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The growing reliance on Vehicle-to-Vehicle (V2V) communication has heightened the vulnerability 
of Adaptive Cruise Control (ACC) systems to cybersecurity threats, such as manipulation or forgery 
of V2V messages. This paper investigates the impact of three types of false information injection 
(FII) on vehicle collision risk and driving efficiency. To address these vulnerabilities, we develop a 
novel machine learning-based onboard model, ACC anomaly Detection and Mitigation (ACCDM), 
designed to strengthen ACC resilience against such cyberattacks. ACCDM continuously monitors 
vehicle parameters under benign conditions, detecting deviations that indicate potential threats and 
deploying real-time mitigations to maintain safety and efficiency. Simulations across continuous and 
clustered attack scenarios validate ACCDM’s accuracy in detecting cybersecurity threats, preserving 
safe following distances, and mitigating the negative impacts of cyberattacks on ACC systems.
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Motivation
 In recent years, the integration of advanced electronics and software in automotive systems has significantly 
enhanced Adaptive Cruise Control (ACC) capabilities, making it essential for vehicle automation by 
maintaining safe following distances and adjusting speed1,2. However, as ACC increasingly relies on Vehicle-
to-Everything (V2X) communications, including Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure 
(V2I). and Vehicle-to-Internet of Things(V2IoT)3–5. It becomes more vulnerable to cybersecurity threats. 
Recent research indicates that cyberattacks can subtly manipulate control commands6, interfere with sensor 
measurements7,8, or block tampering with on-board network data9, leading to dangerous driving conditions. The 
expanding interconnectivity of vehicles increases the attack surface, making it easier for adversaries to exploit 
vulnerabilities in communication10–12. Despite these concerns, the majority of current research predominantly 
focuses on utilizing historical data to detect cyberattacks or evaluate their potential impacts, such as on traffic 
flow and safety, while paying little attention to utilizing machine learning methods for cyberattacks detection 
and mitigation in real time. This lack of focus on anomaly detection and real-time defense mechanisms leaves 
ACC systems exposed to sophisticated and evolving cybersecurity threats. Therefore, it is imperative to develop 
efficient strategies for detecting and mitigating these risks.

To address this gap, this paper presents a novel machine learning-based model for detecting anomalies and 
mitigating potential cybersecurity threats in ACC systems. Specifically, the proposed model employs machine 
learning techniques to develop onboard predictive models that estimate the expected response of a following 
vehicle under benign V2V communication conditions. By utilizing these predictive models, ACC systems can 
detect anomalies in vehicle responses that are indicative of potentially malicious communications. This approach 
enables the identification of deviations from normal behavior, thereby enhancing the detection of cybersecurity 
threats within the ACC system. This work contributes to the field of secure Connected and Autonomous vehicle 
(CAV) technology by providing an innovative and timely solution to bolster the reliability of ACC systems in the 
face of increasing cyberattack threats.

Literature review
With the development of CAV technology, vehicles can maintain high driving efficiency through network 
communication. However, the open and shared network environment makes vehicles vulnerable to malicious 
attacks. Recently, numerous high-profile studies have highlighted the potential for sophisticated security breaches 
in automotive systems13–18. Wang categorize cyberattacks into two types based on their security relevance: safety-
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related and non-safety-related attacks19. The former mainly concerns vehicle incidents, such as traffic accidents, 
while the latter focuses on driving privacy, such as the leakage of personal information. To illustrate the potential 
risks of these attacks, Cui classifies cyberattacks into various forms, including false information injection (FII), 
denial of service (DoS), spoofing, eavesdropping, message suspension, and hardware tampering20. He proposed 
a simulation platform for evaluating cooperative adaptive cruise control under cyberattacks, which reveals that 
FII has the greatest impact on traffic and significantly increases the risk of collision through simulation results. 
Various techniques have been proposed to detect malicious vehicular nodes disseminating FII in vehicular ad-
hoc networks (VANETs). For example, Ganesan et al. developed an anomaly detection technique leveraging the 
redundancy and correlation among measurements from heterogeneous sensors and vehicular communications21. 
However, such redundancy may not be feasible in emerging CAVs due to limitations in sensor technology and 
associated costs. Additionally, Chowdhury et al. developed an unsupervised anomaly detection method using 
multi-source sensor data from heterogeneous autonomous systems22. It employs dimensionality reduction and 
clustering to identify anomalies. However, this method may suffer from high false positives, sensitivity to data 
quality, and detection delays in collaborative scenarios, impacting real-time performance.

Machine learning-based anomaly detection has been widely applied to various automotive security 
challenges. For instance, Taylor et al. detect anomalies in Controller Area Network (CAN) bus attacks by 
analyzing historical packet timing data23, while Narayanan et al. propose an anomaly detection system using 
hidden Markov model to secure in-vehicle networks24. Given that ACC serves as the foundation for numerous 
CAV applications, considerable attention has been focused on enhancing the security of ACC systems. Ju et al. 
provide a comprehensive review of attack detection methods and resilience techniques in CAVs25. He explores 
the effects of various types of attacks, including network intrusions and sensor anomalies, on vehicle dynamics 
and control, and presents strategies for anomaly detection using advanced machine learning algorithms. Wang 
et al. developed a general framework for modeling and synthesizing two types of cyberattacks on ACC vehicles: 
direct attacks on vehicle control commands and FII attacks on sensor measurements26 The data after the 
simulation can be used to effectively identify where the FII attacks occurs. In ACC systems, attacks may also 
target onboard sensors such as radar. Physical attacks can result in sudden acceleration or deceleration, leading 
to traffic congestion and increased energy consumption. Li et al. investigated the energy consumption of FII 
attacks on different traffic conditions involving free flowing and congested states, and analyzed the sensitivity of 
traffic flows to these cyberattacks9.

The literature review reveals that FII is the most prevalent type of attack encountered in the context of 
cyber threats. While existing studies have employed machine learning methods to identify FII cyberattacks, 
they primarily focus on post-event detection, often relying on historical data, sensor redundancy, or network 
consensus. These approaches, while valuable, exhibit limitations in real-time application due to their reliance on 
specific environmental conditions (e.g., sensor availability, data quality) or their tendency to generate high false 
positives. Additionally, many existing models lack the agility to adapt to complex, evolving threats in network-
based ACC systems. In particular, the real-time identification of cyberattacks and linking attack detection with 
effective mitigation strategies remains underexplored, leaving ACC systems vulnerable to sophisticated and time-
sensitive threats. To address these challenges, we propose ACC anomaly Detection and Mitigation (ACCDM) 
model, which is for real-time anomaly detection and mitigation to protect ACC systems from cyberattacks. The 
cornerstone of ACCDM is its machine learning-based prediction model, trained on benign data patterns under 
normal operating conditions, enabling the detection of deviations that may indicate malicious activity. ACCDM 
consists of two key components: (1) an onboard architecture for real-time anomaly detection and mitigation, 
and (2) an offline cloud-based infrastructure that refines prediction models based on extensive data from various 
driving scenarios. This dual-component structure ensures that ACCDM is robust, adaptable, and capable of 
maintaining the safety and functionality of ACC systems across evolving threat landscapes.

Novelty of this contribution
In this paper, we develop a novel machine learning-based model for anomaly detection and real-time mitigation 
within Adaptive Cruise Control (ACC) systems. This model is designed to strengthen ACC systems against 
cyberattacks involving false information injection, thereby enhancing both the security and operational 
efficiency of ACC functionalities. To the best of our knowledge, this study represents a significant step forward 
in applying machine learning to address the real-time detection and mitigation of abnormal behavior in ACC 
systems. This model can be easily implemented in CAVs equipped with V2V communication technology. The 
key contributions of this paper are as follows:

	(1)	 Constructing three types of false information injection attacks (including sine wave, linearly increasing, and 
constant value methods) and investigating their impact on collision risk and vehicle following efficiency in 
ACC systems under both clustered and continuous attack scenarios.

	(2)	 Assessing the effectiveness of the proposed anomaly detection and mitigation model in reducing collision 
risk and improving following efficiency under three distinct types of false information injection attacks. 
The results demonstrate that the model offers significant advantages in terms of safety and vehicle following 
efficiency.

	(3)	 Implementing and validating the robustness of the proposed model in various simulated cyberattack sce-
narios, showing its effectiveness in maintaining ACC system performance and security. The model’s ad-
aptability to varying attack intensities highlights its potential for deployment in CAVs equipped with V2V 
technology.
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Paper organization
 The rest of this paper is organized as follows. Section 2 describes the detailed modeling methodology of ACCDM. 
Section 3 presents the performance of ACCDM under different FII cyberattacks. Finally, Sect. 4 presents the 
conclusion and outlook.

Methodology
The methodology for developing the ACC anomaly Detection and Mitigation (ACCDM) model is divided into 
three parts: (i) Vehicle’s following models in traffic; (ii) ACC anomaly Detection and Mitigation model; and (iii) 
Simulation setup and evaluation metrics. The specific details are as follows.

Vehicle following model
Adaptive Cruise Control (ACC) and Intelligent Driver Model (IDM) are two advanced models designed for 
vehicle following in traffic, enabling vehicles to maintain a safe distance from the preceding vehicle. By utilizing a 
combination of Dedicated Short-Range Communications (DSRC), V2V communication and other sensors, the 
ego vehicle can acquire the preceding vehicle’s speed and inter-vehicle spacing, allowing it to adjust speed and 
acceleration. In this paper, we assume that after the ACC system downgrades, the vehicle defaults to using IDM 
for control. Both the ACC and IDM systems rely on V2V communication to obtain the preceding vehicle’s speed 
information and use radar/lidar sensors to calculate the spacing between vehicles.

Figure 1 illustrates the following mechanism of ACC model. ACC is a fundamental technology that enables 
the ego vehicle ε to autonomously adjust its speed vε to follow the preceding vehicle p. To achieve this goal, ε 
uses data from radar/lidar sensors to measure the inter-vehicle spacing s and V2V communication to obtain p’s 
velocity vp, ensuring that ε takes at least Tgap seconds to reach the position currently occupied by. IDM serves 
as a theoretical model that mimics human driving behavior to gauge the speed and inter-vehicle spacing of p in a 
similar way to ACC. IDM can act as a reliable backup by simulating human-like responses to maintain safety and 
control under compromised conditions. Equations (1) and (2) represent the controller operation for computing 
the desired acceleration under ACC and IDM, respectively. k1 and k2 are position and velocity constants, s0 is 
the static minimum spacing of the vehicle and its value is set to 0.

	 aACC
ε = k1 · (s − vε · T ACC

gap ) + k2 · (vp − vε)� (1)
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The relevant terms of equations above (and in the rest of the paper) are listed in Table 1.
Figure  2 shows the following behavior of a two-vehicle scenario, where the leading vehicle’s motion is 

followed by either an ACC or IDM vehicle. The leading vehicle’s speed is modulated through various maneuvers, 
including acceleration, cruising, and deceleration, providing a comprehensive view of the following performance 
of both ACC and IDM systems. In Fig. 2(a), ACC shows minimal response delay, quickly aligning its speed with 
the leading vehicle, while the IDM adjusts more gradually, reflecting a smoother, human-like following behavior. 
Figure  2(b) reveals that ACC has more frequent changes in acceleration, in order to maintain a consistent 
following distance, whereas IDM demonstrates slower, more conservative acceleration adjustments. In Fig. 2(c), 
the ACC system maintains a smaller, more consistent following distance, while IDM keeps a larger, variable gap, 
enhancing safety by emulating cautious driving. Overall, the ACC system prioritizes rapid, efficient responses, 
whereas the IDM model emphasizes conservative, safety-oriented behavior, highlighting the advantages of ACC 
in dynamic driving scenarios.

ACCDM model
The ACCDM model provides onboard services for the ego vehicle ε. ACCDM collects ε‘s operational data and 
uploads it to a trusted cloud server to refine a machine learning (ML) model. The model is periodically updated 
when ε is connected to a secure network, such as when stationary at the owner’s residence. During driving, 
if ε activates ACC, the system detects and mitigates V2V communication anomalies, emphasizing real-time 
resilience. Unlike other ML-based anomaly detection systems, ACCDM decouples the training of the ML model 
from on-road prediction tasks, addressing resource constraints and real-time requirements.

Fig. 1.  The ego vehicle ε follows the preceding vehicle p by utilizing V2V and sensor data.
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Figure  3 illustrates the architecture of the ACCDM model. It comprises a cloud component for offline 
model training and an onboard infrastructure designed for real-time mitigation. Different from other ACC 
implementations, ACCDM incorporates three critical components: (1) Cloud Component, (2) Anomaly 
Detector, and (3) Mitigator. The Cloud Component consists of a Data Collector and Model Training module. 
The Data Collector gathers only normal behavioral data for the system to learn through Model Training, thereby 
capturing responses to benign V2V communication patterns. The onboard Anomaly Detector then measures 
deviations from the nominal model to assess anomalies and fine-tunes the detection thresholds to capture minor 
anomalies that could potentially affect vehicle safety or efficiency. Upon detecting an anomaly, the Mitigator 
computes an alternative response, overrides the ACC controller if necessary, and conducts a plausibility check 
to ensure vehicle safety is not compromised, even under potentially adversarial conditions, thus maintaining 
real-time safety and efficiency. This approach ensures robust defense against detection subversion attacks, so that 
even if an adversary attempts to undermine the system covertly, the vehicle remains unaffected. The threat model 

Fig. 2.  Following behavior of a two-vehicle scenario. (a) Velocity-time relation; (b) Acceleration-time relation; 
(c) spacing-time relation.

 

Term Definition Term Definition

ε Ego vehicle so Static minimum spacing

p Preceding vehicle s Spacing of vehicles

k1 Position constant a Maximum acceleration

k2 Velocity constant b Maximum deceleration

xp Position of preceding vehicle b Desired acceleration for ACC

xε Position of ego vehicle aIDM
ε Desired acceleration for IDM

vp Velocity of preceding vehicle apred
ε Predictor output

vmax
p vp  measured at the maximum frequency aest

ε
Estimator output

fmax Maximum frequency of V2V communication aε Output acceleration of ε

vε Velocity of ego vehicle ap Instantaneous acceleration of 

T ACC Constant time headway for ACC (1.2s for27) test Actual time headway estimated

T IDM Constant time headway for IDM (1.5 s for28) tACC Actual time headway with ACC

Table 1.  Relevant terms and definitions.
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assumes that an attacker can tamper with any V2V messages, including modifying, discarding, impersonating, 
or fabricating communications from other vehicles or infrastructure entities.

The specific algorithms for implementing ACCDM are detailed in Algorithm 1 and Algorithm 2. In 
Algorithm 1, the Predictor is an offline-trained machine learning model that utilizes the same input parameters 
as the acceleration calculator (e.g., vp, vε, s). It outputs the predicted acceleration value, denoted as apred

ε , while 
the Acceleration Calculator produces the corresponding result aACC′

ε . Comparator calculates the deviation 
between the predicted value apred

ε and aACC′
ε ; If the deviation exceeds a predefined threshold, the anomaly is 

detected. When an anomaly is detected and V2V communication is disrupted, the Mitigator module intervenes, 
modifying the vehicle’s final acceleration aε to maintain safety and efficency. After mitigation, the Power Control 
module recalculates the appropriate throttle or brake inputs to ensure stable driving dynamics. Simultaneously, 
the Data Collector logs relevant real-time data, which is later used for further offline model refinement, 
enhancing the system’s adaptability and resilience in future scenarios.

1 Procedure 1 ACCDM ( , ,pv v s� )

2
2V V

p pv v�
3 s � radar/lidar

4 If V2V communication is attacked then
5 No_comm�No Communication is True

6: else
7: Yes_comm�No Communication is False

8
preda� �Predictor( , ,pv v s� )

9
'ACCa� �Acceleration Calculator( , ,pv v s� )

10 Anmly_flag�Comparator(
',pred ACCa a� � )

11 a� �Mitigator(Anmly_flag, No_comm)
12 v� � Power Control( a� )

13 Data Collector( , , ,pv v s a� � )

14 Return a� , v�

Algorithm 1 ACCDM

In Algorithm 2, if neither an anomaly is detected nor V2V communication is lost, the system operates in 
standard ACC mode, and the acceleration output is aACC′

ε . Otherwise, the V2V communication device increases 
the sampling frequency to the maximum capacity (typically 100 ~ 200 Hz)29 to more accurately track the change 
in the position of the preceding vehicle and calculate its velocity vmax

p . It is fed into the Acceleration Calculator 
to compute the adjusted acceleration aACC

ε . Simultaneously, the Estimator is also a pre-trained machine learning 
model like the Predictor, computes the estimated acceleration aest

ε . However, unlike the Predictor, the Estimator 
only uses sensory inputs, such as the ego vehicle’s velocity vε and spacing s. The Plausibility then validates the 
estimated acceleration by considering five parameters to calculate the time headway (THW). Based on THW, 
Plausibility ensures that the response estimator’s output does not compromise the safety or following efficiency 
of the ego vehicle ε even in the presence of potential adversarial interference. This multi-layered process ensures 
that the vehicle maintains safe operations under abnormal or attack conditions.

Fig. 3.  Architecture of the ACC anomaly Detection and Mitigation model.
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1 Procedure 2 Mitigator (anmly_flag, no_comm)

2 if anmly_flag and no_comm are false then
3

'ACCa� �Acceleration Calculator( , ,pv v s� )

4 else
5 maxf �Max sampling frequency

6
max ( ( ) ( 1)) /p p pv x t x t t�� � �

7
ACCa� � Acceleration Calculator (

max , ,pv v s� )

8
esta� �Estimator( ,v s� )

9 a� � Plausibility( , , , ,est ACC
pa a v v s� � � )

10 Return a�
11 Procedure 3 Plausibility ( , , , ,est ACC

pa a v v s� � � )

12 ,est ACCt t � GetTHW ( , , , , )est ACC
pa a v v s� � �

13 if ACC ACCt T� & ACC estt t� & ACC IDMt T�
14

ACCa a� ��
15 elif est ACCt T� & est IDMt T�
16

esta a� ��
17 else
18

IDMa a� ��
19 Return a�

Algorithm 2 Mitigation

Simulation setup and evaluation metrics
This section consists of the following 3 steps, i.e., (1) Data generation; (2) Machine learning model selection; and 
(3) Evaluation metrics.

Data generation
The key challenge in evaluating ACCDM is to develop a comprehensive strategy to assess various attack types. 
Previous studies typically focus on specific false information injection (FII) cyberattack scenarios, for instance, 
Biron et al. focused on interference and flood attacks30, while Jagielski et al. focused on specific mutation 
attacks31. Section 2.1 explains that ACC systems obtain the preceding vehicle’s speed via V2V communication. 
To investigate the impact of FII on ACC performance, we employ various methods to generate and inject falsified 
speed data, simulating potential cyberattacks: (1) mutating existing messages, (2) forging new messages, and (3) 
blocking message delivery. Since the message payload includes the speed information of the preceding vehicle, 
an attack could lead to (1) underreporting of the speed information of the preceding vehicle, which reduces ego 
vehicle’s efficiency; (2) exaggerating the speed information of the preceding vehicle, which leads to unnecessary 
acceleration of the ego vehicle and increases the risk of collision; or (3) abrupt and random changes in the 
actual values, which results in erratic follow through. Positive deviations are categorized as collision attacks, 
while negative deviations are considered efficiency reducing attacks. We consider three different methods for 
generating false speed information with the following expressions.

	

vfake =





vtrue ± b

vtrue ± b · t

vtrue ± b · sin(c · t)
� (3)

Where vfake refers to malicious speed of preceding vehicle obtained through the V2V communication, and 
vtrue represents true speed. b, c are constants and t denotes time.

One of the primary evaluation objectives of this paper is to evaluate the effectiveness of ACCDM in diverse and 
realistic driving environments. We utilize real speed data from the High-D dataset32, which includes trajectory 
information from actual vehicles on German motorways. The dataset comprises approximately 110,500 samples, 
covering a total driving distance of about 44,500 km, collected at a frequency of 25 Hz. The dataset underwent 
a data filtering process to exclude entries with traveling times shorter than 400 frames. This refinement led to a 
final sample size comprising 18,844 samples. This data provides the trajectory of the leading vehicle, while the 
trajectory of the ego vehicle is computed using Eq. (1). We aggregated data from all scenarios to form a global 
dataset, which was subsequently divided into training and test sets in an 80 − 20 ratio.

Machine learning model
The feasibility of ACCDM depends heavily on the ability of the machine learning components to accurately 
identify anomalous messages and mitigate their adverse effects. The machine learning components, namely the 
Predictor and Response Estimator, are designed to accurately detect anomalous communications and mitigate 
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adverse effects. The machine learning regression problem for these components can be framed in two ways: 
(i) stateless prediction and (ii) time-series prediction. The ML model must meet two critical requirements: (1) 
avoiding false positives on benign messages, and (2) accurately classifying malicious messages as anomalous. 
Additionally, it must generate real-time predictions within the computational and storage constraints of the 
vehicle system.

Here we considered four candidate architectures: Random Forest regressors (RF), Support Vector Machines 
(SVM), Feedforward Neural Networks (FNN), and Time Delayed Neural Networks (TDNN). These specific 
algorithms were chosen due to their demonstrated effectiveness in anomaly detection and their compatibility 
with the computational limitations of automotive systems33. RF effectively handles high-dimensional data and 
complex feature interactions via ensemble learning. SVM, with strong theoretical foundations, provide robust 
performance across various datasets. FNN stand out for their ability to model highly non-linear relationships in 
vehicle data, offering customizable architectures that can remain lightweight for real-time anomaly detection in 
automotive systems. By enabling adjustable layer depth, FNN can be tailored to balance detection accuracy with 
minimal computational overhead, an essential requirement in resource-constrained automotive environments. 
Additionally, FNN solutions typically maintain enough interpretability to facilitate system validation and 
compliance with safety regulations, a critical factor in the automotive industry. Finally, TDNN extend FNN by 
capturing temporal dependencies, making them particularly well-suited for sequential communication signals. 
Architectures more complex than TDNN were deemed unnecessarily complicated given the constraints of 
the automotive system, as they introduce additional computational overhead without sufficient performance 
benefits under these conditions.

The relevant parameters for each machine learning model are shown in Table 2 below.

Evaluation metrics
The prediction performance of ACCDM is highly reliant on the selection of anomaly detection thresholds. 
According to Algorithm 1, we assign anomaly_flag by comparing the difference between apred

ε  under machine 
learning and aACC′

ε  obtained from the onboard Accelerator Calculator. Setting the threshold too high can 
diminish detection accuracy, while setting it too low may result in an increase in false positives. A high rate 
of false alarms could trigger frequent and unnecessary invocations of the reasonableness checker in ACCDM. 
Although the computational cost of the reasonableness checker is minimal, the cumulative overhead could 
become substantial, particularly since vehicles typically operate under benign conditions. Thus, selecting the 
optimal threshold is essential to ensuring both safety and efficiency in adversarial situations, while keeping 
performance overhead to a minimum during normal operation. We use four detection metrics: R (Recall), 
P (Precision), F1-score and FPR (False Positive rate) to estimate the quality of resilience under attack33. The 
formulas for these parameters are as follows.

	
R = T P

T P + F N
� (4)

	
P = T P

T P + F P
� (5)

	
F 1 − score = 2 · P · R

P + R
� (6)

	
F P R = F P

F P + T N
� (7)

Where TP represents true positives (correctly detected anomalies), FN denotes false negatives (anomalies that 
were missed), FP refers to false positives (incorrectly classified normal instances as anomalies), and TN indicates 
true negatives (correctly classified normal instances).

Model Training parameters

RF
No of trees 100 Maximum Depth 10

Minimum Sample Split 2 Split Criteria Gini Index

SVM
Regularization 100 Feature Scaling Minmax

Epsilon 0.1 Kernel rbf

TDNN

No of Training Epochs 20 No of Hidden Units 15

Window Length 10 Feature Scaling Minmax

Learning Algorithm SGD Hidden Layer Activation ReLU

FNN

No of Training Epochs 20 No of Hidden Units 15

No of Hidden Layers 1 Feature Scaling Minmax

Learning Algorithm SGD Hidden Layer Activation ReLU

SGD: Stochastic Gradient Descent ReLU: Rectified Linear Activation

Table 2.  Training parameters of machine learning models.
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Results and discussion
This section begins with the selection of the optimal machine learning algorithm. The evaluation is based on the 
Root Mean Square Error (RMSE) between the predicted values and the ground truth acceleration values, with a 
smaller error indicating a better prediction. As discussed before, we consider the cyberattacks in the form of false 
information injection (FII), and take four machine learning architectures as candidates: RF, SVM, FNN, and 
TDNN. The accuracy of these algorithms at different thresholds is subsequently analyzed. Finally, the resilience 
of ACCDM under various scenarios is examined, along with the calculation of collision risk and efficiency 
degradation under a naive ACC system.

Determination of machine learning models and thresholds
Figure 4 shows the prediction results of RF, SVM, TDNN and FNN in benign condition for a specific sample. 
The RF model in Fig. 4(a) struggles to capture small fluctuations and often flattens areas with rapid changes, 
which will limit its effectiveness in detecting anomalies. The SVM model in Fig. 4(b) generally follows the trend 
of the ground truth but exhibits significant deviations in the deceleration region. The predictions produced by 
the TDNN model in Fig. 4(c) are closely aligned with the ground truth trends for all frames, yielding smoother 
results, yet it fails to capture motion details in dynamic changes and exhibits larger errors. In contrast, the FNN 
model in Fig.  4(d) delivers the most accurate results, consistently matching the ground truth with minimal 
discrepancies. Overall, FNN outperforms all other models, followed by SVM, both significantly surpassing RF 
and TDNN in accuracy and their ability to track small changes in acceleration.

To clearly highlight the differences in the prediction performance among the four machine learning methods, 
we employed the RMSE to quantify the discrepancy between the predicted and actual values. The results, shown 
in Table 3, indicate that the FNN model has the lowest RMSE, demonstrating it to be the most accurate and 
closest to the actual values.

Figure  5 illustrates the Line graph of four metrics under clustered sinusoidal attacks, which corrupts 
approximately 25% of the V2V messages. This attack is representative as it incorporates features of both clustered 
and continuous attacks, combining positive and negative biases within the same attack instance. In Fig. 5(a), 

Fig. 4.  Prediction results of four machine learning methods in benign condition. (a) to (d) show the prediction 
results of RF, SVM, TDNN and FNN.
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The FNN model consistently achieves the highest recall across all thresholds, demonstrating its strong ability 
to detect most anomalies and minimize missed detections (false negatives). As the threshold increases from 
0.05 to 0.4, the recall for all models gradually decreases. In terms of precision, as shown in Fig.  5(b), FNN 
maintains superior performance, especially at lower thresholds, with significantly higher precision than the 
other models. This indicates that FNN effectively captures anomalies while minimizing false alarms, which is 
crucial for maintaining operational efficiency in benign conditions. The F1 scores in Fig. 5(c) further confirm 
FNN’s superiority, consistently achieving the highest values and providing an optimal balance between recall 
and precision. This underscores the robustness of FNN in ACCDM anomaly detection. In Fig.  5(d), FNN 
consistently shows a low FPR across different thresholds, outperforming models such as SVM, RF and TDNN. 
This suggests that FNN reliably reduces unwanted false positives.

Overall, these results indicate that FNN delivers the highest prediction quality and is the optimal model for 
ACCDM. After evaluating different thresholds, 0.15 was selected as the optimal threshold, providing the best 
balance between detection accuracy and operational efficiency.

ACCDM resilience under sinusoidal FII attacks
This section discusses the resilience of ACCDM under sinusoidal FII attacks, and the simulation results under 
a certain sample are shown in Fig. 6. The left image depicts a clustered attack affecting 25% of the total frames, 
while the right image shows a continuous attack impacting 80%.

In Fig.  6(a) and (b), the true speed (blue line) is altered by the malicious input (orange dashed line), 
simulating spurious V2V speed communication attacks. In Fig.  6(c) and (d), the naïve ACC system fails to 
distinguish between real and fake data affected by FII, resulting in significant velocity fluctuations clearly 
depicted by the orange dashed lines. However, ACCDM successfully detects and mitigates these malicious 
alterations, maintaining a velocity profile (green line) that closely aligns with the benign conditions (blue line). 
Similarly, in Fig. 6(e) and (f), the results of time headway (THW) are compared. The naïve ACC system shows 

Fig. 5.  Prediction quality of different ML algorithms under varying anomaly thresholds. (a) to (d) show the 
distribution of R, P, F1-score, and FPR.

 

ML model RF SVM TDNN FNN

RMSE 0.1249 0.0552 0.0212 0.0041

Table 3.  The root mean square error of machine learning algorithms.
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large fluctuations in THW under attacks (orange line), which could compromise safety by increasing collision 
risks or resulting in overly cautious driving. In contrast, ACCDM maintains a stable and safe THW (green line), 
closely matching the benign THW (blue line). Although the THW occasionally falls slightly below the benign 
conditions under continuous attacks, vehicle safety remains uncompromised. This further demonstrating its 
robustness in handling FII attacks.

To fully assess the performance of ACCDM, we analyzed the THW under both clustered attacks (impacting 
25% of frames) and continuous attacks (impacting 80% of frames), as summarized in Table 4. We considered a 
threshold of THW < 1.15 s to indicate collision risk and THW > 1.25 s to denote efficiency degradation. Under 
the clustered FII attack scenario, none of the models, including ACCDM, exhibited instances of THW < 1.15, 
indicating no collision risks. However, Degrade IDM and Naïve ACC show a minor increase in THW > 1.25, 
reflecting a slight loss in efficiency, while ACCDM maintains optimal performance without exceeding this 
threshold. In the continuous attack scenario, Naïve ACC displays significant vulnerabilities, with 13.68% of 
cases falling below the THW < 1.15 threshold, indicating collision risks. Additionally, Naïve ACC exceeds the 
THW > 1.25 threshold in 14.01% of cases, whereas IDM exceeds this threshold in 84.63% of cases, indicating 
a significant efficiency loss. In contrast, ACCDM exhibits 0% in both collision risk and efficiency loss, proving 

Fig. 6.  Resilience of ACCDM under sinusoidal FII attacks. (a), (c), (e) are clustered attacks (−10sin(1.5t)); 
(b),(d),(f) are continuous attacks (−10sin(1.75t)).
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its ability to maintain safety and operational effectiveness under sinusoidal FII attack conditions. These results 
underscore ACCDM’s superior resilience and adaptability in mitigating both collision risks and efficiency 
degradation compared to the other models.

ACCDM resilience under positive bias FII attacks
Figure  7 illustrates the resilience of ACCDM under positive bias FII attacks, with the left image depicting 
clustered attacks over 25% of the total frames, and the right image showing continuous attacks covering 80% of 
the frames.

In Fig. 7(a), the malicious input (orange dashed line) is clustered and exhibits increasing values over time, 
which in Fig. 7(b) remains constantly greater than the ground truth. In Fig. 7(c), the clustered and increasing 
malicious inputs cause the Naive ACC’s speed to oscillate around the true value. This indicates that the ego 
vehicle experiences sudden acceleration, followed by immediate deceleration once the attacks cease. This is due 
to the Naïve ACC attempts to accelerate and thus maintain a constant THW when the preceding vehicle’s fake 
speed increases. However, since the inter-vehicle spacing from sensors remains unaffected by the FII attacks, the 
vehicle’s acceleration is limited. Consequently, when the FII is no longer present, the vehicle quickly decelerates 
nearby the ground truth. In Fig. 7(d), the naïve ACC system (orange dashed line) displays significant acceleration 
early during continuous attacks. Interestingly, the vehicle later decelerates back toward the true speed. This 
behavior occurs because the naïve ACC system initially accelerates sharply to maintain a fixed headway during 
the positive bias attack. As a result, the headway decreases significantly, triggering a sharp deceleration to ensure 
driving safety. When the FII attacks ends, the inter-vehicle distance becomes too small, prompting the vehicle 
to decelerate abruptly to restore a safe speed before gradually accelerating again. In contrast, the performance of 
ACCDM (green line) remains consistently aligned with the benign speed (blue line), indicating that ACCDM 
effectively minimizes the speed oscillations caused by the attack. Figure 7(e) and (f) depict the impact of FII on 
THW. Under attacks, the naïve ACC system experiences excessive THW fluctuations (orange line), which can 
pose safety risks, such as an increased likelihood of collisions or overly cautious driving. However, the ACCDM 
system maintains a stable THW (green line), closely matching the benign condition (blue line).

Table 5 presents the THW under positive bias FII attacks. One can see that the THW less than 1.15 s occurs 
exclusively in the Naïve ACC system, and THW greater than 1.25 s is only observed in the degraded IDM. This 
indicates that the risk of vehicle collision and efficiency reduction under positive bias cluster attacks is minimal. 
In contrast, in the continuous attack scenario, Naïve ACC demonstrates significant vulnerabilities, with 71.37% 
of cases falling below the THW < 1.15, indicating a lot of collision risks, and 71.42% of cases in degrade IDM 
exceeding the THW > 1.25, reflecting substantial efficiency loss. In contrast, ACCDM maintains 0% for both 
collision risk and efficiency loss. These results suggest that ACCDM is highly resilient in mitigating safety risks 
and operational inefficiencies under attack conditions, outperforming the other models, especially Naïve ACC.

ACCDM resilience under negative bias FII attacks
This section discusses the resilience of ACCDM under negative bias FII attacks, as illustrated in Fig. 8. The left 
image depicts a clustered attack affecting 25% of the total frames, while the right image shows a continuous 
attack impacting 80%.

Similar to the results discussed in Figs. 7 and 8 illustrates the impact of negative bias FII attacks on ACCDM 
and Naïve ACC under both clustered and continuous attack scenarios. During clustered attacks (see Fig.  8 
(a), (c) and (e)), the malicious inputs show a gradual decrease, causing Naïve ACC to experience velocity 
fluctuations and sudden decelerations as it tries to maintain a safe following distance. During continuous attacks 
(see Fig. 8 (b), (d) and (f)), Naïve ACC undergoes sharp decelerations early on, followed by a gradual return to 
the true speed. These fluctuations are evident in both velocity and THW measurements, reflecting the system’s 
inability to maintain stable control under attack. In contrast, ACCDM consistently mitigates the effects of both 
attack types, maintaining stable speeds and THW that closely match benign conditions. This demonstrates 
ACCDM’s resilience, as it prevents the excessive speed variations and headway fluctuations that could otherwise 
compromise safety, offering superior performance over Naïve ACC.

Table 6I presents the THW under negative bias FII attacks. Similar to the results discussed previously 
for positive bias, none of the models show THW < 1.15 in the clustered attack scenario, indicating no risk of 
collision. Only Degrade IDM and Naïve ACC slightly exceed the THW > 1.25 threshold in 0.26% and 0.37% 
of cases, respectively, while ACCDM and Ground truth maintain optimal performance without any efficiency 
loss. This suggests that the clustered attack has a minor effect on vehicle-following efficiency. In the continuous 
attack scenario, Degrade IDM and Naïve ACC demonstrate significant weaknesses. Degrade IDM records 
2.88% of cases below THW < 1.15, indicating collision risk, while 71.42% of its cases exceed the THW > 1.25 
threshold, reflecting considerable efficiency loss. Naïve ACC shows similar issues, with 0.01% of cases falling 

Clustered Attack (bias= −10sin(1.5t)) Continuous Attack (bias= −10sin(1.75t))

ACCDM Degrade IDM Naïve ACC Ground truth ACCDM Degrade IDM Naïve ACC Ground truth

THW < 1.15 0% 0% 0% 0% 0% 0% 13.68% 0%

THW > 1.25 0% 0.98% 0.06% 0% 0% 84.63% 14.01% 0%

Collision NO NO NO NO NO NO YES NO

Max THW 1.24 1.29 1.26 1.24 1.24 2.30 1.31 1.24

Table 4.  Time headway under sinusoidal FII attacks.
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Clustered Attack (bias = + 8 t) Continuous Attack (bias = + 20)

ACCDM Degrade IDM Naïve ACC Ground truth ACCDM Degrade IDM Naïve ACC Ground truth

THW < 1.15 0% 0% 1.32% 0% 0% 2.88% 71.37% 0%

THW > 1.25 0% 0.37% 0% 0% 0% 71.42% 0.10% 0%

Collision NO NO YES NO NO YES YES NO

Max THW 1.24 1.27 1.24 1.24 1.24 1.68 1.26 1.24

Table 5.  Time headway under positive FII attacks.

 

Fig. 7.  Resilience of ACCDM under positive bias FII attacks. (a), (c), (e) are cluster attacks (linear bias + 8 t); 
(b),(d),(f) are continuous attacks ((constant bias + 20).
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Fig. 8.  Resilience of ACCDM under negative bias FII attacks. (a), (c), (e) are cluster attacks (linear bias − 6 t); 
(b),(d),(f) are continuous attacks ((constant bias − 20).

 

Cluster Attack (bias= −6t) Continuous Attack (bias= −20)

ACCDM Degrade IDM Naïve ACC Ground truth ACCDM Degrade IDM Naïve ACC Ground truth

THW < 1.15 0% 0% 0% 0% 0% 2.88% 0.01% 0%

THW > 1.25 0% 0.26% 0.37% 0% 0% 71.42% 71.06% 0%

Collision NO NO NO NO NO YES YES NO

Max THW 1.24 1.26 1.27 1.24 1.24 1.68 1.36 1.24

Table 6.  Time headway under positive FII attacks.
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below THW < 1.15 and 71.06% exceeding the efficiency threshold. In contrast, ACCDM consistently maintains 
0% in both collision risk and efficiency loss, demonstrating its strong ability to mitigate the adverse effects 
of negative bias attacks. These results highlight ACCDM’s superior resilience in preserving both safety and 
efficiency, particularly in contrast to the vulnerability of Naïve ACC under continuous attack conditions.

Conclusion
In summary, this research presents a novel machine learning-based ACC anomaly Detection and Mitigation 
(ACCDM) model, aimed at enhancing the security and robustness of ACC systems against cyberattacks based 
on false information injection. The proposed model effectively detects and mitigates three common types of 
false information injection attacks, including continuous and clustered attacks, which are common threats to 
V2V enabled ACC systems. The extensive simulations conducted in this study demonstrated that the ACCDM 
model achieved a 0% collision rate and no significant efficiency losses under various cyberattack scenarios, 
highlighting its robustness and effectiveness. In contrast, traditional Naïve ACC systems exhibited considerable 
vulnerabilities, including an increased risk of collisions and a substantial decline in performance when subjected 
to similar attacks. The practical significance of this research lies in its potential to greatly enhance vehicle safety 
and reliability in an increasingly interconnected driving environment. As CAV technologies continue to evolve, 
the ACCDM model offers a viable solution to mitigate the growing cybersecurity risks associated with V2V 
communication. By leveraging machine learning techniques, this work not only strengthens the resilience of 
ACC systems but also paves the way for the development of more secure and reliable autonomous driving 
technologies.

Nevertheless, the study acknowledges certain limitations, including dependence on accurate normal driving 
behavior data for model training and the lack of validation across diverse real-world scenarios. Future research 
could focus on integrating additional data sources to further enhance the robustness of the ACCDM framework. 
In addition, we plan to explore the integration of lightweight deep learning architectures, such as MobileNet, 
as well as model optimization techniques like pruning and knowledge distillation, to further improve detection 
accuracy, computational efficiency, and adaptability in resource-constrained vehicle environments. These efforts 
will ultimately contribute to the development of safer and more reliable autonomous driving systems.

Data availability
The High-D dataset used for the research described in the article is public available at ​h​t​t​p​s​:​/​/​l​e​v​e​l​x​d​a​t​a​.​c​o​m​/​h​
i​g​h​d​-​d​a​t​a​s​e​t​.​​

Code availability
The custom code used to generate the results in this study is archived on Zenodo (version v1) under DOI 
https://doi.org/10.5281/zenodo.17089809. The files are accessible upon request via the DOI page. The archive 
includes source code, a minimal runnable sample, representative trained weights, and instructions for repro-
ducing the figures.
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