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Adversarial training is an effective defense method for deep models against adversarial attacks. 
However, current adversarial training methods require retraining the entire neural network, which 
consumes a significant amount of computational resources, thereby affecting the timeliness of deep 
models and further hindering the rapid learning process of new knowledge. In response to the above 
problems, this article proposes an incremental adversarial training method (IncAT) and applies it to 
the field of brain computer interfaces (BCI). Within this method, we first propose a deep model called 
Neural Hybrid Assembly Network (NHANet) and then train it. Then, based on the original samples and 
the trained deep model, calculate the Fisher information matrix to evaluate the importance of deep 
neural network parameters on the original samples. Finally, when calculating the loss of adversarial 
samples and real labels, an Elastic Weight Consolidation (EWC) loss is added to limit the variation of 
important weights and bias parameters in the Neural Hybrid Assembly Network (NHANet). The above 
incremental adversarial training method was applied to the publicly available epilepsy brain computer 
interface dataset at the University of Bonn. The experimental results showed that when facing three 
different attack algorithms, including fast gradient sign method (FGSM), projected gradient descent 
(PGD) and basic iterative method (BIM), the method proposed in this paper achieved robust accuracies 
of 95.33%, 94.67%, and 93.60%, respectively, without affecting the accuracy of clean samples, which is 
5.06%, 4.67%, and 2.67% higher than traditional training methods respectively, thus fully verifying the 
generalization and effectiveness of the method.

In recent years, deep neural networks have achieved significant success in fields such as brain computer 
interfaces1,2, object detection3–5, texture recognition6, image classification7–11, etc. However, Szegedy et al.12 
revealed the existence of adversarial samples in deep learning models, making them exceptionally vulnerable 
to adversarial attacks. Attackers only need to add small perturbations generated by specific algorithms to clean 
samples, and deep neural networks can output erroneous classification results with high confidence13,14. For 
example, in the process of neural rehabilitation, if attackers add small perturbations to electroencephalogram 
(EEG) signals, deep neural networks may misunderstand the patient’s intentions due to adversarial attacks, 
leading to treatment failure or adverse reactions. Therefore, the robustness and security issues of deep learning 
models have received widespread attention and research from both academia and industry.

To address the vulnerability of deep learning models to adversarial samples, researchers have developed 
various defense methods to enhance model robustness. Among them, adversarial training (AT) is considered 
one of the most effective. The core idea is to introduce carefully designed adversarial samples into the training set, 
so as to have stronger resistance to interference and disturbance. Madry et al.15 proposed an adversarial training 
method using projected gradient descent, which effectively improves the model’s ability to resist adversarial 
attacks. However, its multi-step perturbation process requires high computational resources and time, which 
to some extent limits the practicality of this method. To address this problem, researchers have proposed an 
alternative method—fast adversarial training16, which only uses the one-step fast gradient sign method to 
generate training data. However, this rapid adversarial training method has a significant drawback, which is that 
it can easily lead to overtraining and overfitting of the model on the training data, resulting in poor performance 
when faced with new and unseen data. To alleviate this problem, Rice et al.17 proposed an early stopping version 
of projection gradient descent adversarial training. Unlike traditional adversarial training methods, this method 
introduces a stop criterion to avoid the degradation of model performance due to overtraining of adversarial 
samples. In addition, Zhang et al.18 proposed an adversarial training method called Trades, which aims to 
achieve an ideal balance between clean sample accuracy and robust accuracy by optimizing the loss function.
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Although existing adversarial training methods improve model robustness and security to some extent, 
they suffer from notable limitations:(1) retraining the original and adversarial samples not only increases the 
complexity of model training, but also reduces the timeliness of the model, especially in application scenarios 
that require fast iteration and response. (2) When faced with large-scale datasets, these adversarial training 
methods significantly increase the demand for computing resources, which may become a bottleneck in resource 
constrained environments. To address the aforementioned problems, this paper proposes an incremental 
adversarial training method (IncAT). This method first uses clean samples and a pre trained Neural Hybrid 
Assembly Network (NHANet) to calculate the Fisher information matrix. The weights with higher Fisher 
information matrix values are considered more critical for clean samples. Therefore, in the learning process 
of adversarial samples, if these weights are significantly updated, they will receive greater punishment. Then, 
adversarial samples are generated during the training phase. Finally, by introducing a quadratic penalty term 
in the loss function, the significant changes in weights during the learning of adversarial sample features in 
deep learning models can be alleviated. This strategy not only enables deep learning models to learn features 
of adversarial samples, but also maintains memory of clean samples, thereby improving the robustness and 
generalization ability of the model. The main contributions of this paper on incremental adversarial training are 
as follows:

	(1)	 To address the issues of insufficient feature extraction and poor generalization ability of existing deep learn-
ing models for brain-computer interfaces in complex scenarios, this paper proposes a hybrid neural net-
work, NHANet. This model integrates the advantages of multiple deep learning modules, aiming to more 
effectively process time-series data and capture long-term dependencies as well as complex spatial features. 
This innovation not only significantly improves the model’s performance in complex environments but 
also provides new ideas and valuable practical experience for the application of deep learning in the field of 
brain-computer interfaces.

	(2)	 In response to the security risks of adversarial attacks faced by deep learning models in BCI application 
scenarios, this study conducts adversarial attacks on the trained NHANet model. The aim is to conduct a 
multi-dimensional performance evaluation to deeply analyze the impact of adversarial perturbations on the 
feature representation ability and classification decision stability of deep learning models in the BCI field, 
thereby revealing the importance and urgency of enhancing the robustness of deep learning models in BCI 
applications.

	(3)	 This paper introduces the incremental adversarial training method for the first time. This approach utiliz-
es adversarial examples to continuously adjust the parameters of the baseline model, thereby enhancing 
the robustness and security of deep learning models and avoiding the problem that traditional adversarial 
training methods require retraining the entire network. In addition, to further verify the effectiveness of the 
proposed method, the robust accuracy is introduced as an evaluation index to reflect the ability of the deep 
learning model to resist adversarial attacks after adversarial training.

	(4)	 The proposed method was extensively tested on the publicly available epilepsy BCI dataset from the Uni-
versity of Bonn. The experiments demonstrated that the proposed method outperformed traditional adver-
sarial training methods in terms of accuracy on clean samples and robustness accuracy.

Methods
The incremental adversarial training method proposed in this article is designed as shown in Fig. 1. Firstly, we 
train the NHANet model to help it better understand the underlying patterns in the data. Then, we carry out 
adversarial attacks on all the original data to generate adversarial samples. Next, the EWC loss term is introduced 
when calculating the adversarial sample loss function, and the total loss function is constructed based on this. 
Finally, utilizing the backpropagation mechanism, the model parameters are adjusted based on the total loss 
function to enhance the deep model’s ability to resist adversarial attacks.

Neural hybrid assembly network architecture design
This article proposes a hybrid neural network model called NHANet, which integrates various cutting-edge deep 
learning techniques such as convolutional neural networks, bidirectional long short-term memory networks, 
multi head attention mechanisms, residual connections, and fully connected layers. The goal is to fully utilize the 
strengths of different neural networks in processing specific data, thereby enhancing the performance of deep 
models in complex EEG signal recognition tasks. The specific network framework is shown in Fig. 2.

Firstly, add a channel dimension to the preprocessed data to ensure it meets the input requirements of the one-
dimensional deep convolution module. Then, in the one-dimensional deep convolution module, 64 convolution 
kernels of size 3 are used to convolve along the time axis of the original signal, and ReLU activation function 
is used to increase nonlinearity. Finally, a maximum pooling layer with a size of 2 is used for downsampling 
to reduce data redundancy. Although the deep convolution module can obtain local features of EEG signal 
data, it cannot capture long-term dependencies of time series data. Therefore, a bidirectional LSTM layer was 
introduced to compensate for this deficiency.

In the NHANet model, by introducing a bidirectional LSTM layer, its bidirectional recursive structure is 
utilized to conduct bidirectional feature extraction of time series data, thereby effectively capturing the long-
term dependencies in the signal sequence and further improving the representation ability of the deep learning 
model for the dynamic features of electroencephalogram signals.

Specifically, there are 32 hidden units in each direction of the bidirectional LSTM layer, which work together 
to capture complex features in the input sequence. Although the BiLSTM layer can effectively process time series 
data, it still has limitations in capturing the global dependencies of the entire sequence. To further improve the 
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performance of deep learning models, we added a multi head attention mechanism module after the BiLSTM 
layer.

By introducing this mechanism, deep learning models can focus on different parts of input data in parallel, 
significantly improving their ability to capture key information in sequences. Inside the multi head attention 

Fig. 2.  NHANet model architecture diagram.

 

Fig. 1.  Overview overall design of IncAT.
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module, 16 attention heads work in parallel, each with 64 embedding dimensions, capable of independently 
focusing on different aspects of information. X = [X1, X2 ,...,Xn] is the matrix output by the BiLSTM module, 
which is mapped to three vector spaces Q (query), K (key), and V (value) through linear transformation. The 
specific formula is shown as follows:

	 Q = XW Q � (1)

	 K = XW K � (2)

	 V = XW V � (3)

where W Q, W K , W V  is the weight matrix and the three are trainable parameter matrices. In the multi head 
attention mechanism, each head independently calculates attention weights and generates multiple attention 
outputs in parallel. The formula is as follows:

	
Attention (Q, K, V ) = softmax

(
QKT√

dk

)
V � (4)

and finally the outputs of all attention are concatenated using the concat function.
However, as the number of neural network layers increases, training may encounter problems such as 

vanishing or exploding gradients. To address this challenge, we incorporated a residual connection mechanism 
into the deep learning model, directly connecting the input and output of the multi-head attention mechanism. 
This cross-layer connection design helps to enhance the flow of gradients within the network, thereby improving 
the training stability and performance of the model.

Finally, first use a fully connected layer to map the input vector to a hidden space with a dimension of 128, 
and increase nonlinearity through the ReLU activation function. Then, use another fully connected layer as 
the output layer to map the representation in this hidden space to the number of corresponding final output 
categories, thereby completing the classification task.

Adversarial attack based on neural hybrid assembly network
This section focuses on the impact of adversarial attacks on the performance and robustness of NHANet 
models. By implementing adversarial attacks on deep neural networks, we can gain a deeper understanding of 
the vulnerability of deep learning models and better design security defense mechanisms to resist the negative 
impact of adversarial attacks on deep models.

The research on the adversarial attack is divided into the following three parts: first, based on the trained 
NHANet model with same weight parameters, three algorithms such as fast gradient sign method (FGSM)19, 
basic iterative method (BIM)20, and projected gradient descent (PGD)15 are respectively used to generate the 
adversarial sample by conducting adversarial attack on all the original sample. Then, the trained deep neural 
network is used to predict the generated adversarial samples, and the impact on the classification performance 
of the model is observed by adjusting the epsilons. In addition, by visualizing the raw data and adding perturbed 
data, we can observe whether the generated adversarial samples have concealment. Finally, in order to further 
reveal the impact of adversarial attacks on deep models, we also conducted adversarial attacks on common deep 
learning models. That is, adversarial attacks not only affect the classification effect of NHANet model, but also 
affect the performance of other deep learning models.

Neural hybrid assembly network incremental adversarial training
In response to the problems of lack of timeliness and consumption of computational resources of traditional 
adversarial training methods, this paper employs an incremental learning algorithm to continuously learn the 
generated adversarial samples. Because existing research shows that in the case of limited storage space and 
computing resources, adopting incremental learning method can not only effectively cope with the challenge of 
new tasks or data, but also maintain the performance of old tasks.

The framework of the method is shown in Fig. 3. Among them,θi (i ∈ 1, 2, 3, ...N) is the neural network 
parameters, N is the number of neural network parameters, F is the Fisher information matrix, λ is a hyper 
parameter to measure the importance of the original sample relative to the adversarial sample, LB(θ) is the loss 
function of the adversarial sample dataset, and θ∗

A,i is the original model parameters.
First, the NHANet deep learning model is trained to enhance its predictive performance for EEG signals. 

After the training is completed, the model weights are saved. Then, based on the original dataset samples 
and the parameters of the original NHANet deep learning model, the first derivatives of the NHANet deep 
learning model output about the neural network parameters are calculated, and the Fisher information matrix 
is constructed. The importance of the neural network parameters on the original samples can be reflected by 
the Fisher information matrix. Among them, the larger FIM value represents the higher importance of the 
parameters in the original dataset. Finally, during the adversarial training process, all original data is attacked 
to generate adversarial samples. When calculating the loss between the predicted results of adversarial samples 
and the true labels, an additional EWC loss term is added to limit the changes in important weights and bias 
parameters in the NHANet hybrid model. The specific total loss value is shown as follows:

	
L (θ) = LB (θ) +

∑
i

λ
2 Fi

(
θi − θ∗

A,i

)2
� (5)
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For parameters that are more important in the original dataset, a greater penalty value will be assigned during 
the update process to ensure that they are less prone to significant changes. Therefore, when using adversarial 
training methods based on incremental learning to improve the robustness of deep learning models, it not only 
firmly grasps existing knowledge but also flexibly responds to new challenges, maintaining its robustness and 
adaptability in a dynamic environment.

Experiments
To verify the effectiveness of the proposed method and the classification performance of the deep learning 
model, we conducted a systematic experiment on the epilepsy dataset. Firstly, we constructed the neural hybrid 
assembly network NHANet, which achieved efficient feature extraction and high-precision classification in 
complex scenarios through a multi-module collaborative mechanism. Secondly, three typical adversarial attack 
algorithms, FGSM, BIM, and PGD, were used to conduct adversarial attacks on the trained NHANet, aiming 
to illustrate the impact of adversarial attacks on deep learning models. Finally, we introduced the incremental 
adversarial training method to enhance the model’s defense performance and compared it with existing 
adversarial training methods to verify the effectiveness and generalization of this method.

Experimental design
Dataset
This article selects the epilepsy dataset publicly available from the University of Bonn21 to verify the effectiveness 
of incremental adversarial training method. It consists of five categories, each containing 100 channel sequences 
with a duration of 23.6 seconds and 4097 signal sampling points. To further improve model performance 
and accelerate convergence, we performed a series of preprocessing operations on the dataset. To address the 
issue where high data dimensionality might increase computational burden, we implemented dimensionality 
reduction on the data to enhance efficiency while retaining key information. Considering that the limited size 
of the original dataset could easily lead to overfitting due to insufficient training samples, we expanded the 
dataset by synthesizing new samples. Additionally, we standardized and normalized the data, and converted 
non-numerical labels into numerical encodings to meet the requirements of deep learning models.

Experiment details
The experiment is implemented based on the PyTorch deep learning framework, and the dataset is split into a 
training set and a test set in a 7:3 ratio. The optimizer uses adaptive momentum estimation, and the Dropout 
value is set to 0.5, the batch-size is set to 32, and the learning rate is set to 0.0003, and the number of heads in the 
multi-head attention mechanism is set to 16. When conducting incremental adversarial training, λ is set to 1e−5.

Fig. 3.  Flow chart of incremental adversarial training method.
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Evaluation metrics
Model evaluation metrics
In order to illustrate the effectiveness and stability of the deep learning model, accuracy, precision, recall, and 
F1-score are introduced as evaluation metrics.

Attack evaluation metrics
This study uses four indicators, namely adversarial accuracy, attack success rate, average L1 distance, and average 
L2 distance, to evaluate the impact of adversarial attacks on deep learning models.

Adversarial accuracy refers to the accuracy of a classification model on adversarial samples. It is measured by 
calculating the proportion of adversarial samples where the predicted labels match the true labels. The higher the 
adversarial accuracy, the stronger the ability of the deep learning model to resist adversarial attacks. Conversely, 
the lower the adversarial accuracy, the weaker the ability of the model to resist adversarial attacks.

The attack success rate is used to measure the attack effect of adversarial samples on the target model. This 
metric reflects the effectiveness of adversarial attacks. The closer the ASR value is to 1, the stronger the attack 
capability is22. The specific formula is shown as follows:

	
IASR =

∑N

i=1
(F (xi)=reali)∧(F (xi+δi)̸=reali)∑N

i=1
(F (xi)=reali)

� (6)

where, F (*) is the sample label predicted by the depth model, and reali is the true label of the ith sample.
The average L2 distance is used to measure the degree of difference between adversarial samples and raw 

samples. The smaller the average L2 distance, the smaller the perturbation amplitude added to the original 
sample and the closer it is to the original sample.

The average L1 distance refers to first calculating the sum of the absolute differences between each generated 
adversarial sample and the elements of the original sample, then adding the L1 distances of all samples, and 
finally dividing by the number of samples. The larger the average L1 distance, the greater the difference between 
the generated adversarial samples and the original samples.

Defense evaluation metrics
In order to evaluate the performance of the adversarial training method proposed in this paper, the accuracy, 
precision, recall and F1-score are used as evaluation metrics in the original data set. On the generated adversarial 
sample data set, the robust accuracy is used as the evaluation metric. Among them, the robust accuracy refers to 
the accuracy of the deep learning model in the face of adversarial samples, which reflects the ability of the deep 
learning model to resist adversarial attacks after adversarial training. The specific formula is shown as follows:

	 Robust-accuracy = Ncorr
Ntotal

� (7)

where Ncorr is the number of correctly classified adversarial samples, and Ntotal is the total number of adversarial 
samples.

Network model analysis
The division of the dataset
In the development of deep learning models, the proportion of dataset division is a crucial step, and its rationality 
directly affects the training effect of the model, parameter optimization, and generalization ability. Given the 
small size of the dataset, this experiment only divided it into the training set and the test set. In this experiment, 
to explore the impact of different division ratios on the model performance, we set two typical schemes with 
training set-test set ratios of 8:2 and 7:3. The specific results are presented in Tables 1 and 2.

Through the data analysis of Tables 1 and 2, it can be seen that when the dataset partition ratio is 8:2, regardless 
of the batch size, the performance of the model is superior to that of the model with a dataset partition ratio 
of 7:3. However, due to the limited total number of samples in the dataset, using a 7:3 split ratio allows for the 
creation of a relatively large test set. This enables us to more accurately evaluate the generalization ability of the 
model, especially when dealing with limited sample data. A larger test set can provide a more stable performance 
assessment and reduce the evaluation errors caused by insufficient sample quantities. Therefore, considering 
the evaluation accuracy and actual application requirements, this experiment finally selects 7:3 as the dataset 
partition ratio.

Batch-size Accuracy Precision Recall F1-score

8 0.9980 0.9976 0.9983 0.9979

16 0.9940 0.9945 0.9933 0.9938

32 0.9860 0.9855 0.9862 0.9858

64 0.9860 0.9867 0.9860 0.9863

128 0.9740 0.9733 0.9748 0.9738

Table 1.  Model performance for different Batch-sizes when the dataset is divided in a ratio of 8:2.
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Model performance analysis
The main purpose of this experiment is to study the effect of learning rate and batch-size on the performance and 
execution time of deep learning model. By testing the performance of the model under different batch -sizes and 
learning rates, the aim is to find an optimal batch-size and learning rate setting, so that the model can achieve 
high accuracy in a relatively short time. In the experiment, the batch- sizes were set to 8, 16, 32, 64, and 128 
respectively, and the best accuracy, best epoch, and running time of the NHANet deep learning model under 
different batch-sizes were tested. The specific experimental results are shown in Table 3.

According to the experimental data in Table 3, When the batch-size is set to 8, the model achieves the highest 
accuracy of 0.9947 in the 88th epoch. However, this process is relatively time consuming, and the utilization rate 
of computing resources is low. In contrast, when batch-size is increased to 128, the running time of the model 
is significantly shortened, but the accuracy is relatively low. When batch-size is set to 32, when the model runs 
to the 99th round, it not only achieves a high accuracy of 0.9853, but also saves the consumption of computer 
resources and achieves a good balance between performance and efficiency. Therefore, we can see that the 
value of batch-size has an important impact on the running time and performance of the model. In practical 
application, we should strive to achieve high accuracy in a relatively short time to maximize the efficiency and 
practicality of the model.

By adjusting the learning rate, several groups of experiments were conducted to explore the impact of 
different learning rates on model performance and running time. When epoch is set to 100 and learning rate 
is set to 0.0003 and 0.0001 respectively, the performance of NHANet model is analyzed. The specific results are 
shown in Tables 4 and 5.

Batch-size 8 16 32 64 128

Accuracy 0.9773 0.9693 0.9053 0.8160 0.7520

Precision 0.9772 0.9694 0.9032 0.8111 0.7494

Recall 0.9772 0.9703 0.9035 0.8134 0.7484

F1-score 0.9771 0.9694 0.9026 0.8106 0.7444

Execution-time 487.1841s 256.0790 s 143.1442 s 90.4628 s 64.0669 s

Table 5.  NHANet model performance metrics at a learning rate of 0.0001.

 

Batch-size 8 16 32 64 128

Accuracy 0.9933 0.9880 0.9800 0.9707 0.9560

Precision 0.9931 0.9876 0.9794 0.9702 0.9549

Recall 0.9935 0.9880 0.9805 0.9707 0.9568

F1-score 0.9933 0.9876 0.9798 0.9704 0.9553

Execution-time 481.4006 s 257.2427 s 145.0358 s 91.6405 s 65.3319 s

Table 4.  NHANet model performance metrics at a learning rate of 0.0003.

 

Batch-size Model execution time Best accuracy Epoch

8 490.7729 s 0.9947 88

16 261.2940 s 0.9907 94

32 144.8274 s 0.9853 99

64 90.3085 s 0.9760 93

128 63.6864 s 0.9640 98

Table 3.  Optimal accuracy parameters for different batches.

 

Accuracy Precision Recall F1-score

8 0.9920 0.9916 0.9921 0.9918

16 0.9893 0.9889 0.9898 0.9892

32 0.9827 0.9824 0.9831 0.9825

64 0.9747 0.9739 0.9756 0.9745

128 0.9587 0.9576 0.9597 0.9582

Table 2.  Model performance for different Batch-sizes when the dataset is divided in a ratio of 7:3.
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According to the experimental data in Tables 4 and 5, when the batch-size is set to the same, different learning 
rates have a relatively small impact on the execution time of the deep learning model NHANet. However, it is 
worth noting that when the learning rate is adjusted from 0.0001 to 0.0003, the model performance is significantly 
improved. This may be because a lower learning rate slows down the update speed of model parameters, resulting 
in the need for more iterations for the model to achieve a better classification effect. Based on this, this study 
sets the learning rate to 0.0003, which enables the deep learning model NHANet to learn the patterns in the data 
more efficiently and thoroughly on the premise that the execution time does not increase significantly.

The "number of heads" in the multi-head attention mechanism serves as a core hyperparameter, and its value 
directly affects the feature representation ability and generalization performance of the deep learning model. To 
systematically explore the influence of the number of heads on the model’s performance, in this experiment, the 
number of heads in the multi-head attention mechanism was set to 16, 8, 4, and 2. Comparative experiments 
were conducted based on the same training dataset and evaluation metrics. The specific experimental results are 
shown in Table 6.

As shown in the table above, the number of heads in the multi-head attention mechanism has a significant 
impact on the model performance. When the number of heads is set to 16, the model achieves the best results 
in terms of accuracy, precision, recall rate, and F1-score. This indicates that a larger number of heads enables 
the model to concurrently extract semantic information from different subspaces, capturing feature correlations 
more comprehensively and multi-dimensionally. Moreover, as the number of heads decreases, each indicator 
shows a stepwise decline trend, indicating that when the number of heads is insufficient, the model’s perspective 
is limited, making it difficult to fully model complex feature relationships. It is worth noting that when the 
number of heads drops to 2, although the indicators slightly recover compared to when the number is 4, their 
overall performance is still far inferior to that of the 16-head model. This reflects that excessively reducing the 
number of heads will severely restrict the model’s ability to capture rich feature patterns.

Comparative experiments
To verify the efficiency and accuracy of the NHANet deep learning model proposed in this paper, a comparative 
experiment was conducted by comparing it with several typical deep learning models. The experiment used 
the same dataset to evaluate the performance and generalization ability of models such as DNN, BiLSTM, 
BiLSTM-MultiheadAttention, CNN_LSTM, CNN_LSTM_ATT, and NHANet. The performance indicators of 
different deep learning models are shown in Table 7. Additionally, to more intuitively display the relationship 
between the model’s prediction results and the true labels, we also constructed a confusion matrix. Figure 4 
shows the confusion matrices of different deep learning models. Through these experimental results, we can 
clearly compare the performance of each model in the classification task and thereby verify the superiority of 
the NHANet model.

It can be seen from the experimental results in Table 7 that the NHANet deep learning model proposed in this 
paper is significantly superior to the comparison models in all evaluation indicators. It is worth noting that the 
traditional BiLSTM model also demonstrates a relatively high performance level. This is mainly attributed to its 
synchronous processing of sequence data through forward and backward LSTM units, effectively capturing the 
context information of the past and future in the signal. In contrast, the CNN_LSTM_ self-attention mechanism 
model has poor classification performance on this dataset. Although the self-attention mechanism can enhance 
the model’s ability to focus on key features, due to the limitations of the current task characteristics and data 
distribution characteristics, this model fails to give full play to its advantages. Instead, it leads to performance 
degradation of the model in feature integration and classification decision-making. In conclusion, the NHANet 
model proposed in this study has the most outstanding overall performance. This discovery provides new 
solution strategies and innovative ideas for the research in the field of brain-computer interfaces.

Accuracy Precision Recall F1-score

DNN 0.9627 0.9628 0.9645 0.9632

BiLSTM 0.9640 0.9645 0.9654 0.9645

BiLSTM-MultiheadAttention 0.9587 0.9588 0.9613 0.9597

CNN-LSTM 0.9560 0.9553 0.9562 0.9557

CNN-LSTM-ATT 0.9307 0.9289 0.9307 0.9294

NHANet 0.9840 0.9842 0.9837 0.9839

Table 7.  Performance metrics of different models.

 

Num-heads Accuracy Precision Recall F1-score

16 0.9813 0.9809 0.9817 0.9812

8 0.9787 0.9783 0.9789 0.9786

4 0.9733 0.9728 0.9742 0.9732

2 0.9773 0.9769 0.9778 0.9773

Table 6.  Performance of models with different numbers of heads.
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Exploring the impact of adversarial attacks on deep model performance
Experimental results and analysis
For the public epilepsy data set, FGSM, BIM and PGD attack algorithms are used to attack the trained NHANet 
model.

Furthermore, to explore the influence of different epsilons on deep learning models, the epsilons were set to 
1/255, 2/255, 3/255, 4/255, and 5/255, and the evaluation indicators of adversarial accuracy, attack success rate, 
average L1 distance, and average L2 distance were used for verification. The research results show that, with the 
continuous increase of perturbation intensity, the adversarial accuracy shows a gradual downward trend, while 
the attack success rate continues to increase. Figure 5 shows the line charts of the model adversarial accuracy and 
attack success rate as the perturbation intensity increases. At the same time, the specific performance of NHANet 
model under different attack algorithms with different epsilon values are shown in Tables 8, 9 and 10 below.

Specifically, without adding perturbation, the adversarial accuracy of NHANet model reached 0.9840, 
indicating that the model has good performance on the original test set. However, as the perturbation value 
continues to increase, the adversarial accuracy gradually decreases. When the epsilon is set to 5/255, the 
adversarial accuracy rate of FGSM attack algorithm is 0.1307, that of PGD attack algorithm is 0.1413, and 
that of BIM attack algorithm is 0.0840. This indicates that the accuracy rate of model classification will decline 
sharply with the increase of perturbation. At the same time, the attack success rate increases with the increase 
of perturbation value, which means that the stability of NHANet model’s classification prediction is poor when 
facing small changes in input data. In addition, the average L1 distance and the average L2 distance increase with 
the increase of the perturbation value, indicating that the difference between the adversarial sample and the 
original sample increases with the increase of the perturbation value.

At the same time, it can be seen that when the epsilons are set to 1/255, 2/255, 3/255, 4/255, the attack success 
rate of PGD and BIM algorithm is higher than that of FGSM algorithm. This phenomenon shows that PGD and 
BIM algorithms have stronger attack capability at lower perturbation levels. In addition, the average L1 distance 
and average L2 distance are important indicators for measuring the differences between adversarial samples and 

Fig. 4.  Confusion matrix results for different models. (a) Confusion matrix for the NHANet model. (b) 
Confusion matrix for the DNN model. (c) Confusion matrix for the BiLSTM model. (d) Confusion matrix for 
the CNN-LSTM model. (e) Confusion matrix for the CNN-LSTM-ATT model. (f) Confusion matrix for the 
BiLSTM-MultiheadAttention model.
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original samples. The average L1 distance and average L2 distance of adversarial samples generated by FGSM 
attack algorithm are both greater than those generated by PGD and BIM attack algorithms, indicating that the 
adversarial samples generated by PGD and BIM attack algorithms have less difference from the original samples.

In order to verify whether the generated adversarial samples are covert, some adversarial samples are 
randomly selected and compared with the original data. The first 80 characteristic values of each sample are 
printed. The red line represents the original data, and the blue line represents the generated adversarial sample. 
As shown in Fig. 6, the first row shows the comparison between the adversarial samples generated by FGSM, 
BIM, and PGD and the original data, with the epsilon set to 2/255. The second row shows the comparison 

Fig. 4.  (continued)

Original ϵ = 1/255 ϵ = 2/255 ϵ = 3/255 ϵ = 4/255 ϵ = 5/255

Adversarial accuracy 0.9840 0.8893 0.5573 0.2880 0.1960 0.1307

Attack success rate 0.0 0.0962 0.4336 0.7073 0.8008 0.8672

Average L1 distance 0.0 1.1759 2.3518 3.5277 4.7035 5.8792

Average L2 distance 0.0 0.0679 0.1358 0.2037 0.2716 0.3395

Table 8.  Performance of NHANet model with different epsilons under FGSM attack algorithm.

 

Fig. 5.  Line charts showing the variation of adversarial accuracy and attack success rate of the NHANet model 
as the perturbation strength increases. (a) Line chart for the adversarial accuracy of the NHANet model as it 
changes with perturbation. (b) Line chart for the attack success rate of the NHANet model as it changes with 
perturbation.
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between the adversarial samples generated by FGSM, BIM, and PGD and the original data, with the epsilon set 
to 5/255.

Based on the above analysis, the smaller the perturbation, the more difficult it is for the human eye to detect 
the adversarial samples, while the larger the perturbation, the more obvious the deviation of the generated 
adversarial samples from the original data. Therefore, in practical application scenarios, in order to ensure 
the robustness and security of the deep learning model, it is very important to select appropriate perturbation 
values. This decision needs to comprehensively consider the robustness requirements and security factors of the 
model to seek the best balance between the two.

Further investigation into the impact of adversarial attacks on deep learning models
In order to further explore the impact of adversarial attacks on deep learning models, the five aforementioned 
deep learning models were subjected to adversarial attacks using the PGD attack algorithm. Furthermore, 
metrics such as adversarial accuracy, attack success rate, average L1 distance and average L2 distance were used 
to evaluate the performance of the generated adversarial samples. Figure 7 shows the line charts of the different 
models’ adversarial accuracy and attack success rate with increasing perturbation value, respectively. Meanwhile, 
the specific performance of the five deep learning models under different epsilons is detailed in Table 11 below.

Fig. 6.  Comparison of raw samples and adversarial samples generated under different attack algorithms.

 

Original ϵ = 1/255 ϵ = 2/255 ϵ = 3/255 ϵ = 4/255 ϵ = 5/255

Adversarial accuracy 0.9840 0.8760 0.4773 0.2133 0.1227 0.0840

Attack success rate 0.0 0.1098 0.5149 0.7832 0.8753 0.9146

Average L1 distance 0.0 1.1665 2.2306 3.2206 4.0604 4.9083

Average L2 distance 0.0 0.0676 0.1307 0.1914 0.2445 0.2995

Table 10.  Performance of NHANet model with different epsilons under BIM attack algorithm.

 

Original ϵ = 1/255 ϵ = 2/255 ϵ = 3/255 ϵ = 4/255 ϵ = 5/255

Adversarial accuracy 0.9840 0.8760 0.4800 0.2373 0.1680 0.1413

Attack success rate 0.0 0.1098 0.5122 0.7588 0.8293 0.8564

Average L1 distance 0.0 1.1553 2.2143 3.1076 3.6757 4.0910

Average L2 distance 0.0 0.0673 0.1306 0.1861 0.2264 0.2622

Table 9.  Performance of NHANet model with different epsilons under PGD attack algorithm.
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The experimental results indicate that, when the values of alpha and steps are set to be the same, as the 
perturbation value continues to increase, the performance of different neural network prediction models steadily 
declines. Specifically, the adversarial accuracy decreases with increasing perturbation value, and the generated 
adversarial samples can effectively deceive the model into making wrong classifications. Meanwhile, the attack 
success rate increases with increasing perturbation value, which indicates that the model has weaker robustness 
in the face of adversarial attacks. In addition, the average L1 distance and average L2 distance increase with 
the increase of perturbation value, which indicates that the generated adversarial samples are more and more 
deviated from the original data, resulting in the decrease of the concealment of the adversarial samples. Through 
this above analysis, the adversarial attack algorithm can not only cause classification errors in the NHANet 
model, but also be equally effective for other neural network models. This fully demonstrates the importance and 
urgency of improving the robustness of deep learning models in practical applications.

Neural network model Evaluation metrics

ϵ(epsilons)

original 1/255 2/255 3/255 4/255 5/255

DNN

Adversarial accuracy 0.9627 0.8893 0.4907 0.1960 0.1133 0.0933

Attack success rate 0.0 0.0762 0.4903 0.7964 0.8823 0.9030

Average L1 distance 0.0 1.1702 2.2979 3.3012 3.8961 4.2859

Average L2 distance 0.0 0.0677 0.1338 0.1937 0.2355 0.2715

BiLSTM

Adversarial accuracy 0.9640 0.8440 0.3987 0.1667 0.0920 0.0693

Attack success rate 0.0 0.1245 0.5864 0.8271 0.9046 0.9281

Average L1 distance 0.0 1.1719 2.3116 3.3308 3.9296 4.3159

Average L2 distance 0.0 0.0678 0.1343 0.1949 0.2369 0.2730

CNN-LSTM

Adversarial accuracy 0.9560 0.6160 0.1933 0.1307 0.1067 0.1027

Attack success rate 0.0 0.3556 0.7978 0.8633 0.8884 0.8926

Average L1 distance 0.0 1.1421 2.1842 3.0447 3.6027 4.0221

Average L2 distance 0.0 0.0666 0.1291 0.1832 0.2231 0.2587

BiLSTM-MultiheadAttention

Adversarial accuracy 0.9587 0.6120 0.1760 0.0853 0.0667 0.0613

Attack success rate 0.0 0.3616 0.8164 0.9110 0.9305 0.9360

Average L1 distance 0.0 1.1703 2.2859 3.2548 3.8348 4.2278

Average L2 distance 0.0 0.0677 0.1334 0.1919 0.2330 0.2687

CNN-LSTM-ATT

Adversarial accuracy 0.9307 0.4107 0.1573 0.1040 0.0880 0.0747

Attack success rate 0.0 0.5587 0.8309 0.8883 0.9054 0.9198

Average L1 distance 0.0 1.1120 2.0774 2.8439 3.3736 3.8137

Average L2 distance 0.0 0.0657 0.1248 0.1746 0.2130 0.2483

Table 11.  Performance of various models under different epsilons.

 

Fig. 7.  Line charts illustrating the variation of adversarial accuracy and attack success rate for different models 
as the perturbation intensity increases. (a) Line chart showing the adversarial accuracy of various models 
in response to changes in perturbation. (b) Line chart depicting the attack success rate of various models in 
response to changes in perturbation.
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Neural hybrid assembly network incremental adversarial training
The effectiveness of incremental adversarial training
In order to verify the effectiveness of the incremental adversarial training algorithm proposed in this paper under 
different attack algorithms, three attack algorithms (FGSM, BIM, and PGD) were used to generate adversarial 
samples during the adversarial training process. And use accuracy, precision, recall, and F1-score as evaluation 
metrics to comprehensively evaluate the performance of the model after adversarial training. The following 
Tables 12, 13 and 14 are the classification reports of different algorithms.

According to the classification report, after adversarial training, the model performs well in classification 
performance on each category. For the FGSM attack algorithm, the highest precision for each category reaches 
1.0000 and the lowest is 0.98571, and the recall and F1-score for each category also achieve good prediction 
results, which indicates that the model after adversarial training is able to recognize the samples in each category 
effectively. Similarly, for the BIM attack algorithm and the PGD attack algorithm, the overall accuracy of the 
model reaches 0.99200 and 0.99067, respectively, thus further verifying the effectiveness of the adversarial 
training method proposed in this paper under different attack algorithms.

Variable parameter analysis
When using the IncAT algorithm to continuously learn the generated adversarial samples, λ, as a hyperparameter, 
is used to adjust the constraint degree of the deep learning model to the original samples when learning the 
adversarial samples. In this experiment, when using the FGSM attack algorithm to generate adversarial samples 
for adversarial training, we investigated the impact of the value of λ on the robustness and performance of 
deep learning models. By systematically testing the model performance under different λ values, an optimal 
configuration is sought to improve the model’s ability to resist adversarial attacks without damaging the model’s 

Precision Recall F1-score Support

0 0.98561 0.97857 0.98208 140

1 1.00000 1.00000 1.00000 142

2 0.98773 0.98171 0.98471 164

3 1.00000 1.00000 1.00000 166

4 0.97857 0.99275 0.98561 138

Accuracy 0.99067 750

Macro avg. 0.99038 0.99061 0.99048 750

Weighted avg. 0.99069 0.99067 0.99066 750

Table 14.  Classification report of raw data after adversarial training under PGD attack algorithm.

 

Precision Recall F1-score Support

0 0.98561 0.97857 0.98208 140

1 1.00000 1.00000 1.00000 142

2 0.99383 0.98171 0.98773 164

3 1.00000 1.00000 1.00000 166

4 0.97872 1.00000 0.98925 138

Accuracy 0.99200 750

Macro avg. 0.99163 0.99206 0.99181 750

Weighted avg. 0.99205 0.99200 0.99199 750

Table 13.  Classification report of raw data after adversarial training under BIM attack algorithm.

 

Precision Recall F1-score support

0 0.98571 0.98571 0.98571 140

1 1.00000 1.00000 1.00000 142

2 0.99383 0.98171 0.98773 164

3 1.00000 1.00000 1.00000 166

4 0.98571 1.00000 0.99281 138

Accuracy 0.99333 750

Macro avg. 0.99305 0.99348 0.99325 750

Weighted avg. 0.99335 0.99333 0.99333 750

Table 12.  Classification report of raw data after adversarial training under FGSM attack algorithm.
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performance in the original data. In the experiment, we tried different sizes of λ, Specifically including: 1e−5, 
0.01, 0.1, 0.2, 0.5. The line chart in Fig. 8 shows the variation of accuracy and robust accuracy with increasing λ. 
The specific performance of NHANet models with different λ values is shown in Table 15.

By observing the experimental results, it can be seen that when λ is 1e−5, the model’s reaches the highest 
accuracy of 0.9933, as well as the highest level of robust accuracy. However, as the value of λ increases, the robust 
accuracy of the model shows a decreasing trend, which suggests that too large a value of λ may affect the model’s 
ability to learn adversarial samples. Therefore, choosing an appropriate λ value is crucial to balance the robust 
accuracy of the deep learning model and the accuracy of the original dataset. In practical applications, in order 
to balance the performance of the model on both the adversarial samples and the original samples, the value of 
the parameter λ should be flexibly adjusted according to the needs of specific tasks.

Comparison of methods
In order to comprehensively evaluate the performance and advantages of the incremental adversarial training 
algorithm proposed in this paper, we conducted a detailed comparative analysis with existing adversarial 
training methods. In the comparative experiments, we used three attack algorithms, namely FGSM, BIM, and 
PGD, to generate adversarial samples during the adversarial training process. In terms of evaluation metrics, we 
used robust accuracy to measure the ability of deep learning models to resist adversarial attacks after adversarial 
training. At the same time, to evaluate the classification ability of the model on the original data after adversarial 
training, we also used four indicators: accuracy, precision, recall, and F1-score. These indicators reflect the 
classification performance of the model from different perspectives and can comprehensively evaluate the 
model’s performance on the original data. The specific methods listed in the table are as follows: Method one 
involves mixing the original training data with the adversarial samples generated for the current model in a 1:1 
ratio to form an expanded augmented training set. Then, this integrated training set is used to retrain the deep 
learning model. This method aims to improve the ability to resist adversarial attacks by simultaneously learning 
the features of raw data and perturbed data. Method two first calculates the loss values of the original data and 
the adversarial samples separately; then, the two loss values are weighted and summed to obtain the total loss; 
finally, backpropagation is performed based on this total loss to enhance the robustness of the deep learning 
model. The formula of the loss function of Method two is shown in (8).

	 loss = alpha ∗ loss − original + (1 - alpha) ∗ loss - adversarial � (8)

Where alpha is the weight value, loss-original is the loss value of the original data, and loss-adversarial is the loss 
value of the adversarial sample. The scatter plots of accuracy and robust accuracy of different methods under 
different attack algorithms are shown in Fig. 9.

From Table 16, it can be analyzed that when facing the three different attack algorithms, FGSM, PGD, and 
BIM, the method proposed in this paper has demonstrated significant performance advantages. Specifically, 

λ = 1e−5 λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.5

Accuracy 0.9933 0.9893 0.9880 0.9920 0.9867

Precision 0.9931 0.9890 0.9878 0.9917 0.9862

Recall 0.9935 0.9894 0.9880 0.9923 0.9872

F1-score 0.9933 0.9892 0.9878 0.9919 0.9865

Robust-accuracy 0.9533 0.9480 0.9373 0.9440 0.9387

Table 15.  Model performance with different λ parameters.

 

Fig. 8.  Different λ Accuracy and Robust Accuracy.
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the robust accuracy rates reached 95.33%, 94.67%, and 93.60% respectively. Compared with Method One, they 
increased by 5.06%, 4.67%, and 2.67% respectively, and compared with Method Two, they increased by 10.40%, 
9.60%, and 6.27% respectively. This proves the outstanding effect of this method in improving the robustness 
of the model. Moreover, the method proposed in this paper not only achieved excellent robust accuracy rates 
on adversarial samples, but also maintained a high classification accuracy on clean samples. This phenomenon 
indicates that during the incremental adversarial training process, the model can effectively learn the features 
of adversarial samples without damaging its understanding and classification ability of the original dataset. In 
conclusion, the adversarial training method proposed in this paper significantly improves the robustness and 
security of the model without the need to retrain the entire model.

Furthermore, this study not only focuses on the robustness assessment of deep learning models, but also 
incorporates time efficiency into the comprehensive evaluation system to comprehensively measure the practical 
deployment value of the method. The methods listed in the table are consistent with the definitions mentioned 
earlier. The running times of different adversarial training methods is shown in Table 17.

According to the data in the table, method two has the shortest time consumption in all three attack scenarios, 
significantly lower than method one and the method proposed in this paper. However, the method proposed 
in this paper utilizes the Fisher matrix to accurately evaluate the importance of each parameter and impose 
constraints, enabling deep learning models to continuously learn adversarial features with only a controllable 
increase in computational overhead, thus achieving an improvement in model robustness Based on the above 
analysis, IncAT incremental adversarial training can not only effectively improve the robustness of deep learning 
models, but also enhance the model’s ability to resist adversarial attacks in real-time in application scenarios 

Execution time Method one Method two Proposed methodology

FGSM 780.24 s 503.91 s 696.42 s

PGD 2142.36 s 1356.21 s 2051.28 s

BIM 2133.87 s 1279.33 s 2038.46 s

Table 17.  The execution times of different adversarial training methods.

 

Attack methods Adversarial training methods

Evaluation metrics

Accuracy Precision Recall F1-score Robust-accuracy

FGSM

Method one 0.9827 0.9823 0.9829 0.9826 0.9027

Method two 0.9720 0.9715 0.9721 0.9716 0.8493

Proposed methodology 0.9933 0.9931 0.9935 0.9933 0.9533

PGD

Method one 0.9813 0.9808 0.9817 0.9811 0.9000

Method two 0.9773 0.9973 0.9779 0.9773 0.8507

Proposed methodology 0.9907 0.9904 0.9906 0.9905 0.9467

BIM

Method one 0.9840 0.9838 0.9847 0.9840 0.9093

Method two 0.9827 0.9824 0.9827 0.9825 0.8733

Proposed methodology 0.9920 0.9916 0.9921 0.9918 0.9360

Table 16.  Model performance of different adversarial training methods.

 

Fig. 9.  Scatter plots depicting the accuracy and robust accuracy of various methods under different attack 
algorithms. (a) Scatter plot for the accuracy and robust accuracy of different adversarial training methods 
under the FGSM attack algorithm. (b) Scatter plot for the accuracy and robust accuracy of different adversarial 
training methods under the PGD attack algorithm. (c) Scatter plot for the accuracy and robust accuracy of 
different adversarial training methods under the BIM attack algorithm.
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that require rapid iteration and response. In addition, the core idea also provides reference and inspiration for 
building a fast and real-time adversarial training system, and is expected to promote further breakthroughs in 
this field.

The universality of incremental adversarial training
In order to verify the universality of the proposed method in this paper to different deep learning models, the 
above six deep learning models are tested. At the same time, to demonstrate the effectiveness of the proposed 
method in improving accuracy, the accuracy of the model without adversarial attacks, the accuracy of the model 
after attacks, and the robustness of the model after adversarial training were compared with the accuracy of the 
original dataset. The comparison chart of the accuracy of various deep learning models before and after attacks 
by different attack algorithms, as well as after adversarial training, is shown in Figs. 10, 11 and 12. The specific 
metrics of the deep learning models after adversarial training under different attack algorithms are presented in 
Tables 18, 19 and 20.

In summary, after incremental adversarial training, not only has the performance of the NHANet model 
been significantly improved, but the performance of other deep learning models has also been notably enhanced 
after adopting this method. Meanwhile, when facing different attack algorithms, this method also exhibits good 
performance in other deep models. Thus, it can be concluded that the adversarial training method proposed in 
this paper is not only effective for the NHANet model, but also has wide generality, and can significantly enhance 
other deep learning models’ ability to resist adversarial attacks.

Related works
Adversarial Training, as a core defensive technology for enhancing the robustness of models, strengthens the 
model’s ability to resist interference by injecting adversarial samples during the training process. At present, 
research on adversarial training is mainly divided into the following categories23: 1) Accelerated adversarial 

Fig. 11.  Comparison of accuracy of various deep learning models before and after BIM algorithm attack and 
after adversarial training.

 

Fig. 10.  Comparison of accuracy of various deep learning models before and after FGSM algorithm attack and 
after adversarial training.
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training, which aims to improve the efficiency of adversarial training; 2)Parameter adaptive adversarial training, 
which can automatically adjust parameters according to the actual training situation; 3)Semi supervised or 
unsupervised adversarial training, which expands the dataset by utilizing unlabeled samples and applies them to 
adversarial training to enhance the model’s generalization ability.

Accuracy Precision Recall F1-score Robust-accuracy

DNN 0.9640 0.9651 0.9651 0.9641 0.7040

BiLSTM 0.9427 0.9434 0.9447 0.9429 0.6453

BiLSTM-MultiheadAttention 0.9347 0.9365 0.9353 0.9346 0.5880

CNN-LSTM 0.9827 0.9823 0.9831 0.9827 0.8787

CNN-LSTM-ATT 0.9587 0.9579 0.9589 0.9579 0.7733

NHANet 0.9907 0.9904 0.9906 0.9905 0.9467

Table 20.  Performance of each model after adversarial training under PGD attack algorithm.

 

Accuracy Precision Recall F1-score Robust-accuracy

DNN 0.9680 0.9677 0.9692 0.9680 0.7800

BiLSTM 0.9493 0.9491 0.9511 0.9492 0.6720

BiLSTM-MultiheadAttention 0.9320 0.9326 0.9353 0.9318 0.6013

CNN-LSTM 0.9880 0.9878 0.9882 0.9880 0.8920

CNN-LSTM-ATT 0.9653 0.9649 0.9648 0.9647 0.7720

NHANet 0.9920 0.9916 0.9921 0.9918 0.9360

Table 19.  Performance of each model after adversarial training under BIM attack algorithm.

 

Accuracy Precision Recall F1-score Robust-accuracy

DNN 0.9667 0.9678 0.9678 0.9668 0.7427

BiLSTM 0.9453 0.9466 0.9452 0.9454 0.6600

BiLSTM-MultiheadAttention 0.9373 0.9389 0.9395 0.9369 0.6200

CNN-LSTM 0.9853 0.9852 0.9856 0.9853 0.9000

CNN-LSTM-ATT 0.9640 0.9633 0.9647 0.9636 0.7693

NHANet 0.9933 0.9931 0.9935 0.9933 0.9533

Table 18.  Performance of each model after adversarial training under FGSM attack algorithm.

 

Fig. 12.  Comparison of accuracy of various deep learning models before and after PGD algorithm attack and 
after adversarial training.
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Accelerated adversarial training
In order to reduce the time of adversarial training, researchers have proposed some efficient adversarial 
training methods. Shafahi et al.24 proposed Free AT, which generates adversarial samples by recovering the 
gradient information calculated when updating model parameters, thereby eliminating the computational 
cost of generating adversarial samples. This method can significantly improve the efficiency and scalability of 
adversarial training while maintaining robustness similar to standard adversarial training algorithms. Zheng 
et al.25 generated similar or stronger adversarial samples with fewer iterations by accumulating adversarial 
perturbations over epochs. In addition, researchers use single step adversarial training to accelerate, optimizing 
the FGSM attack algorithm to generate adversarial samples. However, in the single step adversarial training 
method, if the attack step size of FGSM is too large, the deep learning model will produce distorted decision 
boundaries, leading to the occurrence of CO phenomenon. Therefore, Wong et al.16 proposed a randomly 
initialized FGSM internal maximization attack method to alleviate the occurrence of CO phenomenon.

Parameter adaptive adversarial training
The setting of parameters has a crucial impact on improving the robustness of deep learning models when 
generating adversarial samples using gradient information. Therefore, carefully selecting and adjusting these 
parameters is a key step in improving the stability and reliability of the model in the face of potential adversarial 
attacks. Cheng et al.26 proposed an adversarial training method with adaptive perturbation constraints, which 
adaptively seeks the minimum perturbation that can cause deep learning models to misclassify. Specifically, the 
initial perturbation constraint is 0, and after each iteration, a specific constant is added until the deep learning 
model misclassifies. WU Jinfu27 proposed a Fast AT method based on random noise and adaptive step size. This 
method utilizes random noise for data augmentation and accumulates the gradient of adversarial samples during 
the training process to adjust the step size of adversarial samples, thereby generating adversarial samples that are 
more conducive to model training.

Semi-supervised or unsupervised adversarial training
Existing research has found that adversarial training requires the use of much larger datasets than standard 
training, which incurs significant costs. Therefore, researchers adopt semi supervised or unsupervised methods 
for adversarial training. Aim to improve the adversarial robustness of deep learning models solely by adding 
unlabeled data. Carmon et al.28 proposed the robust adversarial training method RST. This method utilizes the 
target model to predict pseudo labels for unlabeled samples, and simultaneously uses both labeled and unlabeled 
samples to predict pseudo labels for retraining the deep learning model. This method also demonstrates the 
importance of unlabeled samples in improving the robustness of deep learning models. Uesato et al.29 also 
verified through experiments that unlabeled samples can improve the robustness of the model. The more 
unlabeled samples used, the stronger the generalization ability of the deep learning model.

In conclusion, with the continuous development of research on adversarial training, a variety of innovative 
adversarial training methods have emerged, enabling them to demonstrate greater robustness when dealing 
with various adversarial attacks. However, the current research integrating incremental learning theory into 
adversarial training is still relatively limited. Based on this, this paper proposes to introduce the incremental 
learning algorithm into the adversarial training framework. By continuously learning from dynamically 
generated adversarial samples, it endows the deep learning model with more flexible dynamic adaptability to 
cope with complex and variable adversarial scenarios.

Conclusions and future work
In response to the problems of low efficiency and high computational resource consumption in existing 
adversarial training methods, this paper proposes an incremental adversarial training method. This method 
enables deep learning models to enhance their security and robustness without the need to retrain the entire 
network, fundamentally addressing the efficiency and performance bottlenecks of traditional adversarial training 
algorithms in the field of brain-computer interfaces. Taking the medical diagnosis system as an example, the 
advantages of IncAT are particularly significant in complex medical data scenarios. When encountering sudden 
equipment noise or malicious attacks from attackers, IncAT can learn and adapt to new adversarial sample 
features in real time, and promptly update its recognition strategy. This ensures the reliability of the diagnostic 
model, reduces the misdiagnosis rate caused by adversarial samples, and thus provides doctors with more 
accurate diagnostic basis. Moreover, to verify the effectiveness of this adversarial training method, experiments 
were conducted on the publicly available epilepsy brain-computer interface dataset from the University of 
Bonn, and the FGSM, BIM, PGD, etc. attack algorithms were used to conduct comparative experiments with 
this method and other adversarial training methods. The experimental results show that the proposed method 
effectively solves the problem of deep neural networks being unable to continuously learn adversarial samples 
and demonstrates excellent adversarial robustness to various adversarial attacks and different deep learning 
models. However, although this method has achieved certain results in improving the robustness and security 
of the model, it shows certain limitations when the data category changes. Therefore, future research will focus 
on studying the adversarial training methods based on category increment, in order to more efficiently cope 
with the dynamic changes of data categories. At the same time, this method will be extended to cross-domain 
scenarios such as autonomous driving and financial risk control. This will help verify its universality and further 
comprehensively evaluate its generalization ability.
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