
		Month of harvest	3	324.161	<0.001
		Cultivar: Month of harvest	3	246.546	<0.001
	Nitrate reductase (µmol/h/g)	Cultivar	1	19.77	<0.001
		Month of harvest	3	91.76	<0.001
		Cultivar: Month of harvest	3	21.72	<0.001
	N-acetylglucosaminidase (nmol/h/g)	Cultivar	1	0.988	0.325
		Month of harvest	3	3.627	0.011
		Cultivar: Month of harvest	3	0.230	0.920
	Alkaline Phosphatase (nmol/h/g)	Cultivar	1	1.342	0.252
		Month of harvest	3	699.285	<0.001
		Cultivar: Month of harvest	3	382.480	<0.001
	Acid Phosphatase (nmol/h/g)	Cultivar	1	0.074	0.789
		Month of harvest	3	663.924	<0.001
		Cultivar: Month of harvest	3	420.542	<0.001
	β-Glucosidase (nmol/h/g)	Cultivar	1	0.342	0.561
		Month of harvest	3	397.053	<0.001
		Cultivar: Month of harvest	3	257.729	<0.001

Table 2. Two-way ANOVA results showing the effects of the cultivar used and month of harvest and their interaction on soil enzyme activities.

showed a weak positive correlation with nitrogen ($r=0.22$). Negative correlations were observed between enzyme activities and soil pH. Specifically, glucosidase ($r = -0.34$), alkaline phosphatase ($r = -0.33$), and acid phosphatase ($r = -0.32$) were negatively correlated with pH. A weak negative correlation was also noted between alkaline phosphatase and magnesium ($r = -0.12$). Overall, enzyme activities displayed stronger correlations with phosphorus and pH than with other soil nutrients.

Enzyme	Cultivar	Pre-planting	April	May	June	July
Jameson Park						
Nitrate reductase ($\mu\text{mol}/\text{h/g}$)	Ermelo	80 \pm 11 ^a	773 \pm 37 ^b	1080 \pm 111 ^c	1279 \pm 23 ^d	2257 \pm 7 ^e
	Agpal		888 \pm 95 ^b	1650 \pm 16 ^c	2951 \pm 118 ^d	2007 \pm 681 ^e
N-acetylglucosaminidase (nmol/h/g)	Ermelo	5930 \pm 43 ^a	5988 \pm 198 ^a	5772 \pm 136 ^a	5222 \pm 218 ^a	5566 \pm 73 ^a
	Agpal		6020 \pm 203 ^a	5913 \pm 130 ^a	5515 \pm 64 ^b	5972 \pm 159 ^c
Alkaline phosphatase (nmol/h/g)	Ermelo	5967 \pm 197 ^a	6039 \pm 157 ^a	5772 \pm 136 ^b	3335 \pm 176 ^c	3322 \pm 203 ^c
	Agpal		5750 \pm 122 ^a	3263 \pm 288 ^b	3420 \pm 175 ^b	5878 \pm 176 ^c
Acid phosphatase (nmol/h/g)	Ermelo	5930 \pm 43 ^a	5988 \pm 198 ^a	5772 \pm 136 ^a	3356 \pm 142 ^b	3063 \pm 118 ^c
	Agpal		6020 \pm 203 ^a	3228 \pm 242 ^b	3344 \pm 220 ^b	5790 \pm 106 ^c
Glucosidase (nmol/h/g)	Ermelo	6041 \pm 80 ^a	6058 \pm 60 ^a	5885 \pm 144 ^a	3491 \pm 159 ^b	3368 \pm 158 ^b
	Agpal		6058 \pm 60 ^a	5885 \pm 144 ^a	3491 \pm 159 ^b	3368 \pm 178 ^b
Kaydale						
Nitrate reductase ($\mu\text{mol}/\text{h/g}$)	Ermelo	47 \pm 3 ^a	139 \pm 38 ^b	751 \pm 71 ^c	1830 \pm 69 ^d	2060 \pm 46 ^e
	Agpal		603 \pm 44 ^b	1201 \pm 99 ^c	1394 \pm 5 ^d	1073 \pm 186 ^e
N-acetylglucosaminidase (nmol/h/g)	Ermelo	6005 \pm 117 ^a	5990 \pm 93 ^a	5803 \pm 117 ^a	5755 \pm 137 ^b	5525 \pm 95 ^b
	Agpal		5953 \pm 210 ^a	5953 \pm 184 ^a	5564 \pm 73 ^b	5404 \pm 110 ^b
Alkaline phosphatase (nmol/h/g)	Ermelo	6067 \pm 137 ^a	6061 \pm 157 ^a	5803 \pm 117 ^b	3134 \pm 144 ^c	3479 \pm 119 ^c
	Agpal		5650 \pm 105 ^a	3239 \pm 107 ^b	3435 \pm 94 ^b	5842 \pm 109 ^c
Acid phosphatase (nmol/h/g)	Ermelo	6049 \pm 90 ^a	6043 \pm 125 ^a	5795 \pm 172 ^b	3440 \pm 110 ^c	3368 \pm 177 ^c
	Agpal		6043 \pm 34 ^a	5671 \pm 172 ^b	3459 \pm 110 ^c	3391 \pm 177 ^c
Glucosidase (nmol/h/g)	Ermelo	6005 \pm 117 ^a	5990 \pm 93 ^a	5803 \pm 117 ^a	3568 \pm 38 ^b	3172 \pm 293 ^b
	Agpal		5953 \pm 210 ^a	3343 \pm 243 ^b	3314 \pm 180 ^b	6028 \pm 116 ^c
Rensburg						
Nitrate reductase ($\mu\text{mol}/\text{h/g}$)	Ermelo	11 \pm 1 ^a	962 \pm 35 ^b	404 \pm 39 ^c	665 \pm 21 ^d	4002 \pm 55 ^e
	Agpal		468 \pm 57 ^b	2249 \pm 13 ^c	3921 \pm 47 ^d	940 \pm 114 ^e
N-acetylglucosaminidase (nmol/h/g)	Ermelo	6012 \pm 149 ^a	6050 \pm 137 ^a	5730 \pm 135 ^b	5697 \pm 117 ^b	5595 \pm 115 ^b
	Agpal		5870 \pm 119 ^a	5723 \pm 163 ^a	5458 \pm 143 ^b	5526 \pm 113 ^b
Alkaline phosphatase (nmol/h/g)	Ermelo	6083 \pm 98 ^a	6029 \pm 141 ^a	5730 \pm 135 ^b	3342 \pm 138 ^c	3423 \pm 204 ^c
	Agpal		5817 \pm 172 ^a	3388 \pm 196 ^b	3253 \pm 159 ^b	5848 \pm 106 ^c
Acid phosphatase (nmol/h/g)	Ermelo	5986 \pm 141 ^a	5964 \pm 125 ^a	5770 \pm 186 ^a	3355 \pm 168 ^b	3342 \pm 138 ^b
	Agpal		5964 \pm 123 ^a	5770 \pm 186 ^a	3354 \pm 168 ^b	3342 \pm 138 ^b
Glucosidase (nmol/h/g)	Ermelo	6012 \pm 149 ^a	6047 \pm 137 ^a	5730 \pm 135 ^a	3478 \pm 138 ^b	3217 \pm 371 ^b
	Agpal		5870 \pm 119 ^a	3311 \pm 181 ^b	3320 \pm 246 ^b	5826 \pm 157 ^c

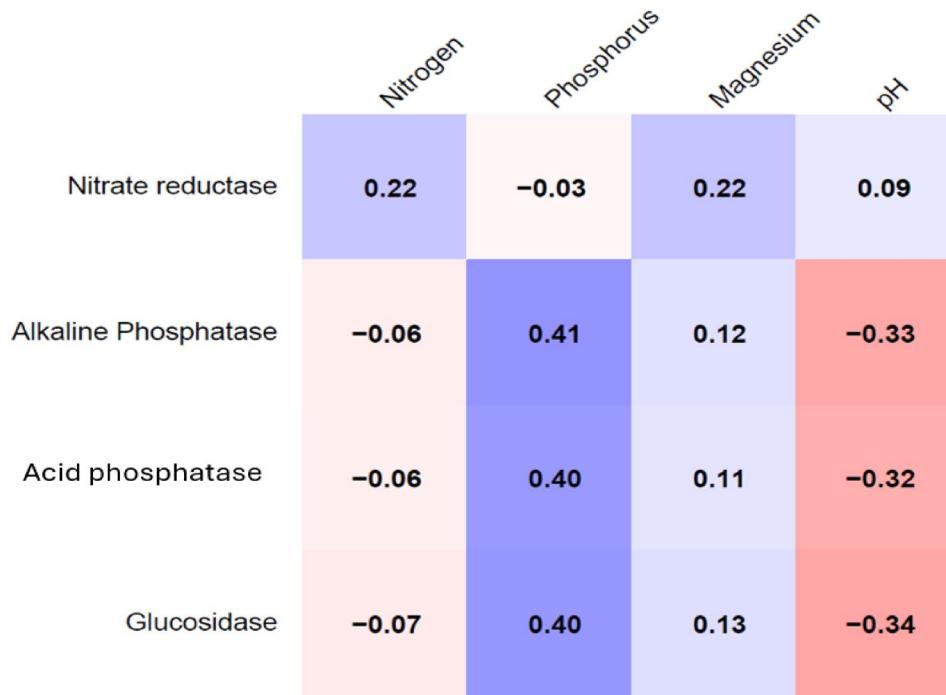
Table 3. Extracellular enzyme activities of *Eragrostis curvula* Ermelo and Agpal cultivars growing in soils collected from Jameson park, kaydale, and rensburg, heidelberg, gauteng. Values represent mean \pm se, different letters denote statistical differences after a two-way ANOVA test.

Discussion

Over time, *E. curvula* cultivars shift the soil microbial profile while increasing the pH of South African grassland ecosystem soils. The root exudates of the respective cultivars may be responsible for the microbial profile shift and, ultimately, changes in soil characteristics. According to Walker¹⁶ and Sasse and Martinho³⁵, various species and cultivars produce distinct root exudates that attract diverse microbes and enable plants to thrive in different environments³⁶. Differences in the root exudates from the Ermelo and Agpal cultivars may have increased the diversity of culturable bacteria isolated in Jameson Park, Kaydale, and Rensburg soils (Fig. 1). Root exudates provide carbon for microorganisms³⁷, which may have led metabolically inactive/dormant bacteria to “wake” up³⁸, leading to the increased diversity in the bacterial isolates, as reported in Fig. 1. Additionally, Ermelo and Agpal associated soils showed a diversity of bacterial isolates, indicating that the cultivars may have secreted exudates that attracted different bacterial species. These findings coincide with Bulgarelli et al.³⁹, who reported that host-microbe interactions affected the microbial diversity of wild and domesticated *Hordeum vulgare* rhizosphere soils. According to Hinsinger et al.⁴⁰, root exudates shape the plant microbiome consisting of plant growth-promoting rhizobacteria, beneficial microbes, and biocontrol agents, as illustrated by the diversity of bacterial isolates reported for Ermelo and Agpal associated soils. Ermelo associated soils from all sites had bacterial isolates belonging to the *Erwinia*, *Pedobacter*, *Bacillus*, *Paraburkholderia*, *Achromobacter*, *Acidovorax*, and *Providencia* genera which have been reported to play a role in N-fixation, P and K solubilisation, indole-3-acetic acid (IAA) production, and chitin degradation^{41–44}. The bacteria isolated from Agpal soils from all sites belonged to the *Pantoea*, *Flavobacterium*, *Arthrobacter*, *Comamonas*, *Pseudoarthrobacter*, and *Bacillus* genera, which have been reported to play a role in N cycling, N-fixation, IAA production, and P solubilisation^{45–47}.

Site	Soil nutrients		DF	F Value	p value
Jameson Park	Phosphorus (mg/kg)	Cultivar	1	45.71	0.026
		Month of harvest	3	33.68	0.019
		Cultivar: Month of harvest	3	4.80	0.607
	Nitrogen (mg/kg)	Cultivar	1	0.052	0.822
		Month of harvest	3	53.760	<0.001
		Cultivar: Month of harvest	3	6.688	0.004
	Magnesium (mg/kg)	Cultivar	1	711.9	<0.001
		Month of harvest	3	114.0	<0.001
		Cultivar: Month of harvest	3	138.6	<0.001
	pH	Cultivar	1	0.476	0.001
		Month of harvest	3	0.873	<0.001
		Cultivar: Month of harvest	3	0.0314	<0.001
Kaydale	Phosphorus (mg/kg)	Cultivar	1	1.890	0.188
		Month of harvest	3	4.600	0.017
		Cultivar: Month of harvest	3	6.987	0.003
	Nitrogen (mg/kg)	Cultivar	1	0.082	0.778
		Month of harvest	3	0.629	0.607
		Cultivar: Month of harvest	3	19.342	<0.001
	Magnesium (mg/kg)	Cultivar	1	3.52	0.067
		Month of harvest	3	988.66	<0.001
		Cultivar: Month of harvest	3	604.13	<0.001
	pH	Cultivar	1	20.07	<0.001
		Month of harvest	3	51.37	<0.001
		Cultivar: Month of harvest	3	15.27	<0.001
Rensburg	Phosphorus (mg/kg)	Cultivar	1	4.635	0.047
		Month of harvest	3	7.288	0.003
		Cultivar: Month of harvest	3	4.773	0.015
	Nitrogen (mg/kg)	Cultivar	1	34.71	<0.001
		Month of harvest	3	41.18	<0.001
		Cultivar: Month of harvest	3	25.14	<0.001
	Magnesium (mg/kg)	Cultivar	1	44.57	<0.001
		Month of harvest	3	56.47	<0.001
		Cultivar: Month of harvest	3	48.77	<0.001
	pH	Cultivar	1	0.054	0.819
		Month of harvest	3	5.220	0.011
		Cultivar: Month of harvest	3	10.045	<0.001

Table 4. Two-way ANOVA results showing the effects of the cultivar used and month of harvest and their interaction on soil nutrient concentrations and pH.


Plant growth-promoting rhizobacteria enhance nutrient acquisition by secreting extracellular enzymes that play a role in soil nutrient cycling⁴⁸. Extracellular enzymes such as β -glucosidase, N-acetylglucosaminidase, nitrate reductase, and acid and alkaline phosphatase play a significant role in soil C, N and P cycling⁴⁹. The Ermelo and Agpal cultivars increased the nitrate reductase activity in all study soil sites, and this may be attributed to dead roots increasing soil N causing it to be immobilised through N cycling¹⁰. According to Brevedan et al.¹⁰, *E. curvula* dead roots have a higher N concentration than live roots at all soil depths. Thus, the decomposition of these root residues increases N cycling, leading to a higher nitrate reductase activity. Eissenstat and Yanai⁵⁰ reported that the roots of perennial plants could last a few weeks to 35 weeks. Thus, the increased nitrate reductase activity of Ermelo and Agpal soils over the growth period may be associated with age-related root senescence, supported by the significant independent effect of the month of harvest on the nitrate reductase activity. Though an increase was observed in the nitrate reductase activity of soils associated with the Ermelo and Agpal cultivars, there were variations in the influence of the cultivars on the β -glucosidase and alkaline phosphatase activities. The increased β -glucosidase and alkaline phosphatase activity of Agpal soils in July may be attributed to a higher root senescence rate than the Ermelo cultivar. According to Martinez and Tabatabai⁵¹, β -glucosidase plays a role in the degradation of glucosides present in plant debris, which may have prompted an increased mobilisation of mineral elements⁵². An increase in nutrient mobilisation may have led to an increase in the β -glucosidase activity and influenced the enhanced total N concentration and alkaline phosphatase activity of Agpal associated soils. Magalef et al.⁵³ reported that N fertilisation increases phosphatase activity, thus, the increase in soil N may have led to an increase in the alkaline phosphatase activity.

Soil characteristics	Cultivar	Pre-planting	April	May	June	July
Jameson Park						
Nitrogen (mg/kg)	Ermelo	5.00 ± 0.17 ^a	2017.33 ± 48.60 ^b	1105.33 ± 167.44 ^c	1177.33 ± 287.46 ^c	2033.00 ± 36.37 ^d
	Agpal		1596 ± 112.65 ^b	1145 ± 134.89 ^c	1488.67 ± 95.04 ^d	2158.32 ± 140.58 ^e
Phosphorus (mg/kg)	Ermelo	16.67 ± 0.58 ^a	13.97 ± 1.05 ^a	15.03 ± 3.15 ^a	8.59 ± 2.42 ^b	9.40 ± 2.42 ^b
	Agpal		15.00 ± 2.65 ^a	16.43 ± 4.17 ^a	12.83 ± 3.45 ^a	13.76 ± 1.76 ^a
Magnesium (mg/kg)	Ermelo	120.00 ± 6.08 ^a	306.00 ± 5.57 ^b	213.63 ± 15.06 ^c	111.00 ± 10.54 ^d	127.13 ± 1.86 ^d
	Agpal		308.73 ± 9.72 ^b	267.60 ± 18.40 ^c	295.70 ± 4.56 ^c	329.67 ± 2.08 ^d
pH	Ermelo	4.72 ± 0.04 ^a	5.01 ± 0.02 ^a	6.01 ± 0.04 ^b	5.89 ± 0.35 ^b	5.73 ± 0.06 ^b
	Agpal		5.26 ± 0.13 ^a	6.06 ± 0.30 ^b	5.18 ± 0.12 ^c	5.02 ± 0.07 ^c
Kaydale						
Nitrogen (mg/kg)	Ermelo	4.30 ± 0.30 ^a	735 ± 24.27 ^b	924.00 ± 40.45 ^b	1437.33 ± 186.95 ^c	1023.67 ± 81.00 ^d
	Agpal		837.30 ± 32.40 ^b	1238 ± 256.38 ^c	720.47 ± 17.56 ^c	993.67 ± 58.43 ^d
Phosphorus (mg/kg)	Ermelo	16.67 ± 2.08 ^a	4.90 ± 1.15 ^b	8.97 ± 2.40 ^b	12.25 ± 2.63 ^c	6.37 ± 1.08 ^d
	Agpal		7.67 ± 3.74 ^b	10.02 ± 0.05 ^c	4.97 ± 1.25 ^d	5.27 ± 0.83 ^d
Magnesium (mg/kg)	Ermelo	216.67 ± 18.50 ^a	191.33 ± 8.50 ^b	257.33 ± 23.03 ^c	286.67 ± 10.50 ^c	210.70 ± 10.45 ^d
	Agpal		196.00 ± 12.53 ^{ch}	224.09 ± 7.23 ^{ch}	175.45 ± 11.24 ^{ci}	195.02 ± 0.05 ^{ci}
pH	Ermelo	4.88 ± 0.01 ^a	4.82 ± 0.07 ^a	5.46 ± 0.03 ^b	5.19 ± 0.10 ^b	5.44 ± 0.06 ^b
	Agpal		4.98 ± 0.07 ^a	5.40 ± 0.08 ^b	4.93 ± 0.06 ^c	5.02 ± 0.10 ^c
Rensburg						
Nitrogen (mg/kg)	Ermelo	11.77 ± 0.58 ^a	563.67 ± 62.16 ^b	984.67 ± 33.50 ^c	763 ± 65.60 ^d	1404.33 ± 188.70 ^e
	Agpal		659.71 ± 47.29 ^b	870.43 ± 44.21 ^c	675.30 ± 22.50 ^d	746.73 ± 20.18 ^d
Phosphorus (mg/kg)	Ermelo	18.33 ± 0.58 ^a	12.03 ± 3.75 ^a	15.93 ± 2.44 ^a	11.53 ± 0.57 ^b	13.43 ± 2.68 ^a
	Agpal		13.40 ± 3.82 ^a	15.87 ± 4.46 ^a	10.16 ± 1.40 ^b	3.50 ± 0.95 ^c
Magnesium (mg/kg)	Ermelo	432.67 ± 6.03 ^a	175.67 ± 12.22 ^b	224.50 ± 11.17 ^c	154.00 ± 23.52 ^d	337.30 ± 23.07 ^e
	Agpal		177.00 ± 23.07 ^b	221.92 ± 4.31 ^c	160.58 ± 0.71 ^d	173.58 ± 0.71 ^d
pH	Ermelo	5.06 ± 0.02 ^a	5.03 ± 0.19 ^a	5.60 ± 0.06 ^b	5.42 ± 0.16 ^b	5.41 ± 0.36 ^b
	Agpal		5.73 ± 0.23 ^b	5.62 ± 0.07 ^b	5.24 ± 0.21 ^c	4.94 ± 0.05 ^c

Table 5. Nitrogen, phosphorus, magnesium and pH of *Eragrostis curvula* Ermelo and Agpal post-harvest soils collected from Jameson park, kaydale, and rensburg, heidelberg, gauteng. Values represent mean ± se, different letters denote statistical differences after a two-way ANOVA test.

According to Li et al.⁵⁴, soil N concentration may have a dominant effect on the alkaline phosphatase activity due to the role of N in the synthesis of acid and alkaline phosphatases⁵⁵. Furthermore, the genes encoding alkaline phosphatase activity regulate P starvation, making alkaline phosphatase dependent on soil N and P⁵⁴. The lower soil P concentrations observed in Agpal soils collected in July from all study sites, combined with an increase in soil N, may have triggered the secretion of alkaline phosphatases. The moderately positive correlation of soil P and alkaline phosphatase activity in Fig. 2 is supported by the resource allocation model for extracellular enzymes, which suggests that microbes invest resources to synthesise enzymes that acquire deficient nutrients⁵⁶. Though the alkaline phosphatase activity has been reported to be more active in pH 9–11⁵⁷, Bergkemper et al.⁵⁸ reported that acidic soils increase the abundance of genes encoding alkaline phosphatase, thus supporting the high activity of alkaline phosphatase in Agpal soils. The P concentration of Agpal soils in all sites was relatively lower than that of Ermelo associated soils, which may be attributed to a lower soil pH. Phosphorus forms insoluble complexes with iron and aluminium in acidic soils, rendering P unavailable for uptake⁵⁹. The slightly higher pH of Ermelo associated soils may have led to a higher soil P concentration and, consequently, lower acid and alkaline phosphatase activities, as supported by the negative correlations between acid and alkaline phosphatase and pH in Fig. 2. Philippot et al.⁶⁰ reported that plant secondary metabolites alter soil pH. Thus, we can deduce that the Ermelo cultivar secreted higher metabolite concentrations, leading to an increased soil pH. Furthermore, an increase in pH has been linked to higher absorption and uptake of cations⁶¹, which could have influenced the reduction of Mg concentrations in Ermelo associated soils compared to Agpal soils.

Cultivars used had significant effects on the soil enzyme activities and soil nutrients which may indicate that the exudates produced by the different cultivars had varying selection effects on the bacterial diversity and consequently affected the associated extracellular enzyme activities and soil characteristics. According to Motsomane et al.¹², environmental filters such as soil properties and abiotic factors play a role in the selection of bacterial communities. In addition, Hargreaves et al.⁶² reported that soil properties associated with topographic position significantly influenced the microbial composition more than the plant species in a corn-based annual cropping system and perennial switchgrass cropping system across three topographic positions. We can deduce that environmental factors influenced the soil characteristics, bacterial diversity, and soil nutrition for both cultivars. Differences in the influence of the Ermelo and Agpal cultivars on bacterial diversity, extracellular enzyme activities, and soil characteristics may have been attributed to differences in the timing of rhizodeposition. In a study on the rhizodeposition of maize, Pausch et al.⁶³ reported that 62% of total rhizodeposition was mineralised

Fig. 2. Heatmap showing Pearson correlation coefficients between soil enzyme activities, soil nutrients and pH of Ermelo and Agpal post harvest soils. Positive correlations are indicated in purple, while negative correlations are shown in peach. The strength of the correlation is represented by both the colour gradient and the numerical values within each cell. The heatmap was generated in R (version 3.6.2; R Core Team, <https://www.r-project.org/>) using the ggplot2 package.

in 16 days, with 31% in the soil and 7% in microbial biomass. Thus, the timing of rhizodeposition may have influenced the enzyme activity and soil nutrient analysis.

Engedal et al.⁶⁴ reported that root morphology plays a significant role in rhizodeposition. The lack of literature reporting on the growth physiology of the Agpal cultivar has made it difficult to compare how the growth physiology of these two cultivars could have influenced their role in soil nutrient cycling. While this study provides valuable insights into how *E. curvula* cultivars influence soil nutrient cycling, there are some limitations to consider. The study did not isolate or identify specific metabolites in root exudates, which limits our understanding of the precise mechanisms driving microbial shifts and enzyme activity changes. Additionally, the lack of detailed information on the growth physiology of the Agpal cultivar constrained comparative analyses between cultivars. Environmental variables, such as soil heterogeneity and topographic influences, may have also impacted results but were not fully controlled. Future studies incorporating metabolomic analyses of root exudates and more detailed physiological characterisation of cultivars would strengthen the understanding of these interactions.

Data availability

The datasets generated and/or analysed during the current study will be stored and available to the public in ResearchGate corresponding author (Anathi Magadlela) account and tagged to the manuscript once published. Also, all raw data can be requested from the corresponding author, Prof. Anathi Magadlela at anathimagadlela@icloud.com.

Received: 19 August 2025; Accepted: 10 September 2025

Published online: 14 October 2025

References

1. J Streetman, L. Reproduction of the lovegrasses, the genus eragrostis. I. E. chloromelas steud., E. curvula (Schrad.) nees, E. lehmanniana nees, and E. superba Poir. *Wrightia* **3**, 41–45 (1963).
2. Csurhes, S., Leigh, C. & Walton, C. African Lovegrass (*Eragrostis Curvula*) (Invasive Plant Risk Assessment). Department of Agriculture and Fisheries. Biosecurity Queensland. African lovegrass (*Eragrostis curvula*) (Invasive plant risk assessment) | QUT ePrints Accessed 15/09/23. (2016).
3. Firn, J. African Lovegrass in australia: A valuable pasture species or embarrassing invader? *Trop. Grassl.* **43**, 86–97 (2009).
4. Mynhardt, J. E., van Rooyen, M. W. & Theron, G. K. Competitive ability of two grass species: *Anthephora pubescens* and *Eragrostis curvula*. 2. Growth analysis. *South Afr. J. Bot.* **60**, 261–268 (1994).
5. Scott, J. D. & Rabie, J. W. Preliminary studies on growth and development of *Eragrostis curvula* and *Themeda Triandra*. *South. Afr. J. Sci.* **1**, 207–210 (1956).

6. Roberts, J., Singrayer, F., van Etten, E. & Turville, C. Germination biology of four climatically varied populations of the invasive species African Lovegrass (*Eragrostis curvula*). *Weed Sci.* **69**, 210–218 (2021).
7. Puliga, S., Vazzana, C. & Davies, W. J. Control of crop leaf growth by chemical and hydraulic influences. *J. Exp. Bot.* **47**, 529–537 (1996).
8. EPPO International. The situation of *Eragrostis curvula* in the EPPO region. (2020). (assessed 20 December 2023). <https://gd.eppo.int/reporting/article-393>.
9. Ghebrehiwot, H. M., Shimels, H. A., Kirkman, K. P., Laing, M. D. & Mabhaudhi, T. Nutritional and sensory evaluation of Injera prepared from tef and *Eragrostis curvula* (Schrad.) nees. Flours with sorghum blends. *Front. Plant. Sci.* **7**, 1–8 (2016).
10. Brevedan, R. E., Busson, C. A., Montani, T. & Fernandez, O. A. Production and nitrogen cycling in an ecosystem of eragrostis curvula in semi-arid argentina. Nitrogen content and transfers. *Acta Ecol.* **17**, 211–223 (1996).
11. Zhou, Y. et al. Soil bacterial function associated with Stylo (Legume) and Bahiagrass (Grass) is affected more strongly by soil chemical properties than by community composition. *Front. Microbiol.* **10**, 798 (2019).
12. Motsonane, N., Suinyuy, T. N., Pérez-Fernández, M. A. & Magadela, A. How the right evolved partners in cycads and legumes drive enhanced growth in a harsh environment. *Symbiosis* **90**, 345–353 (2023).
13. Marschner, P., Neumann, O., Kania, A., Weiskopf, I. & Lieberei, R. Spatial and Temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (*Lupinus albus* L.). *Plant. Soil.* **246**, 167–174 (2002).
14. Rosenzweig, N., Bradeen, J. M., Tu, Z. J., McKay, S. J. & Kinkel, L. L. Rhizosphere bacterial communities associated with long lived prairie plants vary in diversity, composition, and structure. *Can. J. Microbiol.* **59**, 494–502 (2013).
15. Chen, K., Chang, Y. & Chiou, W. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the Indigenous microbial community. A comparison study. *J. Chem. Technol. Biotech.* **91**, 1877–1888 (2016).
16. Walker, T. S. Root exudation and rhizosphere biology. *Plant. Physiol.* **132**, 44–51 (2003).
17. Jones, D. L., Hodge, A. & Kuzyakov, Y. Plant and mycorrhizal regulation of rhizodeposition. *New Phytol.* **163**, 459–480 (2004).
18. Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. *FEMS Microbiol. Ecol.* **68**, 1–13 (2009).
19. Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. *FEMS Microbiol. Rev.* **32**, 723–735 (2008).
20. Grunow, J. O., Pieterse, P. A. & deWitt, C. C. Preference rating and other characteristics of a few promising *Eragrostis curvula* ecotypes as determined by grazing sheep. *Proc. Grasl Soc. South. Afr.* **18**, 61–63 (1983).
21. Jordaan, D. G. & Brits, Y. *Planted Pasture and Lucerne production- Baseline Data for the North West Province. Department of Agriculture and Rural Development*, 1–63 (North West provincial government, 2002).
22. Environmental Management Framework Report. (accessed 21 May 2024). <https://www.ekurhuleni.gov.za/wp-content/uploads/2022/05/Section-A-Introduction-and-Status-Quo.pdf> (2014).
23. Dyson, L. L. Heavy daily-rainfall characteristics over the Gauteng Province. *Water SA* **35**, 627–638 (2009).
24. Magadela, A., Makhaye, N. & Pérez-Fernández, M. Symbionts in *Mucuna pruriens* stimulate plant performance through nitrogen fixation and improved phosphorus acquisition. *J. Plant. Ecol.* **14**, 310–322 (2021).
25. Chaparro, J. M. et al. Root exudation of phytochemicals in *Arabidopsis* follows specific patterns that are developmentally programmed and correlate with soil microbial functions. *PLoS ONE* **8**, e55731 (2013).
26. Alagbo, O. O. & Chauhan, B. S. Germination ecology of African Lovegrass (*Eragrostis curvula*) and herbicide options for its control. *Agriculture* **13**, 920 (2023).
27. Jackson, C. R., Tyler, H. L. & Millar, J. J. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. *JoVE* **80**, e5039 (2013).
28. Zungu, N. S., Egbewale, S. O., Olaniran, A. O., Pérez-Fernández, M. & Magadela, A. Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and Savannah ecosystems soils. *Appl. Soil. Ecol.* **155**, 103663 (2020).
29. Kandeler, E. Potential nitrification. In *Methods in Soil Biology* (eds Schinner, F. et al.) 146–149 (Springer-Verlag Berlin Heidelberg, 1995).
30. Ndabankulu, K. et al. Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils. *Sci. Rep.* **12**, 12601 (2022).
31. Manson, A. D. & Roberts, V. G. Analytical methods used by the soil fertility and analytical services section. KZN Agri-report no. N/A/2001/04, Pietermaritzburg, South Africa (2000).
32. Murphy, J. & Riley, J. R. A modified single solution method for the determination of phosphate in natural waters. *Anal. Chim. Acta* **27**, 31–36 (1962).
33. Fox, J., Weisberg, S. & An, R. *Companion to Applied Regression* 3rd edn. (Sage, 2019).
34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (2023). Available at: <https://www.R-project.org/>
35. Sasse, J., Martinho, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome?? *Trends Plant. Sci.* **23**, 25–41 (2018).
36. Lyu, D. et al. Plant holobiont theory: the Phytomicrobiome plays a central role in evolution and success. *Microorganisms* **9**, 675 (2021).
37. Baudoin, E., Benizri, E. & Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. *Soil. Biol. Biochem.* **35**, 1183–1192 (2003).
38. van Vliet, S. Bacterial dormancy: how to decide when to wake up. *Curr. Biol.* **25**, R753–755 (2015).
39. Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. *Cell. Host Microbe* **17**, 392–403 (2015).
40. Hinsinger, P., Bengough, A. G., Vetterlein, D. & Young, I. M. Rhizosphere: biophysics, biogeochemistry and ecological relevance. *Plant. Soil.* **321**, 117–152 (2009).
41. Yousuf, J. et al. Nitrogen fixing potential of various heterotrophic *Bacillus* strains from a tropical estuary and adjacent coastal regions. *J. Basic. Microbiol.* **57**, 922–932 (2017).
42. Ganesh, J., Singh, V., Hewitt, K. & Kaundal, A. Exploration of the rhizosphere Microbiome of native plant *Ceanothus velutinus* – an excellent resource of plant growth promoting bacteria. *Front. Plant. Sci.* **13**, 979069 (2022).
43. Chen, H. et al. Promotion of growth of alfalfa by *Erwinia persicina* Cp2 exopolysaccharides under NaCl stress. *Agronomy* **13**, 2129 (2023).
44. Damo, J. L. C. et al. Isolation and characterization of phosphate solubilizing bacteria from paddy field soils in Japan. *Microbes Environ.* **37**, ME21085 (2022).
45. Repert, D., Underwood, J. C., Smith, R. L. & Song, B. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon river at pilot station. *JGR Biogeosciences* **119**, 2328–2344 (2014).
46. Majeed, A., Muhammad, Z. & Ahmad, H. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. *Plant. Cell. Rep.* **37**, 1599–1609 (2018).
47. Han, S. H., Yoon, A. R., Oh, H. E. & Park, Y. G. Plant growth-Promoting microorganism *Pseudarthrobacter* sp. NIBRBAC000502770 enhances the growth and flavonoid content of *Geum Aleppicum*. *Microorganisms* **10**, 1241 (2022).
48. Sinsabaugh, R. L., Gallo, M. E., Lauber, C., Waldrop, M. & Zak, D. R. Extracellular enzyme activities and soil carbon dynamics for Northern hardwood forests receiving simulated nitrogen deposition. *Biochemistry* **75**, 201–215 (2005).

49. Adetunji, A. T., Lewu, F. B., Mulidzi, R. & Ncube, B. The biological activities of β -glucosidase, phosphatase, and urease as soil quality indicators: A review. *J. Soil. Sci. Plant. Nutr.* **17**, 794–807 (2017).
50. Eissenstat, D. M. & Yanai, R. D. The ecology of root lifespan. *Advan Ecol. Res.* **27**, 1–60 (1997).
51. Martinez, C. & Tabatabai, M. Decomposition of biotechnology by-products in soils. *J. Environ. Qual.* **26**, 625–632 (1997).
52. Himmelblau, E. & Amasino, R. M. Nutrients mobilized from leaves of *Arabidopsis Thaliana* during leaf senescence. *J. Plant. Physiol.* **158**, 1317–1323 (2001).
53. Margalef, O. et al. Global patterns of phosphatase activity in natural soils. *Sci. Rep.* **7**, 1–13 (2017).
54. Li, J. et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. *Geoderma* **404**, 115376 (2021).
55. Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. *Nat. Comm.* **5**, 3694 (2014).
56. Sinsabaugh, R. L. & Moorhead, D. L. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. *Soil. Biol. Biochem.* **26**, 1305–1311 (1994).
57. Browman, M. & Tabatabai, M. Phosphodiesterase activity of soils. *Soil. Sci. Soc. Am. J.* **42**, 284–290 (1978).
58. Bergkemper, F. et al. Novel oligonucleotide primers reveal a high diversity of microbes which drives phosphorus turnover in soil. *J. Microbiol. Methods.* **125**, 91–97 (2016).
59. Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. *Plant. Physiol.* **127**, 390–398 (2001).
60. Philippot, L., Raaijmakers, J., Lemanceau, P. & van der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. *Nat. Rev. Microbiol.* **11**, 789–799 (2013).
61. Barrow, N. J. & Hartemink, A. E. The effects of pH on nutrient availability depend on both soils and plants. *Plant. Soil.* **487**, 21–37 (2023).
62. Hargreaves, S. K., Willimas, R. J. & Hofmockel, K. S. Environmental filtering of microbial communities in agricultural soil shifts with crop growth. *PLoS ONE* **10**, e0134345 (2015).
63. Pausch, J., Tian, J., Riederer, M. & Kuzyakov, Y. Estimation of rhizodeposition at field scale: upscaling of a ^{14}C labeling study. *Plant Soil* **364**, 273–285 (2013).
64. Engedal, T. et al. Cover crop root morphology rather than quality controls the fate of root and rhizodeposition C into distinct soil C pools. *Glob. Change Biol.* **29**, 5677–5690 (2023).

Acknowledgements

Nqobile Motsomane was partly supported by a Bursary from the Oppenheimer Fellowship in Functional Biodiversity. We acknowledge the support of the University of KwaZulu-Natal (School of Life Sciences).

Author contributions

Conceptualisation and Funding, A. M; methodology, N. M and A. M; validation, N. M and A. M; formal analysis, N. M; writing-original draft preparation, N. M; writing-review and editing, A. M; supervision, A. M; project administration, A. M and N. M; funding acquisition, A. M. Both authors reviewed the manuscript before submission for publication.

Funding

This research was funded by the National Research Foundation under the grant agreement number (Grant UID 138091).

Declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

No approval from research ethics committees was necessary for this study's objectives.

Informed consent

All individual participants included in this article provided informed consent for their identifying information.

Consent to publish

The participant has granted consent for the submission of the case report to the journal.

Additional information

Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025