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An incremental adversarial training
method enables timeliness and
rapid new knowledge acquisition

Yuxin Ge, Yanhua Dong™, Hongyu Sun™?, Yuetong Liu & Chengli Wang

Adversarial training is an effective defense method for deep models against adversarial attacks.
However, current adversarial training methods require retraining the entire neural network, which
consumes a significant amount of computational resources, thereby affecting the timeliness of deep
models and further hindering the rapid learning process of new knowledge. In response to the above
problems, this article proposes an incremental adversarial training method (IncAT) and applies it to

the field of brain computer interfaces (BCI). Within this method, we first propose a deep model called
Neural Hybrid Assembly Network (NHANet) and then train it. Then, based on the original samples and
the trained deep model, calculate the Fisher information matrix to evaluate the importance of deep
neural network parameters on the original samples. Finally, when calculating the loss of adversarial
samples and real labels, an Elastic Weight Consolidation (EWC) loss is added to limit the variation of
important weights and bias parameters in the Neural Hybrid Assembly Network (NHANet). The above
incremental adversarial training method was applied to the publicly available epilepsy brain computer
interface dataset at the University of Bonn. The experimental results showed that when facing three
different attack algorithms, including fast gradient sign method (FGSM), projected gradient descent
(PGD) and basic iterative method (BIM), the method proposed in this paper achieved robust accuracies
of 95.33%, 94.67%, and 93.60%, respectively, without affecting the accuracy of clean samples, which is
5.06%, 4.67%, and 2.67% higher than traditional training methods respectively, thus fully verifying the
generalization and effectiveness of the method.

In recent years, deep neural networks have achieved significant success in fields such as brain computer
interfaces!?, object detection®=>, texture recognition®, image classification’"!!, etc. However, Szegedy et al.!2
revealed the existence of adversarial samples in deep learning models, making them exceptionally vulnerable
to adversarial attacks. Attackers only need to add small perturbations generated by specific algorithms to clean
samples, and deep neural networks can output erroneous classification results with high confidence!*!*. For
example, in the process of neural rehabilitation, if attackers add small perturbations to electroencephalogram
(EEG) signals, deep neural networks may misunderstand the patient’s intentions due to adversarial attacks,
leading to treatment failure or adverse reactions. Therefore, the robustness and security issues of deep learning
models have received widespread attention and research from both academia and industry.

To address the vulnerability of deep learning models to adversarial samples, researchers have developed
various defense methods to enhance model robustness. Among them, adversarial training (AT) is considered
one of the most effective. The core idea is to introduce carefully designed adversarial samples into the training set,
so as to have stronger resistance to interference and disturbance. Madry et al.'> proposed an adversarial training
method using projected gradient descent, which effectively improves the model’s ability to resist adversarial
attacks. However, its multi-step perturbation process requires high computational resources and time, which
to some extent limits the practicality of this method. To address this problem, researchers have proposed an
alternative method—fast adversarial training', which only uses the one-step fast gradient sign method to
generate training data. However, this rapid adversarial training method has a significant drawback, which is that
it can easily lead to overtraining and overfitting of the model on the training data, resulting in poor performance
when faced with new and unseen data. To alleviate this problem, Rice et al.!” proposed an early stopping version
of projection gradient descent adversarial training. Unlike traditional adversarial training methods, this method
introduces a stop criterion to avoid the degradation of model performance due to overtraining of adversarial
samples. In addition, Zhang et al.'® proposed an adversarial training method called Trades, which aims to
achieve an ideal balance between clean sample accuracy and robust accuracy by optimizing the loss function.
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Although existing adversarial training methods improve model robustness and security to some extent,
they suffer from notable limitations:(1) retraining the original and adversarial samples not only increases the
complexity of model training, but also reduces the timeliness of the model, especially in application scenarios
that require fast iteration and response. (2) When faced with large-scale datasets, these adversarial training
methods significantly increase the demand for computing resources, which may become a bottleneck in resource
constrained environments. To address the aforementioned problems, this paper proposes an incremental
adversarial training method (IncAT). This method first uses clean samples and a pre trained Neural Hybrid
Assembly Network (NHANet) to calculate the Fisher information matrix. The weights with higher Fisher
information matrix values are considered more critical for clean samples. Therefore, in the learning process
of adversarial samples, if these weights are significantly updated, they will receive greater punishment. Then,
adversarial samples are generated during the training phase. Finally, by introducing a quadratic penalty term
in the loss function, the significant changes in weights during the learning of adversarial sample features in
deep learning models can be alleviated. This strategy not only enables deep learning models to learn features
of adversarial samples, but also maintains memory of clean samples, thereby improving the robustness and
generalization ability of the model. The main contributions of this paper on incremental adversarial training are
as follows:

(1) To address the issues of insufficient feature extraction and poor generalization ability of existing deep learn-
ing models for brain-computer interfaces in complex scenarios, this paper proposes a hybrid neural net-
work, NHANet. This model integrates the advantages of multiple deep learning modules, aiming to more
effectively process time-series data and capture long-term dependencies as well as complex spatial features.
This innovation not only significantly improves the model’s performance in complex environments but
also provides new ideas and valuable practical experience for the application of deep learning in the field of
brain-computer interfaces.

(2) In response to the security risks of adversarial attacks faced by deep learning models in BCI application
scenarios, this study conducts adversarial attacks on the trained NHANet model. The aim is to conduct a
multi-dimensional performance evaluation to deeply analyze the impact of adversarial perturbations on the
feature representation ability and classification decision stability of deep learning models in the BCI field,
thereby revealing the importance and urgency of enhancing the robustness of deep learning models in BCI
applications.

(3) This paper introduces the incremental adversarial training method for the first time. This approach utiliz-
es adversarial examples to continuously adjust the parameters of the baseline model, thereby enhancing
the robustness and security of deep learning models and avoiding the problem that traditional adversarial
training methods require retraining the entire network. In addition, to further verify the effectiveness of the
proposed method, the robust accuracy is introduced as an evaluation index to reflect the ability of the deep
learning model to resist adversarial attacks after adversarial training.

(4) The proposed method was extensively tested on the publicly available epilepsy BCI dataset from the Uni-
versity of Bonn. The experiments demonstrated that the proposed method outperformed traditional adver-
sarial training methods in terms of accuracy on clean samples and robustness accuracy.

Methods

The incremental adversarial training method proposed in this article is designed as shown in Fig. 1. Firstly, we
train the NHANet model to help it better understand the underlying patterns in the data. Then, we carry out
adversarial attacks on all the original data to generate adversarial samples. Next, the EWC loss term is introduced
when calculating the adversarial sample loss function, and the total loss function is constructed based on this.
Finally, utilizing the backpropagation mechanism, the model parameters are adjusted based on the total loss
function to enhance the deep model’s ability to resist adversarial attacks.

Neural hybrid assembly network architecture design

This article proposes a hybrid neural network model called NHANet, which integrates various cutting-edge deep
learning techniques such as convolutional neural networks, bidirectional long short-term memory networks,
multi head attention mechanisms, residual connections, and fully connected layers. The goal is to fully utilize the
strengths of different neural networks in processing specific data, thereby enhancing the performance of deep
models in complex EEG signal recognition tasks. The specific network framework is shown in Fig. 2.

Firstly, add a channel dimension to the preprocessed data to ensure it meets the input requirements of the one-
dimensional deep convolution module. Then, in the one-dimensional deep convolution module, 64 convolution
kernels of size 3 are used to convolve along the time axis of the original signal, and ReLU activation function
is used to increase nonlinearity. Finally, a maximum pooling layer with a size of 2 is used for downsampling
to reduce data redundancy. Although the deep convolution module can obtain local features of EEG signal
data, it cannot capture long-term dependencies of time series data. Therefore, a bidirectional LSTM layer was
introduced to compensate for this deficiency.

In the NHANet model, by introducing a bidirectional LSTM layer, its bidirectional recursive structure is
utilized to conduct bidirectional feature extraction of time series data, thereby effectively capturing the long-
term dependencies in the signal sequence and further improving the representation ability of the deep learning
model for the dynamic features of electroencephalogram signals.

Specifically, there are 32 hidden units in each direction of the bidirectional LSTM layer, which work together
to capture complex features in the input sequence. Although the BiLSTM layer can effectively process time series
data, it still has limitations in capturing the global dependencies of the entire sequence. To further improve the

Scientific Reports |

(2025) 15:35826 | https://doi.org/10.1038/541598-025-19840-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Overview Overall Design of IncAT

]

I
E I Adversarial Training ‘: i

! 1

i | H
i ] Predicting il
! i Adversarial i
e = e e o i Samplcs i
i 'Background Learning ! : ¥

]
H i Overall Loss: I
I raini : A. * f_\ b
t Training L 10-LO)+ X 2E6-0.) D
1 I_ i 1
: :/ """""""" B : :
! | [
! | L8]
! | 1
! | L]
! \ [
! | [
1§ B e e T T T, "
i i Quiginal | Datz Gencerate Adversarial Samples | i
1 1
P ' i
L Adversarial Attack ! :
P i ' i
(o] 1 1
[l 1 1
i i Adversarial Samples | H
I 7 1
1

Fig. 1. Overview overall design of IncAT.
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Fig. 2. NHANet model architecture diagram.

performance of deep learning models, we added a multi head attention mechanism module after the BiLSTM
layer.

By introducing this mechanism, deep learning models can focus on different parts of input data in parallel,
significantly improving their ability to capture key information in sequences. Inside the multi head attention
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module, 16 attention heads work in parallel, each with 64 embedding dimensions, capable of independently
focusing on different aspects of information. X = [X, X, ,...,X ] is the matrix output by the BILSTM module,
which is mapped to three vector spaces Q (query), K (key), and V (value) through linear transformation. The
specific formula is shown as follows:

Q=XWe (1)
K=XwWk (2)
V=xwV (3)

where W, WX, WV is the weight matrix and the three are trainable parameter matrices. In the multi head
attention mechanism, each head independently calculates attention weights and generates multiple attention
outputs in parallel. The formula is as follows:

Attention (Q, K, V) = softmax (%) Vv 4)

and finally the outputs of all attention are concatenated using the concat function.

However, as the number of neural network layers increases, training may encounter problems such as
vanishing or exploding gradients. To address this challenge, we incorporated a residual connection mechanism
into the deep learning model, directly connecting the input and output of the multi-head attention mechanism.
This cross-layer connection design helps to enhance the flow of gradients within the network, thereby improving
the training stability and performance of the model.

Finally, first use a fully connected layer to map the input vector to a hidden space with a dimension of 128,
and increase nonlinearity through the ReLU activation function. Then, use another fully connected layer as
the output layer to map the representation in this hidden space to the number of corresponding final output
categories, thereby completing the classification task.

Adversarial attack based on neural hybrid assembly network

This section focuses on the impact of adversarial attacks on the performance and robustness of NHANet
models. By implementing adversarial attacks on deep neural networks, we can gain a deeper understanding of
the vulnerability of deep learning models and better design security defense mechanisms to resist the negative
impact of adversarial attacks on deep models.

The research on the adversarial attack is divided into the following three parts: first, based on the trained
NHANet model with same weight parameters, three algorithms such as fast gradient sign method (FGSM)",
basic iterative method (BIM)%, and projected gradient descent (PGD)'® are respectively used to generate the
adversarial sample by conducting adversarial attack on all the original sample. Then, the trained deep neural
network is used to predict the generated adversarial samples, and the impact on the classification performance
of the model is observed by adjusting the epsilons. In addition, by visualizing the raw data and adding perturbed
data, we can observe whether the generated adversarial samples have concealment. Finally, in order to further
reveal the impact of adversarial attacks on deep models, we also conducted adversarial attacks on common deep
learning models. That is, adversarial attacks not only affect the classification effect of NHANet model, but also
affect the performance of other deep learning models.

Neural hybrid assembly network incremental adversarial training

In response to the problems of lack of timeliness and consumption of computational resources of traditional
adversarial training methods, this paper employs an incremental learning algorithm to continuously learn the
generated adversarial samples. Because existing research shows that in the case of limited storage space and
computing resources, adopting incremental learning method can not only effectively cope with the challenge of
new tasks or data, but also maintain the performance of old tasks.

The framework of the method is shown in Fig. 3. Among them,0; (i € 1,2, 3,...N) is the neural network
parameters, N is the number of neural network parameters, F is the Fisher information matrix, A is a hyper
parameter to measure the importance of the original sample relative to the adversarial sample, L5 (6) is the loss
function of the adversarial sample dataset, and 6 ; is the original model parameters.

First, the NHANet deep learning model is trained to enhance its predictive performance for EEG signals.
After the training is completed, the model weights are saved. Then, based on the original dataset samples
and the parameters of the original NHANet deep learning model, the first derivatives of the NHANet deep
learning model output about the neural network parameters are calculated, and the Fisher information matrix
is constructed. The importance of the neural network parameters on the original samples can be reflected by
the Fisher information matrix. Among them, the larger FIM value represents the higher importance of the
parameters in the original dataset. Finally, during the adversarial training process, all original data is attacked
to generate adversarial samples. When calculating the loss between the predicted results of adversarial samples
and the true labels, an additional EWC loss term is added to limit the changes in important weights and bias
parameters in the NHANet hybrid model. The specific total loss value is shown as follows:

L) = Lp (0) + 3 3F: (6: = 03,)° (5)
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Fig. 3. Flow chart of incremental adversarial training method.

For parameters that are more important in the original dataset, a greater penalty value will be assigned during
the update process to ensure that they are less prone to significant changes. Therefore, when using adversarial
training methods based on incremental learning to improve the robustness of deep learning models, it not only
firmly grasps existing knowledge but also flexibly responds to new challenges, maintaining its robustness and
adaptability in a dynamic environment.

Experiments

To verify the effectiveness of the proposed method and the classification performance of the deep learning
model, we conducted a systematic experiment on the epilepsy dataset. Firstly, we constructed the neural hybrid
assembly network NHANet, which achieved efficient feature extraction and high-precision classification in
complex scenarios through a multi-module collaborative mechanism. Secondly, three typical adversarial attack
algorithms, FGSM, BIM, and PGD, were used to conduct adversarial attacks on the trained NHANet, aiming
to illustrate the impact of adversarial attacks on deep learning models. Finally, we introduced the incremental
adversarial training method to enhance the model’s defense performance and compared it with existing
adversarial training methods to verify the effectiveness and generalization of this method.

Experimental design

Dataset

This article selects the epilepsy dataset publicly available from the University of Bonn?! to verify the effectiveness
of incremental adversarial training method. It consists of five categories, each containing 100 channel sequences
with a duration of 23.6 seconds and 4097 signal sampling points. To further improve model performance
and accelerate convergence, we performed a series of preprocessing operations on the dataset. To address the
issue where high data dimensionality might increase computational burden, we implemented dimensionality
reduction on the data to enhance efficiency while retaining key information. Considering that the limited size
of the original dataset could easily lead to overfitting due to insufficient training samples, we expanded the
dataset by synthesizing new samples. Additionally, we standardized and normalized the data, and converted
non-numerical labels into numerical encodings to meet the requirements of deep learning models.

Experiment details

The experiment is implemented based on the PyTorch deep learning framework, and the dataset is split into a
training set and a test set in a 7:3 ratio. The optimizer uses adaptive momentum estimation, and the Dropout
value is set to 0.5, the batch-size is set to 32, and the learning rate is set to 0.0003, and the number of heads in the
multi-head attention mechanism is set to 16. When conducting incremental adversarial training, A is set to 1le—5.
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Evaluation metrics

Model evaluation metrics

In order to illustrate the effectiveness and stability of the deep learning model, accuracy, precision, recall, and
F1-score are introduced as evaluation metrics.

Attack evaluation metrics
This study uses four indicators, namely adversarial accuracy, attack success rate, average L, distance, and average
L, distance, to evaluate the impact of adversarial attacks on deep learning models.

Adversarial accuracy refers to the accuracy of a classification model on adversarial samples. It is measured by
calculating the proportion of adversarial samples where the predicted labels match the true labels. The higher the
adversarial accuracy, the stronger the ability of the deep learning model to resist adversarial attacks. Conversely,
the lower the adversarial accuracy, the weaker the ability of the model to resist adversarial attacks.

The attack success rate is used to measure the attack effect of adversarial samples on the target model. This
metric reflects the effectiveness of adversarial attacks. The closer the ASR value is to 1, the stronger the attack
capability is?2. The specific formula is shown as follows:

SN (Fws)=reali) A(F(wi+8;)#real;)
SN (F(wi)=real;)

(6)

Iasr =

where, F (*) is the sample label predicted by the depth model, and real; is the true label of the ith sample.

The average L, distance is used to measure the degree of difference between adversarial samples and raw
samples. The smaller the average L, distance, the smaller the perturbation amplitude added to the original
sample and the closer it is to the original sample.

The average L, distance refers to first calculating the sum of the absolute differences between each generated
adversarial sample and the elements of the original sample, then adding the L, distances of all samples, and
finally dividing by the number of samples. The larger the average L, distance, the greater the difference between
the generated adversarial samples and the original samples.

Defense evaluation metrics

In order to evaluate the performance of the adversarial training method proposed in this paper, the accuracy,
precision, recall and F1-score are used as evaluation metrics in the original data set. On the generated adversarial
sample data set, the robust accuracy is used as the evaluation metric. Among them, the robust accuracy refers to
the accuracy of the deep learning model in the face of adversarial samples, which reflects the ability of the deep
learning model to resist adversarial attacks after adversarial training. The specific formula is shown as follows:

Robust-accuracy = % ?)
ota

where Ncor, is the number of correctly classified adversarial samples, and N¢ota1 is the total number of adversarial
samples.

Network model analysis

The division of the dataset

In the development of deep learning models, the proportion of dataset division is a crucial step, and its rationality
directly affects the training effect of the model, parameter optimization, and generalization ability. Given the
small size of the dataset, this experiment only divided it into the training set and the test set. In this experiment,
to explore the impact of different division ratios on the model performance, we set two typical schemes with
training set-test set ratios of 8:2 and 7:3. The specific results are presented in Tables 1 and 2.

Through the data analysis of Tables 1 and 2, it can be seen that when the dataset partition ratio is 8:2, regardless
of the batch size, the performance of the model is superior to that of the model with a dataset partition ratio
of 7:3. However, due to the limited total number of samples in the dataset, using a 7:3 split ratio allows for the
creation of a relatively large test set. This enables us to more accurately evaluate the generalization ability of the
model, especially when dealing with limited sample data. A larger test set can provide a more stable performance
assessment and reduce the evaluation errors caused by insufficient sample quantities. Therefore, considering
the evaluation accuracy and actual application requirements, this experiment finally selects 7:3 as the dataset
partition ratio.

Batch-size | Accuracy | Precision | Recall | F1-score
8 0.9980 0.9976 0.9983 | 0.9979
16 0.9940 0.9945 0.9933 | 0.9938
32 0.9860 0.9855 0.9862 | 0.9858
64 0.9860 0.9867 0.9860 | 0.9863
128 0.9740 0.9733 0.9748 | 0.9738

Table 1. Model performance for different Batch-sizes when the dataset is divided in a ratio of 8:2.

Scientific Reports |

(2025) 15:35826 | https://doi.org/10.1038/541598-025-19840-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Accuracy | Precision | Recall | F1-score
8 0.9920 0.9916 0.9921 | 0.9918
16 | 0.9893 0.9889 0.9898 | 0.9892
32 109827 0.9824 0.9831 | 0.9825

64 | 0.9747 0.9739 0.9756 | 0.9745
128 | 0.9587 0.9576 0.9597 | 0.9582

Table 2. Model performance for different Batch-sizes when the dataset is divided in a ratio of 7:3.

Batch-size | Model execution time | Best accuracy | Epoch
8 490.7729 s 0.9947 88
16 261.2940 s 0.9907 94
32 144.8274 s 0.9853 99
64 90.3085 s 0.9760 93
128 63.6864 s 0.9640 98

Table 3. Optimal accuracy parameters for different batches.

Batch-size 8 16 32 64 128
Accuracy 0.9933 0.9880 0.9800 0.9707 0.9560
Precision 0.9931 0.9876 0.9794 0.9702 0.9549
Recall 0.9935 0.9880 0.9805 0.9707 0.9568
F1-score 0.9933 0.9876 0.9798 0.9704 0.9553
Execution-time | 481.4006 s | 257.2427 s | 145.0358 s | 91.6405s | 65.3319 s

Table 4. NHANet model performance metrics at a learning rate of 0.0003.

Batch-size 8 16 32 64 128
Accuracy 0.9773 0.9693 0.9053 0.8160 0.7520
Precision 0.9772 0.9694 0.9032 0.8111 0.7494
Recall 0.9772 0.9703 0.9035 0.8134 0.7484
Fl1-score 0.9771 0.9694 0.9026 0.8106 0.7444
Execution-time | 487.1841s | 256.0790 s | 143.1442 s | 90.4628 s | 64.0669 s

Table 5. NHANet model performance metrics at a learning rate of 0.0001.

Model performance analysis

The main purpose of this experiment is to study the effect of learning rate and batch-size on the performance and
execution time of deep learning model. By testing the performance of the model under different batch -sizes and
learning rates, the aim is to find an optimal batch-size and learning rate setting, so that the model can achieve
high accuracy in a relatively short time. In the experiment, the batch- sizes were set to 8, 16, 32, 64, and 128
respectively, and the best accuracy, best epoch, and running time of the NHANet deep learning model under
different batch-sizes were tested. The specific experimental results are shown in Table 3.

According to the experimental data in Table 3, When the batch-size is set to 8, the model achieves the highest
accuracy of 0.9947 in the 88th epoch. However, this process is relatively time consuming, and the utilization rate
of computing resources is low. In contrast, when batch-size is increased to 128, the running time of the model
is significantly shortened, but the accuracy is relatively low. When batch-size is set to 32, when the model runs
to the 99th round, it not only achieves a high accuracy of 0.9853, but also saves the consumption of computer
resources and achieves a good balance between performance and efficiency. Therefore, we can see that the
value of batch-size has an important impact on the running time and performance of the model. In practical
application, we should strive to achieve high accuracy in a relatively short time to maximize the efficiency and
practicality of the model.

By adjusting the learning rate, several groups of experiments were conducted to explore the impact of
different learning rates on model performance and running time. When epoch is set to 100 and learning rate
is set to 0.0003 and 0.0001 respectively, the performance of NHANet model is analyzed. The specific results are
shown in Tables 4 and 5.
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Num-heads | Accuracy | Precision | Recall | F1-score
16 0.9813 0.9809 0.9817 | 0.9812
8 0.9787 0.9783 0.9789 | 0.9786
4 0.9733 0.9728 0.9742 | 0.9732
2 0.9773 0.9769 0.9778 | 0.9773

Table 6. Performance of models with different numbers of heads.

Accuracy | Precision | Recall | F1-score
DNN 0.9627 0.9628 0.9645 | 0.9632
BiLSTM 0.9640 0.9645 0.9654 | 0.9645
BiLSTM-MultiheadAttention | 0.9587 0.9588 0.9613 | 0.9597
CNN-LSTM 0.9560 0.9553 0.9562 | 0.9557
CNN-LSTM-ATT 0.9307 0.9289 0.9307 | 0.9294
NHANet 0.9840 0.9842 0.9837 | 0.9839

Table 7. Performance metrics of different models.

According to the experimental data in Tables 4 and 5, when the batch-size is set to the same, different learning
rates have a relatively small impact on the execution time of the deep learning model NHANet. However, it is
worth noting that when the learning rate is adjusted from 0.0001 to 0.0003, the model performance is significantly
improved. This may be because a lower learning rate slows down the update speed of model parameters, resulting
in the need for more iterations for the model to achieve a better classification effect. Based on this, this study
sets the learning rate to 0.0003, which enables the deep learning model NHANet to learn the patterns in the data
more efficiently and thoroughly on the premise that the execution time does not increase significantly.

The "number of heads" in the multi-head attention mechanism serves as a core hyperparameter, and its value
directly affects the feature representation ability and generalization performance of the deep learning model. To
systematically explore the influence of the number of heads on the model’s performance, in this experiment, the
number of heads in the multi-head attention mechanism was set to 16, 8, 4, and 2. Comparative experiments
were conducted based on the same training dataset and evaluation metrics. The specific experimental results are
shown in Table 6.

As shown in the table above, the number of heads in the multi-head attention mechanism has a significant
impact on the model performance. When the number of heads is set to 16, the model achieves the best results
in terms of accuracy, precision, recall rate, and F1-score. This indicates that a larger number of heads enables
the model to concurrently extract semantic information from different subspaces, capturing feature correlations
more comprehensively and multi-dimensionally. Moreover, as the number of heads decreases, each indicator
shows a stepwise decline trend, indicating that when the number of heads is insufficient, the model’s perspective
is limited, making it difficult to fully model complex feature relationships. It is worth noting that when the
number of heads drops to 2, although the indicators slightly recover compared to when the number is 4, their
overall performance is still far inferior to that of the 16-head model. This reflects that excessively reducing the
number of heads will severely restrict the model’s ability to capture rich feature patterns.

Comparative experiments

To verify the efficiency and accuracy of the NHANet deep learning model proposed in this paper, a comparative
experiment was conducted by comparing it with several typical deep learning models. The experiment used
the same dataset to evaluate the performance and generalization ability of models such as DNN, BiLSTM,
BiLSTM-MultiheadAttention, CNN_LSTM, CNN_LSTM_ATT, and NHANet. The performance indicators of
different deep learning models are shown in Table 7. Additionally, to more intuitively display the relationship
between the model’s prediction results and the true labels, we also constructed a confusion matrix. Figure 4
shows the confusion matrices of different deep learning models. Through these experimental results, we can
clearly compare the performance of each model in the classification task and thereby verify the superiority of
the NHANet model.

It can be seen from the experimental results in Table 7 that the NHANet deep learning model proposed in this
paper is significantly superior to the comparison models in all evaluation indicators. It is worth noting that the
traditional BiILSTM model also demonstrates a relatively high performance level. This is mainly attributed to its
synchronous processing of sequence data through forward and backward LSTM units, effectively capturing the
context information of the past and future in the signal. In contrast, the CNN_LSTM_ self-attention mechanism
model has poor classification performance on this dataset. Although the self-attention mechanism can enhance
the model’s ability to focus on key features, due to the limitations of the current task characteristics and data
distribution characteristics, this model fails to give full play to its advantages. Instead, it leads to performance
degradation of the model in feature integration and classification decision-making. In conclusion, the NHANet
model proposed in this study has the most outstanding overall performance. This discovery provides new
solution strategies and innovative ideas for the research in the field of brain-computer interfaces.
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Fig. 4. Confusion matrix results for different models. (a) Confusion matrix for the NHANet model. (b)
Confusion matrix for the DNN model. (¢) Confusion matrix for the BiLSTM model. (d) Confusion matrix for
the CNN-LSTM model. (e) Confusion matrix for the CNN-LSTM-ATT model. (f) Confusion matrix for the
BiLSTM-Multihead Attention model.

Exploring the impact of adversarial attacks on deep model performance

Experimental results and analysis

For the public epilepsy data set, FGSM, BIM and PGD attack algorithms are used to attack the trained NHANet
model.

Furthermore, to explore the influence of different epsilons on deep learning models, the epsilons were set to
1/255, 2/255, 3/255, 4/255, and 5/255, and the evaluation indicators of adversarial accuracy, attack success rate,
average L, distance, and average L, distance were used for verification. The research results show that, with the
continuous increase of perturbation intensity, the adversarial accuracy shows a gradual downward trend, while
the attack success rate continues to increase. Figure 5 shows the line charts of the model adversarial accuracy and
attack success rate as the perturbation intensity increases. At the same time, the specific performance of NHANet
model under different attack algorithms with different epsilon values are shown in Tables 8, 9 and 10 below.

Specifically, without adding perturbation, the adversarial accuracy of NHANet model reached 0.9840,
indicating that the model has good performance on the original test set. However, as the perturbation value
continues to increase, the adversarial accuracy gradually decreases. When the epsilon is set to 5/255, the
adversarial accuracy rate of FGSM attack algorithm is 0.1307, that of PGD attack algorithm is 0.1413, and
that of BIM attack algorithm is 0.0840. This indicates that the accuracy rate of model classification will decline
sharply with the increase of perturbation. At the same time, the attack success rate increases with the increase
of perturbation value, which means that the stability of NHANet models classification prediction is poor when
facing small changes in input data. In addition, the average L, distance and the average L, distance increase with
the increase of the perturbation value, indicating that the difference between the adversarial sample and the
original sample increases with the increase of the perturbation value.

At the same time, it can be seen that when the epsilons are set to 1/255, 2/255, 3/255, 4/255, the attack success
rate of PGD and BIM algorithm is higher than that of FGSM algorithm. This phenomenon shows that PGD and
BIM algorithms have stronger attack capability at lower perturbation levels. In addition, the average L, distance
and average L, distance are important indicators for measuring the differences between adversarial samples and
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Fig. 5. Line charts showing the variation of adversarial accuracy and attack success rate of the NHANet model
as the perturbation strength increases. (a) Line chart for the adversarial accuracy of the NHANet model as it
changes with perturbation. (b) Line chart for the attack success rate of the NHANet model as it changes with
perturbation.

Original | € =1/255 | € =2/255 | € =3/255 | € =4/255 | € =5/255
Adversarial accuracy | 0.9840 0.8893 0.5573 0.2880 0.1960 0.1307

Attack success rate 0.0 0.0962 0.4336 0.7073 0.8008 0.8672
Average L, distance | 0.0 1.1759 2.3518 3.5277 4.7035 5.8792
Average L, distance | 0.0 0.0679 0.1358 0.2037 0.2716 0.3395

Table 8. Performance of NHANet model with different epsilons under FGSM attack algorithm.

original samples. The average L, distance and average L, distance of adversarial samples generated by FGSM
attack algorithm are both greater than those generated by PGD and BIM attack algorithms, indicating that the
adversarial samples generated by PGD and BIM attack algorithms have less difference from the original samples.

In order to verify whether the generated adversarial samples are covert, some adversarial samples are
randomly selected and compared with the original data. The first 80 characteristic values of each sample are
printed. The red line represents the original data, and the blue line represents the generated adversarial sample.
As shown in Fig. 6, the first row shows the comparison between the adversarial samples generated by FGSM,
BIM, and PGD and the original data, with the epsilon set to 2/255. The second row shows the comparison
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Original | e =1/255 | € =2/255 | € =3/255 | € =4/255 | € =5/255

Adversarial accuracy | 0.9840 0.8760 0.4800 0.2373 0.1680 0.1413

Attack success rate 0.0 0.1098 0.5122 0.7588 0.8293 0.8564
Average L distance | 0.0 1.1553 2.2143 3.1076 3.6757 4.0910
Average L, distance | 0.0 0.0673 0.1306 0.1861 0.2264 0.2622

Table 9. Performance of NHANet model with different epsilons under PGD attack algorithm.

Original | € =1/255 | € =2/255 | € = 3/255 | € =4/255 | € =5/255
Adversarial accuracy | 0.9840 0.8760 0.4773 0.2133 0.1227 0.0840

Attack success rate 0.0 0.1098 0.5149 0.7832 0.8753 0.9146
Average L, distance | 0.0 1.1665 2.2306 3.2206 4.0604 4.9083
Average L, distance | 0.0 0.0676 0.1307 0.1914 0.2445 0.2995

Table 10. Performance of NHANet model with different epsilons under BIM attack algorithm.
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Fig. 6. Comparison of raw samples and adversarial samples generated under different attack algorithms.

between the adversarial samples generated by FGSM, BIM, and PGD and the original data, with the epsilon set
to 5/255.

Based on the above analysis, the smaller the perturbation, the more difficult it is for the human eye to detect
the adversarial samples, while the larger the perturbation, the more obvious the deviation of the generated
adversarial samples from the original data. Therefore, in practical application scenarios, in order to ensure
the robustness and security of the deep learning model, it is very important to select appropriate perturbation
values. This decision needs to comprehensively consider the robustness requirements and security factors of the
model to seek the best balance between the two.

Further investigation into the impact of adversarial attacks on deep learning models

In order to further explore the impact of adversarial attacks on deep learning models, the five aforementioned
deep learning models were subjected to adversarial attacks using the PGD attack algorithm. Furthermore,
metrics such as adversarial accuracy, attack success rate, average L, distance and average L, distance were used
to evaluate the performance of the generated adversarial samples. Figure 7 shows the line charts of the different
models’ adversarial accuracy and attack success rate with increasing perturbation value, respectively. Meanwhile,
the specific performance of the five deep learning models under different epsilons is detailed in Table 11 below.
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Fig. 7. Line charts illustrating the variation of adversarial accuracy and attack success rate for different models
as the perturbation intensity increases. (a) Line chart showing the adversarial accuracy of various models

in response to changes in perturbation. (b) Line chart depicting the attack success rate of various models in
response to changes in perturbation.

€(epsilons)
Neural network model Evaluation metrics | original | 1/255 | 2/255 | 3/255 | 4/255 |5/255
Adversarial accuracy | 0.9627 | 0.8893 | 0.4907 | 0.1960 | 0.1133 | 0.0933
DNN Attack success rate 0.0 0.0762 | 0.4903 | 0.7964 | 0.8823 | 0.9030
Average L distance | 0.0 1.1702 | 2.2979 | 3.3012 | 3.8961 | 4.2859
Average L, distance | 0.0 0.0677 | 0.1338 | 0.1937 | 0.2355 | 0.2715
Adversarial accuracy | 0.9640 | 0.8440 | 0.3987 | 0.1667 | 0.0920 | 0.0693
Attack success rate 0.0 0.1245 | 0.5864 | 0.8271 | 0.9046 | 0.9281
BiLSTM
Average L, distance | 0.0 1.1719 | 2.3116 | 3.3308 | 3.9296 | 4.3159
Average L, distance | 0.0 0.0678 | 0.1343 | 0.1949 | 0.2369 | 0.2730
Adversarial accuracy | 0.9560 | 0.6160 | 0.1933 | 0.1307 | 0.1067 |0.1027
Attack success rate 0.0 0.3556 | 0.7978 | 0.8633 | 0.8884 | 0.8926
CNN-LSTM
Average L, distance | 0.0 1.1421 | 2.1842 | 3.0447 | 3.6027 | 4.0221
Average L, distance | 0.0 0.0666 | 0.1291 | 0.1832 | 0.2231 | 0.2587
Adversarial accuracy | 0.9587 | 0.6120 | 0.1760 | 0.0853 | 0.0667 | 0.0613
Attack success rate 0.0 0.3616 | 0.8164 | 0.9110 | 0.9305 | 0.9360
BiLSTM-Multihead Attention
Average L, distance | 0.0 1.1703 | 2.2859 | 3.2548 | 3.8348 | 4.2278
Average L, distance | 0.0 0.0677 | 0.1334 | 0.1919 | 0.2330 | 0.2687
Adversarial accuracy | 0.9307 | 0.4107 | 0.1573 | 0.1040 | 0.0880 | 0.0747
Attack success rate 0.0 0.5587 | 0.8309 | 0.8883 | 0.9054 | 0.9198
CNN-LSTM-ATT
Average L, distance | 0.0 1.1120 | 2.0774 | 2.8439 | 3.3736 | 3.8137
Average L, distance | 0.0 0.0657 | 0.1248 | 0.1746 | 0.2130 | 0.2483

Table 11. Performance of various models under different epsilons.

The experimental results indicate that, when the values of alpha and steps are set to be the same, as the
perturbation value continues to increase, the performance of different neural network prediction models steadily
declines. Specifically, the adversarial accuracy decreases with increasing perturbation value, and the generated
adversarial samples can effectively deceive the model into making wrong classifications. Meanwhile, the attack
success rate increases with increasing perturbation value, which indicates that the model has weaker robustness
in the face of adversarial attacks. In addition, the average L, distance and average L, distance increase with
the increase of perturbation value, which indicates that the generated adversarial samples are more and more
deviated from the original data, resulting in the decrease of the concealment of the adversarial samples. Through
this above analysis, the adversarial attack algorithm can not only cause classification errors in the NHANet
model, but also be equally effective for other neural network models. This fully demonstrates the importance and
urgency of improving the robustness of deep learning models in practical applications.
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Precision | Recall | Fl-score | support
0.98571 | 0.98571 | 0.98571 | 140
1.00000 | 1.00000 | 1.00000 | 142
0.99383 | 0.98171 | 0.98773 | 164

1.00000 1.00000 | 1.00000 | 166
0.98571 1.00000 | 0.99281 | 138
Accuracy 0.99333 | 750
Macro avg. 0.99305 0.99348 | 0.99325 | 750
Weighted avg. | 0.99335 0.99333 | 0.99333 | 750

N O N N =]

Table 12. Classification report of raw data after adversarial training under FGSM attack algorithm.

Precision | Recall | Fl-score | Support
0 0.98561 0.97857 | 0.98208 | 140
1 1.00000 1.00000 | 1.00000 | 142
2 0.99383 0.98171 | 0.98773 | 164
3 1.00000 1.00000 | 1.00000 | 166
4 0.97872 1.00000 | 0.98925 | 138
Accuracy 0.99200 | 750
Macro avg. 0.99163 0.99206 | 0.99181 | 750
Weighted avg. | 0.99205 0.99200 | 0.99199 | 750

Table 13. Classification report of raw data after adversarial training under BIM attack algorithm.

Precision | Recall | Fl-score | Support
0 0.98561 0.97857 | 0.98208 140
1 1.00000 1.00000 | 1.00000 | 142
2 0.98773 0.98171 | 0.98471 | 164
3 1.00000 1.00000 | 1.00000 | 166
4 0.97857 0.99275 | 0.98561 | 138
Accuracy 0.99067 | 750
Macro avg. 0.99038 0.99061 | 0.99048 | 750
Weighted avg. | 0.99069 0.99067 | 0.99066 | 750

Table 14. Classification report of raw data after adversarial training under PGD attack algorithm.

Neural hybrid assembly network incremental adversarial training

The effectiveness of incremental adversarial training

In order to verify the effectiveness of the incremental adversarial training algorithm proposed in this paper under
different attack algorithms, three attack algorithms (FGSM, BIM, and PGD) were used to generate adversarial
samples during the adversarial training process. And use accuracy, precision, recall, and F1-score as evaluation
metrics to comprehensively evaluate the performance of the model after adversarial training. The following
Tables 12, 13 and 14 are the classification reports of different algorithms.

According to the classification report, after adversarial training, the model performs well in classification
performance on each category. For the FGSM attack algorithm, the highest precision for each category reaches
1.0000 and the lowest is 0.98571, and the recall and F1-score for each category also achieve good prediction
results, which indicates that the model after adversarial training is able to recognize the samples in each category
effectively. Similarly, for the BIM attack algorithm and the PGD attack algorithm, the overall accuracy of the
model reaches 0.99200 and 0.99067, respectively, thus further verifying the effectiveness of the adversarial
training method proposed in this paper under different attack algorithms.

Variable parameter analysis

When using the IncAT algorithm to continuously learn the generated adversarial samples, A, as a hyperparameter,
is used to adjust the constraint degree of the deep learning model to the original samples when learning the
adversarial samples. In this experiment, when using the FGSM attack algorithm to generate adversarial samples
for adversarial training, we investigated the impact of the value of A on the robustness and performance of
deep learning models. By systematically testing the model performance under different A values, an optimal
configuration is sought to improve the model’s ability to resist adversarial attacks without damaging the model’s
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Fig. 8. Different A Accuracy and Robust Accuracy.

A=1e-5 |A=0.01 |A=01|A=02|A=05

Accuracy 0.9933 0.9893 0.9880 | 0.9920 | 0.9867
Precision 0.9931 0.9890 0.9878 |0.9917 | 0.9862
Recall 0.9935 0.9894 0.9880 | 0.9923 | 0.9872
Fl-score 0.9933 0.9892 0.9878 | 0.9919 | 0.9865

Robust-accuracy | 0.9533 0.9480 0.9373 | 0.9440 | 0.9387

Table 15. Model performance with different A parameters.

performance in the original data. In the experiment, we tried different sizes of A, Specifically including: le-5,
0.01, 0.1, 0.2, 0.5. The line chart in Fig. 8 shows the variation of accuracy and robust accuracy with increasing A.
The specific performance of NHANet models with different A values is shown in Table 15.

By observing the experimental results, it can be seen that when A is 1e—5, the model’s reaches the highest
accuracy of 0.9933, as well as the highest level of robust accuracy. However, as the value of A increases, the robust
accuracy of the model shows a decreasing trend, which suggests that too large a value of A may affect the model’s
ability to learn adversarial samples. Therefore, choosing an appropriate A value is crucial to balance the robust
accuracy of the deep learning model and the accuracy of the original dataset. In practical applications, in order
to balance the performance of the model on both the adversarial samples and the original samples, the value of
the parameter A should be flexibly adjusted according to the needs of specific tasks.

Comparison of methods

In order to comprehensively evaluate the performance and advantages of the incremental adversarial training
algorithm proposed in this paper, we conducted a detailed comparative analysis with existing adversarial
training methods. In the comparative experiments, we used three attack algorithms, namely FGSM, BIM, and
PGD, to generate adversarial samples during the adversarial training process. In terms of evaluation metrics, we
used robust accuracy to measure the ability of deep learning models to resist adversarial attacks after adversarial
training. At the same time, to evaluate the classification ability of the model on the original data after adversarial
training, we also used four indicators: accuracy, precision, recall, and F1-score. These indicators reflect the
classification performance of the model from different perspectives and can comprehensively evaluate the
model’s performance on the original data. The specific methods listed in the table are as follows: Method one
involves mixing the original training data with the adversarial samples generated for the current model in a 1:1
ratio to form an expanded augmented training set. Then, this integrated training set is used to retrain the deep
learning model. This method aims to improve the ability to resist adversarial attacks by simultaneously learning
the features of raw data and perturbed data. Method two first calculates the loss values of the original data and
the adversarial samples separately; then, the two loss values are weighted and summed to obtain the total loss;
finally, backpropagation is performed based on this total loss to enhance the robustness of the deep learning
model. The formula of the loss function of Method two is shown in (8).

loss = alpha * loss — original + (1 - alpha) * loss - adversarial (8)

Where alpha is the weight value, loss-original is the loss value of the original data, and loss-adversarial is the loss
value of the adversarial sample. The scatter plots of accuracy and robust accuracy of different methods under
different attack algorithms are shown in Fig. 9.

From Table 16, it can be analyzed that when facing the three different attack algorithms, FGSM, PGD, and
BIM, the method proposed in this paper has demonstrated significant performance advantages. Specifically,

Scientific Reports|  (2025) 15:35826 | https://doi.org/10.1038/541598-025-19840-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

X

@ Accuracy 0.94 X

X Robustness Accuracy

Accuracy
o ©
o ©o
o N
X
Accuracy

e
o
@

0.86 0.88
X X X

Metr;od 1

Method 2 Proposed P/fethodology Method 1 Method 2 Proposed Methodology Method 1 Method 2 Proposed Mlethodo|ogy
(a) (b) (c)

Fig. 9. Scatter plots depicting the accuracy and robust accuracy of various methods under different attack
algorithms. (a) Scatter plot for the accuracy and robust accuracy of different adversarial training methods
under the FGSM attack algorithm. (b) Scatter plot for the accuracy and robust accuracy of different adversarial
training methods under the PGD attack algorithm. (c) Scatter plot for the accuracy and robust accuracy of
different adversarial training methods under the BIM attack algorithm.

Evaluation metrics

Attack methods Recall
0.9829
0.9721
0.9935
0.9817
0.9779
0.9906
0.9847
0.9827
0.9921

F1-score
0.9826
0.9716
0.9933

Precision
0.9823
0.9715
0.9931

Adversarial training methods
Method one
Method two

Accuracy
0.9827
0.9720
0.9933

Robust-accuracy
0.9027
0.8493
0.9533

FGSM

Proposed methodology
Method one
Method two

0.9813
0.9773
0.9907

0.9808 0.9811
0.9773
0.9905
0.9840
0.9825

0.9918

0.9000

PGD 0.9973
0.9904

0.9838

0.8507
0.9467

Proposed methodology
Method one
Method two

0.9840 0.9093

BIM 0.9827

0.9920

0.9824
0.9916

0.8733
0.9360

Proposed methodology

Table 16. Model performance of different adversarial training methods.

Method one
780.24 s
214236 s
2133.87 s

Method two
503.91s
1356.21s
1279.33 s

Execution time
FGSM

PGD

BIM

Proposed methodology
696.42 s

2051.28 s

2038.46 s

Table 17. The execution times of different adversarial training methods.

the robust accuracy rates reached 95.33%, 94.67%, and 93.60% respectively. Compared with Method One, they
increased by 5.06%, 4.67%, and 2.67% respectively, and compared with Method Two, they increased by 10.40%,
9.60%, and 6.27% respectively. This proves the outstanding effect of this method in improving the robustness
of the model. Moreover, the method proposed in this paper not only achieved excellent robust accuracy rates
on adversarial samples, but also maintained a high classification accuracy on clean samples. This phenomenon
indicates that during the incremental adversarial training process, the model can effectively learn the features
of adversarial samples without damaging its understanding and classification ability of the original dataset. In
conclusion, the adversarial training method proposed in this paper significantly improves the robustness and
security of the model without the need to retrain the entire model.

Furthermore, this study not only focuses on the robustness assessment of deep learning models, but also
incorporates time efficiency into the comprehensive evaluation system to comprehensively measure the practical
deployment value of the method. The methods listed in the table are consistent with the definitions mentioned
earlier. The running times of different adversarial training methods is shown in Table 17.

According to the data in the table, method two has the shortest time consumption in all three attack scenarios,
significantly lower than method one and the method proposed in this paper. However, the method proposed
in this paper utilizes the Fisher matrix to accurately evaluate the importance of each parameter and impose
constraints, enabling deep learning models to continuously learn adversarial features with only a controllable
increase in computational overhead, thus achieving an improvement in model robustness Based on the above
analysis, IncAT incremental adversarial training can not only effectively improve the robustness of deep learning
models, but also enhance the model’s ability to resist adversarial attacks in real-time in application scenarios
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Fig. 10. Comparison of accuracy of various deep learning models before and after FGSM algorithm attack and
after adversarial training.
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Fig. 11. Comparison of accuracy of various deep learning models before and after BIM algorithm attack and
after adversarial training.

that require rapid iteration and response. In addition, the core idea also provides reference and inspiration for
building a fast and real-time adversarial training system, and is expected to promote further breakthroughs in
this field.

The universality of incremental adversarial training

In order to verify the universality of the proposed method in this paper to different deep learning models, the
above six deep learning models are tested. At the same time, to demonstrate the effectiveness of the proposed
method in improving accuracy, the accuracy of the model without adversarial attacks, the accuracy of the model
after attacks, and the robustness of the model after adversarial training were compared with the accuracy of the
original dataset. The comparison chart of the accuracy of various deep learning models before and after attacks
by different attack algorithms, as well as after adversarial training, is shown in Figs. 10, 11 and 12. The specific
metrics of the deep learning models after adversarial training under different attack algorithms are presented in
Tables 18, 19 and 20.

In summary, after incremental adversarial training, not only has the performance of the NHANet model
been significantly improved, but the performance of other deep learning models has also been notably enhanced
after adopting this method. Meanwhile, when facing different attack algorithms, this method also exhibits good
performance in other deep models. Thus, it can be concluded that the adversarial training method proposed in
this paper is not only effective for the NHANet model, but also has wide generality, and can significantly enhance
other deep learning models’ ability to resist adversarial attacks.

Related works

Adversarial Training, as a core defensive technology for enhancing the robustness of models, strengthens the
model’s ability to resist interference by injecting adversarial samples during the training process. At present,
research on adversarial training is mainly divided into the following categories?®: 1) Accelerated adversarial
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Fig. 12. Comparison of accuracy of various deep learning models before and after PGD algorithm attack and
after adversarial training.

Accuracy | Precision | Recall | F1-score | Robust-accuracy
DNN 0.9667 0.9678 0.9678 | 0.9668 0.7427
BiLSTM 0.9453 0.9466 0.9452 | 0.9454 0.6600
BiLSTM-MultiheadAttention | 0.9373 0.9389 0.9395 | 0.9369 0.6200
CNN-LSTM 0.9853 0.9852 0.9856 | 0.9853 0.9000
CNN-LSTM-ATT 0.9640 0.9633 0.9647 | 0.9636 0.7693
NHANet 0.9933 0.9931 0.9935 | 0.9933 0.9533

Table 18. Performance of each model after adversarial training under FGSM attack algorithm.

Accuracy | Precision | Recall | Fl-score | Robust-accuracy
DNN 0.9680 0.9677 0.9692 | 0.9680 0.7800
BiLSTM 0.9493 0.9491 0.9511 | 0.9492 0.6720
BiLSTM-MultiheadAttention | 0.9320 0.9326 0.9353 | 0.9318 0.6013
CNN-LSTM 0.9880 0.9878 0.9882 | 0.9880 0.8920
CNN-LSTM-ATT 0.9653 0.9649 0.9648 | 0.9647 0.7720
NHANet 0.9920 0.9916 0.9921 | 0.9918 0.9360

Table 19. Performance of each model after adversarial training under BIM attack algorithm.

Accuracy | Precision | Recall | F1-score | Robust-accuracy
DNN 0.9640 0.9651 0.9651 | 0.9641 0.7040
BiLSTM 0.9427 0.9434 0.9447 | 0.9429 | 0.6453
BiLSTM-MultiheadAttention | 0.9347 0.9365 0.9353 | 0.9346 | 0.5880
CNN-LSTM 0.9827 0.9823 0.9831 | 0.9827 | 0.8787
CNN-LSTM-ATT 0.9587 0.9579 0.9589 | 0.9579 | 0.7733
NHANet 0.9907 0.9904 0.9906 | 0.9905 0.9467

Table 20. Performance of each model after adversarial training under PGD attack algorithm.

training, which aims to improve the efficiency of adversarial training; 2)Parameter adaptive adversarial training,
which can automatically adjust parameters according to the actual training situation; 3)Semi supervised or
unsupervised adversarial training, which expands the dataset by utilizing unlabeled samples and applies them to
adversarial training to enhance the model’s generalization ability.
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Accelerated adversarial training

In order to reduce the time of adversarial training, researchers have proposed some efficient adversarial
training methods. Shafahi et al.?* proposed Free AT, which generates adversarial samples by recovering the
gradient information calculated when updating model parameters, thereby eliminating the computational
cost of generating adversarial samples. This method can significantly improve the efficiency and scalability of
adversarial training while maintaining robustness similar to standard adversarial training algorithms. Zheng
et al.” generated similar or stronger adversarial samples with fewer iterations by accumulating adversarial
perturbations over epochs. In addition, researchers use single step adversarial training to accelerate, optimizing
the FGSM attack algorithm to generate adversarial samples. However, in the single step adversarial training
method, if the attack step size of FGSM is too large, the deep learning model will produce distorted decision
boundaries, leading to the occurrence of CO phenomenon. Therefore, Wong et al.'® proposed a randomly
initialized FGSM internal maximization attack method to alleviate the occurrence of CO phenomenon.

Parameter adaptive adversarial training

The setting of parameters has a crucial impact on improving the robustness of deep learning models when
generating adversarial samples using gradient information. Therefore, carefully selecting and adjusting these
parameters is a key step in improving the stability and reliability of the model in the face of potential adversarial
attacks. Cheng et al.?® proposed an adversarial training method with adaptive perturbation constraints, which
adaptively seeks the minimum perturbation that can cause deep learning models to misclassify. Specifically, the
initial perturbation constraint is 0, and after each iteration, a specific constant is added until the deep learning
model misclassifies. WU Jinfu?’ proposed a Fast AT method based on random noise and adaptive step size. This
method utilizes random noise for data augmentation and accumulates the gradient of adversarial samples during
the training process to adjust the step size of adversarial samples, thereby generating adversarial samples that are
more conducive to model training.

Semi-supervised or unsupervised adversarial training

Existing research has found that adversarial training requires the use of much larger datasets than standard
training, which incurs significant costs. Therefore, researchers adopt semi supervised or unsupervised methods
for adversarial training. Aim to improve the adversarial robustness of deep learning models solely by adding
unlabeled data. Carmon et al.?® proposed the robust adversarial training method RST. This method utilizes the
target model to predict pseudo labels for unlabeled samples, and simultaneously uses both labeled and unlabeled
samples to predict pseudo labels for retraining the deep learning model. This method also demonstrates the
importance of unlabeled samples in improving the robustness of deep learning models. Uesato et al.?’ also
verified through experiments that unlabeled samples can improve the robustness of the model. The more
unlabeled samples used, the stronger the generalization ability of the deep learning model.

In conclusion, with the continuous development of research on adversarial training, a variety of innovative
adversarial training methods have emerged, enabling them to demonstrate greater robustness when dealing
with various adversarial attacks. However, the current research integrating incremental learning theory into
adversarial training is still relatively limited. Based on this, this paper proposes to introduce the incremental
learning algorithm into the adversarial training framework. By continuously learning from dynamically
generated adversarial samples, it endows the deep learning model with more flexible dynamic adaptability to
cope with complex and variable adversarial scenarios.

Conclusions and future work

In response to the problems of low efficiency and high computational resource consumption in existing
adversarial training methods, this paper proposes an incremental adversarial training method. This method
enables deep learning models to enhance their security and robustness without the need to retrain the entire
network, fundamentally addressing the efficiency and performance bottlenecks of traditional adversarial training
algorithms in the field of brain-computer interfaces. Taking the medical diagnosis system as an example, the
advantages of IncAT are particularly significant in complex medical data scenarios. When encountering sudden
equipment noise or malicious attacks from attackers, IncAT can learn and adapt to new adversarial sample
features in real time, and promptly update its recognition strategy. This ensures the reliability of the diagnostic
model, reduces the misdiagnosis rate caused by adversarial samples, and thus provides doctors with more
accurate diagnostic basis. Moreover, to verify the effectiveness of this adversarial training method, experiments
were conducted on the publicly available epilepsy brain-computer interface dataset from the University of
Bonn, and the FGSM, BIM, PGD, etc. attack algorithms were used to conduct comparative experiments with
this method and other adversarial training methods. The experimental results show that the proposed method
effectively solves the problem of deep neural networks being unable to continuously learn adversarial samples
and demonstrates excellent adversarial robustness to various adversarial attacks and different deep learning
models. However, although this method has achieved certain results in improving the robustness and security
of the model, it shows certain limitations when the data category changes. Therefore, future research will focus
on studying the adversarial training methods based on category increment, in order to more efficiently cope
with the dynamic changes of data categories. At the same time, this method will be extended to cross-domain
scenarios such as autonomous driving and financial risk control. This will help verify its universality and further
comprehensively evaluate its generalization ability.
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