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Anaplastic thyroid cancer (ATC) and papillary thyroid carcinoma (PTC) exhibit significant differences in 
clinical behavior and immune microenvironments, particularly concerning the mechanisms underlying 
CD8+ T cell dysfunction. However, these specific mechanisms have yet to be thorThe original blots and 
abbreviations are presented in Supplemeoughly investigated. The present study utilized single-cell 
RNA sequencing (scRNA-seq) data to conduct a comprehensive analysis of CD8+ T cells in the thyroid 
tissues of patients diagnosed with ATC and PTC. The results of the study indicate that CD8+ T cells in 
ATC display disruptions in energy supply and marked signs of exhaustion. Conversely, CD8+ T cells in 
PTC are more prone to maintaining a stable expression of immunosuppression-related membrane 
proteins through posttranslational modifications. This study highlights the distinct mechanisms of 
CD8+ T cell exhaustion in two types of thyroid cancer, offering valuable insights into the regulation of 
their immune microenvironments.
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Thyroid cancer (THCA) is the most prevalent endocrine malignancy, encompassing several histological subtypes, 
each of which exhibit distinct clinical behaviors1. Among them, papillary thyroid carcinoma (PTC) is the most 
common, and it typically presents as painless and is associated with a favorable prognosis. In contrast, anaplastic 
thyroid carcinoma (ATC) is rare and highly aggressive, and it is characterized by rapid progression and poor 
survival2. Given the significant differences in biological behavior and prognosis among the various histological 
subtypes of thyroid cancer, a thorough understanding of the molecular mechanisms underlying each subtype is 
essential for developing targeted treatment strategies and improving patient outcomes.

In recent years, the role of the tumor immune microenvironment (TME) in thyroid cancer, particularly in PTC 
and ATC, has garnered considerable attention3. CD8+ T cells, which function as cytotoxic T lymphocytes4,5play 
a crucial role in mediating antitumor immune responses. Studies have indicated a greater presence of invasive 
CD8+ T cells in PTC, which is correlated with improved prognosis. Although T cell infiltration is also observed 
in ATC, the immune microenvironment in this subtype is generally more inhibitory6. CD8+ T cells in ATC 
frequently exhibit a state of functional exhaustion, as evidenced by elevated expression of inhibitory receptors, 
such as PD-1 and TIM-37. However, the current comparisons of the functional status of CD8+ T cells in PTC and 
ATC focus predominantly on overall TME analysis and lack systematic exploration of the heterogeneity within 
CD8+ T cell subsets and their metabolic statuses.
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Most existing studies rely on traditional flow cytometry or immunohistochemical methods, limiting the 
ability to elucidate the potential transcriptional regulatory mechanisms governing CD8+ T cells and their 
associated metabolic pathways across different tumor subtypes8. The intrinsic factors contributing to the 
exhaustion of CD8+ T cells, particularly in thyroid cancers, have not been thoroughly investigated. Therefore, 
high-resolution techniques, such as single-cell transcriptome analysis, are essential for conducting detailed 
studies on the molecular characteristics, functional statuses, and pathways leading to CD8+ T cell exhaustion 
in PTC and ATC. Understanding these mechanisms is vital for the development of effective immunotherapy 
strategies for thyroid cancer.

In the present study, publicly available single-cell RNA sequencing (scRNA-seq) datasets were utilized to 
construct comprehensive single-cell landscapes of thyroid glands from healthy individuals, patients with 
PTC, and patients with ATC. The present findings indicated that while immune evasion occurs in both ATC 
and PTC, significant disparities exist in the degree and molecular characteristics of CD8+ T cell dysfunction. 
CD8+ T cells in ATC display severe metabolic impairment and profound exhaustion phenotypes, whereas the 
exhaustion observed in CD8+ T cells in PTC is relatively less severe and is correlated with increased expression 
of posttranslational modification-related genes, such as those involved in palmitoylation and sumoylation. 
These results suggest subtype-specific mechanisms of immunosuppression and offer new insights into the 
immunobiology of thyroid cancer.

Methods
Data source
The single-cell RNA sequencing (scRNA-seq) data utilized in the present study were partially sourced from 
the Comprehensive Gene Expression Omnibus (GEO) database of the National Center for Biotechnology 
Information (NCBI) (United States). The following GEO datasets were utilized: GSE148673, GSE193581, 
GSE184362, and GSE191288 (https://www.ncbi.nlm.nih.gov/geo/). Additionally, five thyroid tissue samples—
three from healthy controls and two from patients diagnosed with PTC—were independently collected and 
sequenced (detailed pathological/clinical information of the two PTC samples is provided in Supplementary 
Table 1). Overall, the present study integrated tissue sample data from 40 subjects, which included 10 participants 
in the control group, 15 participants in the PTC group, and 15 participants in the ATC group.

From January to December 2024, the Thyroid Surgery Department at Yantai Yuhuangding Hospital gathered 
specimens of adjacent and thyroid tissues from PTC patients. The collection and research involving the 
aforementioned five self-collected thyroid tissue samples received approval from the Ethics Committee of Yantai 
Yuhuangding Hospital (Ethics Approval Number: 2025–590). All the participants provided informed consent 
prior to sample collection.

Integration of raw data, data quality control and visualization
Single-cell sequencing data were initially processed using the scDatamerge tool. This tool integrates expression 
profile data from various sources, such as the output from Cell Ranger or formatted data frames, and it generates 
standardized Seurat objects for subsequent analysis. In the present study, the Seurat (v4.0) R package was utilized 
to perform quality control (QC) on the single-cell RNA sequencing data. The first step involved calculating the 
total number of transcripts (nCount_RNA), the number of detected genes (nFeature_RNA), and the proportion 
of mitochondrial gene expression (percent.mt) for each cell. To ensure data quality and eliminate low-quality or 
potentially doublet cells, the following screening criteria were applied: cells with nFeature_RNA < 200 or > 7500 
were excluded; cells whose percent.mt was greater than 10% were excluded; and cells with abnormally low or 
high nCount_RNA expression were also removed.

After screening, a violin plot was used to display the distribution of nFeature_RNA, nCount_RNA, and 
percent.mt for each sample, allowing for an evaluation of consistency and batch effects. Additionally, scatter 
plots were generated to visualize the relationships between nCount_RNA and percent.mt, as well as between 
nCount_RNA and nFeature_RNA. These visualizations assisted in assessing cell quality and ensured a robust 
foundation for high-quality data integration and downstream analyses.

Construction of a single-cell atlas
A single-cell atlas was constructed using the RunSeurat application, which utilized the default parameters of 
the R8 version of the Seurat package. To reduce dimensionality and visualize the clustering results, the uniform 
manifold approximation and projection (UMAP) method was employed, and the results were projected onto 
a two-dimensional image to create a single-cell atlas. To identify genes that were specifically expressed in each 
cell cluster, the FindAllMarkers function from the Seurat package was utilized. A significance threshold with a P 
value of less than 0.05 was established to determine the statistical significance of the identified markers.

Bubble plot of marker gene expression
Bubble plots were created to illustrate the expression patterns of key marker genes across various cell 
subpopulations. The size of each bubble corresponds to the proportion of cells expressing a specific gene within 
that subpopulation, reflecting the percentage of cells with nonzero expression values. The color of the bubbles 
represents the average expression level of the gene in that subpopulation. This visualization effectively highlights 
the expression characteristics of each marker gene within the distinct cell populations. The plots were generated 
using the DotPlot function from the Seurat package in R.

Bar chart of cell type composition
To illustrate the composition ratios of cell subsets across various samples or conditions, a bar chart that 
displays the relative abundance of each cell group within the samples was created. Each bar corresponds to a 
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specific sample, with distinct colors representing the proportions of different cell subsets. This visualization 
was generated using the scBar package. Integration of the clustering results from Seurat and relevant metadata 
revealed the population structure distribution at the single-cell level in a standardized format.

Differential expression analysis and Manhattan plot
To investigate differentially expressed genes (DEGs), the Limma9 software package was used, with a threshold 
of a p value less than 0.05 and a log fold change (logFC) greater than 0.5 to determine statistical significance. 
The PlotManhattan2 custom function was used to visualize the genome-wide distribution of these genes. 
Additionally, the genes were categorized and color-coded on the basis of specific cell subsets or characteristics, 
emphasizing the highly significantly differentially expressed genes.

Analysis of cell subsets
A subpopulation analysis of each cell type was conducted utilizing Seurat software to investigate the biological 
functions of specific disease subpopulations. Seurat enables the clustering of cell types and the identification of 
subgroups on the basis of differentially expressed genes. The FindAllMarkers function was used to identify the 
marker genes associated with each cell subpopulation, allowing classification of these subpopulations on the 
basis of their distinct marker gene profiles10.

Visualization of the stacked violin plot of marker genes
To illustrate the expression patterns of key marker genes across various cell subsets, the StackedVlnPlot 
customized plotting function from the Seurat (v4.0) R package was utilized to create a multigene stacked violin 
plot.

Functional enrichment
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were 
conducted utilizing the clusterProfiler11 software package to explore the potential functions of molecular 
pathways within each cell subpopulation. Pathways were considered significantly associated with the marker 
genes when the adjusted P value was less than 0.05.

Correlation analysis and visualization of gene expression
Multiple correlation analysis methods were used to systematically assess the relationships among the expression 
levels of key genes for comprehensive interpretation and visualization. Initially, for specific function-related 
gene sets—such as those associated with the metallothionein family genes and ATP synthase complex—the 
Pearson correlation coefficient was utilized to generate an expression correlation matrix for each pair of genes. 
This matrix was visualized using the corrplot package in R to create a heatmap that illustrates the overall 
coexpression patterns within the gene set. Furthermore, the plotCor function was used for correlation analysis 
and visualization to further investigate the potential expression relationships among key gene pairs. In the final 
scatter plot, each point represents an individual cell or sample, with the horizontal and vertical axes depicting the 
normalized expression values of the two target genes. This plot also displays the Pearson correlation coefficient, 
p value, confidence interval, and linear fitting equation, providing a comprehensive view of the expression 
relationships and statistical significance between the gene pairs.

Single-cell scoring and visual analysis
The AddModuleScore function from the Seurat (v4.0) R package was used to perform single-cell functional 
scoring for a specific gene set related to biological functions (signature gene set). First, on the basis of the 
literature and results from prior differential analysis, a functionally relevant gene set was curated and constructed 
(Supplementary Table 2). Using the AddModuleScore function, a signature score for each individual cell was 
calculated, which reflects the degree of enrichment of cell expression associated with a particular functional 
state. A higher score indicates a more active functional state. To further visualize the distribution characteristics 
of these functional scores across different cell populations, the scDensityPlot function was utilized, which 
allowed observation of the density distribution of single-cell scores, facilitating the identification of distribution 
patterns that were indicative of high or low functional states. This visualization provides a valuable foundation 
for analyzing functional heterogeneity and identifying critical subgroups.

Pseudotime analysis
The Monocle312 software package was used to infer the developmental trajectories of cells. First, the Seurat 
object was converted from the integrated data into a cell_data_set object to ensure compatibility with Monocle3. 
Afterward, Monocle3 reclustered the cells, assigning them to specific clusters and regions, which were 
subsequently used to construct developmental trajectories. During this process, the pseudotime was calculated, 
which represented the distance between the cells along the trajectory and the starting cells. These calculations 
were executed using the cluster_cells and learn_graph functions within Monocle3. To visualize the trajectory, 
the plot_cells function, which overlays the trajectory information on the UMAP representation of the integrated 
data, was used.

Analysis of the gene regulatory network (GRN)
To reconstruct the transcriptional regulatory network at the single-cell level, GRN inference was performed10. 
The GRNBoost213 algorithm was utilized to infer regulatory interactions on the basis of the coexpression 
relationships between transcription factors and their target genes. High-confidence TF-target gene pairs were 
then screened, and visualizations, along with downstream analyses, such as module detection and functional 
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enrichment analysis, were conducted. This approach aided in the identification of the regulatory factors and 
modules that are crucial in determining cell fate.

TCGA-THCA data download and expression, diagnosis, and survival analysis
The gene expression and clinical follow-up data of the thyroid cancer (THCA) project in The Cancer Genome 
Atlas (TCGA) database were downloaded and collated. For the target genes (such as RANBP2), a violin plot of 
the difference in expression between the tumor group and the normal group was constructed using R software, 
and statistical tests were conducted. The diagnostic efficacy was further evaluated by using an ROC curve, and 
the AUC value was calculated. The patients were grouped according to the optimal cutoff value. The survival 
curves were plotted using the Kaplan‒Meier method, and the survival differences between the high- and low-
expression groups were compared by the log-rank test.

Molecular Docking
To predict potential protein–protein binding sequences, catRAPID14omics v2.0 was used. The feasibility of 
ligand–receptor binding in THCA was assessed using Hex 8.0.015 for molecular docking. The docking models 
were visualized using PyMOL. If the docking energy is less than zero, it suggests that the two sequences can 
interact; furthermore, a lower energy value indicates a stronger binding potential.

Prediction of the sumoylation and S-palmitoylation sites of the PDCD1 protein
The complete amino acid sequence of human programmed cell death protein 1 (PDCD1; UniProt ID: 
Q15116)16consisting of 288 amino acid residues, was analyzed to predict potential posttranslational modification 
(PTM) sites. For SUMOylation site prediction, the GPS-type 2.0 online tool was used17and the default medium 
threshold was used to identify possible SUMOylation modification sites on lysine (K) residues. To predict 
S-palmitoylation sites, CSS-Palm 4.0 software was used18and the default high threshold settings were used to 
screen for potential palmitoylation modification sites on cysteine (C) residues. For enhanced visualization, the 
Matplotlib plotting library in Python was used to create a schematic diagram of the PDCD1 protein structure, 
which integrated functional regions (including IgV-like, transmembrane, and cytoplasmic tail regions) along 
with the predicted SUMOylation and S-palmitoylation sites. Different colors and graphics were used in the 
illustration to clearly distinguish and compare the various types of modifications.

Analysis and visualization of intercellular communication
The CellChat R package19 was used to analyze intercellular communication on the basis of single-cell 
transcriptome data. The signaling pathway interactions between various cell subsets was inferred using a ligand–
receptor database, and the intensities of these communications were quantitatively assessed. To visually represent 
the transduction relationships of key signaling pathways across different cell types, SankeyPlot was utilized to 
create a signal flow map that effectively illustrates the main communication pathways and signal transduction 
patterns among each subgroup.

Results
Single-cell RNA sequencing analysis of the thyroid population
To create a comprehensive scRNA-seq atlas of human thyroid tissue, relevant scRNA-seq data was obtained from 
the GEO database, comprising single-cell transcriptome information from 35 individual thyroid tissue samples. 
The overall dataset included 7 healthy controls, 13 patients diagnosed with PTC, and 15 patients diagnosed with 
ATC. Additionally, 5 thyroid samples, including 3 healthy controls and 2 PTC patients, were independently 
collected and sequenced (Fig. 1a).

The quality control results indicated (Figure S1a) that the overall transcript complexity across cells was 
relatively high, with a low proportion of mitochondrial gene expression, reflecting excellent cell quality. No 
significant low-quality cells or batch effects were detected, fulfilling the criteria for subsequent analyses. A 
single-cell thyroid atlas, containing 224,250 cells, was constructed. A graph-based clustering analysis method 
was used to classify these cells, and the UMAP technique was employed for effective dimensionality reduction 
visualization. By analyzing the expression of cell-specific transcripts and consulting the relevant literature, 
functional annotations for various cell populations were identified. For example, thyroid follicular epithelial 
cells (TFCs) were identified on the basis of the expression of TG and TPO, while immature T cells, CD8+ T 
cells, B cells, macrophages, fibroblasts, myofibroblasts, endothelial cells, and tumor cells were distinguished 
using specific molecular markers (Fig. 1b). Notably, the distribution of these different cell types varied among 
individuals (Fig. 1c, Figure S1b).

The bubble plot shown in Fig. 1d illustrates the expression characteristics of marker genes across primary 
cell populations, while the bar plot shown in Fig. 1e displays the shifts in abundance ratios of each cell type 
across different samples. Furthermore, Manhattan map analysis revealed the differentially expressed gene 
patterns among the various groups (Fig. 1f). In summary, a single-cell transcriptome map of human thyroid 
tissue was developed, elucidating the key characteristics of cellular heterogeneity in both healthy and disease 
states. This foundational work paves the way for further exploration of the molecular mechanisms underlying 
thyroid diseases.

Heterogeneity of thyroid CD8+ T cells
Because it is essential to highlight that CD8+ T cells are pivotal in the antitumor immune response and represent 
a crucial subset of cytotoxic T lymphocytes, an in-depth subpopulation analysis of CD8+ T cells within thyroid 
tissue was conducted. Clustering analysis revealed eight distinct subclusters (Fig. 2a). Disease origin mapping 
revealed that the healthy control group predominantly contributed to Cluster 3, whereas Clusters 0 and 6 were 
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Fig. 1.  Single-cell RNA-Seq analysis of the thyroid gland. (a) Workflow of sample collection, scRNA-seq, 
and data analysis. (b) UMAP plot showing cell clustering and annotation across all samples. (c) UMAP plot 
color-coded by individual sample identifiers. (d) Bubble plot showing the expression of canonical marker genes 
across identified cell types. (e) Bar plot of cell type composition across different groups. (f) Manhattan map of 
DEGs among clusters, highlighting transcriptional differences across different groups.
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derived primarily from the ATC group. Cluster 5 was associated mainly with the PTC group (Fig. 2b). On the 
basis of the specific marker genes expressed by each subgroup, the CD8+ T cells were classified into five major 
subgroups (Fig. 2c). Notably, one subgroup exhibited high expression levels of metallothionein (MT) family 
genes (Fig. 2d, Figure S2a), and this subgroup was designated as CD8+ T_MT. Furthermore, the central memory 
CD8+ T cells (CD8+ T_CM) were identified by high expression levels of IL7R, CCR7, and SELL, as well as 
relatively low expression levels of ITGAE (Figure S2b). Analysis of the expression of immune exhaustion-related 
marker genes, such as PDCD1, CTLA4, LAG3, and HAVCR2, allowed further annotation of CD8+ T_PTCspec_

Fig. 2.  Heterogeneity of CD8+ T cells. (a) UMAP plot showing the clustering of CD8+ T cells into 8 distinct 
subpopulations. (b) UMAP plot colored according to sample group. (c) UMAP plot annotated with CD8+ T 
cell subtypes. (d) Violin plots of the expression levels of selected marker genes across the CD8+ T_MT. (e) 
Average expression of exhaustion-related genes in different groups. (f) Proportion of CD8+ T cell subtypes 
within each sample group.
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exhausted and CD8+ T_ATCdominated_exhausted (Figure S2c). Moreover, the exhausted marker genes were 
expressed at significantly higher levels in the PTC group than in the ATC group (Fig. 2e). Additionally, the 
expression patterns of toxic factors, such as GNLY and GZMB, were used to identify the CD8+ T_cytotoxic 
subset (Figure S2d).

Analysis of subpopulation abundance trends revealed significant alterations in the distribution of different 
CD8+ T cell subsets across various disease states (Fig. 2f), particularly a marked decrease in the abundances of 
CD8+ T_MT and CD8+ T_CM subsets within the disease group. In summary, comprehensive subpopulation 
annotation revealed the heterogeneity of CD8+ T cells and provided preliminary insights into their dynamic 
changes in response to different thyroid disease states.

Functional exploration of the CD8+ T_MT subgroup
Given the significant changes in the abundance of the CD8+ T_MT subgroup across different disease states of 
thyroid cancer, KEGG pathway enrichment analysis was conducted on this subgroup. The CD8+ T_MT subset 
was enriched in crucial pathways, including oxidative phosphorylation, antigen presentation, and the pentose 
phosphate pathway (Fig. 3a).

Coexpression analysis between the MTs and ATP synthase-related genes was performed, which revealed 
a strong positive correlation between the expression of MTs and ATP synthase-encoding genes (Fig. 3b). The 
violin plot illustrated a significant reduction in the expression of ATP synthase-encoding genes within the 
ATC group, while a consistent expression level was still observed in the PTC group (Fig. 3c). This difference in 
expression was supported by the ATP synthase score density plot (Fig. 3d). Additionally, correlation analysis of 
the expression of MTs and endoplasmic reticulum stress markers revealed a negative correlation between the 
expression of MTs and stress markers (Fig. 3e, Figure S3a).

A pseudotemporal trajectory analysis was conducted to simulate the developmental trajectory of CD8+ T 
cells. The developmental pathway began with the CD8 + T_MT subgroup, ultimately leading to an exhausted 
state associated with PTC or ATC (Fig. 3f). Owing to the absence of CD8+ T cells in an intermediate activated 
state, a continuous developmental trajectory between the CD8+ T_MT and CD8+ T_CM subsets was not present, 
which reflected the coexistence of CD8+ T cells at various stages of differentiation. Furthermore, GRN analysis 
revealed key transcription factors that may regulate the CD8+ T_MT subgroup (Fig. 3g).

In summary, the potential functional characteristics of the CD8+ T_MT subset were elucidated, suggesting 
that the pronounced change in abundance of this subset may be closely linked to the exhaustion state of CD8+ 
T cells in ATC.

Molecular representation of the CD8+ t_ptcspec_exhausted subset
The difference in CD8+ T cell exhaustion between ATC and PTC patients was the focus of the present study. To 
elucidate the specific molecular characteristics of the CD8+ T_PTCspec_exhausted subgroup, a comprehensive 
analysis of its transcription profile was performed. Gene set enrichment analysis (GSEA) revealed that this 
specific subgroup was significantly enriched in pathways associated with promoting protein SUMOylation 
and maintaining the stability of membrane protein localization. Conversely, pathways related to protein 
ubiquitination and degradation were markedly inhibited (Fig. 4a). Further subgroup-specific gene expression 
analysis revealed that the expression of ZDHHC20, which is involved in palmitoylation20as well as PIAS1 and 
RANBP2, which are linked to SUMOylation21,22was specifically upregulated in the CD8+ T_PTCspec_exhausted 
subgroup. These findings suggested that such modifications may play a role in defining the functions of this 
subgroup (Fig. 4b, Figure S2e).

Functional scoring related to palmitoylation and SUMOylation was conducted for each CD8+ T cell 
subset. The CD8+ T_PTCspec_exhausted subset exhibited significant enrichment in both palmitoylation and 
SUMOylation scores (Fig. 4c). These findings further supported the hypothesis that these two posttranslational 
modification mechanisms may promote cellular functional exhaustion within this subgroup. Additionally, the 
correlations among the expression levels of ZDHHC20, PIAS1, RANBP2, and PDCD1 (the classic immune 
exhaustion marker) were investigated. The expression levels of ZDHHC20, PIAS1, and RANBP2 were positively 
correlated with those of PDCD1 (Fig.  4d). These findings indicated that palmitoylation and SUMOylation 
modifications may contribute to the functional exhaustion of CD8+ T cells in PTC through the regulation of 
PDCD1 expression.

In summary, the distinct molecular expression patterns of the CD8+ T_PTCspec_exhausted subgroup were 
characterized. The present findings suggested that within the immune microenvironment of thyroid tissue in 
PTC patients, specific posttranslational modification mechanisms, such as palmitoylation and SUMOylation, 
may drive the transition to functional exhaustion in CD8+ T cells. This discovery reveals a potential new 
mechanism underlying the exhaustion of CD8 + T cells in PTC. This study provides valuable molecular targets 
and a theoretical foundation for the development of targeted immunotherapy strategies.

Exploration of the prognostic value and mechanism of ZDHHC20, PIAS1 and RANBP2
To further assess the clinical significance of ZDHHC20, PIAS1, and RANBP2 in thyroid cancer, these genes 
were systematically analyzed using data from the THCA cohort in TCGA database. Differential expression 
analysis revealed that ZDHHC20, PIAS1, and RANBP2 were significantly upregulated in THCA tumor tissues 
(case group) compared with normal tissues (control group) (Fig. 5a, left). To evaluate the diagnostic ability of 
these genes for thyroid cancer patients, receiver operating characteristic (ROC) curve analysis was performed. 
ZDHHC20, PIAS1, and RANBP2 exhibited high diagnostic efficacy, with AUC values of 0.8355, 0.8561, and 
0.8268, respectively. These findings suggested that these molecules have good sensitivity and specificity for 
differentiating tumor tissues from normal tissues (Fig. 5a, middle).
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Fig. 3.  Deep analysis of the CD8+ T_MT subgroup. (a) GSEA revealed enrichment of KEGG pathways in 
the CD8+ T_MT subgroup. (b) Correlation matrix of gene expression levels for the selected MT- and ATP 
synthase-encoding gene families. Asterisks inside the circles denote statistical significance (p < 0.05: *, p < 0.01: 
**, p < 0.001: ***). (c) Violin plots comparing the expression levels of ATP synthase-encoding gene families 
across different groups. (d) UMAP visualization of cells colored by ATP synthase score density. (e) Scatter plots 
showing negative correlations between the MT1E and ODT3 the mitochondrial genes and between the MT1E 
and NOX1 the mitochondrial genes, with corresponding Pearson correlation coefficients and p values. (f) 
Pseudotime analysis revealing dynamic changes in the CD8+ T subpopulations. (g) GRN analysis of the CD8+ 
T_MT subset.
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Kaplan‒Meier survival analysis was performed, which revealed that the overall survival (OS) rate of patients 
in the high ZDHHC20, PIAS1, and RANBP2 expression groups was significantly lower than that in the low 
ZDHHC20, PIAS1, and RANBP2 expression groups (Fig.  5a, right). Notably, the TCGA-THCA database 
contains only PTC patient samples, and the overall prognostic association of MTs in this cohort was not 
statistically significant (Figure S5a). This phenomenon was consistent with previous results, further supporting 
the speculation that MTs may more significantly mediate CD8+ T cell dysfunction in ATC.

Molecular docking analysis was conducted to explore the potential protein‒protein interactions among the 
aforementioned molecules and the PDCD1 immune checkpoint protein. The docking results suggested the 
strong potential for direct or indirect interactions between the three proteins and PDCD1 (Fig. 5b). Additionally, 
the SUMOylation and S-palmitoylation sites on the PDCD1 protein were predicted, revealing potential binding 
sites (Fig. 5c).

Fig. 4.  Molecular characteristics of the CD8+ T_PTCspec_exhausted subgroup. (a) GSEA revealed enrichment 
of KEGG pathways in the CD8+ T_PTCspec_exhausted subgroup. (b) Stacked violin images of ZDHHC20, 
PIAS1, and RANBP2. (c) UMAP visualization of cells colored by palmitoylation (left) and SUMOylation (right) 
score density. (d) Scatterplots with marginal histograms showing the relationships of PDCD1 expression with 
(left) ZDHHC20 expression, (middle) PIAS1 expression, and (right) RANBP2 expression across 57,773 cells. 
Pearson correlation coefficients (r) and associated p values are indicated above each plot.
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In conclusion, these findings provide preliminary structural biological evidence that ZDHHC20, PIAS1, 
and RANBP2 may influence PDCD1-mediated immune exhaustion through protein interactions and 
posttranslational modifications, further reinforcing the hypothesis that these genes play pivotal regulatory roles 
in the immune microenvironment of PTC.

The reduction in the LEC_CCL21 subgroup drives the exhaustion of CD8 + T_CM cells
CD8+ T_CM cells play a crucial role in enhancing the antitumor immune response through rapid expansion, 
long-term immune surveillance, and sustained persistence23. However, there was a significant decrease in the 
abundance of CD8+ T_CM cells in the ATC group. To investigate the potential mechanisms underlying this 
reduction, a detailed analysis of endothelial cells in thyroid tissue was conducted. Specific molecular markers 
(PROM1, PDPN, and LYVE1) were used to identify the lymphatic endothelial cell (LEC) subset within the 

Fig. 5.  Exploration of the clinical significance of ZDHHC20, PIAS1 and RANBP2. (a) Comparison of 
RANBP2, PIAS1 and ZDHHC20 expression in disease versus control samples by violin plot (left), diagnostic 
performance by ROC curve (middle; AUC values shown inset), and Kaplan–Meier survival analysis stratified 
by high- versus low-expression groups (right; log-rank p values indicated). Differences in expression were 
assessed by the Wilcoxon test. (b) Representative molecular docking models of PDCD1 with RANBP2, PIAS1, 
and ZDHHC20. Docking complexes are shown as stick representations of interacting residues; the total 
docking energies (E_total) are listed above each structure. (c) Predicted SUMOylation (orange circles) and 
S-palmitoylation (red triangles) sites mapped onto the linear domain architecture of PDCD1, including the 
extracellular Ig-like domain, transmembrane helix, and cytoplasmic tail. The bar chart summarizes the number 
of modification sites in each domain.
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endothelial population. This subset exhibited high expression of the CCL21 chemokine (Fig. 6a Figure S2f). 
Given the integral role of CCL21 in the chemotactic migration of central memory T cells and the maintenance of 
lymphocyte homeostasis, the abundance of LEC subsets expressing CCL21 (LEC_CCL21) was further examined 
across different disease groups. Compared with that in the healthy control group, point graph analysis indicated 

Fig. 6.  Intercellular crosstalk of LEC-CD8+ T_CM cells. (a) UMAP diagram annotated by endothelial cell 
subpopulations. (b) Dot line plot of LEC_CCL21 expression between different groups. (c) Network diagram 
of inferred ligand‒receptor interactions between the LEC_CCL21 and CD8+ T cell subsets. The edge width 
reflects interaction strength, and the node size is scaled according to cell type abundance. (d) Sankey diagram 
of chemokine–receptor pairs showing all expressed ligands (left column) and their cognate receptors (right 
column), with flow widths proportional to the inferred interaction probability. (e) GO enrichment of receptors 
in the LEC_CCL21-CD8+ T_CM interaction. (f) Summary schematic contrasting normal control, PTC and 
ATC microenvironments. In normal control and PTC microenvironments, LEC-derived CCL21 engages CCR7 
on central memory CD8+ T cells to promote chemotaxis and tumor surveillance. In ATC, LEC_CCL21 + cell 
infiltration is reduced, leading to attenuated chemotaxis and accelerated tumor growth in the CD8 + T_CM 
subset.
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that the abundance of the LEC_CCL21 subgroup significantly decreased in both the PTC and ATC groups, with 
a more pronounced reduction in the ATC group (Fig. 6b).

To explore the potential causal relationship between the decreased abundance of LEC_CCL21 subsets and 
the reduction in CD8+ T_CM cells, cell communication network analysis was conducted between endothelial 
cells and CD8+ T cells. There was a significant intercellular communication relationship between the LEC_
CCL21 subset and the CD8+ T_CM subset (Fig. 6c). Additionally, a Sankey plot was used to elucidate the specific 
ligand‒receptor interaction patterns between the two subgroups (Fig. 6d), and a bar chart was used to illustrate 
the GO enrichment of these receptors. These receptors were enriched primarily in biological processes (BP) 
associated with positive regulatory chemotropism and positive regulatory T-cell activation (Fig. 6e).

In conclusion, these findings collectively suggested that the reduction in LEC_CCL21 subsets in thyroid 
cancer, notably the substantial exhaustion observed in ATCs, may play a critical role in the diminished 
infiltration and impaired function of CD8 + T_CM cells within tumor tissues (Fig. 6f). These findings suggested 
that LEC_CCL21 cells may be key regulatory players in the tumor immune escape mechanism.

Discussion
CD8+ T cells are integral to tumor immunity and are capable of directly attacking tumor cells by recognizing 
tumor-specific antigens and releasing cytotoxic molecules, such as perforin and granzyme24which inhibit 
tumor growth. However, within the tumor microenvironment, tumor cells induce an exhausted state in CD8+ 
T cells due to continuous antigen stimulation, along with the activation of immunosuppressive factors, such 
as TGF-β and IL-10, as well as immune checkpoint molecules, such as PD-1 and CTLA-4. This exhaustion 
leads to a reduction in effector function, metabolic dysregulation, and immune evasion, significantly decreasing 
antitumor effectiveness25. Consequently, addressing CD8+ T cell exhaustion poses a critical challenge in cancer 
immunotherapy. In the present study, a single-cell RNA sequencing map of human thyroid tissue was constructed. 
The present findings elucidated the heterogeneity of CD8+ T cells and their potential regulatory mechanisms 
across various thyroid disease states. This research not only enhances the understanding of the complex immune 
microenvironment in thyroid cancer but also identifies key immune regulatory mechanisms. These insights may 
provide a valuable theoretical foundation and potential therapeutic targets for future immunotherapies aimed 
at treating thyroid cancer.

A comprehensive single-cell transcriptome atlas of thyroid tissues was established by integrating public 
databases and self-sequencing data, encompassing data from healthy controls, patients with PTC, and patients 
with ATC. Cluster analysis and cell type annotation revealed significant differences in cell composition between 
various thyroid cancer subtypes and healthy tissues, indicating that the progression of thyroid cancer is 
associated with notable remodeling of the immune microenvironment. Notably, the heterogeneity analysis of 
CD8+ T cells revealed completely distinct patterns of immune exhaustion between ATC and PTC. CD8+ T cells 
from ATC patients exhibited a significantly increased level of exhaustion, whereas those from PTC patients 
exhibited specific functional exhaustion characterized by posttranslational modifications, such as sumoylation 
and palmitoylation. These findings highlighted substantial differences in immune escape mechanisms among 
the various thyroid cancer subtypes, suggesting that precise immunotherapy research should be tailored to each 
subtype.

A detailed analysis was conducted on the functional characteristics of a distinct high-expression subgroup 
of MTs in CD8+ T cells, referred to as the CD8+ T_MT subgroup. Metallothioneins are low-molecular-weight, 
cysteine-rich metal-binding proteins that play crucial roles in the chelation of metal ions, such as zinc, copper, 
and cadmium, through their thiol groups26. Metallothioneins are involved in regulating metal ion homeostasis, 
detoxification, and free radical scavenging, thereby contributing significantly to cellular antioxidant defenses27. 
The present KEGG enrichment and gene coexpression analyses indicated that genes associated with oxidative 
phosphorylation (OXPHOS), antigen presentation, and the pentose phosphate pathway (PPP) were significantly 
enriched in this subgroup. OXPHOS, as the primary process of mitochondrial ATP production28plays a central 
role in maintaining the bioenergetic fitness of CD8+ T cells. Mitochondria-derived ATP is essential for sustaining 
the effector functions, survival, and long-term persistence of these cells. Conversely, ATP depletion and 
mitochondrial dysfunction are associated with the progression toward T cell exhaustion29which is characterized 
by diminished proliferative capacity and effector function. In this subgroup, there was a positive correlation with 
ATP synthase gene expression, suggesting that enhanced mitochondrial function and energy production may aid 
in resistance to exhaustion. The PPP serves as an important alternative pathway for glucose metabolism, generating 
substantial amounts of NADPH and ribose-5-phosphate30. NADPH is vital for neutralizing intracellular reactive 
oxygen species (ROS)31maintaining the reducing state of cells, and mitigating oxidative stress within the tumor 
microenvironment. Additionally, ribose-5-phosphate is a key precursor for nucleic acid synthesis32thereby 
promoting the proliferation and functional maintenance of CD8+ T cells. Further analysis revealed that the MT 
expression levels in this subgroup were negatively correlated with those of markers associated with endoplasmic 
reticulum stress. These findings suggested that the CD8+ T_MT subset may alleviate endoplasmic reticulum 
and oxidative stress, potentially delaying the exhaustion process by enhancing OXPHOS and PPP activities, 
as well as improving antioxidant capacity. Pseudotemporal trajectory analysis indicated that the CD8+ T_MT 
subset may represent an early differentiation state among CD8+ T cells, with a tendency to differentiate into 
more exhausted subgroups. These findings suggested that MTs may regulate the exhaustion of CD8+ T cells in 
ATC by synergistically modulating cellular metabolism, metal ion homeostasis, mitochondrial function, and 
the antioxidant stress response. However, in the TCGA-THCA dataset, which predominantly features PTC, 
the expression of MTs did not demonstrate significant prognostic value. These findings further supported the 
notion that compared with PTC subtypes, MTs may be more intricately involved in the remodeling of the ATC 
immune microenvironment. Future research should focus on the potential significance of MTs in ATC patients 
and investigate their potential as prognostic markers and therapeutic targets.
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In the present study, the molecular mechanisms underlying the PTC-specific exhausted CD8+ T cell subset 
(CD8+ T_PTCspec_exhausted) were investigated. The pathways associated with sumoylation and palmitoylation 
modifications were notably enriched in this subset. Additionally, high expression levels of the ZDHHC20, 
PIAS1, and RANBP2 genes correlated positively with the expression of the PDCD1 (PD-1) gene. GSEA 
further revealed that pathways related to the stability of membrane protein localization, the enhancement of 
sumoylation modifications, and the inhibition of ubiquitin-mediated degradation were significantly enriched 
(FDR < 0.05) within the CD8+ T_PTCspec_exhausted subgroup. These findings suggested that this subgroup 
possesses unique regulatory characteristics at the posttranslational modification level. At the molecular level, 
ZDHHC20 acts as an S-palmitoyltransferase20catalyzing the S-palmitoylation of target proteins. Previous 
studies have demonstrated that such modifications increase the stability and membrane localization efficiency of 
membrane proteins33. Given that PDCD1 is a transmembrane protein34ZDHHC20-mediated S-palmitoylation 
may stabilize PDCD1 on the cell membrane, thereby maintaining the exhausted phenotype of CD8+ T cells. 
Moreover, PIAS1 and RANBP2, recognized as crucial SUMO E3 ligases21,22have been reported to inhibit the 
ubiquitination and degradation of target proteins through sumoylation modifications. This process prolongs 
the half-life and enhances the functional stability of these proteins35,36. PIAS1 and RANBP2 may promote the 
sumoylation of PDCD1 and competitively inhibit its ubiquitination and proteasome-mediated degradation, 
thereby synergistically maintaining homeostasis and high expression levels of PDCD1, further contributing to 
the exhausted state of CD8+ T cells. To validate the clinical significance of ZDHHC20, PIAS1, and RANBP2, data 
from the TCGA database were analyzed. These genes were significantly overexpressed in thyroid cancer tissues 
and their elevated expression levels were closely linked to poor patient prognosis. Molecular docking analysis 
and posttranslational modification site prediction demonstrated that these molecules may mediate immune 
exhaustion of CD8+ T cells in PTC by directly or indirectly influencing the posttranslational modification 
status of PDCD1. These results suggested that ZDHHC20, PIAS1, and RANBP2 may serve as promising novel 
targets for PTC immunotherapy and provide a critical theoretical foundation for further elucidating the role of 
posttranslational modifications of PDCD1 in tumor immune escape.

The present study revealed a significant decrease in the abundance of central memory CD8+ T cell subsets 
(CD8+ T_CM) within the tissues of patients with ATC. Central memory T cells are known for their rapid 
proliferative capacity, long-term persistence, and robust recall responses upon antigen reencounter, indicating 
that they are essential mediators of durable antitumor immunity and correlate with favorable prognosis in 
various cancers23. An extensive analysis of the tissue microenvironment revealed notable exhaustion of the 
lymphatic endothelial cell subset characterized by high expression of CCL21 (LEC_CCL21) in ATC. In tumor-
draining lymphatics, LEC_CCL21 secretes CCL21 to engage CCR7 on T_CM cells, directing their trafficking 
into the thyroid tumor bed and promoting their retention within the tumor microenvironment. However, 
this effect was diminished in the ATC group. Furthermore, cell communication analyses demonstrated a clear 
ligand‒receptor interaction between LEC_CCL21 and CD8+ T_CM cells. These findings suggested that reducing 
LEC_CCL21 may significantly impair the thyroid-directed recruitment and tissue infiltration of CD8+ T_CM 
cells, weakening the antitumor immune response and facilitating immune escape in ATC. The present results 
highlighted the critical role of nonimmune cellular components, such as endothelial cells, in shaping the immune 
microenvironment within tumor tissues. Future research should focus on the communication networks between 
nonimmune and immune cells—particularly the CCL21–CCR7 binding axis—to identify additional therapeutic 
intervention targets.

Although the present study highlighted several key immune cell subsets and their regulatory mechanisms 
through single-cell transcriptome analysis, it had several limitations. First, further experimental validation is 
necessary to clarify the specific mechanisms underlying posttranslational modification pathways and endothelial–
immune cell communication. Additionally, the reliance on the TCGA database, which predominantly includes 
patients with PTC, limited the exploration of prognostic correlations specific to ATC subtypes. Moreover, the 
absence of matched genomic sequencing data precluded direct evaluation of the relationship between thyroid 
oncogene mutation status (e.g., BRAF, RAS, TP53, TERT promoter) and the abundance of LEC_CCL21 subsets. 
Future research should incorporate a broader array of samples from thyroid cancer patients, combined with 
comprehensive functional experiments and integrated genomic profiling, to substantiate the efficacy and 
specificity of the proposed mechanisms and therapeutic targets.

In conclusion, the present study systematically constructed a single-cell transcriptome atlas of human thyroid 
tissue, revealing the complex heterogeneity of the immune microenvironment in thyroid cancer. The present 
results elucidated potential molecular mechanisms and the clinical significance of the heterogeneity of CD8+ 
T cell subsets. The present findings enhance the understanding of the immune escape mechanism in thyroid 
cancer and also provide a solid theoretical framework and potential molecular targets for the future development 
of precise immunotherapy strategies.

Data availability
The sequencing data generated in this study are not publicly available because of institutional constraints. How-
ever, the data are available from the corresponding author upon reasonable request.
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