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Construction robots, as a disruptive innovation in the construction industry, can effectively resolve 
industry pain points such as low construction efficiency, high safety risks, and high labor costs. 
For spraying robots of building exterior wall, the adoption of Human-Computer Interaction (HCI) 
control technology can effectively improve spraying quality, save raw materials, reduce construction 
costs, and enhance construction efficiency while ensuring personnel safety. The authors developed 
a prototype of a spraying robot based on HCI technology and proposed a real-time control method 
based on dynamic gesture recognition. This method focuses on the distance changes of 21 joints on the 
hand, combines the Support Vector Machine (SVM) classification algorithm, and constructs a real-time 
closed-loop control system including gesture acquisition, algorithm analysis, and robot execution. 
By capturing the movement trajectory of the right index finger and recognizing gestures of the left 
hand, the maximum error of turning head is only 0.89°, and the maximum error of the telescopic rod is 
only 0.21 mm. Through comparative experiments with automatic trajectory operation mode and HCI 
control mode at construction site, the HCI control mode can still maintain good spraying effects under 
different wind speed interference conditions, ensuring the continuity and accuracy of spraying quality.

Keywords  Spraying robot, Construction, Gesture recognition, Support vector machine, Human-computer 
interaction

Applications of robots in the construction industry
With the rapid development of artificial intelligence technology, the construction industry is undergoing a 
disruptive transformation, robotics technology is entering the construction industry and gradually replacing 
traditional manual labor methods1–3. The innovative application of construction robots has addressed prominent 
issues in traditional manual construction, such as long project cycles, low construction efficiency, high labor 
costs, and significant safety hazards4–7. Applications of integrated robots and automation devices for mortar 
spraying and leveling have significantly improved construction efficiency. While maintaining high construction 
efficiency, the construction quality also meets standard requirements8–10.

Through standardized construction processes and round-the-clock operation, robots can significantly 
improve construction speed while reducing raw material waste. A shopping mall construction project is an 
example, manual bricklaying needs 30 workers work continuously for 15  days, with labor costs exceeding $ 
70,000. In contrast, robot construction can shorten the duration to 5 days and save more than 30% in costs.

Spraying robot prototype
As a type of construction robot, exterior wall spraying robots have become a research hotspot in related fields in 
recent years. LIU Yajun11 studied intelligent spraying robot technology applied in various fields such as aircraft, 
automobile and building. He proposed a technical framework based on cloud-based intelligent spraying, and 
pointed out that control algorithms remain the main technical obstacle for spraying robots. Liangxi Xie12 
developed a spraying robot with capacity of autonomous movement and environment perception, the robot 
integrates various sensors and algorithms, enabling real-time perception of wall shape. Some Chinese enterprises, 
such as Bright Dream Robotics Company, have already started developing exterior wall spraying robots13.

However, facing different architectural structures, the robot needs to be deployed to the construction site 
2–3 months in advance, and can only be practically applied after multiple rounds of debugging. Moreover, under 
sudden weather changes such as strong wind, rain, and snow, it is difficult to guarantee the construction quality, 
especially in concave-convex areas like balconies and window frames, where it is hard to control the spraying 
quality. This requires the introduction of machine vision control technology. However, facing complex on-site 
environments and diverse architectural forms, the intelligent control technology relying solely on machine 
vision learning needs further exploration. In addition, since image processing algorithms are very sensitive 
to environmental noise, especially prone to misidentification in areas of light and shadow transitions, fully 
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intelligent control methods cannot handle emergencies. Therefore, HCI control is needed to ensure construction 
quality and improve construction efficiency through collaborative work between humans and robots.

Therefore, the authors have developed a prototype of a spraying robot for HCI control in complex 
environments, as shown in Fig. 1. The key is a multi-degree-of-freedom motion mechanism controlled by HCI 
technology. By controlling the movement of this mechanism, the spraying quality can be effectively improved. 
Currently, the invention patent “A Remote-Controlled Building Exterior Spraying Equipment” has been 
authorized in China, and this prototype has been applied to construction sites. This spraying robot can not only 
perform HCI control but also achieve traditional automatic control operation, with two control modes available 
for conducting comparative experiments.

HCI control technology
With the continuous development of machine vision technology and deep learning technology, HCI technology 
has gradually become an important control method. In the past decade or so, gesture recognition based on 
computer vision has dominated the field of HCI. Generally, gesture images are captured by CCD (Charge-
Coupled Device) and transmitted to the computer, and then gesture recognition is achieved through computer 
vision technology14–17.

Common gesture recognition based HCI systems can be mainly divided into three categories:

	(1)	 Sensor-based gesture interaction primarily relies on wearable devices. It features high sensitivity, good re-
al-time performance, and strong immersion, but its high cost limits its widespread application. For exam-
ple, G.Yuan18 proposed a deep feature fusion network based on wearable sensors, aiming to improve the 
accuracy and real-time performance of gesture recognition by fusing multiple sensor data, and provided 
technical scheme for the development of intelligent interactive devices.

	Rajesh K. M19 designed a spray painting robot for indoor wall coating tasks. The robot uses ultrasonic sensors 
to detect the distance between the nozzle and the wall, and coordinates with a cascaded lifting mechanism to 
achieve effective control of the spraying results.

	(2)	 Signal-based gesture interaction mainly depends on surface electromyography signals. It can accurately 
analyze gestures, but its signal acquisition and connection processes are complex. Guozhen Li20 proposed 
a quadruple tactile sensor and applied it to a robotic hand. This sensor integrates the sensing capabilities of 
pressure, material thermal conductivity, object temperature, and ambient temperature, enabling robots to 
identify objects of different shapes, sizes, and materials. E. Rahimian21 proposed a new architecture (named 
as FHGR which refers to “Few-shot Hand Gesture Recognition”) that learns the mapping using a small 
number of data and quickly adapts to a new user/gesture by combing its prior experience. The proposed 
approach led to 83.99% classification accuracy on new repetitions with few-shot observations.

	(3)	 Vision-based gesture interaction methods, such as those image sequence-based systems, are gaining in-
creasing development and application due to simple hardware requirements and diverse algorithms. How-
ever, this method is limited by issues like lighting and occlusion. Typically, human hands can move at speeds 
exceeding 5 m per second in unconscious movements, and different gestures convey different meanings. 
Therefore, the accuracy and robustness of dynamic gesture recognition remain challenging research topics. 
Some brand-new interactive experiences have been realized with the innovative application of brain-com-
puter interface, gesture, eye movement, electromyography, audio and other signals in artificial intelligence. 
P. S. Neethu22 proposed a gesture detection and recognition method based on evolutionary neural network 
classification, and made improvements to enhance detection accuracy and recognition effect.

Fig. 1.  Spraying robot prototype based on HCI technology.

 

Scientific Reports |        (2025) 15:36239 2| https://doi.org/10.1038/s41598-025-20252-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In addition to the aforementioned three control methods, some HCI control methods based on complex 
background information have also emerged successively. Onososen A.O23 employed a four-stage review 
method to study 112 articles, aiming to assess the nature of research methods in construction robotics. By using 
bibliometric and systematic analysis methods, the study revealed the methodological diversity in construction 
robotics research and discussed the influencing factors between policy and stakeholders in construction 
robotics. Haitao, Wu24 proposed a gesture recognition method based on thermal imaging, which can effectively 
recognize gestures under complex lighting conditions, thereby improving the robustness and accuracy of gesture 
recognition. Pan, M25 proposed a framework for developing construction robots through an integrated multi-
scenario approach, which aims to optimize the design and application of construction robots and improve their 
adaptability and efficiency in complex construction environments. Halder, S26 provided a systematic review of 
using robots for building health inspection and monitoring, analyzed 269 relevant papers, discussed the current 
application status and technological advancements in this field. The review covers key technologies including 
autonomous navigation, knowledge extraction, motion control, and multi-robot collaboration. Minghui Wu27 
established both high-fidelity and low-fidelity models to simulate and evaluate the impact of human–robot 
interaction on construction productivity. Although the relationship between robot quantity and productivity 
was not linear, the analysis showed that human–robot interaction could significantly improve productivity, with 
a maximum increase of 22% in experiments. Dongmin Lee 28 has developed a digital twin-driven DRL machine 
learning method for construction robots by focusing on the dynamic changes of the construction environment. 
Through three dynamic tests, it has been proven that the construction time can be reduced by 36% using the DRL 
method, which is of great significance for construction automation. Lidia Atanasova29 proposed a cooperative 
control strategy for “human–robot” collaboration mode in assembly processes. By integrating sensing and real-
time motion planning, robots can perform autonomous contact-based complex assembly tasks in uncertain 
environments. This collaborative approach allows robots to guide motion through perception while enhancing 
perception capabilities through motion.

In recent years, building robots for special purposes have also been developed and applied. Yongding 
Tian30 reviewed various mobile robot technologies applied in the construction industry for health monitoring 
of structures such as bridges and cables. Through robot vision inspection and modal recognition technology, 
these robots can detect defects and identify anomalies in bridges. The paper also analyzed the advantages and 
disadvantages of wall-climbing robots, cable-climbing robots, and flying drones in inspection tasks. Thanh 
Phuong Nguyen31 developed a multi-wheeled robot for pipeline internal inspection and analyzed flexible 
motion computation. Through simulation verification, laboratory testing, and construction site validation, 
the feasibility of the multi-axis robot was proven, representing an advanced technological innovation in the 
construction industry.

Use hand joints to recognize gestures
At present, most static gesture recognition technologies are based on distance comparison methods, mainly with 
statistical analysis techniques, which requires deep learning of abundant gesture samples. For dynamic gesture 
recognition, it is necessary to track changes in hand contour information and map it to parameter space. Due to 
the huge computational requirements, its robustness and real-time performance often fall short of expectations. 
For example, different users performing the same gesture may yield significantly different recognition results, 
and even the same user performing the same gesture twice may produce vastly different results. In recent years, 
dynamic gesture recognition technology based on hand joints has gradually become a research hotspot. Since 
hand joints are a high-level abstract representation of gesture information, hand joints are simplified as 21 joint 
points, or 21 coordinate points. By characterizing gestures through changes in the spatial relationships of these 
coordinate points, recognition results can be made more accurate and the problem of low recognition rates 
caused by complex backgrounds can be overcome.

Considering the above reasons, the HCI control technology proposed in this paper is also based on the 
recognition of 21 hand joints, thereby enabling flexible and precise control of the spraying robot’s movements.

This research was jointly completed by Wang Xingyu and Xue Zining. Wang Xingyu proposed the research 
topic and designed the research plan. He was responsible for hardware installation, algorithm development, 
programming, and led the data collection and organization. He also drafted the initial manuscript and made 
subsequent revisions. Xue Zining provided crucial technical support during the experiment, ensuring its smooth 
progress. He was responsible for data statistical analysis, chart production, and collaborated with Wang Xingyu 
on content revisions. Throughout the research process, the two authors worked closely together to advance the 
research and ensure the completion of the paper.

Overall technical solution
By detecting the position changes of 21 joints in the hand, the computer recognizes the meaning of gestures and 
sends control signals to drive movement of the spraying robot. The overall technical solution is shown in Fig. 2. 
The operator sends control commands to the spraying robot through a dynamic gesture capture camera. The 
robot performs various actions based on the gesture recognition results. The spraying quality is fed back to the 
operator through a monitoring camera, enabling real-time monitoring of the spraying process.

The meanings of the hand gestures are summarized as follows:

	(1)	 When the left hand extends the index finger, and the right hand rotates the index finger, the spray nozzle 
around the W-axis rotates.

	(2)	 When the left hand extends the index and middle fingers, and the right hand rotates the index finger, the 
turning head around the P-axis rotates.
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	(3)	 When the left hand extends three fingers, and the right hand moves the index finger, the telescopic rod 
along the X-axis moves.

In the HCI control process, the left-hand gesture is first recognized to determine which part of the robot will 
be controlled (for example, spray nozzle, turning head, or telescopic rod). Then, moving the right index finger, 
the corresponding part can be driven. Flexibility and usability in spraying operations can be achieved by 
combination different method. Even when the operator is far from the spraying robot, the spraying task can still 
be well completed. For sliding in the Y direction and vertical movement in the Z direction, the robot’s built-in 
automation program can be used without HCI. This is because these two movements are for adjusting the overall 
robot position and cannot precisely control the spray nozzle and turning head for spraying effect.

Hand gesture recognition
Simplifying the palm into 21 joints essentially transforms the palm into a point cloud model. The common 
practice is to distribute each joint into a spatial coordinate system, and use combinatorial mathematics theory 
and social network graph theory for recognition32. When the 21 coordinate points change frequently, the 
aggregation pattern of these points becomes extremely complex, significantly increasing the computational load 
for dynamic gesture recognition. To avoid traversing each coordinate point, this paper proposes a fast algorithm 
that reduces computational complexity while ensuring gesture recognition.

Hand joint recognition method
The hand key points recognition is to locate the positions and postures of hand joints. By accurately identifying 
these key points, gesture changes can be located and tracked. Common methods include graph model-based 
methods, template matching-based methods, and feature point detection-based methods. In recent years, with 
the optimization and upgrading of the OpenCV library, the accuracy and efficiency of deep learning-based 
hand joint recognition functions have significantly improved, with the average recognition time for hand joints 
less than 1 ms, providing technical support for HCI control. This paper uses the “MediaPipe.hands” gesture 
detection module in OpenCV, an open-source function model provided by Google Company, which has been 
well trained and can recognize finger posture changes in real-time with good robustness.

“MediaPipe.hands” gesture detection model numbers each joint, as shown in Fig. 3 below. Point 0 represents 
the center of the wrist. When each finger changes its movement, the gesture can be preliminarily classified 
through the set of joints. Therefore, we need to use a classifier algorithm to implement this function.

Classifier recognition algorithm
Currently, the main classifier recognition algorithms include logistic regression, naive bayes, K-nearest 
neighbors, decision trees, and support vector machines (SVM). The classification features of discrete points 
of hand joints on a two-dimensional coordinate plane are two-dimensional linear classification, and SVM is 
particularly suitable for binary linear classification of discrete targets.

SVM algorithm is also applicable to machine learning problems in small sample scenarios. It can simplify 
common problems such as classification and regression. Specifically, when discrete points are linearly separable, 
the algorithm can find the optimal classification hyperplane for two types of samples in the original space. The 
classifier function g(x) is expressed as follows.

	 g(x) = ax + b� (1)

Fig. 2.  Overall technical solution.
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In Eq. (1), a is the slope, b is the intercept.
For typical binary discrete points, if function gk(x) = akx + bk(k = 0, 1, 2, 3) is the diagonal line in Fig. 4, 

red and blue points will be strictly classified according to this diagonal line. Based on the same principle, when 
making a fist, points below the diagonal line are classified into one group, and there are no discrete points above 
the diagonal line, as shown in Fig. 4(1). When the index finger is extended, this function distributes three points 
of the index finger (red) above the diagonal line, and the remaining points (blue) below the diagonal line, as 
shown in Fig. 4(2). According to the same principle, we can distinguish between extending two fingers and 
extending three fingers, as shown in Fig. 4(3) and Fig. 4(4).

As the hand moves and gestures change, the coordinates of the 21 joints on each hand are in a dynamic 
process of change. Therefore, dynamically determining a and b is another key, so that function g(x) = ax + b 
becomes available.

According to the principle of least squares, the smaller the deviation between samples and expectations is, the 
better, that is, to minimize the weighted sum of squares of the deviation between observed values and expected 
values. For linear fitting of equally precise observed values like fingertip points in this article, we can minimize 
the following equation.

	

N∑
i=1

[yi − (axi + b)]2� (2)

Taking partial derivatives of a and b in Eq. (2) above, we obtain the following equations.

	

∂

∂a

N∑
i=1

[yi − (a + bxi)]2 = −2
N∑

i=1

(yi−a − bxi) = 0� (3)

Fig. 4.  Gesture recognition through classifier.

 

Fig. 3.  Recognition of hand joints.

 

Scientific Reports |        (2025) 15:36239 5| https://doi.org/10.1038/s41598-025-20252-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

∂

∂b

N∑
i=1

[yi − (a + bxi)]2 = −2
N∑

i=1

[yi − (a + bxi)]xi = 0� (4)

After calibration, the following system of equations can be obtained.

	





aN + b
N∑

i=1
xi =

N∑
i=1

yi

a
N∑

i=1
xi + b

N∑
i=1

x2
i =

N∑
i=1

xiyi

� (5)

After solving the above system of equations, the optimal estimates of a and b can be obtained in g(x), with the 
solution formula as follows.
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According to the above equation, to determine whether â and b̂ have a linear relationship with xi and 
yi, correlation analysis needs to be performed, and the correlation coefficient is set as r. The expression for 
correlation calculation is as follows:

	

r =

N∑
i=1

(xi − x)
N∑

i=1
(yi − y)

√
N∑

i=1
(xi − x)2

√
N∑

i=1
(yi − y)2

� (8)

In Eq. (8), x =
N∑

i=1
xi/m, y =

N∑
i=1

yi/m, r ∈ [−1, 1], when |r| → 1, an optimal linear relationship is observed 

between a and b.

Left hand gesture recognition
The above classifier algorithm solves the problem of classifying finger joints and other palm joints. To further 
determine which finger is extended, the paper uses relative distance for judgment. Typically, measuring the 
similarity between two points is the main task of feature recognition. Common measurement methods include 
‘Euclidean distance’ and ‘Mahalanobis distance’. Among them, ‘Euclidean distance’ is the most direct distance 
expression, suitable for distance measurement between two points33. Since ‘Euclidean distance’ does not focus 
on the relationship between each vector and each dimension, and the importance of each dimension component 
is the same. This is quite consistent with the characteristics of hand joint distance, which makes ‘Euclidean 
distance’ transformation widely used in digital image processing, especially suitable for measuring skeletal joints 
in human body images.

If each m-dimensional eigenvector of i is Xi, and Xik  is the k-dimensional parameter of Xi,|Di,j | is the 
‘Euclidean distance’ between individual i and individual j, then |Di,j | can be expressed as:

	

|Di,j | =

√√√√
m∑

k=1

(Xik − Xjk)2(i, j = 1, 2, 3...n : k = 1, 2, 3..m)� (9)

As the left hand is used to select and determine the controlled parts with the spraying robot, this paper adopts 
the distance from the left finger joints to the center point 0 of the wrist to make judgments. The 21 hand joints 
are projected onto a two-dimensional coordinate plane, and the position changes of a joint are expressed with 
x-axis and y-axis coordinate values. The left hand’s posture can be determined through the following algorithm.

	(1)	  Extend the index finger of the left hand

	 di =
√

(pix − p0x)2 + (piy − p0y)2(i = 1, 2 · · · 20)� (10)
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di is the distance from any joint on the finger to the wrist point 0.
pix and piy are the coordinates of the ith joint on the x-axis and y-axis respectively.
p0x and p0y are the coordinates of the wrist at point 0 on the x-axis and y-axis respectively.
When d8 is greater than the distance from all other joints to point 0, the left hand is determined to be in the 

index finger pointing gesture, as shown in Fig. 4(2).

	(2)	 Extend the index and middle fingers of the left hand

	

dj,k =
√

(pjx − p0x)2 + (pjy − p0y)2

+
√

(pkx − p0x)2 + (pky − p0y)2

(j = 1, 2 · · · 20)
(k = 1, 2 · · · 20)
(j ̸= k)

� (11)

pjx and pjy  are the coordinates of the jth joint on the x-axis and y-axis respectively.
pkx and pky  are the coordinates of the kth joint on the x-axis and y-axis respectively.
In Eq. (11),when j = 8, k = 12 and d8,12 is greater than the sum of distances from all other joints to point 0, 

the left hand is determined to be stretching the index finger and middle finger, as shown in Fig. 4(3).

	(3)	 Extend three fingers with the left hand

	

dl,m,n =
√

(pqx − p0x)2 + (pqy − p0y)2

+
√

(pmx − p0x)2 + (pmy − p0y)2

+
√

(pnx − p0x)2 + (pny − p0y)2

(q = 1, 2 · · · 20)
(m = 1, 2 · · · 20)
(n = 1, 2 · · · 20)
(q ̸= m ̸= n)

� (12)

pqx and pqy  are the coordinates of the qth joint on the x-axis and y-axis respectively.
pmx and pmy  are the coordinates of the mth joint on the x-axis and y-axis respectively.
pnx and pny  are the coordinates of the nth joint on the x-axis and y-axis respectively.
In Eq. (12), when q = 12, m = 16, n = 20 and dq,m,n is greater than the sum of distances from all other 

joints to point 0, the left hand with three fingers is identified as shown in Fig. 4(4).
Although random or unconscious gestures may get the same recognition results, for accurate and expected 

outcomes, operators are required to perform correct gestures as much as possible to achieve optimal recognition 
results.

Right-hand movement algorithm
The extraction method for the right index finger joint is similar to that of the left hand. However, since the 
right hand is needed to drive the robot’s movement, we only need to consider the right index finger’s tip point 8 
separately. By identifying the movement coordinates of point 8, we can obtain the control commands.

If the coordinate of the right index finger’s tip point 8 is (xi, yi) at the initial moment, as the right index 
finger moves, the coordinate of point 8 changes to (xj , yj). Here, we classify the movement of the right index 
finger into two motion patterns:

	(1)	 Rotation of the right index finger.

Assume the oscillation trajectory of point 8 is approximately an arc, as shown by the dashed line in Fig.  5. 
However, as the finger rotates, the wrist also moves slightly, meaning point O′ of the wrist also changes in the 
XY plane. To solve this problem, we use absolute coordinate point O to calculate the rotation angle of hand point 
8, as shown in Eq. (13).

	 αj = |arctan(yj/xj) − arctan(yi/xi)|� (13)

Fig. 5.  Schematic diagram of right index finger motion trajectory calculation.
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	(2)	 Horizontal movement of right index finger.

When the right index finger moves in translation, the coordinate value (xj , yj) continuously updates. We only 
need to calculate the distance between point (xi, yi) and point (xj , yj) to determine the distance the controlled 
object needs to move.

Experimental verification
Control accuracy verification
This paper developed a control program with Python software and conducted HCI control tests. The overall 
process is shown in Fig. 6 below. Step-1 is used to recognize 21 joints of the hand; Step-2 is used to determine 
gestures and select the robot parts to be driven; Step-3 is used to move the index finger to send control commands 
to the robot; Step-4 is the hardware system, mainly including video capture card and multi-degree-of-freedom 
motion controller. Through these four steps, interactive control of spraying robot can be achieved.

During the interactive control process, the recognition accuracy of the right index finger plays a crucial 
role in the control precision of the robot. Therefore, this section will detail the control effect of the right index 
finger movement. Standard curved and straight notched templates are used to drive the robot’s turning head and 
telescopic rod, which helps in comparative analysis of control precision. As shown in Figs. 7 and 8, when the 
right index finger slides along the curved and straight notched templates, the camera captures the movement 
trajectory of fingertip point 8, and real-time feedback of the turning head and telescopic rod is obtained through 
the angle sensor and displacement sensor.

First, the index finger slowly rotates in the curved notched template, and the camera tracks the rotation 
process of point 8 in real-time, calculating its coordinate values and radius value on the XY plane. Then, it 
calculates the rotation angle αj  of point 8 at any moment, and outputs αj  to the control system to monitor 
the actual rotation angle of turning head. During the rotation of point 8 on the right hand from 0° to 180°, the 
feedback signal of the turning head is sampled at 40 equally spaced points, with each interval between sampling 
points being 4.5°. The actual angle of the turning head at each sampling point is recorded, and the radius value 
and rotation angle are plotted in polar coordinates. To verify the reliability of the algorithm, three repeated test 
processes were conducted, and the obtained actual trajectories of the turning head are shown as Test1, Test2, 
and Test3 in Fig. 7.

In three tests, the maximum error in the first test was 0.89°. Subsequently, with iterative training of the system 
on error correction, the accuracy was gradually improved, and the maximum error in the third test was only 
0.55°.

Based on the same principle, the index finger slides within the straight notched template. As shown in Fig. 8, 
the camera recognizes the movement of point 8 and calculates its coordinate value (xj , yj) on the XY plane in 
real-time. The X-axis coordinate value xj  drives the movement of the telescopic rod. Throughout the entire range 
of index finger movement, the movement of the telescopic rod is recorded. 40 sampling points are selected at 
equal intervals, and the testing process is repeated three times. The actual movement trajectories of the telescopic 
rod are shown as Test1, Test2, and Test3 in the Fig. 8. In these three tests, the maximum error was 0.21 mm in the 
first test. Subsequently, with iterative error correction and training, the accuracy was gradually improved with a 
maximum error of only 0.14 mm in the third test.

In the above tests, the error of 40 sampling points per curve (including gesture recognition error and 
hardware error) represents the total system error. However, based on the feedback results, both for curve and 
straight notched interaction control, the spraying robot’s turning head and telescopic rod can respond to gesture 

Fig. 6.  HCI control process and methods.
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commands, accurately understand gesture meanings, and demonstrate high motion accuracy. Moreover, the 
control accuracy gradually improves after multiple.

Spraying effect comparative test
To verify the effectiveness of HCI control method, the robot was applied to a construction site, to spray the 
newly-built residential buildings. The spraying robot can be set to two working modes: automatic operation and 
HCI control. Before the experiment, an air blower was fixedly installed on the spraying robot, with the air outlet 
1 m away from spray nozzle. By changing the speed of the air blower, the impact of different wind speeds on 
spraying was simulated.

Under normal circumstances, when the wind is weak, the airflow disturbance to spraying is not strong. At 
this time, the automatic operation mode maintains good and stable construction quality. However, when the 
wind speed increases, it becomes difficult to accurately control the spraying area. The stronger the wind, the 
larger the area where the paint film deviates from the target area. After adopting HCI control, operators can 
monitor the spraying effect in real-time to adjust spray nozzle angle and spraying pressure flexibly, even with 
strong wind, so spraying quality can be guaranteed.

Four wind speeds are set 3 m/s, 5 m/s, 8 m/s, and 10 m/s. When the wind speed exceeds 10 m/s, it is strong 
wind, which does not meet construction conditions, so strong wind tests are not considered in this paper. From 
the comparison in the figures below, when the wind speed is 3 m/s, both spraying modes have high precision, 
with paint mostly within the target area, as shown in a1 and a2 in Fig. 9. As wind speed increases, the spraying 
precision of the automatic operation mode is significantly affected, with paint starting to spread to adjacent 
areas. When wind speed reaches 10 m/s, a large amount of paint splashes into adjacent areas, resulting in poor 

Fig. 8.  Test verification of X-direction movement.

 

Fig. 7.  Test verification of rotation.
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spraying quality, as shown in d1 in Fig. 9. However, under the same wind speed, due to human intervention, the 
HCI controlled spraying area remains highly accurate and little paint splashes into adjacent areas, as shown in 
d2 in Fig. 9.

Conclusion
This paper focuses on the brand-new field of construction robots, the authors developed a prototype of a HCI 
spraying robot and proposed a gesture recognition-based HCI control method. This method combines ‘Euclidean 
distance’ algorithm and SVM classification algorithm to realize the robot’s recognition of hand movements. The 
authors conducted motion control accuracy tests and spraying effect comparison tests for the spraying robot.

In the motion accuracy tests, when the right index finger moved in the curved and straight notched template, 
both the turning head and telescopic rod of the spraying robot maintained synchronous movement. The tests 
were repeated three times, with the maximum error of the turning head interaction control being only 0.89°, and 
the maximum error of the telescopic rod interaction control being only 0.21 mm. The errors gradually decreased 
with increasing training times.

In the spraying effect comparison tests, we conducted practical application on a newly-built building with 
two control modes: robot automatic trajectory operation and HCI control. To verify the accuracy of the HCI 
control, an air blower was installed on the robot, and four wind speeds were set. Under airflow interference, 
the spraying quality of the HCI control method remained high. Even when the wind speed reached 10 m/s, 
the spraying effect was still very ideal through HCI control intervention. However, the spraying of automatic 
trajectory operation was poor, and lots of paint splashed around the target area. Therefore, raw material was 
wasted and construction efficiency was decreased.

It should be noted that although ideal test results were obtained with small computation requirements and 
high execution efficiency, these results were obtained through continuous debugging and repeated exploration. 
The author will continue to increase the number of test samples and repeatedly train the HCI control algorithm 
to further improve gesture recognition efficiency and spraying accuracy.

Data availability
All experimental data are presented in the paper. If needed, the source data and figures supporting the results of 
this study can be obtained from the corresponding author, maklcewxy@163.com.
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