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Reconstructing hidden thermal and flow structures from limited observations is a fundamental 
challenge in many scientific disciplines. Particles passively advected by the surrounding fluid often 
encode valuable information along their trajectories, but such data are typically sparse and noisy. 
To infer the comprehensive dynamics of thermally driven flows from such limited information, we 
develop a four-dimensional variational (4DVar) Marker-in-Cell method. Its application to laboratory 
data demonstrates successful reconstruction of the time-dependent temperature field and the 
Rayleigh number—unobservable yet essential for understanding thermal forcing and heat transport—
by assimilating particle trajectories with the governing equations. Furthermore, our method enables 
prediction of future evolution beyond the assimilation window, yielding results that are consistent with 
actual observations. We critically assess the method’s performance in light of convective dynamics, 
identifying the conditions under which it is effective and outlining directions for future refinement. 
These findings highlight the utility of 4DVar not only for retrospective reconstruction but also for 
forward prediction of convective behavior, offering a robust framework for analyzing thermally or 
compositionally driven flows in geophysical and engineering systems.
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It is a common challenge across various research fields to estimate the dynamics of fluids, including their flow 
patterns, thermal and chemical structures, and time evolution. In many geoscientific settings, fluids contain 
passive particles that carry information about their surrounding environment. For example, floating pumice 
originating from submarine volcanoes is attached with organisms such as barnacles, and therefore it can provide 
insights into its source and the oceanic flow process1. The distribution and mineral composition of volcanic ash 
can indicate eruption mass rates, cooling processes, and wind speed and direction2–4. Similarly, metamorphic 
rocks derived from the deep Earth may record pressure, temperature, and strain, thereby revealing the convective 
processes of the surrounding mantle5–9. These particles not only offer spatial information, but also preserve 
the chemical and thermal evolution of the surrounding fluid over time. In this context, physical quantities in 
fluid systems—such as temperature, flow velocity, or pressure—can be described from two complementary 
perspectives: the Eulerian perspective, which observes how these values change at fixed points in space, and 
the Lagrangian perspective, which follows how individual passive particles experience these values along their 
trajectories.

In natural systems, the motion of Lagrangian tracers such as mantle rocks and volcanic ejecta can often be 
observed only incompletely or indirectly. For instance, the trajectories of deep Earth materials may be inferred 
from metamorphic pressure-temperature histories, and plate motions can be estimated from seafloor magnetic 
anomalies6,7,10. Similarly, the dispersal of volcanic materials can be observed using meteorological satellites or 
in situ field surveys3,11. Such observations typically provide only partial and sparse trajectories relative to the 
full complexity of the underlying flow. Moreover, in situ measurements of the surrounding fluid’s thermal or 
compositional state are often unfeasible due to the large spatial scales or technical limitations. This lack of direct 
measurements introduces uncertainty in key fluid properties such as density and viscosity, which fundamentally 
govern convective behavior. Consequently, these uncertainties propagate into model predictions, making it 
inherently difficult to reconstruct or forecast the spatio-temporal evolution of convective systems.
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To estimate key unknown variables from limited data, data assimilation (DA)—which integrates observational 
data with governing physical models—provides a powerful approach. However, examples of DA that incorporate 
individual Lagrangian particles remain limited12–14, and thus establishing such a framework holds substantial 
value. To validate its effectiveness, it is appropriate to first apply DA to laboratory experiments, where key 
variables are at least partially observable, before extending it to natural systems in which those quantities are 
difficult or impossible to measure directly. Most existing approaches estimate unknown parameters such as 
temperature from fully known Eulerian velocity fields, whether in forward simulations or inverse modeling15–18. 
In contrast, we focus on particle tracking velocimetry (PTV), which provides Lagrangian particle trajectories 
that are irregularly sampled in both space and time—closely mimicking realistic environmental conditions. This 
makes PTV a promising observational basis for Lagrangian DA in geophysical applications. To make use of such 
data, we have developed a four-dimensional variational Marker-in-Cell method (4DVarMiC). This framework 
enables the quantitative estimation of thermal and flow structures, along with their temporal evolution, based on 
information encoded in passively advected tracer particles.

While 4DVarMiC has been successfully applied to synthetic datasets19, its use for experimental or field-based 
particle tracking data—where noise and irregular sampling are inevitable—has not yet been demonstrated. The 
method is expected to yield solutions closer to the true state than raw observations by strictly satisfying the 
governing equations of fluid dynamics. This makes 4DVarMiC well suited for assimilating noisy experimental 
data. Compared to physics-informed neural networks (PINNs), which incorporate physical constraints as soft 
penalties in their loss functions20–22, 4DVarMiC enforces these constraints exactly. As a result, PINNs may 
overfit noisy data and generate solutions that violate conservation laws, whereas our variational approach offers 
greater robustness and physical consistency.

To demonstrate the applicability of DA, we apply our method to particle tracking data from Rayleigh–Bénard 
convection (RBC) experiment—a canonical system where a fluid layer heated from below and cooled from 
above develops buoyancy-driven flow. Despite its simplicity, RBC serves as a fundamental model for a variety 
of natural and geophysical phenomena, including mantle convection23,24, magma migration along dykes25, and 
hydrothermal circulation26. In general, the dynamics of RBC are governed by the Rayleigh number (Ra), the 
Prandtl number (Pr), and the system geometry. Ra represents the ratio of thermal buoyancy to viscous and 
thermal dissipation, while Pr characterizes the ratio of viscous to thermal diffusivity:

	
Ra =ρ0gαT ∆T h3

ηκ
� (1)

	
Pr = η

ρ0κ
, � (2)

where ρ0 is the reference density, g is the gravitational acceleration, αT  is the thermal expansivity, ∆T  is 
the temperature difference between the upper and lower boundaries of the fluid layer, h is the height of the 
fluid layer, η is the dynamic viscosity, and κ is the thermal diffusivity. Key flow characteristics such as velocity 
magnitude, convection roll size, boundary layer thickness, and heat transfer efficiency can be captured by these 
nondimensional parameters23,27,28. In this study, Ra is treated as a target parameter that is inferred in addition to 
the thermal and flow fields through DA.

More specifically, Fig. 1 illustrates the overall scheme of this study. Under the constraints of the conservation 
laws of fluid dynamics—namely, the equations of motion and heat transfer (Eqs. 3 and 4)—the time series of 
temperature, velocity, and particle positions are estimated using 4DVarMiC, so as to reproduce the particle 
trajectories observed in the experiment. These quantities are optimized simultaneously to minimize the cost 
function J, which quantifies the discrepancies in position and velocity between observed and modeled particles 
(Eq. 7). In addition to reconstructing the thermal and flow fields, we aim to estimate Ra, a key control parameter 
in thermal convection. Although Ra is typically treated as a known or given input in theoretical and experimental 
studies, it is, in practice, not directly observable and must be inferred from indirect measurements. Unlike 
conventional forward simulations, DA enables the objective estimation and validation of model parameters by 
integrating data and physics. In particular, we demonstrate that time-resolved comparisons with validation data 
allow us to quantitatively evaluate the fidelity of the reconstructed solution. This approach establishes a robust 
and objective framework for inferring thermofluid dynamics from sparse and noisy Lagrangian observations.

Results
Thermal convection experiment
In the laboratory experiment, a viscous aqueous xanthan gum solution containing tiny passive tracer particles 
undergoes thermal convection within a narrow rectangular vessel (h = 50 mm in height × 200 mm in width × 
6 mm in thickness; Fig. 1). That is, the ratios of the horizontal length to the height are 4 for the wider direction 
and 0.12 for the narrower direction (Γx = 4.0 and Γy = 0.12). Inertial effects can be negligible in this setting 
because of a high Pr (= 70) and strong geometric confinement imposed by the experimental vessel29,30. The vessel 
is heated at the bottom plate and cooled at the top plate, both maintained at constant temperatures, giving rise to 
RBC. The fluid motion is visualized as the movement of particles at the central vertical cross-section of the vessel 
illuminated by a laser sheet whose thickness is approximately 1 mm. Here, we intentionally employ the Hele-
Shaw geometry, a narrow vessel that constrains the particle motions quasi-two-dimensional (quasi-2D)30,31. This 
configuration allows us to simplify the governing equations for DA and reduce its computational cost, while 
maintaining the convective dynamics to be time-dependent32.

Figure 2a shows a portion of the detected particle tracks, with a spatial resolution of 0.11 mm and a temporal 
resolution of 0.2 s (see Methods for particle detection method). Due to thermal buoyancy, five large convection 
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rolls (∼40 mm in width and ∼50 mm in height) form, accompanied by two smaller convection rolls (∼20 mm in 
width and ∼25 mm in height) in the top-left and bottom-right corners. Near the four boundaries, slower particle 
velocities are observed, suggesting that the boundaries impose a no-slip condition. Additionally, as some particle 
tracks intersect around these corner rolls, weak periodic flow occurs near the side boundaries, indicating that the 
convection mode can be classified as a quasi-steady Hele-Shaw regime30–32.

Ra in 2D and 3D domains
As mentioned above, the consequential convective dynamics is quasi-2D due to the lateral confinement. It is 
necessary to carefully compare Ra in the 3D laboratory experiments and that in the 2D numerical models because 
the meaning of the value of Ra depends on the geometry. Theoretically derived critical value for the onset of 
convection for an infinitely extended plane layer is 1708, when the top and bottom are no-slip boundaries33. 
When there exist sidewalls as in actual settings, the critical value of Ra for the onset increases more or less due to 
the no-slip velocity boundaries at the sidewalls. If the horizontal confinement is not so strict, that is, the shorter 
horizontal length is larger or comparable to the layer height, the increase of this value is very small. If it is shorter 
than unity, the effect of no-slip side walls becomes dominant and the value increases with the narrowness of the 
space. In case of the geometry of the present setting (Γx = 4.0 and Γy = 0.12), the critical value for the onset 
of convection is Ra = 3.0 × 10432,34.

Hereafter, we distinguish two Rayleigh numbers; one is Raexp that is the value to express the actual setting of 
the experiment, and the other is Ra2D that we use for 2D simulations. The 2D condition means that any variable 
does not depend on y and that the flow velocity does not have y-component. Then the values for the onset of 
convection are Raexp = 3.0 × 104 and Ra2D = 1.7 × 103, respectively.

Convective motions in such a narrow geometry were studied systematically in Yanagisawa et al.32 and 
confirmed to be quasi-2D below a certain Raexp (∼ 3 × 106 in the present setting), i.e., gap-wise velocity 
component is negligibly small and Poiseuille-like parabolic velocity profiles are achieved30. The particles 
hardly deviate from the observing plane, however, the trajectories inherently contain interruptions because of 
experimental noise (see Methods). We therefore simplified the governing equation for 4DVarMiC to be 2D, 
although it is conceptually applicable to 3D flows. Note that the consequential quasi-2D convective flows in such 
a narrow geometry are developed via 3D process and therefore cannot be reproduced in a 2D domain. When 
we start 2D simulation from random or any given wavenumber of initial perturbation, the pattern evolves into 

Fig. 1.  Schematic illustration of this study. The upper panel shows data obtained from a laboratory 
experiment. A narrow rectangular tank filled with a thermally convecting, highly viscous fluid is illuminated 
by light, allowing tracer particles to be visualized and tracked over time. Their trajectories are recorded as 
video and used to extract the time series of particle positions. The lower panel shows the estimated variables 
obtained through data assimilation. Observed particle tracks are assimilated into the conservation laws of fluid 
dynamics. xobs

i : observed positions of particle i; T: temperature; u: velocity; xi: particle position; Ra: Rayleigh 
number. All variables, except Ra, are functions of time t.
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horizontally elongated one with two or three rolls and time dependency is observed everywhere (Fig. S13). We 
selected a case with Raexp ∼ 1.6 × 106 and ∆T = 9.0 K for the experimental condition, leading to quasi-2D 
and unsteady (oscillatory) fluid motions. In this case, the period of oscillation is approximately 1.5 min, and the 
circulation time for a convection roll is comparable to this.

4DVarMiC solutions
By assimilating two minutes of the particle track data, which is almost one cycle of the oscillation observed in 
the particle track data, 4DVarMiC successfully reconstructs the thermal and flow structures (Fig. 2b, c). The 
estimated temperature field (Fig. 2c) drives the modeled flow such that thermal buoyancy governs the motion 
of all particles (Fig. 2b). For instance, four downwelling flows align with cold anomalies, while four upwelling 
flows correspond to hot anomalies.

The inferred thermal structure is notably sensitive to the a priori value of Ra2D, whereas the flow patterns 
and velocities remain similar across simulations (Fig.  3). In the three cases shown in Fig.  3, each with 
different Ra2D values, the thermal anomalies produce vertical particle motions consistent with observations. 
At Ra2D = 3 × 104 (Fig. 3a), the cold and hot regions exhibit temperatures beyond those at the cooled top 
and heated bottom boundaries, respectively. These unrealistic values, arising despite the absence of internal 
heat sources or sinks, compensate for weak thermal forcing at low Ra2D via large horizontal gradients 
∂T/∂x (Eq. 3). A similar behavior was reported in an earlier study using synthetic data35, suggesting that the 
true Ra2D exceeds 3 × 104. At Ra2D = 3 × 105 (Fig. 3b), the temperature anomalies are more moderate, and 
the estimated temperatures remain bounded by the top and bottom boundary values. The flow structure remains 
consistent across cases. The cost function reaches a minimum near Ra2D = 3 × 105 (Fig. 3d), and we adopt 
this value for further analysis. At Ra2D = 3 × 106 (Fig.  3c), the thermal anomalies nearly vanish while the 

Fig. 2.  Observed particle trajectories and data assimilation results. (a) Detected particle tracks from t = 0 to 
1 min. One out of every ten trajectories was randomly selected from 7890 particles for visibility. Brighter colors 
indicate later stages. The movie of the particle track data can be available from Supplementary Information 
(Movie S1). (b) Same as (a), but simulated using 4DVarMiC with Ra2D = 3 × 105 after 2000 iterations. The 
particles corresponding to those in (a) are shown in the same colors. Portions of the particle tracks where data 
is missing have been omitted. (c) Estimated thermal structure and flow velocity at t = 1 min in the 4DVarMiC 
simulation with Ra2D = 3 × 105 after 2000 iterations. The estimated thermal structure, shown as a colored 
contour, is scaled so that the upper boundary is 0 and the lower boundary is 1. The flow velocity is represented 
by arrows. The snapshots and movie of this 4DVarMiC run can be available in Supplementary Information 
(Fig. S5 and Movie S3).
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velocity field remains. However, the cost function increases due to excessive flow velocities associated with high 
Ra2D (Fig. 3d).

A plausible value of Ra2D = 3 × 105 is supported by the following: (1) the reconstructed temperature 
remains within physical bounds (0 ≤ T ≤ 1 in the non-dimensional form); (2) the cost function J reaches a 
minimum at this value, while the flow features remain robust throughout the assimilation time window (ATW; 
Fig.  3d); and (3) the recovered solution captures quasi-steady corner-roll oscillations, a behavior restricted 
to a narrow range of Raexp30, not observed in standard forward 2D simulations with random thermal 
perturbations (Fig.  S13). This suggests that physically plausible assimilation is achieved. Altogether, we find 
that Raexp = 1.6 × 106 corresponds well to Ra2D = 3 × 105. As will be discussed later, additional forward 
simulations have independently confirmed that Raexp = 1.6 × 106 yields the same level of flow velocity and 
surface Nusselt number as Ra2D = 3 × 105 (see Fig. S14).

While the main results use the full available particle dataset, we also evaluated 4DVarMiC performance 
with fewer particles and lower temporal resolution (Figs. S8 and S9). These tests confirm that the current data 
resolution is sufficient for the analysis. However, uniformity in the spatial and temporal distribution of particles 
remains a key factor influencing assimilation performance, meriting further study, especially in more complex 
or turbulent regimes.

Evolution after the 4DVarMiC solutions
The 4DVarMiC solution in Fig.  3 demonstrates successful reconstruction of thermal structures solely from 
randomly sampled particle trajectories within a two-minute ATW. We next assess how well the optimized Ra2D 
predicts convective dynamics beyond the ATW by continuing forward simulations, as shown in Fig. 4.

Figure  4a, b compare the time series of observed and simulated horizontal flow velocity at a depth of 
z = 0.25 (12.5 mm). In the observations (Fig.  4a), the velocity is on the order of 102 in non-dimensional 
units (∼0.2 mm/s), exhibiting nearly steady convergence and divergence boundaries associated with five major 
convective rolls. Oscillatory motion near the left wall, with a period of approximately 1.6 minutes, is also visible 
and attributed to small corner rolls (see intersecting trajectories in Fig. 2a). This behavior is reproduced in the 
4DVarMiC simulation beyond the ATW (Fig. 4b), though with a slightly lower oscillation frequency near the 
left boundary. This may indicate a limitation of 2D modeling, as it is difficult to produce spatiotemporally small 
structures even with 2D forward simulations given the same Ra (Fig. S13).

Figure 4c presents the time evolution of the root mean square velocity uRMS (Eq. 17) for both observations 
and three 4DVarMiC simulations with different Ra2D values. Similarly, Fig. 4d displays the Nusselt number 
at the upper boundary, Nu0 (Eq. 18), indicating the ratio of convective to conductive heat transfer. They are 
commonly used as global indicators to characterize the overall behavior of thermally driven convective flows32. 
For Ra2D = 3 × 105, both uRMS and Nu0 remain in close agreement with observations during and after the 
ATW. For Ra2D = 3 × 104, while uRMS is consistent during the ATW, it decreases afterward as DA-estimated 

Fig. 3.  Results of the 4DVarMiC simulations for different Ra2D values. (a) 4DVarMiC with Ra2D = 3 × 104 
at t = 2 min after 2000 iterations. The colored contours represent the estimated non-dimensional temperature, 
and the arrows indicate the flow velocity. The white lines indicate isotherms at temperatures of 0 and 1. (b) 
Same as (a) but Ra2D = 3 × 105. (c) Same as (a) but Ra2D = 3 × 106. (d) Values of the cost function J (Eq. 
7) plotted against the assumed Ra2D (horizontal axis) and the number of iterations (vertical axis).
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thermal anomalies dissipate upon reaching the opposite wall (Figs. S4, S10). This leads to a drop in Nu0 as well, 
due to weakened heat advection (Fig. 4d). For Ra2D = 3 × 106, uRMS is significantly elevated (Fig. 4c), and 
the upwelling/downwelling zones exhibit large horizontal oscillations, even far from the sidewalls (Fig. S10), 
resulting in an overestimated Nu0 due to enhanced thermal advection (Fig. 4d). Since we are not measuring 
Nu0 directly in the experiment, we estimate it by the time-averaged velocity field with assuming steady-state 
following the method of Noto et al.17, shown as “SSA” (steady-state analysis) in Fig. 4d and Fig. S11. The result 
agrees well with that from the 4DVarMiC simulation at Ra2D = 3 × 105. These findings suggest that a well-
constrained 4DVarMiC solution is capable of predicting future states beyond the ATW with high fidelity.

Discussion
This study presents several key contributions to the analysis of thermally driven flows. First, we highlight the 
mechanism by which both the temperature field and Ra can be simultaneously estimated from sparse Lagrangian 
observations. Our inverse approach enables this simultaneous estimation, which is generally unfeasible in 
forward modeling frameworks. The advantage stems from fundamental differences in how temperature 
is constrained. As shown in the Results section, 4DVarMiC reconstructs the temperature field such that the 
resulting thermal buoyancy force balances the viscous stresses required to reproduce the observed particle 
velocities, even in the case where the data contains missing particle trajectories (Figs. S8, S9). In contrast, the 
method proposed by Noto et al.17 assumes a fully-known steady-state velocity field and iteratively adjusts the 
temperature field to satisfy the heat transport equation. While effective under idealized conditions, this method 
cannot estimate Ra from data and is instead limited to reconstructing the steady-state thermal structure. Our 
approach, by contrast, does not assume thermal steady state, and it infers both the thermal structure and Ra as 
outputs directly constrained by the partly observed Lagrangian data. This makes 4DVarMiC particularly suitable 
for analyzing unsteady thermally driven viscous systems such as Earth’s mantle, magmatic intrusions, and other 
geophysical flows where temperature and Ra are not directly measurable but play critical roles in controlling 
flow dynamics23–26. In solid Earth systems, among the parameters that constitute Ra, viscosity is especially 
poorly constrained because laboratory deformation experiments often fail to robustly constrain the temperature 
dependence of viscosity (i.e., activation energy)36,37.

In this study, we chose not to treat Ra as a direct optimization variable; instead, our focus was on clarifying 
how the thermal field inferred from sparse trajectories constrains Ra indirectly, and on demonstrating the 

Fig. 4.  Flow velocity and the Nusselt number within and after the ATW (Assimilation Time Window). 
(a) Time series of the observed horizontal flow velocity at a depth of z = 0.25 (12.5 mm), with horizontal 
distance on the horizontal axis and time on the vertical axis. Cool colors indicate rightward motion; warm 
colors, leftward motion. (b) Same as (a), but for a long-term forward simulation initiated from the optimized 
4DVarMiC solution with Ra2D = 3 × 105 after 2000 iterations. (c) Time series of the root mean square 
velocity uRMS (Eq. 17) comparing data and the three 4DVarMiC simulations. Yellow shading denotes the 
ATW. (d) Time series of the Nusselt number at the upper boundary, Nu0 (Eq. 18). Nu0 from the steady-state 
analysis (SSA), shown as a blue arrow, is estimated by assuming a constant time-averaged velocity field and 
using the method of Noto et al.17 (see Fig. S11).
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perspectives from which the two quantities can be jointly restricted. At the same time, estimating Ra as an 
unknown parameter remains an important direction for future work. Incorporating prior experimental 
knowledge into a Bayesian framework may provide a natural way to capture the coupled uncertainties of 
temperature and Ra, thereby enabling more robust joint estimation.

Despite the strengths of our inverse approach, certain limitations in the temperature reconstruction were 
observed. Specifically, regions with sparse particle observations—such as the right-hand side of the domain 
(Fig.  2a), where fewer particles were detected due to dim laser illumination, exhibited reduced estimation 
accuracy. These areas correspond to locations where the optimization failed to capture the expected thermal 
structure, leading to asymmetries in the reconstructed temperature field. In the present implementation, all 
particles were assigned equal weights, but this result suggests that spatial variability in observational density 
could be accounted for by incorporating adaptive weighting schemes. Additionally, the near-boundary regions, 
particularly the cooled upper boundary and the heated lower boundary, were not accurately reproduced (upper 
and lower boundaries at t = 0 of Fig. S5). This shortcoming is manifested in the anomalous Nu0 values at t = 0 
in Fig. 4d. Because thermal conduction rapidly enforces boundary temperatures, the initial thermal structure in 
these regions is less influential on the subsequent flow evolution. We intentionally used a spatially uniform initial 
temperature field as the initial guess in order to minimize the use of prior knowledge; however, incorporating 
physically informed priors that reflect the effect of thermal conduction near boundaries—such as preconditioned 
boundary layers—may improve estimation accuracy in these regions.

Another novel contribution of this study lies in addressing a nontrivial dimensionality issue: how to relate 
Raexp of a quasi-2D experimental system to Ra2D used in 2D modeling. In our analysis, we determined 
that Raexp = 1.6 × 106 corresponds to Ra2D = 3 × 105, based on the inversion results from 4DVarMiC. 
This estimate was independently supported by a separate set of forward simulations: a 2D model with 
Ra2D ∼ 3 × 105 reproduced the same uRMS as the experimental case with Raexp = 1.6 × 106 (Fig.  S14). 
Furthermore, the forward simulations showed that a similar level of Nu0 was obtained under the 2D simulation 
with Ra2D = 6 × 105 and the 3D simulation with and Raexp = 1.6 × 106 (Fig. S14). Nu0 of the 2D forward 
simulation with Ra2D = 3 × 105 is slightly lower than that from 4DVarMiC after ATW and SSA under the 
same Ra2D (Figs. 4d, S14) because heat transfer is less effective in the 2D forward simulation due to the smaller 
number and the longer wavelength of convective rolls (Fig. S13) than that observed (Figs. 2a). Thus, consistent 
results have been obtained from different approaches when comparing Raexp and Ra2D. Such dimensional 
scaling is of practical importance because 2D models are frequently employed to reduce computational costs, 
particularly in geoscience applications24–26. Our results offer a data-informed framework for translating insights 
from idealized 2D models into the context of quasi-2D dynamics in natural or experimental convective systems.

While the present experiments targeted a quasi-2D regime, which enabled the 2D implementation of 
4DVarMiC to successfully reproduce the observed flow structures, we recognize that systems where three-
dimensionality is more pronounced and inertial terms cannot be neglected are beyond the scope of the 
current framework. As shown by Yanagisawa et al.32, the system investigated here is characterized by strong 
two-dimensionality and negligible inertial effects, and our formulation was built upon these assumptions. For 
convective regimes where three-dimensional effects are significant and inertial contributions play a major role, 
the present governing equations would be insufficient and a dedicated 3D formulation would be required. 
Nevertheless, the core Marker-in-Cell framework adopted here can be naturally extended to three dimensions, 
making the development of fully 3D data assimilation methodologies a promising direction for future studies.

While this study has focused on thermally driven convection, density anomalies arising from compositional 
variations—such as solute concentration—also act as key drivers of convection in many natural and engineered 
systems. Geological carbon sequestration is a prominent example, where compositional convection governs 
the dissolution and transport of injected CO238–40. These systems often exhibit dynamics analogous to thermal 
convection, including finger-like instabilities, stratification, and enhanced mixing. The 4DVar framework 
developed in this study, particularly its Marker-in-Cell implementation, offers a distinct advantage in that it 
models and tracks individual Lagrangian particles explicitly. This enables the separate treatment of different 
particles and thus allows for accurate estimation of component-specific transport processes, such as solute 
advection24,35. As a result, the method can be naturally extended to solutal or thermo-compositional systems, 
where the interaction between thermal and compositional fields governs the overall dynamics. This represents 
a promising avenue for future research, where simultaneous estimation of temperature and composition fields 
from sparse particle trajectories may unlock deeper insights into the coupled multiphysics behavior that 
characterizes many natural and engineered convective systems.

The present study demonstrates that 4DVar, while classically used to reconstruct past system states within an 
ATW, can also forecast the future evolution of thermally driven flow beyond the ATW to some extent, analogous 
to sequential DA in weather forecasting41. This predictive capability, confirmed by forward simulations 
initialized from optimized states, suggests that 4DVar provides a robust framework for both retrospective and 
prospective analysis of geophysical systems, complementing previous applications in retrodiction and parameter 
estimation42–45. This advantage cannot be achieved with DA based on PINNs, which are typically limited to 
interpolation within the ATW20. In this study, future prediction beyond the ATW was achieved by extending 
the forward simulation from the optimized initial state; therefore, the extent of predictive skill is inherently 
influenced by the Reynolds number, the degree of nonlinearity, and the sensitivity to initial conditions46,47. 
Although further evaluation is necessary in turbulent or chaotic regimes, our findings underscore the promise of 
4DVar as a physically grounded and computationally stable method for time-resolved estimation and forecasting 
in nonlinear convective systems.
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Methods
Laboratory experiment
The top and bottom of the vessel are copper plates to keep the temperature constant at the boundaries, whereas 
the side walls are transparent acrylic plates whose thickness is 30 mm to approximately realize adiabatic 
temperature conditions at walls. The working fluid is a dilute xanthan gum aqueous solution (0.02 wt%) that 
can be treated as a Newtonian fluid in the low range of shear rate O(0.1) /s realized in the experiment32. The 
Prandtl number of the fluid is 70, which can be regarded as high Pr in the studied range of Raexp. The Rayleigh 
number is calculated by the measured temperature difference between the top and bottom plates. We used the 
data obtained by the temperature difference of 9.0 K for the assimilation, in which Raexp ∼ 1.6 × 106. The flow 
structure is assured to be quasi-2D at this Raexp.

Particle tracking
The motions of tracer particles seeded into the test fluid are recorded on digital image sequences at the spatial 
resolution of ≈ 0.1  mm/pixel and the time resolution of 10  Hz. The particles are detected and labelled in 
every frame by identifying local peaks on cross-correlation maps computed with a 2D Gaussian distribution48. 
The detected positions are linked over image frames to create trajectories with the in-house particle tracking 
code utilized earlier49, building on the nearest-neighbor method and the universal outlier detection50,51 to 
ensure spatial continuity. Discontinued trajectories are not recovered as they do not influence the subsequent 
assimilation, but only trajectories longer than 10 frames are utilized. Note that the resultant particle trajectories 
distribute uniformly neither in space nor time because the laser illumination attenuates with x positions for the 
opacity of the fluid, not because of the actual particle distributions.

4DVarMiC equations and computation
The 4DVarMiC DA19 is applied to the tracer particle trajectories obtained using the method described in the 
previous section. The algorithm iteratively solves the forward and adjoint models to minimize a cost function. 
We consider a two-dimensional, incompressible, highly viscous fluid, and neglect inertial effects.

The forward model includes the equation of motion and the heat balance within a two-dimensional 
spatial domain with the horizontal distance x ∈ [x0, x1] = [0, 4] = [0, 200 mm] and the vertical distance 
z ∈ [z0, z1] = [0, 1] = [0, 50 mm] (top left is the origin of the coordinate) and time domain t ∈ [t0, t1] = [0, 
120 sec]:

	
∇4ψ = Ra2D

∂T

∂x
� (3)

	
∂T

∂t
+ u⊤ · (∇T )⊤ = ∇2T � (4)

	
dxi

dt
= ui � (5)

where ψ is the stream function, Ra2D is the thermal Rayleigh number in 2D modeling (Eq. 1), u is the velocity 
field, T is the temperature, xi is the position of particle i (i = 1, ..., N; N = 7890), and ui is the velocity of particle 
i. The stream function ψ is defined as

	
u =

(
∂ψ

∂z
, −∂ψ

∂x

)
.� (6)

For the equation of motion, zero-slip conditions are imposed for the boundaries of x = x0, x1 and z = z0, z1. For 
energy conservation equation, we imposed the insulating condition along x = x0, x1, and constant temperatures 
T = 0 along z = z0 and T = 1 along z = z1.

The cost function J includes the error distance J1 and the error velocity J2 between observed and modeled 
particles and is defined as

	 J = J1 + J2� (7)

where

	
J1 =

ˆ t1

t0

dt

N∑
i=1

1
2α

(
xi − xobs

i

)⊤ (
xi − xobs

i

)
� (8)

	
J2 =

ˆ t1

t0

dt

N∑
i=1

1
2β

(
ui − uobs

i

)⊤ (
ui − uobs

i

)
. � (9)

We used time-dependent hyperparameters α = (t − t0)/(t1 − t0) and β = 10−5(t − t0)/(t1 − t0); larger 
weight is put on the data of the early stages so that the initial condition is efficiently constrained.

The Lagrange multiplier method to minimize J subject to the forward governing equations yields the 
following adjoint equations:
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∇4φ + (∇τ) × (∇T ) = ∇ × β

∑
i∈dS

(
ui − uobs

i

)
� (10)

	
− ∂τ

∂t
− u⊤ · (∇τ)⊤ − ∇2τ + Ra2D

∂φ

∂x
= 0 � (11)

	
dλi

dt
= α

(
xi − xobs

i

)
− λ⊤

i
∂u

∂xi
� (12)

	
∂J

∂T (x, t0) = −τ(x, t0) � (13)

	
∂J

∂xi(t0) = −λi(t0) � (14)

	 τ(x, t1) = 0 � (15)

	 λi(t1) = 0 � (16)

where φ is the adjoint stream function, τ  is the adjoint temperature, λi is the adjoint position of particle i, and 
dS is a grid cell.

Forward and adjoint equations are discretized both in space and time. The rectangular grid contains 150 
uniform 1-mm-width cells along the horizontal axis and 50 uniform 1-mm-height cells along the vertical axis 
(Fig. S12), whereas a time step is 0.02 sec, satisfying the Courant–Friedrichs–Lewy condition. The forward and 
adjoint equations are repeatedly solved to update unknown target parameters T (t0) and xi until J becomes 
sufficiently small. The Ra2D value remains constant throughout the optimization process.

Validation indicators
Two validation indicators were calculated to evaluate the 4DVarMiC results: the root mean square of the velocity 
f﻿ield and the Nusselt numbers at the upper boundary, defined as

	

uRMS(t) =

√√√√ 1
KL

K∑
k=1

L∑
l=1

u⊤
klukl � (17)

	
Nu0(t) = 1

K

K∑
k=1

(
∂T

∂z

)
k,z=z0

� (18)

respectively, where k is the horizontal node index, K is the number of the horizontal nodes (K = 201), l is the 
vertical nodes index, L is the number of the vertical nodes (L = 51), ukl is the velocity at grid node k, l, and 
uobs

kl  is the observed velocity at grid node k, l calculated from particle motions. When observation is missing, the 
misfit for the missing part is excluded from the summation. Note that the denominator of the Nusselt numbers, 
the heat flow in the case where heat transport is completely conductive, is ∆T/h in the dimensional form and 
1 in the non-dimensional form.

Data availability
The data for this work can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.15495028).
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