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Developments in image captioning technologies played a crucial role in improving the quality of life 
for individuals with visual impairments, advancing better social inclusivity. Image captioning is the 
task of representing the visual content of the images in natural language, applying a language method 
and a visual understanding system able to generate significant and syntactically correct sentences. 
Image captioning is a field of research of vast significance, targeting the creation of natural language 
representations for visual content in static images. Automatically representing the image content is 
a significant challenge in artificial intelligence (AI). Therefore, the emergence of deep learning (DL) 
and the most recent vision-language pre-training methods have significantly advanced the domain, 
resulting in more advanced techniques and enhanced performance. DL-based methods can process 
the difficulties and nuances of image captioning. This paper proposes an Innovative Multi-Head 
Attention Mechanism-Driven Recurrent Neural Network with Feature Representation Fusion for Image 
Captioning Performance (MARNN-FRFICP) approach to assist individuals with visual impairments. 
The MARNN-FRFICP approach aims to enhance image captioning by employing an effective method 
focused on improving accessibility for individuals with visual impairments. Initially, the Gaussian 
filtering (GF) technique is utilized in the image pre-processing stage to enhance image quality by 
removing the noise. In addition, the fusion of advanced DL models, namely InceptionResNetV2, 
convolutional vision transformer (CvT), and DenseNetl69, is employed to enhance the effectiveness 
of the feature extraction process. Moreover, the hybrid of multi-head attention mechanism-based 
bi-directional long short-term memory and gated recurrent unit (MH-BLG) technique is used for 
classification. Finally, the Lyrebird optimization algorithm (LOA) technique is employed for tuning. 
The efficiency of the MARNN-FRFICP methodology is examined under the Flickr8k, Flickr30k, and 
MSCOCO datasets. The experimental analysis demonstrates that the MARNN-FRFICP methodology 
has improved scalability and performance compared to recent techniques in various measures.
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Vision and Language technology, specifically image captioning, can assist individuals with visual impairments in 
living more independent lives by describing the visual world around them in natural language. Image captioning 
has several applications, helping the visually impaired to understand images more effectively. Visually impaired 
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individuals encounter difficulties when accessing visual information, which is essential for everyday life. Image 
captioning is a broad task in natural language processing (NLP) and computer vision (CV) that facilitates 
multimodal transformation from images to texts1. As a key provider of data, numerous images are stored and 
transmitted electronically over the internet. Simultaneously, social relationship mainly relies on NLP. It enables 
the processor to interpret the world of imagery. It has numerous applications, such as data recovery, support for 
visually impaired individuals, natural human-computer interaction, and education for children2. Depending on 
the input image, this method automatically generates a description of the text. As a demanding and significant 
AI domain, spontaneously created image descriptions have attracted substantial attention3. The aim is to create 
a verbal phrase that is linguistically precise in relation to the image’s content. Therefore, visual understanding 
and language processing of image description are the dual main features of image captioning. The NLP and 
CV methodologies should be appropriately integrated to handle issues similar to those made by other models, 
ensuring the created sentence is both grammatically and semantically correct4. Automated image captioning is a 
significant research issue with various challenges, requiring a substantial workload with wide applications across 
multiple fields, including traffic data analysis, medical image captioning and prescription, human-computer 
interaction, quality industry control, and particularly assistive technology for visually impaired persons5.

The area underwent innovative transformation through the growth and development of DL procedures, 
resulting in the introduction of progressive approaches and enhanced performance. Open-domain captioning 
is a highly challenging task, as it requires a detailed comprehension of both local and global elements in an 
image, along with their characteristics and relationships6. Image captioning is a well-explored area in AI, which 
involves understanding an image and generating descriptive text for it7. Image identification requests involve 
recognizing and detecting objects. Additionally, it aims to comprehend the location or scene type, its elements, 
and the relationships between them. Creating a well-formed sentence requires both semantic and syntactic 
understanding of language. Image understanding primarily relies on extracting features from the image. The 
methods employed for this motive are generally segmented into two types: (1) DL-based procedures and (2) 
Classical machine learning (ML)-based procedures. DL methodologies in sequence modelling have produced 
remarkable outcomes on the tasks, consistently leading the leaderboard8. Motivated by the newly presented 
decoder/encoder model for machine translation, which encodes the input image, the DL-based structures 
are trained end-to-end using back-propagation and achieve advanced results9. The use of spatial attention 
mechanisms for merging visual context—which indirectly indicates the generated text so far—was integrated 
into the generation procedure. It was shown that captioning methods employ attention mechanisms for optimal 
generality; thus, the DL comprise new text descriptions based on the detection of local and global objects10.

This paper proposes an Innovative Multi-Head Attention Mechanism-Driven Recurrent Neural Network 
with Feature Representation Fusion for Image Captioning Performance (MARNN-FRFICP) approach to assist 
individuals with visual impairments. The MARNN-FRFICP approach aims to enhance image captioning by 
employing an effective method focused on improving accessibility for individuals with visual impairments. The 
efficiency of the MARNN-FRFICP methodology is examined under the Flickr8k, Flickr30k, and MSCOCO 
datasets. The key contribution of the MARNN-FRFICP methodology is listed below.

•	 The GF-based pre-processing is initially applied to remove noise and maintain spatial integrity in histopatho-
logical images, ensuring cleaner inputs for DL techniques, while improving feature clarity and consistency 
across the dataset. This step also enhances downstream processing and efficiently contributes to robust clas-
sification performance.

•	 The advanced fusion DL techniques, such as InceptionResNetV2, CvT, and DenseNet169, are employed for 
extracting rich, hierarchical, and multiscale features from histopathological images. This ability helps improve 
intrinsic patterns and subtle distinctions. This integrated feature representation significantly improves classi-
fication accuracy and robustness.

•	 The integrated LSTM and GRU model, namely hybrid MH-BLG, is implemented to improve sequential con-
text learning and effectively capture temporal dependencies in feature sequences, thereby enabling more ac-
curate and context-aware classification. This method enhances the interpretability and performance of the 
model across varied histopathological patterns.

•	 The LOA method is employed to fine-tune the model’s parameters, thereby improving classification perfor-
mance and convergence efficiency. It dynamically adjusts weights to prevent local optima and accelerates 
training, thereby assisting in robust decision-making for intrinsic histopathological image analysis.

•	 The novelty of the MARNN-FRFICP technique is in the integration of GF, InceptionResNetV2, CvT, and 
DenseNet169, and the MH-BLG classifier and LOA, within a single automated framework for histopathology. 
This incorporated model ensures robust noise handling, deep multiscale feature learning, and context-aware 
classification. The optimization also improves accuracy and convergence stability.

Related works on image captioning
Kalantari et al.11 presented a method that integrates complicated semantic details with visual information 
to reconstruct. The suggested technique comprises dual components: semantic reconstruction and visual 
reconstruction. Visual details are encoded from brain data utilizing a decoder in the visual reconstruction 
model. The model uses a deep generator network (DGN) to produce images and employs VGG-19 models to 
extract visual characteristics from the generated images. Cao et al.12 introduced the De-confounding Feature 
Fusion Transformer Network (DFFTNet) for image captioning, specifically intended to provide real-world 
support to visually impaired people. At the encoding stage, a distance-enhanced feature expansion method 
is used. This method efficiently develops the fine-grained information of image features by incorporating 
applicable positioning data within them. At the decoding stage, a causal adjustment model is projected to 
eliminate perplexing causes. Deepak et al.13 developed a Residual Attention Generative Adversarial Network 
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(RAGAN) and utilized attention-based residual learning in GANs to enhance the fidelity and diversity of the 
generated image captions. The RAGAN leverages the word depending on the feature maps sooner to make good 
captions. The residual learning was implemented between the decoder and encoder networks. Al Badarneh 
et al.14 examined transformer modules, highlighting the serious parts these attention mechanisms show. The 
projected module employs a transformer encoder–decoder design for generating text captions and utilizes a 
DL-CNN for image feature extraction. It presents a novel ensemble learning structure that enhances the quality 
of generated captions by utilizing multiple DNN frameworks that employ a voting mechanism. Padate and 
Kalla15 introduced the Hybrid Chimp Wolf Pack Inception-V3 (HCWPI)-BiGRU model, which incorporates 
decoding and encoding components to generate precise captions for emotion-based input images. Firstly, the 
Chip Optimiser algorithm (COA) with the Wolf Pack Optimiser (WPO), such as HCWP, combined through 
InceptionV3 was used to generate proper reconstructions of the input image through fixed-length vectors, 
showing unique characteristics obtained during the encoding period. Lee et al.16 presented an innovative 
method to generate scenes of AVs’ safety. This method highlights the efficacy of the process in producing scenes 
by safeguarding representativeness and diversity. A multimodal image captioning module, denoted as Auto 
Scenario Generator (Auto-SG), is also employed, which spontaneously generates incidents using digital twin 
data. Arasi et al.17 developed an Automatic Image Captioning employing the Sparrow Search Algorithm by the 
Improved DL (AIC-SSAIDL) method. The purpose of this AIC-SSAIDL procedure is to generate automatic text 
captions for input images. To achieve this, the AIC-SSAIDL procedure utilizes the MobileNet-V2 module to 
create input image feature descriptors, and its hyperparameter tuning practice is implemented using the SSA.

Deore et al.18 introduced the Fully Convolutional Localisation Network (FCLN), a novel methodology that 
simultaneously addresses position and depiction challenges. It preserves spatial data and prevents information 
losses, restructuring training procedures by constant enhancement. The FCLN framework combines a 
recognition system, reminiscent of Faster R-CNN, with a caption method. This interaction allows us to produce 
image captions with semantic meaning. Safiya and Pandian19 proposed a real-time image captioning system 
that utilizes visual geometry group 16 (VGG16) for feature extraction and long short-term memory (LSTM) for 
caption generation, deployed on a Raspberry Pi 4B. The NoIR camera is used for capturing images while also 
utilizing text-to-speech. Hossain, Anjom, and Chowdhury20 introduced a lightweight U-Net-based model, named 
the Quantised Partial U-Net Lightweight Model (QPULM), and a Simple Obstacle Distance Detection (SODD) 
method. These are integrated into an Android app for real-time obstacle detection and footpath navigation using 
audio feedback. More et al.21 developed an efficient object detection system using You Only Look Once version 
8 (YOLOv8) converted to TensorFlow Lite for real-time assistance to visually impaired individuals. Anwar et 
al.22 presented a computer-aided diagnosis system for glaucoma detection using an ensemble of ResNet-50, 
VGG-16, and Inception Version 3 (InceptionV3) models. Nguyen et al.23 introduced MyUEVision, an Android-
based assistive application. It also utilizes ExpansionNet V2 for online captioning and integrates VGG16 and 
LSTM for offline use. Qazi, Dewaji, and Khan24 proposed a bilingual image captioning system by integrating 
a convolutional neural network (CNN) with a recurrent neural network (RNN), namely CNN-RNN, a vision 
transformer–generative pre-trained transformer 2 (ViT-GPT2), and generative adversarial networks (GANs), 
using translated Flickr30k captions. Muhammed Kunju et al.25 presented a two-layer Transformer-based image 
captioning model by utilizing Inception V3 for feature extraction. This model is deployed on a Raspberry Pi 4B. 
Uikey et al.26 presented a model by integrating Dense Convolutional Network 201 (DenseNet201) for feature 
extraction and LSTM for caption generation. These captions are converted into real-time audio using Google 
Text-to-Speech (gTTS), enhancing environmental awareness and independent mobility. Yousif and Al-Jammas27 
introduced a lightweight assistive system that utilizes YOLOv7 and a video Swin Transformer (ST) integrated 
with 2DCNN and Transformer networks for real-time object detection and video captioning on the Jetson Nano. 
Jenisha and Priyadharsini28 developed a multi-layered image captioning system by utilizing CNN and LSTM 
networks to generate accurate captions for visually impaired users, which was enhanced with Google Text-to-
Speech for audio output.

The limitations of existing studies include an insufficient exploration of vision foundation models, visual 
prompt tuning, few-shot adaptation, and neural architecture search, which are driving the current research 
frontiers. Additionally, various models still rely on conventional CNN-RNN techniques without integrating these 
advanced techniques, thereby restricting model adaptability and generalization. Furthermore, the robustness 
across diverse real-world scenarios remains a threat, and high computational costs also limit the deployment on 
edge devices. The research gap, when addressed, involves integrating these novel methods to enhance efficiency, 
flexibility, and performance in assistive image captioning systems for visually impaired users.

Methodological framework
In this manuscript, a new MARNN-FRFICP approach is proposed to assist individuals with visual impairments. 
The MARNN-FRFICP model aims to enhance image captioning through an effective approach focused on 
improving accessibility for individuals with visual impairments. It involves four processes: image pre-processing 
using the GF model, fusion of deep feature extraction models, and a hybrid MH-BLG model for automated 
image captioning. Figure 1 signifies the workflow of the MARNN-FRFICP model.

Pre-processing using GF
Initially, the GF technique is employed in the image pre-processing stage to enhance image quality by removing 
the noise29. This technique demonstrates excellence in mitigating noise while preserving crucial structural 
and spatial data in histopathological images. This model also maintains edge smoothness without introducing 
artefacts that could affect downstream analysis, unlike median or bilateral filters. The model is considered 
significant in medical imaging, where fine tissue patterns carry diagnostic relevance. This model also improves 
the clarity of the image, thus assisting DL techniques in extracting more meaningful features. The method 
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effectively balances denoising performance and structural retention more effectively than various conventional 
filters, and its computational efficiency also makes it suitable for massive datasets.

GF is a widely employed model in image processing that reduces noise and smooths images while preserving 
the main structures. It utilizes a GF to weigh pixel values, thereby assigning high significance to adjacent pixels 
and reducing the impact of isolated ones. During image captioning, GF can improve the extraction of features by 
reducing unnecessary changes and enhancing object clarity. This enables DL techniques, such as transformers or 
CNNs, to focus on key image areas, resulting in more precise and contextually relevant captions. Moreover, its 

Fig. 1.  Workflow of the MARNN-FRFICP model.
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assistance in the pre-processing stages, by enhancing edge detection and reducing background noise, ultimately 
improves the model’s performance in image captioning assignments.

Fusion of deep feature extraction models
In addition, the fusion of advanced three DL methods, namely InceptionResNetV2, CvT, and DenseNetl69 
model, is employed to enhance the effectiveness of the feature extraction process. The fusion model is selected 
for its complementary strengths. The InceptionResNetV2 efficiently captures multiscale spatial features through 
inception modules integrated with residual connections, thus improving the depth without vanishing gradients. 
Furthermore, the CvT model incorporates local convolutional features and a global attention mechanism to 
facilitate better context understanding and fine-grained analysis. The DenseNet169 technique performs effective 
feature reuse through dense connectivity. This fusion model ensures robust, diverse, and hierarchical feature 
representation, while also mitigating redundancy and enhancing efficiency.

InceptionResNetV2
InceptionResNet-V2 is considered to be a multifaceted CNN structure mainly designed for operations in CV 
and image classification30. It continuously combines the succeeding dual important CNN models: Inception, 
known for its successful feature extraction, and ResNet, reliable for its capability to handle training difficulties 
in deeper systems. By combining the Inception module for ResNet’s residual links and feature extraction, 
InceptionResNet-V2 exemplifies the power of both methods. Its structure consists of grid and stem elements. 
These units implement multiscale feature extraction, combining different convolutional methods while ensuring 
strong gradient flows over residual links.

The system begins with the input images, represented as a tensor, Xinput, with dimensions HxWxC , where 
H and W represent the height and width of the images, and C  refers to the channel count (for example, three 
for RGB images). These tensors are passed to the stem block, which serves as a pre-processing unit that removes 
lower-level features while minimizing spatial sizes.

	 Xinput ∈ RH×W ×C � (1)

All convolution processes utilize kernels, Wi,c, to remove characteristics for all channels, c, of the input, 
followed by the inclusion of the biased term, bj , and the application of the activation function, typically ReLU . 
In mathematics, the convolution process output for the ith feature mapping is stated as shown:

	
Zi = ReLU

(
c∑

c=1

(Wi,c ∗ Xc) + bi

)
� (2)

Whereas ∗ characterizes the convolution operator, Pooling tasks like average- or max‐poolings are further 
related to decreasing the spatial sizes, as shown:

	
Zpool = max

k×k
(Z) or meank×k (Z)� (3)

Here. kxk refers to pooling kernel dimensions. The output of the stem block is the decreased spatial 
tensors,  Zstem.

It is a fundamental constituent part of the InceptionResNet-V2 structure, tailored to effectively remove 
composite features while preserving a smooth flow of gradients over residual links. This Inception module 
handles the input, X , over numerous equivalent divisions, all executing dissimilar processes. These branches 
contain the following:

	1.	 1 × 1 Convolutions to lower complexity and remove fine-grained attributes, as demonstrated:

	 Z1×1 = ReLU (W1×1 × X + b1×1)� (4) 

	2.	 3 × 3 Convolutions using a reduction stage, whereas a 1 × 1 convolution decreases the channel counts previ-
ously used by a 3 × 3 convolution, as shown:

	 Z3×3 = ReLU (W3×3 × (ReLU (Wr × X + br)) + b3×3)� (5) 

	3.	 5 × 5 Convolutions separated into dual sequential 3 × 3 convolutions for computational cost, as represented:

	 Z5×5 = ReLU (W3×3b × (ReLU (W3×3b × X + b3×3b)) + b3×3b)� (6)

	4.	 1 × 1 convolutions accompany pooling, whereas pooling decreases the spatial sizes, and a 1 × 1 convolution is 
used for the compression of features, as indicated:

	 Zpool = ReLU (Wpool × (P ool (X)) + bpool)� (7)

The corresponding branch outputs are connected along with the channel size, as illustrated:
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	 ZInception = [Z1×1′ Z3×3′ Z5×5′ Zpool]� (8)

The residual link expands the flow of gradient by including the input, X , to the Inception module outputs, as 
described:

	 ZRes = ZIncepiion + WrX � (9)

This ensures that the system can be trained to identify mappings that help alleviate the problem of gradient 
vanishing.

To mitigate memory usage and computing costs, reduction blocks are positioned among Inception Residual 
block groups. These blocks downsample the feature mapping over pooling operations and stride convolutions, 
as described:

I. Strided Convolutions:

	 Zreduce = wreduce × Xinpui + breduce� (10)

II. Pooling additionally decreases spatial sizes, as specified:

	 Zreduce = P ool (Zreduce)� (11)

The block of reduction outputs a feature mapping, Zreduce, with small spatial sizes and large channel counts. 
The last Inception Residual output blocks are restricted to a 1-D vector, as outlined:

	 zflatten = F latten (zfinal)� (12)

Whereas zfinal ∈ RHf × Wf × Cf  and the flattened vector zflatten ∈ RHf .Wf .Cf .
This vector passes through more than one fully connected layer, as demonstrated:

	 Zdense = Wdense. zfinal + bdense� (13)

Here, bdense and Wdense  represent the biases and weights of the dense layer. The last layers use a function of 
softmax activation for mapping the logit to likelihoods, as considered:

	
P (yi|X) = exp (Zi)

ΣN
j=1exp (Zj) � (14)

Now, Zi denotes logit for class i, N  means the sum of output class labels, and P (yi| X) stands for an 
anticipated possibility for class i. Figure 2 illustrates the architecture of InceptionResNetV2.

CvT model
CvT is a hybrid of a convolutional and Vision Transformer (ViT) framework31. The objective of this model is to 
leverage the benefits of CNNs in the fields of shared weights, local receptivity, and spatial subsampling, while 
incorporating the advantages of transformers in global context fusion, enhanced generalization, and dynamic 
attention.

	 xout = T (xin*Win + bin; θ )� (15)

Fig. 2.  Framework of InceptionResNetV2.
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CvT framework might be expressed in Eq. (15), where xin depicts features of the input, Win and bin refer 
to the weights and bias of the convolution embedding layer, and T (• ; θ ) denotes the transformer layer and 
parameters employed in that layer.

A transformer Block usually comprises dual elements. Primarily, the features are input and processed in the 
primary component like the normalization function and attention layers that are added to identity mapping 
of incoming features that is described in Eq. (16). Succeeding the 1 st portion, the features will be processed in 
the 2nd part that contains normalization function layer and Multi-layer Perceptron (MLP) layer, succeeded by 
identity mapping of features that enters 2nd part that stated in Eq. (17).

	 (x* = xemb + A (ℵ (xemb))� (16)

While the transformer processes the embedding outcomes, the feature passes through the layer of the attention 
mechanism, normalization, and creates a residual connection. In Eq. (16), ℵ signifies a layer of normalization, 
xemb indicates embedding outcome, x* refers to normalization, attention, and residual connection results, and 
A represents the attention mechanism.

	 xout = x* + M
(
ℵ

(
x*))

� (17)

In Eq. (16), the processing will be performed over the residual connection, normalization layer, and MLP. In 
Eq. (17), x* depicts the calculation outcome of Eq. (16), ℵ indicates the normalization layer, M  denotes MLP 
calculated by Eq. (18), and xout signifies the normalized MLP and residual connection outcomes.

	 xout = δ (xin*W1 + b1) *W2 + b2� (18)

Equation (18) is the equation of the MLP structure employed in Eq. (17). Within Eq. (18), xout denotes the 
output feature, xin indicates the input feature, W  refers to the weight of the convolution layer, b depicts the bias 
of the convolution layer, and δ  refers to the activation function.

DenseNetl69 method
The model’s framework was advanced using DenseNet-169 for feature extraction32. By description, it is a 
mainstay, consisting of ConvNet layers two over 427, where all layers feed their feature mapping to the following 
layers, thereby encouraging feature reuse and the successful propagation of the gradient. This permits the 
dense connectivity form, which is highly effective in image processing for learning powerful features that are 
significant in differentiating subtle designs. As with the EfficientNet-B3 approach before, this mainstay is frozen 
to leverage the generalization control of its pre-trained weights on ImageNet. Features removed by the networks 
are accumulated over the layer of Global Average Pooling, resulting in a concise yet richer feature vector in 
terms of information. It further adds a fully connected (FC) dense layer utilizing 1024 units and ReLU for 
activation to improve higher-order representations, accompanied by a dropout layer to enforce some category 
of regularisation and prevent overfitting. This method concludes with an output layer of Softmax that forecasts 
likelihood distributions for both four different types and six types in the respective dataset. It will present efficient 
calculations with higher predictive precision due to its stronger yet basic structure; therefore, it is likely to be the 
best selection for the shown classification task.

Hybrid MH-BLG model for automated image captioning
Finally, the hybrid of the MH-BLG technique for the classification model33. This technique effectively captures 
both short- and long-range dependencies in sequential data, which is considered significant for evaluating 
the spatial and temporal patterns. The MH attention component enables focusing on various relevant 
features concurrently, thereby enhancing performance and interpretability. The Bi-LSTM efficiently captures 
bidirectional context, improving the comprehension of intrinsic image features, while GRU ensures efficient 
learning with mitigated computational cost. Thus, the incorporation of these components provides a balanced 
trade-off between accuracy and efficiency, outperforming conventional RNNs or single-layer LSTMs in handling 
high-dimensional medical image data.

The LSTM is an enhanced variant of the RNN, specifically designed to handle longer-term dependencies 
and time-series data. By presenting gating systems, LSTM dynamically regulates the retention and forgetting of 
data, efficiently resolving the problems of gradient explosion or vanishing that arise in conventional RNNs. This 
creates an LSTM well-matched to acquire data from longer-term dependencies. The framework of the LSTM 
network comprises three gates:

	1.	 Forget gate (ft): Establishes the data to discard from the state of the cell. The input consists of the existing 
input (Xt) and the preceding hidden state (HL) (ht−1). Afterwards, passing over the sigmoid function, the 
value of the output is between 0 and 1. Here, 0 is a wide-ranging discard, and 1 refers to comprehensive 
retention.

	2.	 Input gate (it): Regulates the upgrade of novel data. The sigmoid function’s choice of values must be upgrad-

ed, as the tanh function creates a state of candidate 
(∼

Ct

)
. The sigmoid outcome enhances the state of the 

candidate, and the outcome is added to the past state of the cell (Ct−1) to update the present state of the cell 
(Ct).

	3.	 Output gate (ot): Establish the HL of output. The existing cell state (Ct) is processed over the function of 
tanh, and the outcomes are increased by the sigmoid function output by creating the present HL (ht), thus 
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deliberating either the present input or longer-term memory. The mathematical model for the network of 
LSTM is given:

	 ft = σ (Wf ht−1 + Uf Xt + bf )� (19)

	 it = σ (Wiht−1 + UiXt + bi)� (20)

	 ot = σ (W0ht−1 + UoXt + bo)� (21)

	
∼
Ct = tanh (Wcht−1 + UcXt + bc)� (22)

	 Ct = ft × ct−1 + it ×
∼
Ct

� (22)

	 ht = ot × tanh (C)� (24)

Here, Wf , Wi, W0, and W c represent the weighted matrices for the state and gate units, respectively. σ  
specifies the sigmoid activation function. These matrices are utilized to change the preceding HL ht−1 linearly. 
Uf , Ui, Uo, and Uc denote the weighted matrices for state and gate components. It is employed to change the 
existing input Xt linearly. bf , bi, bo, and bc are the biased terms for the state and gate components.

The architecture of Bi-LSTM comprises both backwards and forward LSTM. It can process the input data in 
typical sequence order. For instance, the sequential data X = (X0, X1, X2, . . . , XT ) is processed by the 
LSTM in a forward direction, beginning from X0 and determining the forward hidden state 

−→
ht  at time step 

t. This process is then repeated for X1, X2, . . . , XT  in sequence. Conversely, the reverse LSTM manages 
the input data in reverse, starting from XT  and analyzing the reverse HL 

←−
ht  at time step t, then proceeding 

to XT −1, XT −2, . . . , X0. The Bi-LSTM output is used to concatenate the backwards and forward hidden 
states. Specifically, for every time-step t, the output is Yt = [

−→
ht ,

←−
ht ]. The Bi-LSTM technique comprehensively 

deliberates either the preceding tendency or the upcoming tendency of sequential data, presenting more inclusive 
feature data for condition prediction and classification.

GRU has a version of the LSTM framework with a simple model. It integrates the forgetting and input gate of 
LSTM to a particular gate of upgrade and associates the cell states in the HL. Under similar concealed unit counts, 
the GRU method has a lower computation cost and a faster training speed compared to LSTM, particularly in 
processing large amounts of data. The architecture of the GRU model comprises dual gates:

Update gate (zt): This gate regulates the number of the preceding memories that must be retained and the 
number of novel data that must be increased at the existing time step. The input in preceding HL (ht−1) and 
the present input (Xt), after passing through the sigmoid function, creates an output value (zt) between zero 
and one. While zt is adjacent to one, it indicates that more preceding state data is retained; once it is near zero, 
it suggests that more reliable data is used on the current input to update the state.

Reset gate (rt): This gate manages several preceding memories that must be retained. The input consists of 
the preceding HL (ht−1) and the existing input (Xt). The output (r) has a value between zero and one; it is 
employed to manage the effect of the past hidden state (ht−1) on the existing calculation. While the output of 
the gate of reset is zero, the past HL is disregarded; whereas it is one, the past hidden state is entirely deliberated.

The hidden state of candidate 
−→
ht  is attained to concatenate and linearly change the scaled preceding HL ht−1 

and existing input Xt. The existing HL ht is measured by utilizing the output of the upgrade gate to manage 
the related contributions of the past hidden state ht−1 and the HL of the candidate 

∼
ht. The gate of upgrade 

dynamically balances historical data and novel data, enabling the HL to acquire patterns and modifications 
in sequence data effectively. This method helps mitigate the problem of exploding and vanishing gradients 
when processing longer sequences, thereby enabling enhanced learning of longer-term dependencies. The 
mathematical model of GRU is given:

	 zt = σ (WzXt + Uzht−1 + bz)� (25)

	 rt = σ (WrXt + Urht−1 + br)� (26)

	
∼
ht = tanh (WhXt + Uh (rt × ht−1) + bh)� (27)

	 ht = (1 − zt) × ht−1 + zt ×
∼
ht

� (28)

Now, bz, br, and bh are the biased terms, Wz, Wr, Wh, Uz, Ur, and Uh represent the weighted matrices, 
and σ  specifies the sigmoid activation function.

Attention mechanisms (AMs) are stimulated by human attention developments, which target the active 
concentration on different portions of input sequences during processing34. The MHAM extends the elementary 
AM by calculating numerous attention heads in parallel, permitting the method to concentrate on various 
attributes of the inputs. All attention heads learn diverse depictions that are further connected and linearly 
converted to give the last outputs:

	
Attention (Q, K, V ) = softmax

(
QKT

√
dk

)
V � (29)

The outputs from numerous heads are concatenated:
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	 MultiHead (Q, K, V ) = Concat (head1, . . . , headh) W O � (30)

Whereas Q, K , and V  originate from the sequence of input features. Particularly, Q embodies the query 
gained by linearly converting the input characteristics; K  signifies the key employed to calculate the similarities 
between Q and all input vectors; and V  represents a matrix of values, which includes the real data of the 
input feature. W O  denotes a learnable output-weighted matrix that is constantly improved during training to 
integrate the outputs from dissimilar attention heads. These elements are automatically updated and calculated 
by the model during the input handling and training stages, eliminating the need for manual tasks. The layer of 
attention acts as a bridge between the output layer and the last hidden layers (HLs), particularly focusing on the 
more closely related features from the sequence of input. By allocating dissimilar weights to concealed states in 
HL, the AM enables the method to focus on significant spatial or temporal dependencies.

The combination of GRU, Bi-LSTM, and MHAM enhances the classification procedure in image captions 
by effectively capturing temporal and spatial dependencies. Bi-LSTM processes sequential image features bi-
directionally, ensuring contextual understanding from both previous and upcoming states. GRU creates a 
recurrent network architecture that decreases computational complexity while retaining performance. The 
MHAM enhances feature representation by directing related portions of the image according to attention 
weights. This hybrid approach enhances caption generation precision, guaranteeing critical and contextually 
rich image representations.

Performance evaluation
The performance analysis of the MARNN-FRFICP model is examined under datasets such as Flickr8k35, 
Flickr30k36, and MSCOCO37. The complete details of these datasets are represented in Table 1.

Table  2; Fig.  3 present a comparative study of the MARNN-FRFICP technique on the Flickr8k dataset, 
alongside recent techniques, under several metrics, including BLEU1, BLEU2, BLEU3, BLEU4, METEOR, and 
CIDEr17,20–22,38. The table values specify that the MARNN-FRFICP technique has attained greater performance. 
Based on BLEU1, the MARNN-FRFICP technique has gained a maximum BLEU1 of 80.10%, while the existing 
methods, namely QPULM, YOLOv8, ResNet-50, Google NIC, Soft-Attention, m-RNN, SCA-CNN-VGG, GCN-
LSTM, Injection-Tag, and AIC-SSAIDL, have reached a minimum BLEU1 of 60.04%, 62.37%, 64.47%, 60.00%, 
62.29%, 64.38%, 66.98%, 69.16%, 68.71%, and 74.19%, correspondingly. Additionally, according to BLEU4, the 
MARNN-FRFICP technique achieved a superior BLEU4 score of 80.10%. In contrast, the existing methods, 
namely QPULM, YOLOv8, ResNet-50, Google NIC, Soft-Attention, m-RNN, SCA-CNN-VGG, GCN-LSTM, 
Injection-Tag, and AIC-SSAIDL, have achieved diminishing BLEU4 of 20.05%, 22.14%, 24.87%, 19.99%, 22.07%, 
24.81%, 26.28%, 28.47%, 37.59%, and 33.48%, respectively. Additionally, according to METEOR, the MARNN-
FRFICP technique has achieved a higher METEOR score of 43.54%. At the same time, the existing models, 
namely QPULM, YOLOv8, ResNet-50, Google NIC, Soft-Attention, m-RNN, SCA-CNN-VGG, GCN-LSTM, 
Injection-Tag, and AIC-SSAIDL, have achieved lower METEOR scores of 16.32%, 18.24%, 19.98%, 16.23%, 
18.19%, 19.91%, 23.23%, 25.84%, 30.15%, and 31.53%, correspondingly. Furthermore, depending on CIDEr, 

Flickr8K Dataset

Technique BLEU1 BLEU2 BLEU3 BLEU4 METEOR CIDEr

QPULM 60.04 44.93 34.20 20.05 16.32 32.96

YOLOv8 62.37 47.05 36.33 22.14 18.24 35.63

ResNet-50 64.47 48.41 38.09 24.87 19.98 38.33

Google NIC 60.00 44.86 34.12 19.99 16.23 32.89

Soft-Attention 62.29 46.97 36.29 22.07 18.19 35.58

m-RNN 64.38 48.33 38.05 24.81 19.91 38.26

SCA-CNN-VGG 66.98 51.81 41.01 26.28 23.23 40.10

GCN-LSTM 69.16 53.79 43.12 28.47 25.84 42.89

Injection-Tag 68.71 59.01 50.68 37.59 30.15 58.27

AIC-SSAIDL 74.19 58.19 47.69 33.48 31.53 47.95

MARNN-FRFICP 80.10 63.55 56.64 45.78 43.54 63.97

Table 2.  Comparative analysis of MARNN-FRFICP model on Flickr8k dataset with recent models.

 

Dataset Images

Flickr8k 8000

Flickr30k 31,000

MSCOCO 164,062

Total 203,062

Table 1.  Details of datasets.
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the MARNN-FRFICP approach has achieved a higher CIDEr score of 43.54%. At the same time, the existing 
models, namely QPULM, YOLOv8, ResNet-50, Google NIC, Soft-Attention, m-RNN, SCA-CNN-VGG, GCN-
LSTM, Injection-Tag, and AIC-SSAIDL, have achieved lower CIDEr scores of 32.96%, 35.63%, 38.33%, 32.89%, 
35.58%, 38.26%, 40.10%, 42.89%, 58.27%, and 47.95%, respectively.

In Fig. 4, the training (TRA) accuy  and validation (VAD) accuy  performances of the MARNN-FRFICP 
method on the Flickr8k dataset are depicted. The figure underscored that both accuy  values express a 
cumulative propensity, indicating the capability of the MARNN-FRFICP approach to achieve higher outcomes 
through numerous repetitions. Moreover, both accuy  and results improve over time through the epochs, 
indicating diminished overfitting and presenting an increased outcome of the MARNN-FRFICP approach, 
which guarantees consistent prediction on unseen samples.

In Fig. 5, the TRA loss (TRALS) and VAD loss (VADLS) graph of the MARNN-FRFICP technique on the 
Flickr8k dataset is showcased. It is demonstrated that both values represent a declining propensity, indicating 
the proficiency of the MARNN-FRFICP approach in harmonizing a trade-off between generalization and data 
fitting. The constant reduction in loss values, as well as securities, provides an increased outcome from the 
MARNN-FRFICP approach, which ultimately tunes the calculation results over time.

The computational time analysis of the MARNN-FRFICP technique under the Flickr8k dataset is illustrated 
in Table 3; Fig. 6. The MARNN-FRFICP technique achieved the lowest CT of 3.77 s, significantly outperforming 
existing techniques such as GCN-LSTM with 21.61 s, Injection-Tag with 23.92 s, and Soft-Attention with 19.29 s. 
Compared to faster models like SCA-CNN-VGG with 6.67 s and m-RNN with 8.08 s, the MARNN-FRFICP 
model demonstrates superior processing speed, highlighting its computational efficiency and suitability for real-
time or resource-constrained image captioning tasks.

Table  4; Fig.  7 depict the highest scores across all evaluation metrics, including BLEU-1 to BLEU-4, 
METEOR, and CIDEr of the MARNN-FRFICP model on the Flickr8K dataset. It attained a BLEU-4 score of 
45.78, METEOR of 43.54, and CIDEr of 63.97, outperforming recent methods like MH-BLG and LOA. These 
results highlight the efficiency of the MARNN-FRFICP method in generating accurate and contextually rich 
image captions. The consistent performance gains also support its contribution in ablation studies, emphasizing 
the value of each integrated component.

Fig. 3.  Comparative analysis of the MARNN-FRFICP model on the Flickr8k dataset under various metrics.
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Table 5; Fig. 8 inspect the comparative study of the MARNN-FRFICP model with existing techniques under 
various metrics on the Flickr30K dataset. The outcome reports that the MARNN-FRFICP model has attained 
superior values in BLEU1 at 77.23%, BLEU2 at 70.11%, BLEU3 at 69.08%, and BLEU4 at 58.91%. In the meantime, 
the existing methods, such as QPULM, YOLOv8, ResNet-50, Google NIC, Soft-Attention, m-RNN, SCA-CNN-
VGG, GCN-LSTM, Injection-Tag, and AIC-SSAIDL, have gained minimal values. Likewise, the AIC-SSAIDL 
method has provided More accurate solutions, with METEOR scores of 36.86% and CIDEr scores of 63.42%. In 

Fig. 5.  Loss curve of the MARNN-FRFICP model on the Flickr8k dataset.

 

Fig. 4.  Accuy  curve of MARNN-FRFICP model on Flickr8k dataset.
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addition, the MARNN-FRFICP technique demonstrated maximum performance with an increased METEOR 
of 45.26% and a CIDEr score of 69.81%.

In Fig.  9, the TRA accuy  and VAD accuy  performances of the MARNN-FRFICP approach on the 
Flickr30K dataset are depicted. The figure emphasized that both accuy  values present an increasing propensity, 
indicating the proficiency of the MARNN-FRFICP model with enhanced outcomes through several repetitions. 
In addition, both accuy  remain closer through the epochs, indicating diminished overfitting, and exhibit the 
higher outcome of the MARNN-FRFICP model, securing consistent calculation on hidden samples.

In Fig. 10, the TRALS and VADLS of the MARNN-FRFICP approach on the Flickr30K dataset are exposed. 
It is indicated that both values exhibit a diminishing tendency, suggesting the competency of the MARNN-
FRFICP approach in balancing the trade-off between generalization and data fitting. The constant reduction 
in loss values, along with assurances of improved outcomes for the MARNN-FRFICP technique, and gradual 
tuning of the prediction results, is a significant development.

Fig. 6.  CT evaluation of MARNN-FRFICP technique on Flickr8k dataset with recent models.

 

Flickr8K Dataset

Technique CT (sec)

QPULM 15.99

YOLOv8 10.20

ResNet-50 11.98

Google NIC 13.08

Soft-Attention 19.29

m-RNN 8.08

SCA-CNN-VGG 6.67

GCN-LSTM 21.61

Injection-Tag 23.92

AIC-SSAIDL 12.65

MARNN-FRFICP 3.77

Table 3.  CT evaluation of MARNN-FRFICP technique on Flickr8k dataset with recent models.
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Table 6; Fig. 11 specify the CT outputs of the MARNN-FRFICP technique under the Flickr30K dataset. While 
the MARNN-FRFICP model attained the lower value of 6.38 s, the existing models like Injection-Tag at 9.43 s, 
ResNet-50 at 12.19 s, and YOLOv8 at 23.70 s attained higher results. These values highlight the computational 
efficiency of the MARNN-FRFICP model, making it appropriate for real-time image captioning applications on 
larger and more diverse datasets like Flickr30K.

Table 7; Fig. 12 indicate the ablation study analysis of the MARNN-FRFICP technique on the Flickr30K 
dataset. The MARNN-FRFICP technique achieved the highest performance across all evaluation metrics, 
including BLEU-1 to BLEU-4, METEOR, and CIDEr. It recorded a BLEU-4 score of 58.91, METEOR of 45.26, 
and CIDEr of 69.81, surpassing robust baselines like MH-BLG and LOA. These improvements indicate that the 
MARNN-FRFICP model provides more fluent and semantically accurate captions. The consistent gains also 
reinforce the value of its individual components, as further validated through ablation studies.

The comparative outcome of the MARNN-FRFICP technique with existing methodologies under various 
metrics on the MSCOCO dataset is portrayed in Table  8; Fig.  13. Based on BLEU1, the MARNN-FRFICP 
technique has gained a maximum BLEU1 of 83.36%, while the existing models, namely QPULM, YOLOv8, 
ResNet-50, Google NIC, Soft-Attention, m-RNN, SCA-CNN-VGG, GCN-LSTM, Injection-Tag, and AIC-
SSAIDL, have attained a minimum BLEU1 of 63.18%, 65.34%, 67.55%, 63.12%, 65.27%, 67.49%, 68.21%, 69.95%, 

Fig. 7.  Ablation study of the MARNN-FRFICP methodology on Flickr8k dataset.

 

Flickr8K Dataset

Technique BLEU_1 BLEU_2 BLEU_3 BLEU_4 METEOR CIDEr

GF 76.33 59.43 52.31 41.38 39.13 59.82

InceptionResNetV2 76.84 60.20 53.16 42.11 40.00 60.37

CvT 77.45 60.90 53.72 42.78 40.61 61.10

DenseNet169 78.28 61.52 54.53 43.54 41.14 61.99

LOA 78.82 62.07 55.39 44.16 41.94 62.63

MH-BLG 79.47 62.73 56.13 45.00 42.74 63.25

MARNN-FRFICP 80.10 63.55 56.64 45.78 43.54 63.97

Table 4.  Ablation study of the MARNN-FRFICP methodology on Flickr8k dataset.
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76.73%, and 81.14%, respectively. Moreover, based on BLEU3, the MARNN-FRFICP technique has achieved a 
maximum BLEU3 of 83.36%. At the same time, the existing models, namely QPULM, YOLOv8, ResNet-50, 
Google NIC, Soft-Attention, m-RNN, SCA-CNN-VGG, GCN-LSTM, Injection-Tag, and AIC-SSAIDL, have 
achieved a minimum BLEU3 of 34.22%, 36.22%, 38.17%, 34.14%, 36.16%, 38.09%, 38.86%, 40.82%, 43.29%, and 
48.59%, respectively. In addition, based on METEOR and CIDEr, the performance reports that the MARNN-
FRFICP method has attained higher values in METEOR of 41.69%, and CIDEr of 150.62% whereas the recent 

Fig. 8.  Comparative analysis of the MARNN-FRFICP model on the Flickr30K dataset under various metrics.

 

Flickr30K Dataset

Technique BLEU1 BLEU2 BLEU3 BLEU4 METEOR CIDEr

QPULM 60.49 50.82 40.30 29.14 23.46 39.58

YOLOv8 62.91 53.21 43.16 30.77 25.67 41.68

ResNet-50 64.61 55.02 46.10 33.08 27.55 44.17

Google NIC 60.45 50.74 40.23 29.09 23.39 39.51

Soft-Attention 62.82 53.14 43.12 30.73 25.60 41.59

m-RNN 64.55 54.94 46.02 33.01 27.47 44.13

SCA-CNN-VGG 66.45 57.71 49.01 35.90 30.24 47.04

GCN-LSTM 69.22 59.28 50.74 37.74 30.74 58.49

Injection-Tag 71.00 61.97 52.56 39.69 34.47 61.17

AIC-SSAIDL 73.21 64.35 55.47 42.82 36.86 63.42

MARNN-FRFICP 77.23 70.11 69.08 58.91 45.26 69.81

Table 5.  Comparative study of MARNN-FRFICP model with existing techniques on Flickr30K dataset.
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approach AIC-SSAIDL has gained a nearer solution in METEOR of 34.32%, and CIDEr of 138.03%. Nevertheless, 
existing models, such as QPULM, YOLOv8, ResNet-50, Google NIC, Soft-Attention, m-RNN, SCA-CNN-VGG, 
GCN-LSTM, Injection-Tag, and AIC-SSAIDL, have achieved minimal values.

In Fig.  14, the TRA accuy  and VAD accuy  performances of the MARNN-FRFICP technique on the 
MSCOCO dataset are represented. The figure highlights that both accuracy  values exhibit a growing propensity, 
indicating the capability of the MARNN-FRFICP technique to achieve enhanced outcomes through repeated 

Fig. 10.  Loss curve of the MARNN-FRFICP method on the Flickr30K dataset.

 

Fig. 9.  Accuy  curve of MARNN-FRFICP method on Flickr30K dataset.
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applications. In addition, both accuy  remain relatively stable throughout the epochs, indicating decreased 
overfitting and demonstrating superior outcomes for the MARNN-FRFICP model, which ensures reliable 
predictions on unseen samples.

In Fig. 15, the TRALS and VADLS graph of the MARNN-FRFICP technique on the MSCOCO dataset is 
illustrated. It is exemplified that both values signify a diminishing propensity, indicating the proficiency of 
the MARNN-FRFICP approach in corresponding to equilibrium between generalization and data fitting. The 
progressive dilution in values of loss, as well as securities, secures the increased outcome of the MARNN-FRFICP 
approach and tunes the prediction results over time.

The CT analysis of the MARNN-FRFICP model on the MSCOCO dataset is depicted in the Table 9; Fig. 16. 
The MARNN-FRFICP model achieved the lowest CT of 5.71 s, outperforming other approaches such as AIC-
SSAIDL at 8.64  s, YOLOv8 at 11.13  s, and Google NIC at 11.82  s. This reduction in CT indicates the high 

Fig. 11.  CT analysis of the MARNN-FRFICP approach on Flickr30K dataset with existing models.

 

Flickr30K Dataset

Technique CT (sec)

QPULM 19.72

YOLOv8 23.70

ResNet-50 12.19

Google NIC 17.19

Soft-Attention 16.38

m-RNN 24.71

SCA-CNN-VGG 15.32

GCN-LSTM 18.01

Injection-Tag 9.43

AIC-SSAIDL 14.07

MARNN-FRFICP 6.38

Table 6.  CT analysis of the MARNN-FRFICP approach on Flickr30K dataset with existing models.
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computational efficiency and suitability of the model for large-scale image captioning tasks where speed and 
responsiveness are critical.

Table 10; Fig. 17 specify the ablation study of the MARNN-FRFICP model on the MSCOCO dataset. The 
MARNN-FRFICP model attained the highest performance across all key evaluation metrics, achieving a BLEU-
4 score of 47.86, METEOR of 41.69, and a CIDEr score of 150.62. These outputs outperform prior best values like 
MH-BLG and LOA, indicating improved fluency, relevance, and semantic richness in the generated captions. 
The consistent improvements across metrics also validate the efficiency of the model’s architectural components, 
further supported by ablation studies.

The MARNN-FRFICP approach achieved the lowest floating-point operations at 9.54 gigaflops and the least 
GPU memory usage at 913 megabytes, as shown in Table 1139. Compared to existing models such as Swin Tiny 
with 17.04 gigaflops and 2748 megabytes or MobileNetv3 Small with 19.57 gigaflops and 2463 megabytes, the 
MARNN-FRFICP model illustrates superior resource efficiency. This highlights its suitability for deployment in 
real time or low power environments where memory and processing constraints are critical.

Fig. 12.  Ablation evaluation of the MARNN-FRFICP technique on Flickr30K dataset.

 

Flickr30K Dataset

Technique BLEU_1 BLEU_2 BLEU_3 BLEU_4 METEOR CIDEr

GF 72.92 65.79 65.08 54.96 41.18 65.45

InceptionResNetV2 73.47 66.63 65.59 55.60 41.85 66.06

CvT 74.33 67.34 66.15 56.19 42.65 66.85

DenseNet169 74.99 67.94 66.89 56.71 43.26 67.67

LOA 75.72 68.48 67.44 57.37 43.83 68.30

MH-BLG 76.45 69.31 68.18 58.21 44.46 69.06

MARNN-FRFICP 77.23 70.11 69.08 58.91 45.26 69.81

Table 7.  Ablation evaluation of the MARNN-FRFICP technique on Flickr30K dataset.
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Conclusion
In this paper, a novel MARNN-FRFICP model is proposed to assist individuals with visual impairments. 
The MARNN-FRFICP model aimed to enhance image captioning through an effective approach focused on 
improving accessibility for individuals with visual impairments, involving GF-based image pre-processing, 
fusion of advanced three DL models-based feature extraction, a hybrid of the MH-BLG method-based 

Fig. 13.  Comparative analysis of the MARNN-FRFICP model on the MSCOCO dataset under various metrics.

 

MSCOCO Dataset

Technique BLEU1 BLEU2 BLEU3 BLEU4 METEOR CIDEr

QPULM 63.18 49.15 34.22 23.85 20.00 69.56

YOLOv8 65.34 51.51 36.22 26.12 22.15 71.95

ResNet-50 67.55 52.92 38.17 29.08 24.87 89.45

Google NIC 63.12 49.07 34.14 23.80 19.96 69.52

Soft-Attention 65.27 51.46 36.16 26.03 22.09 71.89

m-RNN 67.49 52.85 38.09 28.99 24.81 89.37

SCA-CNN-VGG 68.21 53.61 38.86 29.65 25.34 90.06

GCN-LSTM 69.95 56.27 40.82 32.09 26.88 106.84

Injection-Tag 76.73 58.98 43.29 33.21 30.07 118.12

AIC-SSAIDL 81.14 63.65 48.59 38.83 34.32 138.03

MARNN-FRFICP 83.36 70.85 55.59 47.86 41.69 150.62

Table 8.  Comparative study of the MARNN-FRFICP model with existing techniques on the MSCOCO 
dataset.
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classification, and LOA-based tuning. The efficiency of the MARNN-FRFICP methodology is examined under 
the Flickr8k, Flickr30k, and MSCOCO datasets. The experimental analysis demonstrates that the MARNN-
FRFICP methodology has improved scalability and performance compared to recent techniques in various 
measures. The limitations of the MARNN-FRFICP methodology comprise the lack of evaluation across diverse 
and unseen datasets. The model does not sufficiently analyze the robustness of the technique under adversarial 

Fig. 15.  Loss curve of the MARNN-FRFICP technique on the MSCOCO dataset.

 

Fig. 14.  Accuy  curve of MARNN-FRFICP technique on MSCOCO dataset.
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noise or varying image acquisition conditions, thus posing risks in sensitive healthcare applications. The model’s 
generalization capability is also limited in real-world clinical settings. Moreover, while accuracy is emphasized, 
the explainability of predictions remains limited, which may affect trust and acceptance among clinicians. 
Ethical concerns such as data privacy, bias in medical datasets, and decision transparency are not thoroughly 
addressed. Future studies may explore domain adaptation, adversarial defence, and interpretable frameworks for 
broader clinical reliability.

Fig. 16.  CT evaluation of the MARNN-FRFICP method on MSCOCO dataset with existing approaches.

 

MSCOCO Dataset

Technique CT (sec)

QPULM 19.45

YOLOv8 11.13

ResNet-50 19.44

Google NIC 11.82

Soft-Attention 21.95

m-RNN 19.07

SCA-CNN-VGG 13.27

GCN-LSTM 23.92

Injection-Tag 17.29

AIC-SSAIDL 8.64

MARNN-FRFICP 5.71

Table 9.  CT evaluation of the MARNN-FRFICP method on MSCOCO dataset with existing approaches.
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Model FLOPs (G) GPU (M)

ConvNeXt v2 Base 26.22 1513

DenseNet 121 18.7 2189

ResNetv2 50 24.65 1660

Swin Tiny 17.04 2748

Vit Base 25.48 2710

MobileNetv3 S 50 19.57 2463

MARNN-FRFICP 9.54 913

Table 11.  Comparison of model complexity of the MARNN-FRFICP technique based on flops and GPU 
memory usage.

 

Fig. 17.  Result analysis of the ablation study of the MARNN-FRFICP model on MSCOCO dataset.

 

MSCOCO Dataset

Technique BLEU_1 BLEU_2 BLEU_3 BLEU_4 METEOR CIDEr

GF 79.01 67.24 51.47 43.53 37.47 146.13

InceptionResNetV2 79.76 68.02 52.06 44.34 38.22 146.96

CvT 80.56 68.56 52.66 45.13 38.97 147.57

DenseNet169 81.42 69.15 53.22 45.84 39.60 148.31

LOA 82.15 69.73 54.12 46.36 40.26 149.20

MH-BLG 82.74 70.28 54.84 47.13 41.01 149.80

MARNN-FRFICP 83.36 70.85 55.59 47.86 41.69 150.62

Table 10.  Result analysis of the ablation study of the MARNN-FRFICP model on MSCOCO dataset.
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Data availability
The data that support the findings of this study are openly available in the Kaggle repository at ​[​h​t​t​p​s​​:​/​/​w​w​w​​.​k​a​
g​g​l​​e​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​a​d​i​t​y​a​j​n​1​0​5​/​f​l​i​c​k​r​8​k​]​(​h​t​t​p​s​:​/​w​w​w​.​k​a​g​g​l​e​.​c​o​m​/​d​a​t​a​s​e​t​s​/​a​d​i​t​y​a​j​n​1​0​5​/​f​l​i​c​k​r​8​k​) and ​[​h​t​t​p​s​​:​/​/​w​w​
w​​.​k​a​g​g​l​​e​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​h​s​a​n​k​e​s​a​r​a​/​f​l​i​c​k​r​-​i​m​a​g​e​-​d​a​t​a​s​e​t​]​(​h​t​t​p​s​:​/​w​w​w​.​k​a​g​g​l​e​.​c​o​m​/​d​a​t​a​s​e​t​s​/​h​s​a​n​k​e​s​a​r​a​/​f​l​i​c​k​r​-​i​m​
a​g​e​-​d​a​t​a​s​e​t​)​, reference numbers35,36.
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