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Genomic structural equation
modeling identifies shared genetic
architecture and novel loci for
halitosis

Yingying Hu'*“, Ziyu Zhao? & Beier Lian?

The intricate shared genetic architecture underlying halitosis and its related disorders—including
salivary secretion disorders, chronic periodontitis, gastroesophageal reflux disease, dental caries,
chronic sinusitis, helicobacter pylori infection, and porphyromonas genus abundance—remains
incompletely characterized. Our study employed genomic structural equation modeling (Genomic
SEM) to define the halitosis common factor (HCF) representing the shared genetic architecture

of halitosis-related disorders. Coupled with diverse post-GWAS analytical methods, we aimed to
discover susceptible loci and investigate genetic associations with external traits. Furthermore, we
explored enriched genetic pathways, cellular layers, and genomic elements. Polygenic risk score
analyses, leveraging our integrated GWAS data, were conducted to assess chromosomal-level risk
associations for the HCF. A well-fitted genomic SEM integrated GWAS data, revealing the shared
genetic architecture of halitosis-related disorders. We identified 23 independent genome-wide
significant SNP loci, all previously unreported for this HCF relative to the input single-trait GWAS.
Fine-mapping of variants and gene prioritization pinpointed numerous high-confidence putative causal
variants and candidate susceptible genes. Subsequent analyses further illuminated the shared genetic
architecture underlying HCF and multiple external traits, notably neuropsychiatric characteristics,
cognitive function, and inflammatory or metabolic conditions. Notably, this study presents the first
comprehensive genetic characterization of halitosis and its related disorders through a GWAS analysis
of an unmeasured composite phenotype, providing novel insights into shared etiological pathways
potentially linking oral health to systemic factors across these conditions.
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Halitosis, characterized as an offensive breath odor, is a prevalent health concern affecting an estimated third
of the global population'. This condition significantly impacts individual social interactions and overall
quality of life%. The etiology of halitosis is complex. While most cases originate intra-orally, primarily linked
to microbial activity associated with tongue coating, chronic periodontitis, and dental caries, extra-oral factors
also contribute substantially. Such factors include otorhinolaryngologic conditions like chronic sinusitis (CRS),
digestive system disorders, notably gastroesophageal reflux disease (GERD) and Helicobacter pylori infection,
and salivary secretion disorders>*. Despite extensive research into microbial and environmental determinants,
the underlying host genetic susceptibility influencing halitosis and its biological mechanisms remains poorly
understood®. Therefore, dissecting the shared genetic architecture of halitosis and its associated traits is crucial.
Such analysis is expected not only to reveal complex biological mechanisms and common pathophysiological
pathways®, but also holds significant public health relevance for identifying individuals at multiple risks and
informing the development of more precise, effective prevention and intervention strategies’.

Previous studies into halitosis etiology relied heavily on observational epidemiology. These studies successfully
identified associations between halitosis and various clinical factors, including chronic periodontitis, CRS,
GERD, and specific microbial infections like helicobacter pylori infection and certain porphyromonas species®~1°.
However, observational approaches have inherent limitations in establishing causality, as identified associations
may be confounded by unmeasured factors or subject to reverse causation. Concurrently, genetic investigations
attempted to elucidate the role of host genetic background via candidate gene association studies, exemplified
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by analyses linking hTAS2R38 polymorphisms to halitosis susceptibility’. Parallel microbiological efforts
concentrated on the specific roles of particular oral bacteria, such as porphyromonas gingivalis, Fusobacterium
nucleatum, and Moraxella species, in the production of volatile sulfur compounds (VSCs) and the manifestation
of halitosis'"!2. However, these early research strategies had inherent limitations. Candidate gene methodologies
are heavily reliant on prior biological hypotheses, rendering them susceptible to selection bias and incapable of
capturing genetic effects across the entire genome. Similarly, studies focusing solely on specific microbes often
neglected the holistic complexity of the oral microbiome as an ecosystem and the intricate interactions among
its constituent species'>. These limitations have impeded a comprehensive and systematic understanding of the
genetic and microbial foundations underlying halitosis as a complex trait.

The completion of the Human Genome Project, enabled the advent of Genome-Wide Association Studies
(GWAS), which rapidly emerged as the predominant paradigm for investigating the genetics of complex traits'*.
Indeed, GWAS has been widely and successfully employed to dissect the genetic basis of numerous individual
diseases or traits relevant to halitosis etiology, including chronic periodontitis and dental caries, GERD, CRS,
and susceptibility to Helicobacter pylori infection!>!6. These efforts have identified a multitude of genetic
susceptibility loci associated with these specific phenotypes. However, this approach inherently struggles to
capture the potential shared genetic architecture and pleiotropic loci underlying these interrelated phenotypes.
Consequently, this limitation hinders a comprehensive understanding of the holistic genetic basis of halitosis
itself, recognized as a complex syndrome with multi-systemic and multi-factorial contributions’. A powerful
strategy to overcome the limitations of single-trait analyses and the challenges of directly measuring a complex
phenotype like halitosis in large cohorts is to model a latent common factor representing the shared genetic
liability across its key etiological traits. Therefore, to overcome the constraints of single-trait analyses and fully
leverage the wealth of existing GWAS data, there is a pressing need for the development and application of more
sophisticated statistical genetic methodologies and integrative analytical strategies.

Genomic structural equation modeling (Genomic SEM) offers a robust statistical framework for integrating
GWAS summary statistics across multiple traits, thereby enabling the construction and testing of complex models
pertaining to their genetic architecture!”. In the present study, this framework was leveraged using publicly
available GWAS summary statistics specific to halitosis-related traits. Genomic SEM facilitates the elucidation
of shared genetic underpinnings and putative causal relationships among traits by combining GWAS data with
structural equation modeling principles, while rigorously accounting for sample overlap and pleiotropy. A key
application of this methodinvolved estimating single nucleotide polymorphism (SNP) associations with a latent
halitosis phenotype, effectively conducting a GWAS on this unmeasured construct. To further interrogate the
genetic landscape, unexplained genetic variance potentially harboring novel loci associated with halitosis was
investigated through complementary analyses informed by systems biology perspectives. While acknowledging
that this genetic approach cannot fully capture the intricate interplay of genetic, environmental, and stochastic
factors contributing to complex traits like halitosis, its application minimizes confounding from non-genetic
factors often associated with direct biomarker measurements, thus permitting a robust analysis of challenging
summary-level datasets. Subsequently, extensive causal inference analyses, utilizing the GWAS summary data,
were performed to identify potential causal links between genetic variation and clinical outcomes. These analyses
aim to provide predictive insights for clinicians and biologists, potentially informing preventative strategies and
therapeutic interventions for patients.

Methods

GWAS summary statistics data sources for genomic SEM

Figure 1 presents a schematic overview outlining the workflow employed in this study. For the Genomic SEM
analysis, GWAS summary statistics were sourced from seven independent studies pertaining to halitosis-
associated traits. These datasets originated from previously published GWAS investigations. The analysis
encompassed traits including salivary secretion disorders, chronic periodontitis, GERD, dental caries, CRS,
Helicobacter pylori infection, and porphyromonas genus abundance. Ethical approval was obtained from
respective Institutional Review Boards for all contributing GWAS studies, and informed consent had been
provided by all participants. Prior to our analysis, summary statistics were subjected to rigorous quality control
procedures to ensure data integrity. Table S1 provides a detailed list of the GWAS datasets incorporated.

Rationale for trait selection

The selection of these seven traits was guided by the well-established multifactorial etiology of halitosis, which
is broadly categorized into intra-oral and extra-oral origins. This framework aimed to construct a biologically
coherent composite factor that captures the condition’s complex pathogenesis. Intra-orally, chronic periodontitis
and dental caries were included as they are recognized primary pathological drivers of halitosis, creating
anaerobic niches that facilitate the bacterial production of VSCs®8. To capture the broader oral environment,
salivary secretion disorders were included, as reduced salivary flow impairs oral clearance and promotes
microbial proliferation, while the abundance of Porphyromonas genus was incorporated as a direct measure of
the key VSC-producing microbiotal®?. For extra-oral contributions, GERD, Helicobacter pylori infection, and
CRS were selected as they represent key, well-documented etiologic factors originating from the digestive and
upper respiratory tracts that are linked to halitosis!®?!?2. The final selection was determined by two primary
criteria: first, a strong, evidence-based biological link to halitosis, and second, the crucial requirement of
having publicly available, well-powered GWAS summary statistics from populations of European ancestry to
ensure methodological consistency and statistical power. The final set of seven traits therefore represents the
most comprehensive and biologically robust composite phenotype that could be constructed from the available
genetic data.
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Fig. 1. Flowchart illustration.

Quality control of input GWAS data

A stringent quality control (QC) pipeline, adhering to recommended filtering criteria, was implemented for all
autosomal SNPs across the seven input GWAS datasets. To ensure consistency and compatibility, filtering was
performed against the 1000 Genomes Project Phase 3 European (EUR) reference panel. Variants were excluded
if they exhibited a minor allele frequency (MAF) <0.01, reported a zero effect size estimate, presented reference
panel mismatches, or possessed ambiguous allele assignments. Recognizing that the constituent GWAS datasets
originated from diverse genomic repositories and study populations, potential sample overlap represented a
critical methodological consideration. To address this, we utilized the multivariate extension of LDSC within
the Genomic SEM framework. This statistical method inherently estimates the genetic covariance matrix while
simultaneously calculating and adjusting for any sample overlap among the input GWAS summary statistics.
This approach is designed to prevent test statistic inflation and enhance the robustness of subsequent Genomic
SEM results by minimizing bias in effect size estimations.

Genomic SEM construction

Genomic SEM, implemented via the *GenomicSEM" R package (v0.0.5), was employed to investigate the shared
genetic architecture underlying the selected halitosis-related traits. Genomic SEM provides a means of exploring
the latent genetic structure connecting multiple phenotypes through the estimation of multivariate genetic
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models!”. A key advantage of the Genomic SEM approach is its robustness to variations in sample overlap and
sample size across input studies, thereby mitigating potential biases associated with these factors. The Genomic
SEM analysis was conducted in two principal stages. The first step involved estimating the empirical genetic
covariance matrix (S) and its corresponding sampling covariance matrix (V). To this end, QC-filtered GWAS
summary statistics for the seven halitosis-related traits were compiled, and the multivariate extension of Linkage
Disequilibrium Score Regression (LDSC) was applied. LDSC offers a powerful statistical framework that
utilizes GWAS summary statistics and LD information. This approach distinguishes true polygenic signals from
confounding factors such as cryptic relatedness and population stratification. Within our study, multivariate
LDSC generated the empirical genetic covariance matrix for the seven traits. This matrix served as the input for
the SEM model fitting in the subsequent stage. SNP-based heritability estimates (h>*SNP) derived from LDSC for
each individual trait are reported in Table S2. The second stage involved specifying and fitting a common factor
SEM model. The primary goal was to identify a latent common genetic factor (s) underlying the seven halitosis-
related traits by minimizing the discrepancy between the model-implied covariance structure and the empirical
genetic covariance matrix derived from Stage 1. To assess model adequacy, multiple established fit indices were
evaluated, including the Standardized Root Mean Square Residual (SRMR), the model chi-square test statistic
(x*), the Akaike Information Criterion (AIC), and the Comparative Fit Index (CFI) (Table S3 and S4). This
common factor SEM specification provided a method for integrating individual autosomal SNP associations
across the seven traits into a unified model. This integration facilitated a genome-wide association analysis for
the identified latent common factor. To ensure consistent effect directions among SNPs significantly associated
with the common factor, a heterogeneity test using Cochran’s Q statistic was performed for each genome-wide
significant SNP; variants with a heterogeneity FDR-value < 0.05 were excluded.

Multi-level evaluation of the genomic SEM model

In addition to the standard model fit indices (SRMR, XZ, AIC, CFI), supplementary evaluations were conducted
to assess the stability and validity of the Genomic SEM results. Specifically, parameters such as the mean ¥,
genomic inflation factor (lambda GC, AGC), maximum ¥, the overall h?SNP of the common factor, the LDSC
intercept, and the attenuation ratio (calculated as (LDSC Intercept —1) / (Mean x> — 1)) were examined using
LDSC based on the common factor GWAS summary statistics. Detailed controls for LDSC parameters included
retaining SNPs with missing values, retaining SNPs with INFO scores < 0.9, retaining SNPs with MAF <0.01, and
excluding SNPs with p-values outside of the valid range or with unclear chain orientation.

Identification of significant and novel genomic loci

We utilized FUMA (Functional Mapping and Annotation; https://fuma.ctglab.nl/) to systematically identify
genomic risk loci associated with the halitosis common factor (HCF) derived from the Genomic SEM%.
Independent significant SNPs were defined as those reaching genome-wide significance (P < 5 x 107%). Lead
SNPs within each locus were designated based on the lowest P-value and independence from other lead SNPs
(r* < 0.1). In order to ascertain novelty, a ‘GWAS-by-Subtraction’ approach was additionally employed. This
involved contrasting loci identified via the Genomic SEM (P < 5 x 107®) with those reaching genome-wide
significance in any single-trait input GWAS (P < 5 x 107®). Further comparisons were made against previously
published associations (P < 5 x 107®) in the GWAS Catalog to evaluate potential pleiotropy.Risk locus annotation
and prioritization for genome-wide significant variants (P < 5 x 10™®) from the Genomic SEM common factor
GWAS were subsequently performed using FUMA. Post-GWAS analyses were conducted using MAGMA to
investigate gene-level associations with the HCE

Fine-mapping of association signals

In order to pinpoint the most probable causal variants within the identified loci, a Bayesian fine-mapping
approach was implemented using FINEMAP, executed via the ‘echolocatoR" R package (v2.0.3)?%. For each
independent significant signal, a 250 kb window centered on the lead SNP was analyzed. Posterior probability
(PP) of causality for each variant within the region is calculated by FINEMAP, accounting for LD structure
(1000 Genomes EUR reference). 95% credible sets were defined for each signal, encompassing the minimal set
of variants whose PP >0.95. Variants within these credible sets were considered putative causal variants.

Transcriptome-Wide association study

Given that association signals may be mediated through gene expression, and recognizing that fine-mapping
solely based on SNP proximity can be limited, a Transcriptome-Wide Association Study (TWAS) was
performed?. The sCCA-TWAS method was employed across multiple tissues to identify genes whose predicted
expression levels associate with the HCE This analysis leveraged pre-computed tissue-specific eQTL weights
for 37,920 genes derived from the Genotype-Tissue Expression (GTEx) project (v8) dataset. Genes exhibiting a
significant TWAS association after FDR correction (FDR < 0.05) were selected for further analysis. In order to
refine TWAS findings and assess the likelihood of causal effects versus LD-induced correlation, FOCUS (Fine-
mapping Of Causal gene Sets) was applied to significant TWAS genes within each locus. The FOCUS framework
calculates the posterior inclusion probabilities (PIP) for each gene being the causal mediator. This Bayesian
approach integrates GWAS summary statistics and eQTL weights, adjusting for LD and potential colocalization.
A PIP threshold > 0.8 was used to identify genes with strong evidence supporting a causal role.

Gene set and pathway enrichment analysis
Gene set and pathway enrichment analyses were performed to elucidate the biological functions and pathways
potentially underlying the genetic associations. Genes implicated by MAGMA served as the input set. These
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analyses were conducted using tools such as FUMA’s gene2func module, querying canonical pathways and
functional categories from the Molecular Signatures Database (MsigDB).

Cell type annotation and partitioned heritability analysis

To identify specific cell types potentially relevant to the etiology of the HCF, the CELLECT pipeline was
employed?®. This method provides a means of integrating cell-type expression specificity profiles from single-
cell RNA sequencing (scRNA-seq) data with GWAS summary statistics. Pre-processed expression specificity
likelihood scores, computed via CELLEX using the Tabula Muris dataset?’, were utilized. Stratified LD Score
Regression (S-LDSC) was subsequently applied to test for enrichment of the common factor heritability within
genomic regions specific to each cell type. Furthermore, partitioned heritability analysis using S-LDSC was
performed to estimate the contribution of different functional genomic annotations (e.g., coding regions,
enhancers) to the overall heritability. This analysis allows for the assessment of heritability enrichment within
specific genomic categories, offering insights into the functional context of the associated variants.

Correlation and causal inference with external traits via Mendelian randomization

In order to explore potential causal relationships between various exposures and the HCEF two-sample
Mendelian Randomization (MR) was performed. The IEU OpenGWAS database, encompassing data for 50,033
phenotypes, was utilized as a comprehensive source for potential exposure traits. Instrumental variables (IVs)
for each exposure were selected based on genome-wide significance (P < 5 x 107*) and independence (r’<
0.001, kb = 10,000). The inverse variance weighted (IVW) method was employed as the primary MR approach.
Sensitivity analyses, including MR-Egger regression and the weighted median method, were conducted to assess
the robustness of the findings against potential pleiotropy?s.

Polygenic risk score construction and evaluation

Polygenic Risk Scores (PRS) were constructed to evaluate the collective predictive capacity of common variants
identified through the Genomic SEM for the HCF?. The PRS-CS algorithm, a Bayesian regression framework
incorporating continuous shrinkage priors, was utilized for this purpose. This algorithm provides a means of
integrating the Genomic SEM summary statistics with an external LD reference panel (1000 Genomes EUR) to
compute posterior SNP effect sizes. The resulting shrunken effect estimates are suitable for calculating PRS, the
performance of which could potentially be evaluated in independent target cohorts.

Results

Structural equation model fitting

Based on LDSC analysis of the seven GWAS summary statistics comprising the genomic SEM for the HCEF, three
traits (salivary secretion disorders, chronic periodontitis, and GERD) exhibited heritability Z-scores exceeding
1.96. The remaining four traits (dental caries, CRS, Helicobacter pylori infection, and porphyromonas genus
abundance) exhibited Z-scores below this threshold (Table S2). Although four traits showed non-significant
heritability Z-scores, they were retained in the model. This decision was based on two key considerations: first,
Genomic SEM can effectively leverage the genetic covariance between traits, which can be estimated with greater
power than individual heritabilities, even when the heritability of some indicators is low or non-significant.
Second, these traits are clinically and biologically integral to the multifaceted etiology of halitosis, and their
exclusion would have resulted in a less comprehensive and biologically valid common factor. The point estimates
for their heritability were non-zero and their standard errors were promising, suggesting they still contribute
valuable information to the model. These findings suggest statistically significant heritable components for a
subset of the traits, whereas others demonstrated weaker or non-significant heritability signals. The genetic
covariances between each pair of traits are presented in Table S3 and Fig. 2. A one-common-factor model fitted
to the genetic covariance matrix (S) was evaluated. The model fit indices were mixed, with a perfect CFI (1.000)
suggesting excellent fit, but an elevated SRMR (0.221) indicating some residual error (Table S4). This pattern can
occur in Genomic SEM, particularly with a limited number of indicators, where CFI may be insensitive. Despite
the elevated SRMR, which suggests potential model misspecification, we proceeded with the one-factor model
given the strong theoretical rationale and the exploratory nature of this study. Standardized factor loadings of
the latent variable onto each observed trait, alongside estimates of residual variances for each trait, are detailed
in Table S5. Collectively, these results provide evidence supporting a shared genetic factor underlying the
selected halitosis-related traits within the genomic SEM. The final genomic SEM analysis generated an indirectly
measured GWAS, based on 6,918,772 SNPs, to investigate the genetic architecture of the HCE.

Stability assessment of the genomic SEM via LDSC

To assess the stability and potential confounding influences within the GWAS summary statistics derived from
the genomic SEM for the HCF, we employed LDSC. Following quality control procedures specific to this LDSC
analysis, 1,083,268 SNPs were excluded, retaining 892,405 SNPs for the regression model. The LDSC regression
applied to the common factor summary statistics yielded a mean ¥ statistic of 0.5736 across the retained SNPs.
The genomic inflation factor (A\GC) was 1.1144, and the LDSC intercept was 0.4662 (SE=0.0029). The total
observed-scale heritability (h*) was estimated at 0.0009 (SE=3.4333e-05). The observed AGC is modest and, in
the context of our sample overlap correction via multivariate LDSC, is interpreted as reflecting true polygenicity
rather than residual confounding. The mean x> of 0.5736, while lower than typically observed in single-trait
GWAS, is not indicative of data quality issues or overcorrection in this context. Instead, it reflects the nature of
a common factor GWAS, where the effect of any single SNP on the latent factor is an aggregation of its effects
across seven traits, leading to an attenuated average signal strength across the genome. The true signal is captured
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by the genome-wide significant loci that emerge from this attenuated background, representing variants with
pleiotropic effects consistent with the common factor model.

Risk genetic loci

In the GWAS derived from the genomic SEM for the HCFE, we identified 23 genetic variants that surpassed the
genome-wide significance threshold (P <5 x 107®) (Fig. 3, Table S6). Functional annotation performed using the
FUMA platform revealed that the majority of these associated loci reside within intergenic (55.1%) and intronic
(36.9%) regions. Smaller proportions were located in downstream (0.6%), 3’ untranslated regions (UTR3, 0.2%),
non-coding RNA exonic (0.2%), ncRNA intronic (6.7%), and upstream (0.2%) regions. Notably, no variants
were annotated to coding exonic regions (0%). Subsequent analysis identified 23 independent lead SNPs (r* <
0.1) (Table S7). Based on our analysis, all 23 lead SNPs constitute novel risk loci for the HCE, as these variants
were not previously detected at genome-wide significance within the GWAS summary statistics of the individual
input traits (Table S8). We queried the GWAS Catalog database to ascertain prior associations of these lead SNPs
with other phenotypes (Table S9). For example, the lead SNP rs10001274 has been previously associated with
Supramarginal gyrus volume. Lead SNP rs12271161 demonstrated associations with multiple traits, including
Non-accommodative esotropia, Medication use-thyroid preparations, Subjective well-being, Hypothyroidism,
Proprotein convertase subtilisin/kexin type 7 levels, and Serum albumin levels. Lead SNP rs12904518 is
associated with Angina pectoris, Insomnia, and Coronary artery disease. Lead SNP rs2060196 is associated
with Type 2 diabetes - age of onset. Lead SNP rs4882411 shows associations with Major depressive disorder,
Insomnia, Depression, Depressive symptoms, Lifetime smoking index, and Depressive symptoms. Lead SNP
rs7752901 is associated with Educational attainment, and lead SNP rs9882338 is associated with Health literacy.
Gene-based association analysis, conducted using MAGMA, aimed to identify specific genes implicated by the
SNP-level associations with the HCE This analysis highlighted 19 potentially associated genes (P<0.05) (Table
S10, Fig. 4). Among these, RBM5 exhibited the strongest association signal (Z=2.3955, P=0.0083), followed
by CTD-2330K9.3 (2=2.2413, P=0.0125) and MONI1A (Z=2.2384, P=0.0126). Other genes surpassing the
significance threshold (P<0.05) included CDHR4, RBM6, MST1, SEMA3F, GPX1, APEH, TRAIP, MSTIR,
CAMKY, BSN, TCTA, NICN1, HIST1H3B, RNF123, GNAT1, and IP6KI1.
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Fine-mapping

To pinpoint potential causal variants within the identified loci, we performed statistical fine-mapping. This
analysis was conducted on the 23 identified genomic risk loci. From these loci, we identified 30 distinct SNPs
that were part of a 95% credible set and demonstrated a high PP (PP >0.95) of being the causal variant. Among
these SNPs, we highlight three exemplary signals. The lead SNP rs12271161 (GWAS P=4.09 x 10°°*), located in
the AP000936.4 region, presented a highly compelling signal with a t-statistic of -17.57 and a mean PP of 1.0.
Similarly, rs9625070 (GWAS P=1x107>°°) within the CTA-211A9.5 region (t-statistic=42.16) and rs2439335
(GWAS P=1x107") within the KCNB2 region (t-statistic = -45.31) both exhibited exceptionally strong
associations and achieved the maximum possible PP (mean PP =1.0) (Table 1; Fig. 5). These findings strongly
implicate the respective lead SNPs at these loci as the likely causal variants driving the observed association
signals.
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Locus SNP P tstat mean.PP | mean.CS
ADAMTSL3 11531683 | 5.13E-10 6.215 | 1 1
AGTPBP1 1512338084 | 1.52E-18 8.789 | 1 1
AP000936.4 1512271161 | 4.09E-69 | -17.571 | 1 1
AP000936.4 154388921 | 0.513 -0.655 | 1 1
CGNL1 1511857569 | 0.450 -0.756 | 1 1
CGNL1 152270488 | 0.573 0563 | 1 1
CGNLI 157168095 | 4.49E-15 7.840 | 1 1
CTA-211A9.5 159625070 | 1.00E-200 | 42.164 | 1 1
FAM155A_FAMI55A-IT1 | rs9555409 | 0.709 0.373 | 0.966 1
FAM155A_FAM155A-IT1 | rs9559161 | 3.81E-08 5500 | 1 1
FUT9 157752901 | 4.13E-13 | -7.251 |1 1
HSPE1P20 152541978 | 2.25E-27 | -10.839 | 1 1
KCNB2 152439335 | 1.00E-200 | -45.309 | 1 1
LINC00558 157336916 | 1.31E-20 9.307 | 1 1
LOXLI1 1512904518 | 1.87E-09 | -6.009 |1 1
MYTIL 152060196 | 2.58E-12 | -6.999 |1 1
NEK1 1510001274 | 3.22E-10 | -6.288 |1 1
NEK1 1510084932 | 0.561 0.581 | 0.996 1
NEK1 156834147 | 0.233 1192 |1 1
OTOGL 17958491 | 1.00E-09 | -6.109 |1 1
OTOR 156044296 | 7.22E-13 7.175 | 1 1
RP11-11K13.1 1517117475 | 1.00E-200 | -50.657 | 1 1
RP11-393N4.2 1s9882338 | 4.15E-47 | 14415 |1 1
RP11-466L17.1 1517416739 | 5.92E-12 6.882 | 1 1
RP11-466L17.1 151695946 | 0.399 -0.843 | 0.955 1
RP11-550A9.1 157909815 | 3.69E-19 8.946 | 1 1
RP11-751A18.1 151422514 | 1.59E-14 7.680 | 1 1
RP5-1106E3.1 1517147245 | 4.26E-18 8.672 | 1 1
SNORA3 14882411 | 4.55E-15 | -7.839 |1 1
TRMT6 15236162 | 1.86E-11 6.716 | 1 1
Table 1. Fine-mapping of association Signals.
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Fig. 5. Fine-mapping Results of Genomic Loci with Strong Associations (PP >0.95) Identified by FINEMAP.

Gene-level identification of susceptibility

We conducted a TWAS leveraging summary-data-based sCCA to identify genes whose genetically regulated
expression levels are associated with the HCE. This analysis identified only one gene, APOCS3, exhibiting a
statistically significant association. Subsequently, we employed the FOCUS methodology to fine-map the gene-
level association signals derived from the genomic SEM data. This identified three genes with a PIP exceeding
0.8, suggesting they may represent credible causal genes within their respective loci. To further solidify high-
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Fig. 6. Manhattan Plot of Results from sCCA TWAS Analysis for halitosis. The x-axis represents
chromosomes, and the y-axis displays the Z-scores.

confidence gene-level associations, we integrated the TWAS and FOCUS findings. Based on the unique TWAS-
significant gene and the FOCUS outputs, APOC3, located on chromosome 11, was robustly identified, satisfying
both criteria with a TWAS Z-score of 17.57 (TWAS P=4.09x 107%*°) and a FOCUS PIP of 1 (Table S11, Fig. 6).

Pathway enrichment analysis

Pathway enrichment analysis indicated that genes associated with the HCF were significantly overrepresented
in two Reactome pathways (FDR=0.014) and two BioCarta pathways (FDR =0.0038), both pertinent to the
MSP-RON signaling pathway (Table S12). Furthermore, interrogation of GWAS Catalog-defined gene sets
revealed highly significant enrichment (FDR < 0.05) for numerous sets related to cognitive function, behavior,
health metrics, and neurological traits. Prominent examples include Extremely high intelligence (FDR = 8.98e-
38), Sleep duration (FDR =5.31e-34), Regular attendance at a gym or sports club (FDR =2.70e-31), Subcortical
volume (FDR=5.93e-27), Regular attendance at a religious group (FDR=1.40e-26), Brain morphology
(FDR = 2.85e-26), Cortical surface area (FDR = 3.32¢-25), and Subcortical volume (FDR = 2.77e-23) (Table S12).

Cell type annotation and enrichment analysis

Utilizing CELLECT for cell type enrichment analysis based on the Tabula Muris dataset, we explored the
partitioning of heritability for the HCF across various cell types. Among those tested, Brain_Non-Myeloid_
neuron exhibited the lowest P-value (P=0.024), suggesting a potential enrichment of HCF heritability within
this cell type. This was followed by Trachea_blood_cell (P=0.038) (Table S13).

Heritability enrichment across genomic functional and regulatory regions

Analysis of heritability enrichment across genomic functional categories, performed using S-LDSC (Table
S14), revealed significant patterns (FDR<0.05) in multiple annotation classes. Specifically, significant
positive or negative heritability enrichment was detected for Conserved_LindbladToh (conserved elements)
(Enrichment=16.62, P=1.93e-11), DHS_Trynka.Extend.500 (500 bp-extended DNase I hypersensitive sites)
(Enrichment=1.99, P=3.24e-07), regions marked by H3K4mel histone modification (H3K4mel_peaks_
Trynka, H3K4mel_Trynka, H3K4mel_Trynka.Extend.500; Enrichments=3.18, 1.80, 1.41; P=2.54e-03,
9.84e-03, 3.22¢-04, respectively), regions marked by H3K9ac histone modification (H3K9ac_peaks_Trynka,
H3K9ac_Trynka.Extend.500; Enrichments=5.70, 2.40, 1.80; P=2.47e-02, 4.28e-02, 9.84e-03, respectively),
Intron_UCSC.Extend.500 (500 bp-extended intronic regions) (Enrichment=1.24, P=1.28e-03), Repressed_
Hoftman.Extend.500 (500 bp-extended repressed chromatin regions) (Enrichment=0.84, P=1.28e-03), and
WeakEnhancer_Hoffman.Extend.500 (500 bp-extended weak enhancer regions) (Enrichment=2.71, P=3.20e-
02). Furthermore, significant enrichment was noted for categories including FetalDHS_Trynka and Fetal DHS_
Trynka.Extend.500 (fetal DHS sites), H3K27ac (PGC2), and H3K4me3 (Trynka.Extend.500) (Table S14). These
findings underscore the significant contribution of specific genomic regulatory elements, such as conserved
regions, DHS sites, and regions characterized by particular histone modifications, to the overall genetic
architecture of the HCF.

Identification of potential causal risk factors for the halitosis common factor via Mendelian
randomization

To systematically interrogate exposures potentially causally associated with the HCFE, we conducted an extensive
two-sample MR analysis leveraging exposure GWAS data from the IEU OpenGWAS database. Employing the
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IVW method as the primary analysis, we identified approximately 95 exposures demonstrating potential causal
associations with the HCF (Table S15). Several factors exhibited potential causal effects indicative of an increased
risk. These encompassed anthropometric traits, including Body mass index (OR=1.040, 95% CI=1.028-1.053,
P<0.001), Waist circumference (OR=1.033, 95% CI=1.018-1.048, P<0.001), Hip circumference (OR=1.017,
95% CI=1.005-1.028, P=0.004), and various adiposity measures like Leg fat percentage (right) (OR=1.065,
95% CI=1.044-1.087, P<0.001) and Arm fat mass (right) (OR=1.035, 95% CI=1.023-1.046, P<0.001).
Indicators reflecting negative affect and psychological distress were also associated with increased risk, such as
Neuroticism score (OR=1.008, 95% CI=1.002-1.014, P=0.006), Depressed affect (OR=1.049, 95% CI=1.018-
1.082, P=0.002), Feelings of being ‘fed-up’ (OR=1.211, 95% CI=1.073-1.365, P=0.002), Feeling miserable
(OR=1.043, 95% CI=1.005-1.083, P=0.025), Experiencing mood swings (OR=1.067, 95% CI=1.028-1.107,
P=0.001), and Major depression (OR=1.056, 95% CI=1.030-1.081, P<0.001). Additionally, poorer self-rated
health (Overall health rating: OR=1.202, 95% CI=1.145-1.263, P<0.001), a higher Number of self-reported
non-cancer illnesses (OR=1.113, 95% CI=1.038-1.194, P=0.003), GERD (OR=1.086, 95% CI=1.065-1.107,
P<0.001), and Ulcerative colitis (OR =1.003, 95% CI=1.000-1.005, P=0.039) showed potential risk associations.
Regarding lifestyle, Smoking status: Current (OR =1.204, 95% CI=1.019-1.422, P=0.029) and more Time spent
watching television (TV) (OR=1.111,95% CI=1.054-1.170, P < 0.001) were linked to increased risk. Conversely,
the MR analysis identified factors potentially associated with a decreased risk. These included markers of higher
cognitive function and educational attainment, such as Intelligence (OR =0.972,95% CI=0.962-0.983, P < 0.001),
Cognitive performance (OR=0.973, 95% CI=0.961-0.985, P<0.001), Qualifications: College or University
degree (OR=0.884, 95% CI=0.855-0.915, P<0.001), and Years of schooling (OR=0.970, 95% CI=0.944-0.997,
P=0.027). In terms of lifestyle and social factors, engagement in Strenuous sports or other exercises (OR=0.715,
95% CI=0.554-0.923, P=0.01) and Walking for pleasure (OR=0.849, 95% CI=0.749-0.963, P=0.011) were
associated with lower risk. Lower likelihood of Past tobacco smoking (OR=0.972, 95% CI=0.949-0.995,
P=0.019) and higher Cereal intake (OR=0.956, 95% CI=0.919-0.993, P=0.022) suggested potential protective
effects. Furthermore, later Age first had sexual intercourse (OR=0.938, 95% CI=0.917-0.959, P<0.001) and
later Age at first live birth (OR=0.907, 95% CI=0.869-0.946, P <0.001) were also associated with reduced risk.
Sensitivity analyses were performed for these primary findings to evaluate potential biases such as horizontal
pleiotropy and heterogeneity. For the majority of the reported significant associations, Cochran’s Q test P-values
exceeded 0.05, indicating no significant heterogeneity was detected. Similarly, MR-Egger regression intercept
P-values were greater than 0.05, providing no evidence of significant directional horizontal pleiotropy in these
analyses, thus bolstering confidence in the robustness of the IVW estimates.

Polygenic risk score construction from summary data

We constructed PRS for the HCF using the PRS-CS algorithm applied to the genomic SEM-derived GWAS
summary statistics. An examination of the summed contributions from per-chromosome aggregated PRS (Table
$16) revealed considerable variation in genetic contributions to susceptibility across different chromosomes.
Considering all SNPs included in the PRS, chromosome 2 (PRS Score Sum =18.85) and chromosome 1 (PRS
Score Sum =17.68) exhibited the highest cumulative PRS scores. This suggests that common variants residing on
these chromosomes contribute most substantially, in aggregate, to the polygenic risk for the HCE

Discussion

This study represents the first application of Genomic SEM to elucidate the shared genetic architecture
underlying seven key halitosis-related phenotypes, offering novel genetic insights into the biological basis of
halitosis. The core achievement was the successful identification and validation of a latent HCE, followed by
an mvGWAS that pinpointed 23 genome-wide significant and novel associated loci. Fine-mapping provided
high-confidence evidence for 30 putative causal SNPs within these loci. Furthermore, an integrated suite of post-
GWAS analyses—including TWAS, MAGMA, GSEA, cell-type enrichment, S-LDSC heritability partitioning,
and MR—collectively provided multi-faceted evidence aimed at characterizing the HCF’s biological functions,
relevant cellular contexts, and potential causal relationships with other traits. A central contribution of this
work is the initial characterization of halitosi’s shared genetic structure, moving beyond previous research
focused predominantly on single related disorders or halitosis in isolation. By uncovering the common genetic
underpinnings of these frequently co-occurring conditions, this study lays a foundation for a more comprehensive
understanding of the integrated mechanisms driving halitosis.

To elucidate the genetic architecture underlying halitosis, LDSC was performed on seven clinically
relevant phenotypes, revealing a significant network of shared genetic correlations. Notably, a strong positive
genetic correlation was identified between GERD and dental caries, suggesting substantial overlap in genetic
susceptibility pathways. This finding is consistent with proposed pathophysiological mechanisms wherein
GERD-induced alterations, such as reduced oral pH via acid reflux and potential salivary dysfunction, may
create an environment conducive to dental caries formation and shifts in the oral microbiome favoring VSC-
producing anaerobes. Furthermore, dental caries can serve as reservoirs for bacterial retention. These processes
are collectively implicated in halitosis pathogenesis®>*!. Significant positive genetic correlations were also
observed between GERD and chronic periodontitis, Helicobacter pylori infection, CRS, and salivary secretion
disorders. These intercorrelations further underscore the multifactorial nature of halitosis predisposition,
potentially involving shared systemic factors. For instance, GERD-associated upper airway effects potentially
predisposing to CRS?2, with subsequent VSC production from post-nasal drip decomposition contributing
to halitosis”. Additionally, GERD is a potential risk factor for sicca symptoms®*, which could impair salivary
clearance and buffering capacity, thereby promoting halitosis. Understanding this shared genetic architecture
is pivotal for dissecting the etiology of halitosis and motivated the subsequent mvGWAS designed to identify
specific genetic loci associated with this HCE
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Leveraging the validated HCF model, our mvGWAS successfully identified 23 independent, novel genomic
risk loci associated with this shared genetic susceptibility at genome-wide significance, substantially expanding
the known genetic landscape of halitosis. Our fine-mapping analyses further refined these signals, nominating 30
high-confidence putative causal SNPs. Annotation of these loci revealed potential biological links. For instance,
rs17117475 and rs9625070 are near loci with currently uncharacterized function (RP11-11K13.1, CTA-211A9.5),
yet their extreme statistical significance and high PIP values underscore their potential critical role in halitosis
susceptibility. Moreover, rs2439335, lies near the KCNB2 gene, encoding the voltage-gated potassium channel
Kv2.2, crucial for neuronal excitability**. Given the potential involvement of neural regulation in halitosis-related
physiology, genetic variation influencing KCNB2 function might contribute to halitosis by affecting relevant
neural circuits, a hypothesis requiring functional validation. To probe the potential biological functions of these
novel loci, pleiotropy analysis using the GWAS Catalog was performed. Results showed rs10001274 is associated
with schizophrenia-related brain structure®; rs12271161 links to diverse phenotypes including strabismus>®,
thyroid function”’, and subjective well-being®; and rs775290 associates with educational attainment®. These
pleiotropic associations suggest that some genetic risk factors for HCF may participate in broader biological
processes extending beyond traditional oral biology. Collectively, these findings underscore the polygenic basis
of HCF as a complex trait. Future functional studies are warranted to elucidate the precise biological functions
of these identified loci and their mechanistic roles in halitosis development.

To elucidate the functional mechanisms underlying previously identified GWAS signals for halitosis, an
integrative post-GWAS analysis strategy was employed. Initially, TWAS identified APOC3 as the sole gene
exhibiting a significant association. Subsequent FOCUS provided robust support for APOC3’s causality. The
APOCS3 gene encodes Apolipoprotein C-III, a protein known to exert a pivotal inhibitory effect on plasma
triglyceride (TG) metabolism, primarily by suppressing lipoprotein lipase (LPL) activity and hepatic uptake
of triglyceride-rich lipoproteins?®#!. Although direct evidence linking APOC3 to halitosis is currently lacking,
a plausible mechanistic link can be hypothesized. Genetically influenced alterations in APOC3 expression can
impact lipid profiles, and emerging evidence implicates both ApoC-III in activating inflammatory pathways*?
and intracellular triglyceride metabolism in the regulation of macrophage inflammatory responses*’. Therefore,
it is biologically plausible that APOC3-mediated effects on lipid homeostasis and systemic inflammation could
contribute to halitosis susceptibility, potentially by fostering a pro-inflammatory milieu that influences the
oral microbiome or local tissue inflammation in the periodontium or gastrointestinal tract. Secondly, gene-
based association analysis using MAGMA highlighted RBM5 as the gene most significantly associated with the
previously derived HCE. RBM5 encodes an RNA-binding protein recognized as a critical regulator of alternative
splicing of pre-mRNAs** and a key participant in the control of apoptosis, suggesting a potential tumor
suppressor function®. Considering the fundamental role of apoptosis in maintaining tissue homeostasis and
modulating inflammation*, variations affecting RBM5 expression or function might indirectly influence halitosis
development, possibly by perturbing cellular turnover balance or inflammatory signaling responses within oral
tissues. In conclusion, this work successfully translates GWAS findings into biologically plausible hypotheses by
nominating APOC3 and RBMS5 as high-priority candidate effector genes for halitosis. The implicated biological
pathways, notably lipid metabolism, RNA processing, and apoptosis, furnish critical insights into the condition’s
potential genetic underpinnings and provide a panel of prioritized targets warranting subsequent functional
validation to definitively establish their roles in halitosis pathogenesis.

Cell-type enrichment analysis pinpointed key cellular contexts where HCF genetic risk might operate. HCF
heritability was significantly enriched in brain non-myeloid neurons and trachea blood cells. The enrichment
in brain neurons aligns with the observed genetic correlations between HCF and traits like neuroticism,
depression, and cognition from the MR analysis, and resonates with emerging evidence linking oral health
to brain structure?’*®. Enrichment in trachea blood cells suggests involvement of systemic inflammatory or
immune response pathways®. This is consistent with the known capacity of oral diseases to trigger or exacerbate
systemic inflammation®® and aligns with the MR findings linking HCF to inflammatory conditions like GERD
and UC. In concert, these functional analyses successfully connect HCF GWAS signals to relevant cell types,
providing crucial clues to the genetic basis of HCE

To explore the systemic etiological network of halitosis beyond local factors and assess potential causal
relationships, an extensive two-sample MR analysis was conducted. The results strongly support the hypothesis
that HCF may represent an oral manifestation of broader systemic factors and dysregulation, rather than being
solely alocalized oral issue. The MR analysis provided evidence for potential causal associations between multiple
exposures and HCF. Consistent with the GSEA findings of IBD gene set enrichment, MR showed that genetically
predicted higher risk for UC was associated with increased HCF risk. Furthermore, genetically predicted higher
BMI and related adiposity measures were associated with increased HCF risk, corroborating observational
findings that identify higher BMI as a potential predictor of halitosis®'. Similarly, genetically predicted current
smoking status was linked to increased HCF risk, aligning with substantial epidemiological evidence establishing
tobacco use as a recognized halitosis risk factor’?. The MR analysis further unveiled complex genetic links
between HCF and neuropsychiatric and cognitive traits. Genetically predicted higher neuroticism, depressive
symptoms, and mood swings were associated with increased HCF risk, consistent with observational studies
identifying psychological factors as risk factors for subjective halitosis®. Potential mechanisms could involve
stress-induced xerostomia, altered oral hygiene habits, or even gut inflammation leading to extra-oral halitosis>.
Conversely, genetically predicted higher intelligence, cognitive performance, and longer educational attainment
exhibited protective effects against HCE consistent with reports linking clinical halitosis to lower education
levels*. This protection might be mediated through various pathways including better oral health knowledge/
behaviors, higher health literacy, and socioeconomic advantages®. Additionally, genetically predicted higher
levels of physical activity were associated with reduced HCF risk, possibly reflecting the beneficial effects of
exercise on overall health, including potentially salivary function and periodontal health®’. In conclusion, the
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MR findings, together with GSEA results, paint a multi-dimensional, systemic picture of HCF etiology. The
results strongly suggest that HCF arises from a complex interplay between genetic predisposition, systemic
immune/inflammatory status, metabolic factors, lifestyle exposures, and neuropsychological characteristics.

Limitations

This study, while innovative, has several limitations that warrant consideration. First, and most fundamentally,
the HCF is a statistical abstraction derived from genetically correlated traits, not a direct biological measure of
halitosis itself. The premise that these seven traits adequately represent the genetic risk for halitosis is a core
assumption of our model. The selection of different or additional traits could alter the composition of the
HCF and subsequent findings. Therefore, our results should be interpreted as identifying loci associated with
the shared genetic liability of these specific conditions, which serves as a proxy for halitosis risk. Second, our
one-factor model, while theoretically grounded, showed mixed fit indices, with an elevated SRMR suggesting
some degree of model misspecification. Although we proceeded based on the strong a priori hypothesis and
exploratory goals, more complex models (e.g., bifactor or two-factor models) might provide a more nuanced
fit to the data, and future studies could explore these alternatives. Third, four of the seven input GWAS datasets
had non-significant SNP-based heritability. While Genomic SEM can still leverage genetic covariance in such
cases, the inclusion of traits with weak genetic signals may have introduced noise and could potentially limit
the power to detect a more robust common factor. Fourth, our analyses were conducted on GWAS summary
statistics from populations of predominantly European ancestry. This limits the generalizability of our findings
to other populations, and further research in diverse ancestral groups is crucial to validate and extend these
results. Finally, the findings from this study are statistical in nature and do not establish definitive causality. The
identified loci, genes (such as APOC3), and causal risk factors from MR analysis represent high-confidence
hypotheses that require extensive in vivo and in vitro functional validation to elucidate their precise biological
roles in the pathogenesis of halitosis.

Conclusion

Leveraging genomic SEM, our novel mvGWAS elucidated the shared genetic architecture of halitosis via a
latent common factor. Employing a suite of post-GWAS methodologies, we robustly identified 23 genome-
wide significant SNP loci, all previously unreported in the context of this shared HCE. Furthermore, integrating
sCCA-TWAS with FOCUS, we precisely pinpointed APOC3 as a high-confidence candidate causal gene.
Genetic correlation and MR analyses further illuminated the shared genetic architecture underlying HCF
and multiple traits, notably neuropsychiatric characteristics and inflammatory conditions. Moreover, through
MR, we identified numerous putative causal risk factors, including BMI, smoking, depression, and cognitive
function. Despite the inherent limitations of the approach, this work provides a novel and comprehensive map
of the genetic landscape of halitosis-related disorders, offering a rich set of hypotheses for future functional and
clinical investigation.

Data availability
The datasets analyzed during the current study are publicly available. Details of each GWAS are provided in
Supplementary Table SI.
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