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Reconstruction of thermally-driven
flows using Lagrangian particle
data assimilation

Atsushi Nakao2?", Daisuke Noto?, Takatoshi Yanagisawa?*, Yuji Tasaka*? & Tatsu Kuwatani?

Reconstructing hidden thermal and flow structures from limited observations is a fundamental
challenge in many scientific disciplines. Particles passively advected by the surrounding fluid often
encode valuable information along their trajectories, but such data are typically sparse and noisy.

To infer the comprehensive dynamics of thermally driven flows from such limited information, we
develop a four-dimensional variational (4DVar) Marker-in-Cell method. Its application to laboratory
data demonstrates successful reconstruction of the time-dependent temperature field and the
Rayleigh number—unobservable yet essential for understanding thermal forcing and heat transport—
by assimilating particle trajectories with the governing equations. Furthermore, our method enables
prediction of future evolution beyond the assimilation window, yielding results that are consistent with
actual observations. We critically assess the method’s performance in light of convective dynamics,
identifying the conditions under which it is effective and outlining directions for future refinement.
These findings highlight the utility of 4DVar not only for retrospective reconstruction but also for
forward prediction of convective behavior, offering a robust framework for analyzing thermally or
compositionally driven flows in geophysical and engineering systems.

Keywords Adjoint method, Particle tracking, Rayleigh-Bénard convection, Inverse problem, Fluid
dynamics, Heat transport

It is a common challenge across various research fields to estimate the dynamics of fluids, including their flow
patterns, thermal and chemical structures, and time evolution. In many geoscientific settings, fluids contain
passive particles that carry information about their surrounding environment. For example, floating pumice
originating from submarine volcanoes is attached with organisms such as barnacles, and therefore it can provide
insights into its source and the oceanic flow process!. The distribution and mineral composition of volcanic ash
can indicate eruption mass rates, cooling processes, and wind speed and direction**. Similarly, metamorphic
rocks derived from the deep Earth may record pressure, temperature, and strain, thereby revealing the convective
processes of the surrounding mantle®=. These particles not only offer spatial information, but also preserve
the chemical and thermal evolution of the surrounding fluid over time. In this context, physical quantities in
fluid systems—such as temperature, flow velocity, or pressure—can be described from two complementary
perspectives: the Eulerian perspective, which observes how these values change at fixed points in space, and
the Lagrangian perspective, which follows how individual passive particles experience these values along their
trajectories.

In natural systems, the motion of Lagrangian tracers such as mantle rocks and volcanic ejecta can often be
observed only incompletely or indirectly. For instance, the trajectories of deep Earth materials may be inferred
from metamorphic pressure-temperature histories, and plate motions can be estimated from seafloor magnetic
anomalies®”1°. Similarly, the dispersal of volcanic materials can be observed using meteorological satellites or
in situ field surveys®!!. Such observations typically provide only partial and sparse trajectories relative to the
full complexity of the underlying flow. Moreover, in situ measurements of the surrounding fluid’s thermal or
compositional state are often unfeasible due to the large spatial scales or technical limitations. This lack of direct
measurements introduces uncertainty in key fluid properties such as density and viscosity, which fundamentally
govern convective behavior. Consequently, these uncertainties propagate into model predictions, making it
inherently difficult to reconstruct or forecast the spatio-temporal evolution of convective systems.
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To estimate key unknown variables from limited data, data assimilation (DA)—which integrates observational
data with governing physical models—provides a powerful approach. However, examples of DA that incorporate
individual Lagrangian particles remain limited!>"'4, and thus establishing such a framework holds substantial
value. To validate its effectiveness, it is appropriate to first apply DA to laboratory experiments, where key
variables are at least partially observable, before extending it to natural systems in which those quantities are
difficult or impossible to measure directly. Most existing approaches estimate unknown parameters such as
temperature from fully known Eulerian velocity fields, whether in forward simulations or inverse modeling!>~18.
In contrast, we focus on particle tracking velocimetry (PTV), which provides Lagrangian particle trajectories
that are irregularly sampled in both space and time—closely mimicking realistic environmental conditions. This
makes PTV a promising observational basis for Lagrangian DA in geophysical applications. To make use of such
data, we have developed a four-dimensional variational Marker-in-Cell method (4DVarMiC). This framework
enables the quantitative estimation of thermal and flow structures, along with their temporal evolution, based on
information encoded in passively advected tracer particles.

While 4DVarMiC has been successfully applied to synthetic datasets'?, its use for experimental or field-based
particle tracking data—where noise and irregular sampling are inevitable—has not yet been demonstrated. The
method is expected to yield solutions closer to the true state than raw observations by strictly satisfying the
governing equations of fluid dynamics. This makes 4DVarMiC well suited for assimilating noisy experimental
data. Compared to physics-informed neural networks (PINNs), which incorporate physical constraints as soft
penalties in their loss functions?*-?2, 4DVarMiC enforces these constraints exactly. As a result, PINNs may
overfit noisy data and generate solutions that violate conservation laws, whereas our variational approach offers
greater robustness and physical consistency.

To demonstrate the applicability of DA, we apply our method to particle tracking data from Rayleigh-Bénard
convection (RBC) experiment—a canonical system where a fluid layer heated from below and cooled from
above develops buoyancy-driven flow. Despite its simplicity, RBC serves as a fundamental model for a variety
of natural and geophysical phenomena, including mantle convection?*?*, magma migration along dykes?’, and
hydrothermal circulation?. In general, the dynamics of RBC are governed by the Rayleigh number (Ra), the
Prandtl number (Pr), and the system geometry. Ra represents the ratio of thermal buoyancy to viscous and
thermal dissipation, while Pr characterizes the ratio of viscous to thermal diffusivity:

3
Ra :pogaTATh (1)
nK
n
Pr=——,,
o (2)

where po is the reference density, g is the gravitational acceleration, ar is the thermal expansivity, AT is
the temperature difference between the upper and lower boundaries of the fluid layer, k is the height of the
fluid layer, 7 is the dynamic viscosity, and  is the thermal diffusivity. Key flow characteristics such as velocity
magnitude, convection roll size, boundary layer thickness, and heat transfer efficiency can be captured by these
nondimensional parameters*»*”-?8, In this study, Ra is treated as a target parameter that is inferred in addition to
the thermal and flow fields through DA.

More specifically, Fig. 1 illustrates the overall scheme of this study. Under the constraints of the conservation
laws of fluid dynamics—namely, the equations of motion and heat transfer (Eqs. 3 and 4)—the time series of
temperature, velocity, and particle positions are estimated using 4DVarMiC, so as to reproduce the particle
trajectories observed in the experiment. These quantities are optimized simultaneously to minimize the cost
function J, which quantifies the discrepancies in position and velocity between observed and modeled particles
(Eq. 7). In addition to reconstructing the thermal and flow fields, we aim to estimate Ra, a key control parameter
in thermal convection. Although Ra is typically treated as a known or given input in theoretical and experimental
studies, it is, in practice, not directly observable and must be inferred from indirect measurements. Unlike
conventional forward simulations, DA enables the objective estimation and validation of model parameters by
integrating data and physics. In particular, we demonstrate that time-resolved comparisons with validation data
allow us to quantitatively evaluate the fidelity of the reconstructed solution. This approach establishes a robust
and objective framework for inferring thermofluid dynamics from sparse and noisy Lagrangian observations.

Results
Thermal convection experiment
In the laboratory experiment, a viscous aqueous xanthan gum solution containing tiny passive tracer particles
undergoes thermal convection within a narrow rectangular vessel (h = 50 mm in height X 200 mm in width X
6 mm in thickness; Fig. 1). That is, the ratios of the horizontal length to the height are 4 for the wider direction
and 0.12 for the narrower direction (I'; = 4.0 and I'y = 0.12). Inertial effects can be negligible in this setting
because of a high Pr (= 70) and strong geometric confinement imposed by the experimental vessel?**. The vessel
is heated at the bottom plate and cooled at the top plate, both maintained at constant temperatures, giving rise to
RBC. The fluid motion is visualized as the movement of particles at the central vertical cross-section of the vessel
illuminated by a laser sheet whose thickness is approximately 1 mm. Here, we intentionally employ the Hele-
Shaw geometry, a narrow vessel that constrains the particle motions quasi-two-dimensional (quasi-2D)**!. This
configuration allows us to simplify the governing equations for DA and reduce its computational cost, while
maintaining the convective dynamics to be time-dependent®2.

Figure 2a shows a portion of the detected particle tracks, with a spatial resolution of 0.11 mm and a temporal
resolution of 0.2 s (see Methods for particle detection method). Due to thermal buoyancy, five large convection

Scientific Reports |

(2025) 15:35838 | https://doi.org/10.1038/s41598-025-19724-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Light

Particle movie
X Cooler T =0 (15.5°C)

6 mm in thickness

Conservation laws
V4w = Ra,p, 0T/0x
oT/ot + u-NT=V?*T

Assimilation

X Process & parameters
e =S
T, u,

< g .

-/

Fig. 1. Schematic illustration of this study. The upper panel shows data obtained from a laboratory
experiment. A narrow rectangular tank filled with a thermally convecting, highly viscous fluid is illuminated
by light, allowing tracer particles to be visualized and tracked over time. Their trajectories are recorded as
video and used to extract the time series of particle positions. The lower panel shows the estimated variables
obtained through data assimilation. Observed particle tracks are assimilated into the conservation laws of fluid
dynamics. :c?bsz observed positions of particle i; T: temperature; u: velocity; a;: particle position; Ra: Rayleigh
number. All variables, except Ra, are functions of time ¢.

rolls (~40 mm in width and ~50 mm in height) form, accompanied by two smaller convection rolls (~20 mm in
width and ~25 mm in height) in the top-left and bottom-right corners. Near the four boundaries, slower particle
velocities are observed, suggesting that the boundaries impose a no-slip condition. Additionally, as some particle
tracks intersect around these corner rolls, weak periodic flow occurs near the side boundaries, indicating that the
convection mode can be classified as a quasi-steady Hele-Shaw regime®-32.

Rain 2D and 3D domains

As mentioned above, the consequential convective dynamics is quasi-2D due to the lateral confinement. It is
necessary to carefully compare Ra in the 3D laboratory experiments and that in the 2D numerical models because
the meaning of the value of Ra depends on the geometry. Theoretically derived critical value for the onset of
convection for an infinitely extended plane layer is 1708, when the top and bottom are no-slip boundaries®.
When there exist sidewalls as in actual settings, the critical value of Ra for the onset increases more or less due to
the no-slip velocity boundaries at the sidewalls. If the horizontal confinement is not so strict, that is, the shorter
horizontal length is larger or comparable to the layer height, the increase of this value is very small. If it is shorter
than unity, the effect of no-slip side walls becomes dominant and the value increases with the narrowness of the
space. In case of the geometry of the present setting (I'; = 4.0 and I'y = 0.12), the critical value for the onset
of convection is Ra = 3.0 x 10%323,

Hereafter, we distinguish two Rayleigh numbers; one is Raexp that is the value to express the actual setting of
the experiment, and the other is Razp that we use for 2D simulations. The 2D condition means that any variable
does not depend on y and that the flow velocity does not have y-component. Then the values for the onset of
convection are Racxp = 3.0 X 10% and Rasp = 1.7 x 103, respectively.

Convective motions in such a narrow geometry were studied systematically in Yanagisawa et al.*? and
confirmed to be quasi-2D below a certain Raexp (~ 3 x 10° in the present setting), i.e., gap-wise velocity
component is negligibly small and Poiseuille-like parabolic velocity profiles are achieved®’. The particles
hardly deviate from the observing plane, however, the trajectories inherently contain interruptions because of
experimental noise (see Methods). We therefore simplified the governing equation for 4DVarMiC to be 2D,
although it is conceptually applicable to 3D flows. Note that the consequential quasi-2D convective flows in such
a narrow geometry are developed via 3D process and therefore cannot be reproduced in a 2D domain. When
we start 2D simulation from random or any given wavenumber of initial perturbation, the pattern evolves into
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Fig. 2. Observed particle trajectories and data assimilation results. (a) Detected particle tracks from ¢ = 0 to

1 min. One out of every ten trajectories was randomly selected from 7890 particles for visibility. Brighter colors
indicate later stages. The movie of the particle track data can be available from Supplementary Information
(Movie S1). (b) Same as (a), but simulated using 4DVarMiC with Rasp = 3 x 10” after 2000 iterations. The
particles corresponding to those in (a) are shown in the same colors. Portions of the particle tracks where data
is missing have been omitted. (¢) Estimated thermal structure and flow velocity at ¢ = 1 min in the 4DVarMiC
simulation with Raop = 3 x 107 after 2000 iterations. The estimated thermal structure, shown as a colored
contour, is scaled so that the upper boundary is 0 and the lower boundary is 1. The flow velocity is represented
by arrows. The snapshots and movie of this 4DVarMiC run can be available in Supplementary Information
(Fig. S5 and Movie S3).

horizontally elongated one with two or three rolls and time dependency is observed everywhere (Fig. S13). We
selected a case with Raexp ~ 1.6 x 10° and AT = 9.0 K for the experimental condition, leading to quasi-2D
and unsteady (oscillatory) fluid motions. In this case, the period of oscillation is approximately 1.5 min, and the
circulation time for a convection roll is comparable to this.

4DVarMiC solutions

By assimilating two minutes of the particle track data, which is almost one cycle of the oscillation observed in
the particle track data, 4DVarMiC successfully reconstructs the thermal and flow structures (Fig. 2b, c). The
estimated temperature field (Fig. 2¢) drives the modeled flow such that thermal buoyancy governs the motion
of all particles (Fig. 2b). For instance, four downwelling flows align with cold anomalies, while four upwelling
flows correspond to hot anomalies.

The inferred thermal structure is notably sensitive to the a priori value of Rasp, whereas the flow patterns
and velocities remain similar across simulations (Fig. 3). In the three cases shown in Fig. 3, each with
different Rasp values, the thermal anomalies produce vertical particle motions consistent with observations.
At Raop = 3 x 10* (Fig. 3a), the cold and hot regions exhibit temperatures beyond those at the cooled top
and heated bottom boundaries, respectively. These unrealistic values, arising despite the absence of internal
heat sources or sinks, compensate for weak thermal forcing at low Razp via large horizontal gradients
9T /dx (Eq. 3). A similar behavior was reported in an earlier study using synthetic data®®, suggesting that the
true Rasp exceeds 3 x 10%. At Rasp = 3 x 10° (Fig. 3b), the temperature anomalies are more moderate, and
the estimated temperatures remain bounded by the top and bottom boundary values. The flow structure remains
consistent across cases. The cost function reaches a minimum near Rasp = 3 x 10° (Fig. 3d), and we adopt
this value for further analysis. At Ragp = 3 X 108 (Fig. 3¢), the thermal anomalies nearly vanish while the
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Fig. 3. Results of the 4DVarMiC simulations for different Rasp values. (a) 4DVarMiC with Razsp = 3 X 10*
at t = 2 min after 2000 iterations. The colored contours represent the estimated non-dimensional temperature,
and the arrows indicate the flow velocity. The white lines indicate isotherms at temperatures of 0 and 1. (b)
Same as (a) but Ragp = 3 x 10°. (¢) Same as (a) but Ragp = 3 x 10°. (d) Values of the cost function J (Eq.
7) plotted against the assumed Ragp (horizontal axis) and the number of iterations (vertical axis).

velocity field remains. However, the cost function increases due to excessive flow velocities associated with high
Raz[) (Fig. 3d)

A plausible value of Rasp = 3 x 10° is supported by the following: (1) the reconstructed temperature
remains within physical bounds (0 <7 < 1 in the non-dimensional form); (2) the cost function J reaches a
minimum at this value, while the flow features remain robust throughout the assimilation time window (ATW;
Fig. 3d); and (3) the recovered solution captures quasi-steady corner-roll oscillations, a behavior restricted
to a narrow range of Raexp®’, not observed in standard forward 2D simulations with random thermal
perturbations (Fig. S13). This suggests that physically plausible assimilation is achieved. Altogether, we find
that Raexp = 1.6 X 106 corresponds well to Razp = 3 x 10°. As will be discussed later, additional forward
simulations have independently confirmed that Racx, = 1.6 x 10° yields the same level of flow velocity and
surface Nusselt number as Rasp = 3 x 10° (see Fig. S14).

While the main results use the full available particle dataset, we also evaluated 4DVarMiC performance
with fewer particles and lower temporal resolution (Figs. S8 and S9). These tests confirm that the current data
resolution is sufficient for the analysis. However, uniformity in the spatial and temporal distribution of particles
remains a key factor influencing assimilation performance, meriting further study, especially in more complex
or turbulent regimes.

Evolution after the 4DVarMiC solutions

The 4DVarMiC solution in Fig. 3 demonstrates successful reconstruction of thermal structures solely from
randomly sampled particle trajectories within a two-minute ATW. We next assess how well the optimized Razp
predicts convective dynamics beyond the ATW by continuing forward simulations, as shown in Fig. 4.

Figure 4a, b compare the time series of observed and simulated horizontal flow velocity at a depth of
z = 0.25 (12.5 mm). In the observations (Fig. 4a), the velocity is on the order of 10? in non-dimensional
units (~0.2 mm/s), exhibiting nearly steady convergence and divergence boundaries associated with five major
convective rolls. Oscillatory motion near the left wall, with a period of approximately 1.6 minutes, is also visible
and attributed to small corner rolls (see intersecting trajectories in Fig. 2a). This behavior is reproduced in the
4DVarMiC simulation beyond the ATW (Fig. 4b), though with a slightly lower oscillation frequency near the
left boundary. This may indicate a limitation of 2D modeling, as it is difficult to produce spatiotemporally small
structures even with 2D forward simulations given the same Ra (Fig. S13).

Figure 4c presents the time evolution of the root mean square velocity urms (Eq. 17) for both observations
and three 4DVarMiC simulations with different Rasp values. Similarly, Fig. 4d displays the Nusselt number
at the upper boundary, Nup (Eq. 18), indicating the ratio of convective to conductive heat transfer. They are
commonly used as global indicators to characterize the overall behavior of thermally driven convective flows.
For Rasp = 3 x 10°, both urms and Nug remain in close agreement with observations during and after the
ATW. For Razp = 3 x 10%, while urws is consistent during the ATW, it decreases afterward as DA-estimated
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Fig. 4. Flow velocity and the Nusselt number within and after the ATW (Assimilation Time Window).

(a) Time series of the observed horizontal flow velocity at a depth of z = 0.25 (12.5 mm), with horizontal
distance on the horizontal axis and time on the vertical axis. Cool colors indicate rightward motion; warm
colors, leftward motion. (b) Same as (a), but for a long-term forward simulation initiated from the optimized
4DVarMiC solution with Razp = 3 x 107 after 2000 iterations. (c) Time series of the root mean square
velocity urms (Eq. 17) comparing data and the three 4DVarMiC simulations. Yellow shading denotes the
ATW. (d) Time series of the Nusselt number at the upper boundary, Nug (Eq. 18). Nug from the steady-state
analysis (SSA), shown as a blue arrow, is estimated by assuming a constant time-averaged velocity field and
using the method of Noto et al.!” (see Fig. S11).

thermal anomalies dissipate upon reaching the opposite wall (Figs. S4, S10). This leads to a drop in Nug as well,
due to weakened heat advection (Fig. 4d). For Ragp = 3 x 10°, urwms is significantly elevated (Fig. 4c), and
the upwelling/downwelling zones exhibit large horizontal oscillations, even far from the sidewalls (Fig. S10),
resulting in an overestimated Nuo due to enhanced thermal advection (Fig. 4d). Since we are not measuring
Nug directly in the experiment, we estimate it by the time-averaged velocity field with assuming steady-state
following the method of Noto et al.!7, shown as “SSA” (steady-state analysis) in Fig. 4d and Fig. S11. The result
agrees well with that from the 4DVarMiC simulation at Raop = 3 x 10°. These findings suggest that a well-
constrained 4DVarMiC solution is capable of predicting future states beyond the ATW with high fidelity.

Discussion
This study presents several key contributions to the analysis of thermally driven flows. First, we highlight the
mechanism by which both the temperature field and Ra can be simultaneously estimated from sparse Lagrangian
observations. Our inverse approach enables this simultaneous estimation, which is generally unfeasible in
forward modeling frameworks. The advantage stems from fundamental differences in how temperature
is constrained. As shown in the Results section, 4DVarMiC reconstructs the temperature field such that the
resulting thermal buoyancy force balances the viscous stresses required to reproduce the observed particle
velocities, even in the case where the data contains missing particle trajectories (Figs. S8, S9). In contrast, the
method proposed by Noto et al.!” assumes a fully-known steady-state velocity field and iteratively adjusts the
temperature field to satisfy the heat transport equation. While effective under idealized conditions, this method
cannot estimate Ra from data and is instead limited to reconstructing the steady-state thermal structure. Our
approach, by contrast, does not assume thermal steady state, and it infers both the thermal structure and Ra as
outputs directly constrained by the partly observed Lagrangian data. This makes 4DVarMiC particularly suitable
for analyzing unsteady thermally driven viscous systems such as Earth’s mantle, magmatic intrusions, and other
geophysical flows where temperature and Ra are not directly measurable but play critical roles in controlling
flow dynamics?*-?°. In solid Earth systems, among the parameters that constitute Ra, viscosity is especially
poorly constrained because laboratory deformation experiments often fail to robustly constrain the temperature
dependence of viscosity (i.e., activation energy)>®’.

In this study, we chose not to treat Ra as a direct optimization variable; instead, our focus was on clarifying
how the thermal field inferred from sparse trajectories constrains Ra indirectly, and on demonstrating the
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perspectives from which the two quantities can be jointly restricted. At the same time, estimating Ra as an
unknown parameter remains an important direction for future work. Incorporating prior experimental
knowledge into a Bayesian framework may provide a natural way to capture the coupled uncertainties of
temperature and Ra, thereby enabling more robust joint estimation.

Despite the strengths of our inverse approach, certain limitations in the temperature reconstruction were
observed. Specifically, regions with sparse particle observations—such as the right-hand side of the domain
(Fig. 2a), where fewer particles were detected due to dim laser illumination, exhibited reduced estimation
accuracy. These areas correspond to locations where the optimization failed to capture the expected thermal
structure, leading to asymmetries in the reconstructed temperature field. In the present implementation, all
particles were assigned equal weights, but this result suggests that spatial variability in observational density
could be accounted for by incorporating adaptive weighting schemes. Additionally, the near-boundary regions,
particularly the cooled upper boundary and the heated lower boundary, were not accurately reproduced (upper
and lower boundaries at ¢ = 0 of Fig. S5). This shortcoming is manifested in the anomalous Nug values at ¢ = 0
in Fig. 4d. Because thermal conduction rapidly enforces boundary temperatures, the initial thermal structure in
these regions is less influential on the subsequent flow evolution. We intentionally used a spatially uniform initial
temperature field as the initial guess in order to minimize the use of prior knowledge; however, incorporating
physically informed priors that reflect the effect of thermal conduction near boundaries—such as preconditioned
boundary layers—may improve estimation accuracy in these regions.

Another novel contribution of this study lies in addressing a nontrivial dimensionality issue: how to relate
Raexp of a quasi-2D experimental system to Razp used in 2D modeling. In our analysis, we determined
that Raexp = 1.6 X 10° corresponds to Ragp = 3 x 10°, based on the inversion results from 4DVarMiC.
This estimate was independently supported by a separate set of forward simulations: a 2D model with
Rasp ~ 3 x 10° reproduced the same urms as the experimental case with Raexp = 1.6 x 10° (Fig. S14).
Furthermore, the forward simulations showed that a similar level of Nug was obtained under the 2D simulation
with Rasp = 6 x 10° and the 3D simulation with and Raexp = 1.6 x 106 (Fig. S14). Nug of the 2D forward
simulation with Raop = 3 x 10 is slightly lower than that from 4DVarMiC after ATW and SSA under the
same Raop (Figs. 4d, S14) because heat transfer is less effective in the 2D forward simulation due to the smaller
number and the longer wavelength of convective rolls (Fig. S13) than that observed (Figs. 2a). Thus, consistent
results have been obtained from different approaches when comparing Raexp and Razp. Such dimensional
scaling is of practical importance because 2D models are frequently employed to reduce computational costs,
particularly in geoscience applications?*-2¢. Our results offer a data-informed framework for translating insights
from idealized 2D models into the context of quasi-2D dynamics in natural or experimental convective systems.

While the present experiments targeted a quasi-2D regime, which enabled the 2D implementation of
4DVarMiC to successfully reproduce the observed flow structures, we recognize that systems where three-
dimensionality is more pronounced and inertial terms cannot be neglected are beyond the scope of the
current framework. As shown by Yanagisawa et al.’, the system investigated here is characterized by strong
two-dimensionality and negligible inertial effects, and our formulation was built upon these assumptions. For
convective regimes where three-dimensional effects are significant and inertial contributions play a major role,
the present governing equations would be insufficient and a dedicated 3D formulation would be required.
Nevertheless, the core Marker-in-Cell framework adopted here can be naturally extended to three dimensions,
making the development of fully 3D data assimilation methodologies a promising direction for future studies.

While this study has focused on thermally driven convection, density anomalies arising from compositional
variations—such as solute concentration—also act as key drivers of convection in many natural and engineered
systems. Geological carbon sequestration is a prominent example, where compositional convection governs
the dissolution and transport of injected CO2%%-%0. These systems often exhibit dynamics analogous to thermal
convection, including finger-like instabilities, stratification, and enhanced mixing. The 4DVar framework
developed in this study, particularly its Marker-in-Cell implementation, offers a distinct advantage in that it
models and tracks individual Lagrangian particles explicitly. This enables the separate treatment of different
particles and thus allows for accurate estimation of component-specific transport processes, such as solute
advection?*%. As a result, the method can be naturally extended to solutal or thermo-compositional systems,
where the interaction between thermal and compositional fields governs the overall dynamics. This represents
a promising avenue for future research, where simultaneous estimation of temperature and composition fields
from sparse particle trajectories may unlock deeper insights into the coupled multiphysics behavior that
characterizes many natural and engineered convective systems.

The present study demonstrates that 4D Var, while classically used to reconstruct past system states within an
ATW, can also forecast the future evolution of thermally driven flow beyond the ATW to some extent, analogous
to sequential DA in weather forecasting®!. This predictive capability, confirmed by forward simulations
initialized from optimized states, suggests that 4DVar provides a robust framework for both retrospective and
prospective analysis of geophysical systems, complementing previous applications in retrodiction and parameter
estimation?~%°. This advantage cannot be achieved with DA based on PINNs, which are typically limited to
interpolation within the ATW?. In this study, future prediction beyond the ATW was achieved by extending
the forward simulation from the optimized initial state; therefore, the extent of predictive skill is inherently
influenced by the Reynolds number, the degree of nonlinearity, and the sensitivity to initial conditions*¢4’.
Although further evaluation is necessary in turbulent or chaotic regimes, our findings underscore the promise of
4DVar as a physically grounded and computationally stable method for time-resolved estimation and forecasting
in nonlinear convective systems.
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Methods

Laboratory experiment

The top and bottom of the vessel are copper plates to keep the temperature constant at the boundaries, whereas
the side walls are transparent acrylic plates whose thickness is 30 mm to approximately realize adiabatic
temperature conditions at walls. The working fluid is a dilute xanthan gum aqueous solution (0.02 wt%) that
can be treated as a Newtonian fluid in the low range of shear rate O(0.1) /s realized in the experiment®2. The
Prandtl number of the fluid is 70, which can be regarded as high Pr in the studied range of Racxp. The Rayleigh
number is calculated by the measured temperature difference between the top and bottom plates. We used the
data obtained by the temperature difference of 9.0 K for the assimilation, in which Raexp ~ 1.6 x 106, The flow
structure is assured to be quasi-2D at this Raexp.

Particle tracking

The motions of tracer particles seeded into the test fluid are recorded on digital image sequences at the spatial
resolution of ~ 0.1 mm/pixel and the time resolution of 10 Hz. The particles are detected and labelled in
every frame by identifying local peaks on cross-correlation maps computed with a 2D Gaussian distribution®.
The detected positions are linked over image frames to create trajectories with the in-house particle tracking
code utilized earlier”’, building on the nearest-neighbor method and the universal outlier detection®®! to
ensure spatial continuity. Discontinued trajectories are not recovered as they do not influence the subsequent
assimilation, but only trajectories longer than 10 frames are utilized. Note that the resultant particle trajectories
distribute uniformly neither in space nor time because the laser illumination attenuates with x positions for the
opacity of the fluid, not because of the actual particle distributions.

4DVarMiC equations and computation

The 4DVarMiC DA is applied to the tracer particle trajectories obtained using the method described in the
previous section. The algorithm iteratively solves the forward and adjoint models to minimize a cost function.
We consider a two-dimensional, incompressible, highly viscous fluid, and neglect inertial effects.

The forward model includes the equation of motion and the heat balance within a two-dimensional
spatial domain with the horizontal distance x € [zo0,21] = [0,4] = [0, 200 mm] and the vertical distance
z € [z0,21] = [0, 1] = [0, 50 mm] (top left is the origin of the coordinate) and time domain ¢ € [to, 1] = [0,
120 sec]:

V' = Ragn 20 )
ox
T | 7 (VD) =V*T (4)
ot
d:l)i
T (5)

where ) is the stream function, Razp is the thermal Rayleigh number in 2D modeling (Eq. 1), u is the velocity
field, T is the temperature, x; is the position of particle i (i = 1, ..., N; N = 7890), and wu; is the velocity of particle
i. The stream function v is defined as

For the equation of motion, zero-slip conditions are imposed for the boundaries of z = z¢, z1 and z = 2o, z1. For
energy conservation equation, we imposed the insulating condition along = ¢, =1, and constant temperatures
T =0along z = zp and T' = 1 along z = z1.

The cost function J includes the error distance Ji and the error velocity J2 between observed and modeled
particles and is defined as

J=J1+J2 (7)
where
M1
:/ Z o (@i - 2”) " (i — 2™ (®)
al 1 T
/ Z 3 (w — u?bs) (w . u?bs) . 9)

We used time-dependent hyperparameters o = (t — to)/(t1 — to) and 8 = 107°(t — to)/(t1 — to); larger
weight is put on the data of the early stages so that the initial condition is efficiently constrained.

The Lagrange multiplier method to minimize J subject to the forward governing equations yields the
following adjoint equations:
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Vie+(Vr)x (VI) =V x 3 Z (ui - u?bs) (10)
i€ds
—%—UT-(VT)T—VQT—&—Rang—i:O (11)
d)\i_ _ .0bsy T@u
i « (m, x; ) A; o, (12)
oJ
o (et ) )
oJ
Dai(to) —Xi(to) (14)
T(m,tl) =0 (15)
Ai(t1) =0 (16)

where ¢ is the adjoint stream function, 7 is the adjoint temperature, A; is the adjoint position of particle i, and
dS is a grid cell.

Forward and adjoint equations are discretized both in space and time. The rectangular grid contains 150
uniform 1-mm-width cells along the horizontal axis and 50 uniform 1-mm-height cells along the vertical axis
(Fig. S12), whereas a time step is 0.02 sec, satisfying the Courant-Friedrichs-Lewy condition. The forward and
adjoint equations are repeatedly solved to update unknown target parameters 7'(to) and «; until ] becomes
sufficiently small. The Ragp value remains constant throughout the optimization process.

Validation indicators
Two validation indicators were calculated to evaluate the 4DVarMiC results: the root mean square of the velocity
field and the Nusselt numbers at the upper boundary, defined as

K L
1
URMS (t) = ﬁ Z Z uleukl (17)

k=1 1l=1

K
k=1
respectively, where k is the horizontal node index, K is the number of the horizontal nodes (K = 201), [ is the
vertical nodes index, L is the number of the vertical nodes (L = 51), u; is the velocity at grid node k, I, and
uz]fs is the observed velocity at grid node k, I calculated from particle motions. When observation is missing, the
misfit for the missing part is excluded from the summation. Note that the denominator of the Nusselt numbers,
the heat flow in the case where heat transport is completely conductive, is AT'/h in the dimensional form and
1 in the non-dimensional form.

Data availability
The data for this work can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.15495028).
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