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Molecular and culture-based
identification of Aspergillus species
in water-impacted homes following
Hurricane Maria in Puerto Rico

Lorraine N. Vélez-Torres'?, Benjamin Bolafos-Rosero*”, Filipa Godoy-Vitorino?,
Félix E. Rivera-Mariani**, Juan. P. Maestre®, Kerry Kinney*® & Humberto Cavallin-Calanche®

Flooding caused by Hurricane Maria promoted fungal growth in homes across Puerto Rico, raising
concerns about indoor air quality and health risks. This study focuses on identifying Aspergillus species
from water-impacted homes in San Juan using culture-based and molecular methods. Aspergillus is
a common indoor contaminant in moisture-damaged environments, with some species associated
with significant health risks. However, species-level identification is often limited. To address this,
we collected samples from 14 homes, identifying 28 Aspergillus isolates through morphological
examination and gene sequencing of ITS2, beta-tubulin (benA), and calmodulin (CaM) genes.
Species-level identifications of 22 isolates revealed species belonging to the subgenera Aspergillus,
Nidulantes, and Circumdanti. We highlighted the CaM gene’s importance in molecular identification
by phylogenetic analyses, which showed superior resolution in species differentiation. Culture-
based methods also played a crucial role in differentiating closely related species, such as A. flavus
and A. oryzae, which molecular methods alone could not reliably separate. Our findings underscore
the challenges of Asperygillus identification in post-hurricane, water-impacted indoor environments
and emphasize the value of integrating phenotypic and genotypic techniques for accurate species
identification. These results contribute to a better understanding of fungal composition and its
potential public health implications in disaster-affected settings.

Keywords Aspergillus, Hurricane Maria, Water-impacted homes, Species-level identification, Molecular and
culture methods

Hurricane Marifa, which struck Puerto Rico in September 2017, caused widespread devastation, including
severe flooding that damaged homes across the island. The floods created the ideal conditions for indoor fungal
growth, prompting air quality concerns and potential respiratory health repercussions for the residents. Our
previous research confirmed a significant increase in fungal proliferation inside flooded homes in San Juan, with
Aspergillus species being the most predominant!. This finding aligned with existing literature, which identifies
Aspergillus species as common fungi in water-damaged environments®~>.

Aspergillus is a large genus of filamentous fungi within the Ascomycota division, comprising around 350
species®’. The genus is subdivided into six subgenera, 27 sections, and about 75 series, holding significance as
both a pathogen and a source of pharmaceuticals, as well as in agriculture and food production®’. Given its
medical and economic importance, accurate identification of Aspergillus species is essential, as different species
vary in pathogenicity and ability to produce harmful mycotoxins. Species-level identification is especially
crucial in environments affected by flooding, where Aspergillus can pose serious health risks ranging from
allergic reactions to severe respiratory infections, depending on the species and the vulnerability of exposed
individuals®12.
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Traditionally, Aspergillus classification has relied on macro- and micromorphological features, such as colony
diameter, spore color, and microscopic structures like conidial head arrangement and vesicle size'>. However,
identifying closely related species remains challenging and requires specialized training in fungal taxonomy
and microscopy'“. Since the early 2000s, molecular techniques have increasingly complemented morphological
approaches, with DNA sequencing becoming a standard tool for species identification®. The internal transcribed
spacer (ITS) region is the official DNA barcode for fungi. However, secondary markers like calmodulin (CaM)
and beta-tubulin (benA) are often necessary for distinguishing closely related Aspergillus species®!®. These
molecular markers offer greater precision in species differentiation, with amplified sequences typically compared
against databases like GenBank®.

Despite the well-documented role of Aspergillus in moisture-damaged indoor environments, research on
species-level identification in post-flood conditions remains limited>!®!”. Following extreme weather events
such as hurricanes, there is a critical need for studies integrating phenotypic and genotypic techniques to
accurately identify Aspergillus species in water-impacted homes. This work addresses that gap by using culture-
based and molecular methods to characterize Aspergillus composition in post-Hurricane Maria homes in
San Juan, Puerto Rico. By combining traditional morphological and molecular approaches, it offers a more
comprehensive view of fungal presence and species composition in settings susceptible to flooding. This study
enhances our understanding of Aspergillus species in water-impacted environments and demonstrates the value
of integrating both phenotypic and genotypic methods to improve species identification accuracy. Accurate
identification is essential for assessing health risks and informing public health interventions to mitigate fungal
contamination in flood-affected areas.

Results

Morphological characteristics of Aspergillus isolates

We selected 28 Aspergillus isolates from the sampled homes and two positive controls (A. fumigatus isolate
and A. brasiliensis genomic DNA) to achieve species-level identification. The isolates were obtained from 13
different homes (classified as water-impacted, including both flooded and rain-infiltrated homes), with most
samples collected approximately one year after the hurricane. Isolates were taken from various locations within
the homes (seven from living rooms, seven from kitchens, six from bedrooms, six from bathrooms, and two
from outdoor areas). Six isolates originated from sites with >1000 CFU/m? total Aspergillus spp., and eighteen
from sites where Aspergillus spp. accounted for>50% of total filamentous fungi (Supplementary Table S1).
To provide a culture-based identification to the species level of the Aspergillus isolates selected, we collected a
comprehensive description of macro and micromorphological characteristics applicable to the identification
of common Aspergillus species (Tables 1 and 2). Colony growth rates on various standardized media and
microscopical characteristics are taxonomically informative (Fig. 1). Through the culture-based approach and
using three different identification keys (Klich, Klich & Pitt, Samson), we were able to identify 22 out of 28 of our
Aspergillus isolates and the positive control (A. fumigatus) (Table 2). The identified isolates belong to different
subgenera (Aspergillus, Circumdanti, and Nidulantes). Isolates A50, A77, A111, A143, A159, A293 and A299
remained unidentified.

DNA extraction and polymerase chain reaction (PCR) of Aspergillus isolates obtained

To begin the molecular identification approach, we successfully extracted the genomic DNA of all 28 Aspergillus
isolates and positive control (A. fumigatus). The genomic DNA concentration from our samples ranged from 11
to 120 ng/pL; 50 pL of the product was used for PCR amplification experiments. To achieve fungal identification
to the species level of Aspergillus isolates, we amplified the internal transcribed spacer region 2 (ITS2), beta-
tubulin (benA), and calmodulin (CaM) target genes via PCR. Twenty-two out of twenty-eight Aspergillus isolates
were positive to PCR amplification of ITS2, benA, and caM genes with amplicon sizes ranging between 300-400
base pairs (bps), 400-5660 bps, and 400-580 bps, respectively. Annealing temperature troubleshooting results
for Aspergillus isolates A27, A73, A273, A276, A277, and A299 were unsuccessful.

Gene sequence homology of Aspergillus isolates

We employed Basic Logical Alignment Search Tool (BLAST) results from the ITS2, benA, and CaM gene
sequences of this study on the National Center for Biotechnology Information (NCBI) to assess their sequence
similarity with reference sequences in GenBank. The results in Table 3 revealed that most isolates had an identity
above 99% similar to reference sequences in GenBank.

Comparison between culture and molecular-based methods for Aspergillus isolates identification

Results from culture-based and molecular-based approaches matched for eleven (11) out of the twenty-eight
(28) Aspergillus isolates compared (isolates A19, A33, A75, A137, A139, A150, A155, A215, A226, and A229)
and the positive control (A. fumigatus). The culture-based approach provided preliminary species identification
to isolates A27, A73, A273, A276, and A277, which couldn’t be identified through molecular-based approaches
(no PCR products were obtained). More importantly, macro and micromorphological characteristics were very
useful in distinguishing the closely related species A. flavus and A. oryzae (isolates A155 and A372), where
ITS2, benA, and CaM genes showed >100% similarity to both A. flavus and A. oryzae. Although culture-based
techniques yielded incorrect species identification to five isolates (A20, A173, A232, 321, and 323), the species
identified were classified under the same subgenera and/or section (Supplementary Table S2). For example,
isolate A20 (A. steynii) was incorrectly classified as A. westerdijkiae through culture techniques, but both species
belong to the Circumdanti subgenera. The same is observed for isolate A323 (A. brunneoviolaceus), identified as
A. japonicus through the culture approach, but both species are members of the Nigri section. Isolates A173 (A.
gracilis) and A232 (A. hordei) are both incorrectly classified as A. penicillioides through culture-based techniques,
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Isolate Conidial heads Seriation | Vesicle shape | Vesicle size | Conidial shape Conidial size | Conidial texture Identity of isolates
19 Radiate Biseriate | Pyriform 8 um Globose 3.24um Smooth A. versicolor

20 Radiate Biseriate | Globose 47 ym Globose 2.65 pm Smooth A. westerdijkiae

27 Radiate Biseriate | Globose 81 pm Globose 4.11 um Finely Roughened A. foetidus

33 Radiate Biseriate | Globose 61 um Globose 4.5 um Rough A. niger

50 Radiate Biseriate | Globose 7.99 um Globose 2.23 ym Rough Unidentified

73 Radiate Biseriate | Globose 34.10 pm Globose 2.04 pm Finely Roughened A. niger var. awamori
75 Radiate Uniseriate | Globose 33.49 um Spherical and Ovoid | 5.41 x4 pm Spinose Eurotium chevalieri= A. chevalieri
77 Radiate Biseriate | Sub globose | 9.5 um Globose 2.56 pum Smooth Unidentified

111 Radiate Biseriate | Globose 7.28 ym Globose 3.69 pm Smooth Unidentified

137 Radiate Uniseriate | Spathulate 10.82 um Subspherical 4.01 pm Finely Roughened A. penicillioides
139 Radiate Biseriate | Sub globose | 10.84 um Spherical 3.56 pum Rough A. sydowii

143 Radiate Uniseriate | Pyriform 11.35 ym Globose 3.25 ym Smooth Unidentified

150 Radiate Biseriate | Spathulate 12.57 ym Globose 2.9 um Finely Roughened A. versicolor

155 Radiate to Columnar | Uniseriate | Elongate 12.69 pm Globose 6.79 ym Finely Roughened A. flavus

159 Radiate Biseriate | Globose 36.17 um Globose 2.12 pm Smooth Unidentified

173 Loosely Columnar Uniseriate | Spatulate 7.63 um Globose 2.72 ym Smooth A. penicillioides
215 Radiate Biseriate | Globose 29.81 um Globose 3.5 um Finely Roughened A. westerdijkiae
226 Radiate Uniseriate | Globose 25 um Ovoid 4.6 um Finely Roughened Eurotium chevalieri
229 Radiate Both Globose 6.88 um Globose 5.0 um Coarsely Roughened | A. tamarii

232 Radiate Uniseriate | Pyriform 10.65 pm Globose 2.16 yum Smooth A. penicillioides
273 Radiate Biseriate | Globose 55.87 um Globose 3 um Smooth A. awamori

276 Radiate Uniseriate | Globose 55.56 um Globose 4.05 um Coarsely Roughened | A. niger var. niger
277 Radiate Uniseriate | Globose 76.87 um Globose 3.83 um Rough A. aculeatus

293 Radiate Biseriate | Globose 13.29 ym Globose 1.24 ym Smooth Unidentified

299 Radiate Uniseriate | Globose 54.6 pm 3.82 um Smooth Unidentified

321 Radiate Uniseriate | Sub globose | 30.6 um Sub globose 7.6 um Finely Roughened Eurotium rubrum
323 Radiate Uniseriate | Globose 31.1 ym Globose 4.42 ym Rough A. japonicus

372 Radiate Uniseriate | Globose 18.56 pm Globose 4.01 um Finely Roughened A. oryzae

A. fumigatus | Columnar Uniseriate | Spathulate 17.18 ym Ovoid 2 um Smooth A. fumigatus

Table 2. Micromorphological characteristics of Aspergillus isolates after G25N microcultures observation.

but they all belong to the Restricti section. In terms of isolate A321 (A. pseudoglaucus), which was incorrectly
identified through macromorphological characterization as A. rubrum (formerly Eurotium rubrum), a note was
highlighted in the identification key stating the close resemblance of this species to Eurotium repens, now known
as A. pseudoglaucus.

Phylogenetic analysis of Aspergillus isolates

We inferred the evolutionary history of the Aspergillus species isolated from the sampled homes using the
Maximum Likelihood method and the Tamura-Nei model in MEGA12'3. To measure the consistency of the
phylogenetic tree, we employed a bootstrap of 1000 replications. The percentage of trees in which the associated
taxa clustered is shown next to the branches. Sequences generated in this study are marked with a red diamond
in the phylogenetic tree, while reference sequences obtained from GenBank are unmarked. Hamigera avellanea
(Aspergillaceae) was used as the outgroup in all trees. The phylogenetic analysis of Aspergillus isolates showed
that they grouped into distinct clusters, indicating close genetic relationships.

The phylogenetic tree based on the ITS2 gene revealed that the alignment matrix contained 70 sequences,
comprising 28 isolates from this study and 42 representative sequences from GenBank (Supplementary Table
S$3). After applying a 95% site coverage threshold to exclude positions with gaps or missing data in more than 5%
of sequences, the final dataset consisted of 242 nucleotide positions. Isolates from Aspergillus species classified
under the same taxonomical section had above 83% bootstrap support, with several species-level clusters
reaching 99% (e.g., A. versicolor, A. sydowii, A. westerdijkiae) (Fig. 2).

The beta-tubulin (benA) gene alignment matrix contained 69 sequences (28 isolates from this study and 41
reference sequences from GenBank). To reduce the influence of poorly aligned regions, the partial deletion option
was applied, excluding positions with less than 95% site coverage, resulting in a final dataset of 277 positions.
All isolates showed > 83% bootstrap-supported clustering with known reference species from GenBank (Fig. 3).
High-confidence clusters were observed for species such as A. versicolor, A. sydowii, and the closely related pair
A. flocculosus | A. ochraceopetaliformis, each receiving 99-100% support. In contrast, some members of the Nigri
section showed weaker support, ranging from 57-70%.

The phylogenetic tree based on the CaM gene had an alignment matrix that also included 70 sequences (28
isolates from this study and 42 reference sequences from GenBank). The partial deletion option was applied to
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MEA 25°C CYA 25°C CY20S 25°C CYA 37°C Microscopy (60X)

Fig. 1. Macro and microscopic growth of Aspergillus isolates. Macroscopic growth comparison, from left to
right, on MEA, CYA, CY20S (25 °C) and CYA (37 °C), after 7-day incubation. Microscopic photos from G25N
microcultures on 60X.

eliminate positions with less than 95% site coverage, resulting in a final alignment of 366 positions. All isolates,
except for A. petersonii, showed over 80% cluster similarities with representative sequences from GenBank
(Fig. 4). Different but closely related species like A. flocculosus/A. ochraceopetaliformis (series Steynorium) and
A. flavus/A. oryzae (series Flavi) were still clustered together in their respective clades.
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MEA 25°C CYA 25°C CY20S 25°C CYA 37°C Microscopy (60X)
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Fig. 1. (continued)

Discussion

In this study, we applied both phenotypic and genotypic methods to achieve species-level identification of
28 Aspergillus isolates from homes affected by Hurricane Marfa in San Juan, Puerto Rico. Using molecular
techniques, we identified 22 isolates at the species level, categorizing them into the subgenera Circumdanti (n=12),
Aspergillus (n=8), and Nidulantes (n=3). The Circumdanti and Nidulantes subgenera, each encompassing over
100 species, represent some of the most diverse Aspergillus species'>?°. Meanwhile, the Aspergillus subgenus,
characterized by xerophilic species, thrives in low-moisture environments, making it prevalent indoors??2,
Beyond identification, documenting the variety of Aspergillus species in post-hurricane homes provides a
regional baseline for Puerto Rico that can support environmental health surveillance and future longitudinal
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MEA 25°C CYA 25°C CY20S 25°C CYA 37°C Microscopy (60X)

Fig. 1. (continued)

analyses to track fungal populations over time. This information is particularly important in the Caribbean,
where post-disaster mycological studies are scarce and the warm/humid climate supports the growth of fungi.
Moreover, because different Aspergillus species may have varying levels of pathogenic potential®, species-level
identification can help assess public health risks and better prepare for future hurricane events.

Our phylogenetic analysis of ITS2, benA, and CaM sequences showed distinct clustering patterns. ITS2-
based trees showed strong bootstrap support (=83%) for most section-level groupings, with species like A.
versicolor, A. sydowii, and A. westerdijkiae forming distinct clades supported at 99-100%. The benA gene tree
also produced high-confidence clusters, particularly for A. versicolor, A. sydowii, and the pair A. flocculosus /
A. ochraceopetaliformis, though bootstrap support was lower (57-70%) for some Nigri section members. The
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MEA 25°C CYA 25°C CY20S 25°C CYA 37°C Microscopy (60X)

137

139

143

Fig. 1. (continued)

CaM gene tree resolved most isolates at the species level, except for A. petersonii, with species-level clusters for
A. flavus, A. oryzae, and A. westerdijkiae supported at 98-100%. These results reinforce the CaM gene’s superior
discriminatory power compared to ITS2 and benA, consistent with previous studies?2°.

However, six isolates, likely belonging to the black Aspergilli in the Nigri section, could not be identified
at the species level due to the limitations of both molecular and phenotypic methods?*?’”. While sequence-
based identification is the gold standard, morphological traits remain essential for resolving closely related
species. For example, in this study, differentiating A. flavus from A. oryzae required morphological analysis, as
molecular results alone were inconclusive?®. Additionally, morphology-based methods allowed for preliminary
identification of five black Aspergilli isolates that molecular methods could not identify, underscoring the
complementary role of culture techniques in complex identifications?. Despite identifying 22 isolates through
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morphological keys, five showed discrepancies with molecular results but remained in the same subgenus or
section, highlighting limitations of morphological identification for certain taxonomic groups®’. Expanding
morphological keys is critical for identifying emerging Aspergillus species in indoor air environments.

Most isolates identified in this study, such as A. flavus (A155), A. niger (A33), A. penicillioides (A137), A.
sydowii (A139), A. tamarii (A229), A. versicolor (A19, A150), and A. westerdijkiae (A215), have previously been
reported as common indoor fungal contaminants'®!. Specifically, A. versicolor, A. sydowii, and A. penicillioides,
all from xerophilic or primary colonizer sections, are often associated with building dust and are well adapted
to indoor environments*""?2. In Puerto Rico, these species have been detected at high concentrations in
indoor fungal population studies*>*. Taxonomic classification of our isolates revealed representation across
sections, including Circumdanti, Nigri, Petersoniorum, Candidi, and Flavi. For example, isolates from section
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Fig. 1. (continued)

Circumdanti, such as A. steynii (A20) and A. westerdijkiae (A215), are known producers of the mycotoxin
ochratoxin A**. Members of the Nigri section, such as A. niger and A. brunneoviolaceus, are also prevalent indoor
contaminants*>*. Finally, Flavi section members like A. flavus and A. oryzae highlight the health implications of
mycotoxigenic Aspergillus species in indoor air®”. While many of these species are recognized as typical indoor
fungi, their frequent recovery in this study suggests they may become more dominant or persistent in post-
flood indoor environments, particularly under the warm and humid conditions typical of Puerto Rico. Though
Aspergillus species have been broadly reported after hurricanes">>3%3, this study provides one of the few
species-level analyses of indoor Aspergillus communities in a post-hurricane setting®!”4. Our findings highlight
A. versicolor, A. flavus, A. niger, A. westerdijkiae, and A. sydowii as prevalent species in water-impacted homes,
warranting further study into their environmental persistence and potential health risks.

The species we detected are consistent with organisms that proliferate in house dust and can contribute to
adverse respiratory outcomes’!*!. Moisture intrusion and damaged building materials sustain colonization and
elevate airborne spores, which are linked to upper- and lower-airway symptoms and asthma exacerbations*?~*4.
Beyond air, Aspergillus can persist in plumbing biofilms and building water systems and be released into the air
during activities like showering, providing an indoor exposure route that is especially relevant after flooding*>4.
Several of the species we recovered (e.g., A. versicolor, A. flavus, A. niger, A. westerdijkiae, A. sydowii) are common
in indoor dust*'; some are also toxigenic (e.g., A. versicolor- sterigmatocystin; A. westerdijkiae-> ochratoxin
A, indole alkaloids), underscoring potential combined allergenic, infectious, proinflammatory and toxic
exposures in water-impacted homes*”*8. Although A. fumigatus was not isolated in our set (included only as a
control), sensitization to A. fumigatus is a recognized severe-asthma phenotype associated with worse airflow
obstruction, higher treatment requirements, and structural airway disease, reinforcing the broader clinical
importance of Aspergillus exposures in post-disaster settings®”. Hot, humid conditions such as those in the
Caribbean favor indoor fungal growth. Across studies from varied geographies, indoor Aspergillus exposure is
associated with allergic rhinitis and asthma symptoms/exacerbations®®”!; among susceptible hosts, it is linked
to allergic bronchopulmonary aspergillosis (ABPA) and chronic pulmonary aspergillosis (CPA)?3, and invasive
aspergillosis remains a risk for immunocompromised individuals***2. Non-pulmonary diseases relevant to the
region include otomycosis (frequently due to A. niger and related species) and fungal keratitis (often involving
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A. flavus in tropical climates)>**; cutaneous/wound aspergillosis can occur where the skin barrier is disrupted
after disasters®. Complementing these exposure-response patterns, recent work in Puerto Rican infants born
after Hurricane Maria showed nasal mycobiome dysbiosis within the first year post-hurricane, indicating the
potential of disaster-related fungal exposures to shape early-life airways™.

The growth of indoor Aspergillus spp. and other filamentous fungi is best controlled by eliminating and
removing moisture sources. Key measures include: (i) fixing leaks and venting moisture-generating appliances to
the outdoors®’~%; (ii) drying all wet materials within 24-48 hours®®"%; (iii) discarding porous items that remained
wet (e.g., gypsum board, carpets, furniture)®®*; (iv) cleaning hard, non-porous surfaces with detergent and using
a High-Efficiency Particulate Air (HEPA)-vacuum after drying®®; and (v) keeping the indoor relative humidity
below ~ 60% (ideally 30-50%) via dehumidification and improved ventilation®. Given the clinical relevance of
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Fig. 1. (continued)

Aspergillus in asthma and allergy, remediation should also protect occupants and workers with at least an N95
respirator, eye protection, and gloves during debris removal and cleaning®®. Additionally, the use of portable
HEPA filter air purifiers in occupied rooms helps to reduce airborne spore levels in the air**®. Consistent with
our prior work in naturally ventilated Puerto Rican homes, outdoor fungal levels significantly influenced indoor
levels, highlighting an outdoor-indoor air continuum after disasters'. Control must therefore extend beyond the
building envelope: prompt removal of organic debris (fallen branches, wood piles, water-damaged materials)
from yards, sidewalks, and immediate surroundings, along with community-scale debris pickup, can reduce
neighborhood reservoirs of filamentous fungi that otherwise re-enter homes through open windows and doors.

This study has several strengths, notably the combined use of phenotypic and genotypic techniques for
Aspergillus identification. The integration of morphological methods with molecular analysis using ITS2,
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B-tubulin (benA), and especially the calmodulin (CaM) gene, which provided superior resolution for species
differentiation, allowed for more accurate species-level identification and phylogenetic analysis of Aspergillus
isolates. Morphological characterization using culture techniques also played a key role in distinguishing closely
related species like A. flavus and A. oryzae, which were difficult to tell apart using molecular methods alone?.
This combined strategy is especially important in post-flood indoor settings, where precise identification can
help guide effective public health responses.

However, there are limitations to consider. Molecular techniques, while powerful, did not fully resolve
all isolates, especially black Aspergilli in the Nigri section, where species-specific differentiation remains
challenging?”®!. Additionally, the final datasets used in our Maximum Likelihood trees were reduced through
partial deletion (to 95% site coverage), resulting in 242, 277, and 366 nucleotide positions for ITS2, benA, and
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CaM, respectively. While these are generally acceptable for fungal phylogenetics, the limited variability in some
regions may contribute to lower support values in specific branches. The study’s sample size was limited to
28 isolates from a specific geographic area (San Juan, Puerto Rico), potentially limiting the generalizability of
findings to broader environments affected by flooding, such as those that are not hot and humid. Additionally,
exclusively relying on morphological keys can lead to unsuccessful identifications, especially when dealing
with newly described Aspergillus species. The need to revise these keys is indicated as more species are being
discovered. We also acknowledge that we did not quantify species-specific airborne concentrations (CFU/
m?) for each Aspergillus isolate. Air sampling produced CFU/m? at the genus level during culture, whereas
species identification was performed later on representative isolates; because several taxa are phenotypically
indistinguishable by routine macro-/micromorphology, colony counts cannot be retrospectively attributed to
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Identity of isolate Identity (%) to GenBank sequences and E-value

Isolate code Molecular approach | ITS2 | E-value | benA | E-value | caM | E-value
19 A. versicolor 100 7e-163 | 100 0.0 99.80 | 0.0
20 A. steynii 99.68 | 1e-159 | 100 0.0 100 0.0
27 - - - -

33 A. niger 100 5e-164 | 100 0.0 100 0.0
50 A. arenarioides 100 le-159 | 100 0.0 100 0.0
73 - - - -

75 A. chevalieri 100 3e-161 | 100 0.0 100 0.0
77 A. petersonii 100 le-159 | 100 0.0 99.64 | 0.0
111 A. subalbidus 100 7e-163 | 100 0.0 100 0.0
137 A. penicillioides 100 2e-168 | 99.78 | 0.0 100 0.0
139 A. sydowii 100 4e-160 | 100 0.0 99.60 | 0.0
143 A. hordei 100 2e-168 | 99.77 | 0.0 100 0.0
150 A. versicolor 100 3e-161 | 100 0.0 99.80 | 0.0
155 A. flavus 100 le-160 | 100 0.0 100 0.0
159 A. ochraceopetaliformis | 100 | 1e-=159 | 100 | 0.0 100 | 0.0
173 A. gracilis 100 le-165 | 100 0.0 100 0.0
215 A. westerdijkiae 100 le-165 | 100 0.0 100 0.0
226 A. chevalieri 100 le-160 | 100 0.0 100 0.0
229 A. tamarii 100 7e-163 | 100 0.0 100 0.0
232 A. hordei 100 7e-168 | 99.36 | 0.0 100 0.0
273 - - - -

276 - - - -

277 - - - -

293 A. flocculosus 99.38 | 1e-160 | 99.82 | 0.0 100 | 0.0
299 - - - -

321 A. pseudoglaucus 100 | 8e-157 | 99.75 | 0.0 100 | 0.0
323 A. brunneoviolaceus 100 | 2e-153 | 98.38 | 0.0 100 | 0.0
372 A. oryzae 100 6e—-148 | 100 0.0 100 0.0
A. fumigatus (DNA extraction control) | A. fumigatus 100 | 2e-163 | 100 | 0.0 99.82 | 0.0
A. brasiliensis (PCR control) A. brasiliensis 100 3e-161 | 100 0.0 100 0.0

Table 3. Molecular-based identification of 29 Aspergillus isolates. The percentage of similarity and E-value
to reference sequences of GenBank is shown per gene and Aspergillus isolate. “~” denotes that no clear PCR
products were obtained using primers from Table 4.

species. To provide quantitative context, we included per-site total Aspergillus spp. CFU/m? and the proportion
of Aspergillus within total filamentous fungi for the room/areas from which these isolates were recovered
(Supplementary Table S1). These are genus-level values for context and should not be interpreted as species-
specific concentrations. Future post-disaster studies requiring species-resolved exposure estimates should pair
air sampling with parallel molecular quantification at the time of collection (e.g., targeted qPCR). Finally, we did
not perform antifungal susceptibility testing; future work should evaluate resistance patterns of environmental
Aspergillus isolates in the Caribbean, given growing global concern about azole resistance®?.

In conclusion, this study provides essential insights into the variety of Aspergillus species in water-impacted
homes in a hot and humid environment. It stresses the need for a combination of molecular and morphological
techniques for robust fungal identification. Our results on species like A. versicolor, A. flavus, and A. sydowii
point to serious implications for indoor air quality and public health in the disaster zone, in favor of extensive
identification strategies to inform effective health measures.

Methods

Characterization of Aspergillus isolates

Collection of Aspergillus isolates. Approximately 400 Aspergillus isolates were cryopreserved in 2.0 mL tubes
containing 1 mL of culture media (MEA or G25N) and stored at -80 °C until further use. To lower the quantity of
Aspergillus isolates to study, we selected Aspergillus isolates from sampled homes that —after aggregating across
all sampled rooms/areas within the home—met a priori screening criteria of > 1000 CFU/m? total Aspergillus
spp. or > 50% Aspergillus spp. of total filamentous fungi. These thresholds were used to account for higher-burden
homes and are not health-based exposure limits, as major guidelines do not endorse quantitative cutoff values
for indoor mold contamination®’. Supplementary Table S1 reports the per-site (room/area) Aspergillus spp.
concentration (CFU/m?) and percentage for the specific location from which each isolate was recovered, home-
level aggregates were used only for selection. Approximately 210 Aspergillus isolates recovered from the sampled
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Fig. 2. Phylogenetic tree of partial ITS2 gene sequences by maximum likelihood. Sequences from this study
are highlighted with a red diamond shape. Hamigera avellanea was used as an outgroup. The isolate Section
classification is highlighted in color.

homes met these criteria. We randomly selected 28 Aspergillus isolates from this list for further testing to balance
feasibility and resource constraints, ensuring a manageable sample size for in-depth species identification. These
Aspergillus isolates were grown on G25N media for up to 14 days at 25+2 °C to generate sufficient growth to
identify them at the species level and to perform experiments evaluating their pro-inflammatory potential.
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Macromorphological characterization of Aspergillus isolates

To identify the selected 28 Aspergillus isolates to species level through culture techniques, we followed Maren
A. Klich’s morphologically based system'“. Colonies were grown on four media to describe the fungal isolates
macromorphologically. The media used were the following: Czapek Yeast Agar (CYA, K,HPO, 0.5 g, Czapek
concentrate 5.0 mL, yeast extract 2.5 g, sucrose 30.0 g, agar 7.5 g, distilled water 500 mL), Czapek Yeast Agar
with 20% sucrose (CY20S, K,HPO, 0.5 g, Czapek concentrate 5.0 ml, yeast extract 2.5 g, sucrose 100.0 g, agar
7.5 g, distilled water 500 mL) and commercial Malt Extract Agar (MEA, Hardy Diagnostics). Twenty-five mL of
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sterilized media were poured into standard (100 mm) Petri dishes. Four plates were used for each culture: two
of CYA and one of CY20S and MEA. To prevent stray colonies on the plates, we prepared spore suspensions
using a medium consisting of 0.2% agar and 0.05 Tween 80. Briefly, we pipetted 1 mL aliquots of the sterilized
medium into small 2.5 mL cryovials. We mixed conidia from 7 to 14-day-old growth into the medium. Then, we
placed 2 uL aliquots at three equidistant points from the center of the plate. We incubated each plate for seven
days, with one CYA plate at 37 °C and the remaining at 25 °C. Incubation at 25 °C represents a typical indoor
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Locus Primer | Direction | Oligonucleotide sequence (5'-3") Length (bp)

1TS9 Forward GAA CGC AGCRAAIIG YGA
Internal transcribed spacer 2 (ITS2) 240-460
1TS4 Reverse TCC TCC GCT TAT TGA TAT GC

Bt2a Forward | GGT AAC CAA ATC GGT GCT GCT TTC
Beta-tubulin (benA) 432-560
Bt2b Reverse ACC CTC AGT GTA GTG ACCCTT GGC

CMD5 | Forward | CCG AGT ACA AGG ARG CCT TC
Calmodulin (CaM) 580
CMD6 | Reverse CCG ATR GAC GTC ATR ACG TGG

Table 4. Primers used for the amplification of specific genes in the Aspergillus isolates.

room temperature, whether incubation at 37 °C is done to simulate human body temperature. After the 7-day
incubation, we collected data on conidial color, colony diameter, mycelial color, exudate presence, reverse color,
soluble pigment, sclerotia, and cleistothecia.

Micromorphological characterization of Aspergillus isolates

We used the microculture technique to describe the micromorphological features of the selected Aspergillus
isolates. Briefly, we inoculated two parallel lines of the Aspergillus conidia from a 7 to 14-day-old colony in
a 60 mm Petri Dish with G25N media using an inoculating needle. Then, we inserted a sterile coverslip at a
45-degree angle in each inoculated line. We incubated the microcultures at 25 +2 °C for 7 days. After incubating,
we gently collected the coverslips using stained (with lactophenol cotton blue) and unstained slide preparations.
We used the NIKON 80i microscope to observe and collect micromorphology features such as seriation type
(predominantly uniseriate or biseriate), vesicle shape, conidia characteristics (shape, size, and surface texture),
stipe (length, color, and surface texture) and ascospores (color, size, ornamentation, and surface texture).

Molecular identification of Aspergillus isolates

We extracted fungal genomic DNA using the standard protocol of Qiagen DNeasy PowerSoil Pro Kit (QIAGEN
LLC, Germantown Road, Maryland, USA). For sample preparation, we grew each fungal isolate on G25N
and incubated them at 25+ 2 °C for 7 to 14 days. Then, we transferred fungal growth from the surface of the
plate using a sterile swab or a sterile scalpel blade to the bead tube of the DNAeasy PowerSoil Pro Kit and
followed the manufacturer’s instructions. We quantified the genomic DNA using the Qubit’ dsDNA HS (High
Sensitivity) Assay at room temperature (Waltham, Massachusetts, US) and stored at — 20 °C until genomic DNA
amplification and sequencing.

PCR amplification of target genes

For PCR amplification, we used primers specific for Internal Transcribed Spacer Region 2 (ITS2), beta-tubulin
gene (benA), and calmodulin gene (CaM) (Table 4). We performed PCR amplification of the extracted DNA in a
100 pL reaction mixture as follows: 5 uL gDNA template, 50 pL Qiagen HotStarTaq Master Mix (QIAGEN LLC,
Germantown Road, Maryland, USA), 5 uL of each forward and reverse primers, and 35 uL RNase free water.
We included a non-template negative and a positive control (genomic DNA from Aspergillus brasiliensis, ATCC
16404D-2) in each amplification reaction. We programmed the thermocycler to the following PCR conditions:
HotStarTaq DNA Polymerase activation incubation step at 95 °C for 15 min, 35 cycles of denaturation at 94 °C
for 45 s, annealing at 55 °C for 45 s, and extension at 72 °C for 1 min, with a final extension at 72 °C for 10 min.
After complete amplification, we analyzed the PCR products for gel electrophoresis using 1.5% agarose gel (1.5 g
of agarose in 100 ml of TAE 1 x buffer) with ethidium bromide as the staining agent.

Sequencing and phylogenetic analysis

We purified the PCR products using the Qiagen QIAquick PCR Purification Kit (QIAGEN LLC, Germantown
Road, Maryland, USA), according to the manufacturer’s instructions, and sequenced with the primers used
for amplification. Sequencing was outsourced using the Big Dye X Terminator Sequencing Kit 3.1 and the ABI
3500 DNA Sequencer (Applied Biosystems) at the Molecular Biology Core Facility from the RCMI Program
at the University of Puerto Rico—Medical Sciences Campus. We verified and cleaned the sequences using
FinchTV (Geospiza, Inc.) Version 1.5.0 chromatogram viewer software. We assigned species names to the
Aspergillus isolates after comparing the contigs (created from forward and reverse complement sequences) with
representative sequences available in NCBI (National Center for Biotechnology Information). For phylogenetic
analysis, we aligned sequences for each gene region (ITS2, beta-tubulin [benA], and calmodulin [CaM]) using the
ClustalW algorithm with default parameters in MEGA version 12!8. Multiple sequence alignments were visually
inspected and trimmed using the partial deletion method with a 95% site coverage cutoff to exclude positions
with significant gaps or missing data. Evolutionary relationships were inferred using the Maximum Likelihood
method based on the Tamura-Nei model. The best tree topology was selected based on log-likelihood scores
from a heuristic search that compared Neighbor-Joining and Maximum Parsimony starting trees. Robustness of
the phylogenetic trees was assessed with 1000 bootstrap replicates. Branches with < 50% support were collapsed.
Reference sequences for each gene were downloaded from GenBank and are listed in Supplementary Table S3.
Hamigera avellanea (family Aspergillaceae) was used as the outgroup in all phylogenetic trees.
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Data availability

The data supporting this study’s findings, including datasets generated and analyzed during the research, are
available upon request. Due to privacy considerations regarding sample locations and specifics, data access is
restricted but can be granted to the corresponding author upon reasonable request. Any shared data will include
the minimal dataset necessary to interpret, replicate, and build upon the findings reported in this article.
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