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Precise segmentation of brain tumors is essential for efficient diagnosis and therapy planning. While 
current automated methods frequently fail to capture complicated tumor shapes, traditional manual 
methods are laborious, subjective, and unpredictable. These issues are addressed by the suggested 
Attention-based Convolutional U-Net (ACU-Net) model, which incorporates attention processes 
into the U-Net architecture. The objective is to enhance the degree of precision and dependability 
of the tumor’s edge delineation by proposing and testing the ACU-Net model-based brain tumor 
segmentation on MRI data. The research framework consists of data acquisition from the BraTS 2018 
MRI data set. The first processing steps carried out in this study were the normalization of acquired 
data, spatial resolution, and augmentation of the obtained data. ACU-Net is a model developed with 
the use of attention gates and has been trained with dice and cross-entropy losses. Precision, recall, 
dice similarity coefficient (DSC), and intersection over union (IoU) are the performance measures 
used in the proposed ACU-Net and compared with the basic benchmark models, including U-Nets and 
convolutional neural networks (CNNs). The model of ACU-Net was shown to be most effective in brain 
tumor segmentation, and the dice scores were 94.04% for Whole Tumor (WT), 98. 63% for Tumor Core 
(TC) and 98.77% for Enhancing Tumor (ET). The proposed ACU-Net performed better than baseline 
models, showing the high capacity of the current approach to segment various classes of tumors. The 
model ACU-Net enhances brain tumor segmentation, acting as a reliable tool for clinical applications. 
These findings confirm that attention mechanisms improve the accuracy and robustness of medical 
image segmentation.
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Brain tumors are heterogeneous and complex, thus proving to be a great challenge for health1. Early and proper 
diagnosis is essential for treatment planning and obtaining positive patient outcomes. In this regard, MRI 
is widely used in diagnosing brain tumors because of the detailed images of brain anatomy provided by this 
imaging modality2. Nonetheless, manual tumor segmentation from MRI images is time-consuming, subjective, 
and prone to intra- and inter-radiologist variability3. Automated segmentation with deep learning techniques is 
highly promising, and issues like these can be tackled. CNNs, especially U-Net-type architectures, have become 
popular for medical imaging, where extracting fine details in the images is essential4. However, standard U-Nets 
often fail to fit the global context, a reason why in cases of complex segmentation, like the one on brain tumors, 
the performance could be better. Attention has been imbibed in segmentation models to boost performance. 
Attention gates in U-Net architecture highlight features, making them more focused and efficient with better 
precision and adaptability. The advanced variant of this U-Net, namely Attention U-Net, applies attention gates 
that focus just on the tumor regions for highlighting while suppressing irrelevant background noise5. This greatly 
improved segmentation, mainly in medical image segmentation tasks. Compared to traditional methods, ACU-
Net architecture significantly improves brain tumors’ segmentation accuracy and efficiency. Manual segmentation 
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is time-consuming and subjective, whereas the proposed model learns from huge datasets to automatically 
extract complex patterns in MRI images6. This deep learning approach provides a more precise delineation 
of tumor boundaries, which could help clinicians make the right decisions regarding diagnosis and treatment 
planning7. Most existing techniques in brain tumor segmentation have many challenges. For example, RMU-Net 
achieved satisfactory performance on BraTS2018; however, it still has difficulty segmenting the heterogeneous 
types of tumors through different subregions8. A combination of U-Net and 3D CNN models was developed, and 
clinical applicability could have been better due to the computationally expensive nature of the approach9. CNN 
engineering was used with an architecture of ResNet-5010, however, it had limitations for acquiring minor tumor 
variations since it used only elementary convolutional layers. The metrics provided to assess the segmentation 
quality, such as the dice similarity coefficient (DSC), have been overemphasized by numerous studies. But, still, 
more is needed to ensure quality. All these call for an alternative method of segmentation assessment3. These 
underline challenges for methodologies that would be new and assist in containing the existing flaws as methods 
for lifting the dilemma of brain tumor segmentation. With these dealing features, the major drawback of the 
U-Net architecture has been the application of attention mechanisms for segmentation, since it directs attention 
to the important features for better segmentation and generalization of the network5. The motivation for this 
study is based on the need to enhance the accuracy of brain tumor segmentation on MRI images. Incorporating 
attention mechanisms into the U-Net architecture will help design a better model, which will improve the ability 
of radiologists to detect and segment brain tumors. This makes diagnoses more accurate while at the same time 
easing the burden on healthcare professionals. Deep learning and attention mechanisms are the main approaches 
that have been developed recently enough to form a solid basis for this work. This proposed model, ACU-Net, 
is expected to overcome the drawbacks of existing segmentation models and make a potential contribution to 
medical imaging, particularly in the diagnosis of brain tumors8. The proposed work is motivated by its potential 
clinical relevance. This study intends to help with early and accurate diagnosis, essential for further treatment. 
While several attention-based U-Net variants have been proposed for medical image segmentation, ACU-Net 
introduces a novel integration of attention mechanisms within both the encoder-decoder pathway and skip 
connections. Unlike conventional Attention U-Nets that apply attention gates primarily in the decoder, ACU-
Net enhances feature refinement at multiple stages, improving tumor boundary delineation. This strategic 
incorporation allows for better suppression of irrelevant background noise and more precise segmentation. By 
explicitly addressing the limitations of standard attention-based U-Nets, our approach provides a more robust 
and adaptive solution for brain tumor segmentation. The study’s primary objective is to improve the accuracy of 
segmentation of brain tumors from MRI images by developing and evaluating an attention-based Convolutional 
U-Net architecture. Precisely, the objectives include:

•	 To modify the U-Net network by incorporating attention modules to enhance the model’s ability to attend to 
proper features for outlining tumor margins.

•	 To compare the results of the proposed ACU-Net with the known segmentation models using benchmark 
metrics such as the DSC, sensitivity, specificity, and overall segmentation accuracy.

•	 To assess the proposed model’s robustness across different types of brain tumors and various MRI datasets to 
ensure its generalizability and clinical applicability.

•	 To collaborate with radiologists to evaluate the model’s effectiveness in supporting diagnostic and treatment 
planning decisions and demonstrate its practical utility in a clinical setting.

•	 To identify and address the limitations of existing brain tumor segmentation techniques, such as the inability 
to capture complex tumor structures and the computational complexity that hinders clinical use.

Once these objectives are accomplished, this study will be instrumental in furthering the field of medical 
imaging, providing a better way to detect brain tumors correctly, and contributing to better patient care through 
treatment planning.

The contribution of this research are: first, the study reviews the development of the U-Net and presents 
the new architecture called ACU-Net that incorporates attention connection mechanisms for brain tumor 
segmentation of multidimensional MRI images. This model significantly enhances delineating tumor 
boundaries compared to conventional techniques, such as the U-Nets and CNNs. Enhancing the signal areas of 
importance and decreasing the other areas suggests that ACU-Net has better results in most aspects and could 
be applied clinically for medical images. The work of this paper not only discusses the problems with the current 
segmentation approach but also provides the basis for further developments in multi-modal imaging and tumor 
progression analysis.

The rest of the paper is organized as follows: Related work builds upon the existing methods for segmenting 
brain tumors, incorporating attention in medical imaging, and a new convolutional U-Net. The methodology 
section includes data collection and preprocessing details, the suggested ACU-Net model, training, and 
assessment methodologies. Experimental results and a comparison with baseline models expose the performance 
of the proposed model’s metrics, and a discussion is made. The final section presents the conclusion and future 
work.

Related work
This section reviews the progress of brain tumor segmentation techniques, focusing on the shift from traditional 
manual methods to advanced machines and deep learning-based approaches. Specifically, this paper discusses 
including attention mechanisms within CNNs to improve segmentation accuracy and robustness in medical 
imaging.

Scientific Reports |        (2025) 15:36603 2| https://doi.org/10.1038/s41598-025-20329-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Brain tumor segmentation techniques
Brain tumor segmentation has evolved with the help of various methods toward more accuracy and efficiency. 
Earlier, methods used the traditional approaches involving manual delineation, which are time-consuming, 
subjective, and quite variable among radiologists11. Automated techniques using machine learning (ML) and 
deep learning enhance segmentation accuracy. Earlier forms of ML, such as SVMs and RFs, used hand-crafted 
features of MRI images to identify regions containing tumors12. Though improved from manual methods, these 
approaches needed some help generalizing across datasets, which became problematic due to their reliance on 
specific feature vectors. The increasing use of DL, particularly CNNs, is a sea change for medical image analysis. 
The capability of CNNs to learn hierarchical features directly from raw image data enables good generalization 
performance of the network across multiple datasets and various tumor types13. Among the different CNN 
architectures, the U-Net, which has an encoder-decoder architecture, is one of the most effective for the 
localization and segmentation of tumors14. Some recent developments have been directed towards incorporating 
attention mechanisms into the CNNs to improve the segmentation performance. The attention mechanisms 
help the model to pay attention to the right areas of the image, thereby differentiating the tumor and non-
tumor areas15. For instance, attention U-Nets include these mechanisms as part of the U-Net framework and 
enhance the performance of medical image segmentation tasks5. Other significant methods are the ensemble 
methods, where several CNNs are trained to maximize the chances of at least one of them being optimized for 
the specific task while minimizing others’ defects. These models have been proven to perform better, but at the 
same time, the computational overhead is high16. However, there still needs to be more consistency in replicating 
performance on various datasets and among different tumor types. Some of the challenges, like class imbalance, 
differences in tumor appearance, and the requirement for more annotated data, still encourage the search for 
better and faster segmentation methods17.

Attention mechanisms in medical imaging
The introduction of attention mechanisms has redefined the field of medical imaging. This allows models to 
focus on the most important parts of an image, which increases the diagnostic accuracy but decreases the 
efficacy simultaneously. Human-like attention in vision will focus on the most salient part first. These have 
been embedded into many deep learning models to enhance their performance, particularly CNNs; the 
attention mechanisms in medical imaging help deal with very small or subtle changes. For example, in brain 
tumor segmentation, attention modules guide the network to be more attentive to the regions with tumors; 
thus, the precision in delineation of these regions increases. Maji et al.18 extended the U-net and proposed the 
Attention U-net by adding attention gates to focus on the structures of interest and skip the background noise. 
This approach has yielded better results than the U-Nets’ traditional structures, especially in applications that 
demand high sensitivity and specificity. Self-attention mechanisms are a sub-type of attention mechanisms where 
the attention scores are computed over all the sequence elements, making it possible for the model to consider 
the global dependency. This technique is very useful in medical imaging since diagnosis often depends on the 
functional connectivity between regions. For example, He et al.19 proposed the Transformer model for learning 
sequences with self-attention. This approach has also been taken in medical image processing to enhance the 
performance of segmentation and classification. Attention mechanisms have found adaptation in studies on 
multi-scale, multi-modal imaging. These methods take information from different scales or imaging modalities 
and fuse it correctly to increase the diagnostic capability. For instance, multi-scale attention networks apply 
features from various resolution levels and enhance the model in learning coarse and fine details of the medical 
images20. Furthermore, attention mechanism-based features in medical imaging models will further develop the 
ability to focus on certain image areas, providing a diagnosis tool with more accuracy and reliability. Introducing 
such features inside the deep learning architecture is a giant leap forward in the analysis of medical images, with 
much enhancement from the conventional approaches.

Convolutional U-Net architectures
The Convolutional U-Net structures have marked mainly a milestone in the segmentation of medical images. 
Through its encoder-decoder, the structure allows localizations and segmentations of complex structures 
to be performed with excellent precision. Ronneberger et al.4 composed a U-Net with one contracting path 
followed by an expansive path containing a sequence of convolutional layers, a rectified linear unit, and a max-
pooling layer. This encodes the spatial pyramid and down-samples the image, but it also up-samples the depth 
of feature maps so that the network can learn abstractly from the input data. The decoder path consists of up-
sampling operations and expanding feature maps for the reconstruction of the spatial dimension, followed by 
convolutional layers, which further filter the feature maps. The U-Net design also includes connection or skip 
connections between similar encoder and decoder pathways layers. These connections transmit high-resolution 
features from the encoder to the decoder, thus improving the segmentation accuracy and spatial details21. Since 
its inception, the U-Net has been generalized and expanded for other medical image analysis applications. For 
example, 3D U-Net modifies the initial 2D model to work with the three-dimensional volumetric data, which is 
crucial for tasks like segmentation of brain tumors in MRI22. Another variant of U-Net is the Attention U-Net, 
which employs the attention mechanisms to learn where to focus to segment challenging features23. The primary 
advantage of the U-Net is in situations where there are few annotated images, which is typical for medical 
imaging. The skip connections and the symmetrical architecture allow it to capture both the big picture and the 
small details. However, simple U-Nets may have difficulties in segmenting complex structures, so there are more 
advanced versions of U-Nets with attention mechanisms and other enhancements24,25.

Recent advancements in deep learning have emphasized the need for computational efficiency and model 
interpretability, particularly in medical imaging applications. Studies26 highlight strategies for balancing 
accuracy and computational cost, which we incorporate to optimize ACU-Net’s efficiency. Additionally, the 
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importance of explainability in clinical AI models has been emphasized in27 providing insights into SHAP and 
LIME-based techniques for improving model transparency. Recently, MSFR-Net (Multi-modality and Single-
modality Feature Recalibration Network) was proposed by28 to enhance brain tumor segmentation by adaptively 
recalibrating features across and within modalities. The model employs dual recalibration modules to selectively 
emphasize informative features while suppressing redundancy, leading to improved fusion of multi-modal MRI 
inputs. Unlike ACU-Net, which focuses on spatial and channel attention mechanisms integrated at multiple 
network levels, MSFR-Net emphasizes modality-aware recalibration. Incorporating these approaches ensures 
that ACU-Net is accurate, computationally feasible, and interpretable, making it more suitable for real-world 
clinical applications. Asiri et al.29 have combined ResNet50 with U-Net for brain tumor segmentation. While 
effective in feature extraction, these methods lack explicit spatial and channel attention integration. In contrast, 
ACU-Net leverages multi-stage attention to refine tumor boundaries, achieving higher segmentation accuracy 
and superior DSC scores.

Methodology
The methodology section provides the steps for developing and evaluating an ACU-Net model in brain tumor 
segmentation. It begins with data collection and preprocessing through publicly available MRI datasets, for 
instance, from BraTS 2018. It further describes the architecture of the proposed model and how the attention 
mechanism is integrated to realize better feature extraction with segmentation accuracy. Model parameter 
optimization is applied by elaborate model training and a combined loss function of Dice and cross-entropy. 
Describe the model assessment: evaluation metrics and cross-validation techniques used to describe 
generalizability and model performance. The proposed ACU-Net architecture is represented in Fig. 1.

Data collection and preprocessing
The collected data, which is available from a publicly available dataset like the Brain Tumor Segmentation 
(BraTS)30 challenge. The dataset contains annotated images from various patients, covering multiple types and 
stages of tumors, to provide a broad training and evaluation basis. Although the BraTS dataset consists of 3D 
volumetric MRI data, ACU-Net is implemented as a 2D segmentation model that processes individual axial slices. 

Fig. 1.  Proposed ACU-Net architecture.
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Each 3D scan is decomposed into 2D slices, which are then segmented independently. This slice-wise approach 
is computationally more efficient than full 3D models and allows for faster training and inference, making it 
suitable for real-time clinical applications. Furthermore, this method aligns with common radiological practices 
where tumor assessment is often performed on a per-slice basis. In future work, we aim to explore 3D extensions 
of ACU-Net to capture richer spatial context across slices. Several preprocessing steps were performed to ensure 
the data was high quality and consistent. These included standardizing the intensity values of MRI images to a 
common range to increase model performance by reducing variability. Adjusted the spatial resolution of images 
to a uniform voxel size, ensuring consistent input dimensions for the model. We applied data augmentation, 
which included rotation, scaling, and flipping, to artificially increase the dataset’s size and improve the model’s 
generalization capability. Based on these annotations, binary masks for regions with a tumor were created so that 
these could be ground truth for the model’s training. Data normalization, resizing, and augmentation via the 
above transformations build a strong foundation for training the proposed ACU-Net model.

Attention-based convolutional U-Net architecture
The ACU-Net extends the traditional U-Net to integrate attention mechanisms to focus more on the salient 
features found in the MRI. This network architecture consists of two main parts: the encoder, which is a 
contracting path; the decoder, which is the expanding path; and the attention gates between these two paths.

The encoder consists of multiple convolutional layers. After each convolutional layer, a ReLU activation 
function is applied, and max-pooling decreases spatial dimensions while increasing depth. In mathematical 
terms, considering that I  is the input image, the convolution operation can be represented as:

	 Ci+1 = f(Wi ∗ Ii + bi)� (1)

where Ci+1​ is the output of the convolutional layer, Wi and bi​ are the weights and biases, ∗ denotes the 
convolution operation and f  is the ReLU activation function.

Attention gates are introduced at each encoder level to focus on relevant features and suppress irrelevant 
ones. The attention mechanism is defined as:

	 α i = σ
(
W T

α

[
Ci, Ui] + bα )� (2)

where α i​ is the attention coefficient, W T
α ​ and bα  are the weights and biases, [Ci, Ui] denotes the concatenation 

of the encoder feature map Ci​ and the corresponding decoder feature map Ui, and σ  is the sigmoid activation 
function. This coefficient modulates the features as follows:

	 Ĉi = α i · Ci� (3)

The attention module uses a query-key-value mechanism to compute attention coefficients. Specifically, the 
encoder feature map Ci​ serves as the ‘key’, while the decoder feature map Ui​ acts as the ‘query’. The attention 
coefficient α i​ is computed by:

	
α i = Softmax

(
Q.KT

√
d

)
� (4)

where Q = WqUi, K = WkCi​, and Wq  and Wk ​ are learnable weight matrices. The scaled dot product 
focuses on the most relevant regions, enabling effective suppression of irrelevant features.

The dual attention module in ACU-Net consists of two parallel attention branches—spatial and channel—
that operate simultaneously on each feature map before fusion in the decoder. Unlike models that stack attention 
modules sequentially or apply them only in the decoder, our design integrates both types of attention throughout 
the encoder-decoder path and skip connections. The spatial attention module refines the spatial dependencies by 
computing a 2D attention map via max-pooling and average-pooling across channels, followed by convolution 
and a sigmoid activation. This enables the model to highlight location-specific tumor features.

The channel attention module emphasizes relevant feature channels by performing global average pooling 
across spatial dimensions, followed by a MLP with a bottleneck structure and sigmoid activation. This helps 
model inter-channel dependencies. Figure 2 illustrates the internal structure and operation flow of the proposed 
dual attention mechanism.

The decoder path mirrors the encoder but uses transposed convolutions (up-sampling) to restore the original 
image resolution. The feature maps from the encoder are concatenated with the decoder’s up-sampled maps 
through skip connections, defined as:

	 Ui−1 = f
(
W T

i−1∗
[

Ĉi, Ui] + bi−1)� (5)

The model combines Dice loss and cross-entropy loss to optimize segmentation accuracy. The Dice loss LDice ​
is defined as:

	
LDice = 1 −

2
∑

i
(PiGi)∑

i
(Pi + Gi)

� (6)
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where Pi and ​Gi are the predicted and ground truth binary masks, respectively. Cross-entropy loss LCE  is 
given by:

	
LCE = −

∑
i
[Gilog(Pi) + (1 − Gi)log(1 − Pi )]� (7)

The total loss L is a weighted sum of both losses:

	 L = λ DiceLDice + λ CELCE � (8)

where λ Dice​ and LDice​ are weighting factors.
By integrating attention mechanisms, the ACU-Net improves the accuracy and robustness of brain tumor 

segmentation in MRI images.
Algorithm 1 outlines the encoder path, attention mechanisms, decoder path, skip connections, output layer, 

loss function, and optimization process.

Model training and evaluation
The model’s parameters are optimized during the training phase to minimize the loss function. The model 
produces a predicted mask P  given an MRI image I  and its related ground truth mask G. The loss function L, 
a combination of dice and cross-entropy guides the optimization using Eq. (7).

Equations (5) and (6) are used to measure dice and the cross-entropy loss. Using stochastic gradient descent 
(SGD) or its variants, the model parameters are updated iteratively using Eq. (8).

	 θ t+1 = θ t−η × ∇ θ L� (9)

where θ  represents the model parameters, η  is the learning rate and ∇ θ L is the gradient of the loss function 
concerning the parameters.

The model’s performance is evaluated using metrics such as the DSC, recall, precision, and F1-score. The 
DSC is defined as:

	
DSC = 2 |P ∩ G|

|P | + |G| =
2
∑

i
(PiGi)∑

i
(P i) +

∑
i
(Gi)

� (10)

Precision (P) and recall (R) are given by:

	
P = T P

T P + F P
� (11)

	
R = T P

T P + F N
� (12)

where T P  means (true positives), F P  means (false positives), and F N  means (false negatives).
F1-score is the harmonic mean of precision and recall, is:

	
F 1 = 2 × P × R

P + R
� (13)

Fig. 2.  Detailed attention module explanation.
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The robustness of the model can be evaluated with k-fold cross-validation. During k-fold cross-validation, the 
dataset is split up into k subgroups. After that, the model is trained and assessed k times, using the remaining 
k − 1 subsets as the training set and a different subset as the validation set each time. Its generalization ability 
may be reliably estimated from the average performance across all folds.

	
Average Metric = 1

k

∑ k

i=1
Metrici� (14)

1. Initialize:
2. Load MRI scan I and ground truth segmentation mask G
3. Initialize weights W and biases b for all layers

4. while Termination condition is not met do
5. for i ← 1 to N do ▸ Encoder Path
6. Ci+1← Apply convolution: f(Wi * Ii + bi)
7. Ai← Apply ReLU activation: ReLU(Ci+1)
8. Pi← Apply max-pooling: MaxPool(Ai)
9. for i←1 to N do ▸ Multi-Stage Attention Mechanism
10
.

Compute spatial attention coefficient:

11
. αi = σ(WT

α[Ci,Ui] + bα)

12
.

Compute channel attention coefficient:

13
.

βi = σ(WT
β[GlobalAvgPool(Ci)] + bβ)

14
.

Modulate encoder features:

15
.

Ci = (αi + βi) × Ci
16
.

for i← 1 to N do ▸ Decoder Path

17
.

Ui-1← Apply transposed convolution:

18
.

TransConv(WT
i-1,[Ci,Ui] + bi-1)

19
.

Ai-1← Apply ReLU activation: ReLU(Ui-1)

20
.

for i←1 to N do ▸ Enhanced Skip Connections

21
.

Compute refined skip connection with attention gating:

22
. Si = σ(Ws[Ci,Ui] + bs) × Ci

23
.

Concatenate encoder and decoder features:

24
.

Ui-1 = [Si,Ui]

25
.

end for

26
.

end for

27
.

end for

28
.

end for

29
.

Output Layer:

30
.

Compute final segmentation mask:

31
.

P = Conv(A0)

32
.

Loss Computation:

33
.

Compute Dice loss using Equation (5)

34
.

Compute Cross-Entropy loss using Equation (6)

35
.

Combine losses using Equation (7)

36
.

Optimization:

37
.

Update parameters using gradient descent:

38
. W = W - η

∂L
∂W

39
.

end while

40
.

Exit

Algorithm 1.  ACU-Net - attention-based convolutional U-Net architecture.
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These evaluation steps ensure the accuracy and robustness of the ACU-Net over different datasets and variations 
in tumor morphology.

Experimental results
The performance assessment of the proposed ACU-Net model using the results of the BraTS 2018 MRI dataset is 
discussed in this section. Dice, Jaccard, Sensitivity, Specificity, and IoU are the measurements. The performance 
characteristics of several tumor classes are shown in Table 1, which highlights the ACU-Net model’s excellent 
accuracy and resilience.

Figure 3 illustrates the DSC for each tumor class, highlighting the model’s high precision in segmenting 
different tumor regions.

Table 2 presents the region-specific performance of the proposed ACU-Net model, evaluated using the Dice 
Similarity Coefficient (DSC), Hausdorff95 Distance (HD95), and Average Symmetric Surface Distance (ASSD). 
These metrics are computed exclusively for the tumor regions, namely Whole Tumor (WT), Tumor Core (TC), 
and Enhancing Tumor (ET), in accordance with the BraTS evaluation protocol.

Figure 4 visualizes the proposed model’s performance on MRI images. It is visual proof that ACU-Net can 
identify brain tumors well. The segmented regions are very close to the ground truth annotations, validating 
the robustness of our approach. This figure shows different MRI sequences (Flair, T1, T1CE, and T2), the 
ground truth mask, and the predicted segmentation. It suggests that the model is highly precise in locating and 
delineating different tumor regions.

Figure 5 compares the Jaccard Index across tumor classes, indicating a high level of overlap between predicted 
and ground truth masks.

Figure 6 provides a visual representation of sensitivity and specificity for each tumor class, showcasing the 
model’s effectiveness in detecting true positives and true negatives.

Table 3 highlights the performance improvements of ACU-Net compared to basic ML and CNN models.
Figure 7 visualizes the comparative performance, demonstrating the superior metrics of the ACU-Net.
Figure 8 presents the ROC curve, indicating the model’s ability to distinguish between classes effectively.

Tumor Region Dice Score (%) HD95 (mm) ASSD (mm)

Whole Tumor (WT) 94.04 3.50 1.20

Tumor Core (TC) 98.63 3.20 1.10

Enhancing Tumor (ET) 98.77 3.10 1.05

Table 2.  Region-specific evaluation metrics for tumor segmentation (Excluding Background).

 

Fig. 3.  Dice similarity coefficient comparison.

 

Tumor Class Dice Jaccard Sensitivity Specificity IoU

WT 94.04 88.75 94.04 98.01 23.51

TC 98.63 97.30 98.63 99.54 24.66

ET 98.77 97.57 98.77 99.59 24.69

Average Score 97.15 94.54 97.15 99.05 24.29

Table 1.  Performance analysis of proposed ACU-Net model on brats 2018 MRI Dataset.
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Fig. 6.  Sensitivity and specificity analysis.

 

Fig. 5.  Jaccard index comparison.

 

Fig. 4.  Prediction of brain tumor segmentation using ACU-Net model.
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An ablation study with the BraTS 2018 dataset was carried out to assess the influence of each component 
of attention and decision-making design choices in the proposed ACU-Net architecture on its performance. 
This was to isolate the effects of spatial attention, channel attention, and the multi-stage integration strategy on 
the performance of segmentation. All variants were trained and comparatively tested in the same conditions 
with the use of the same preprocessing pipeline, loss function, and training parameters to allow a reasonable 
representation of the model performance.

Fig. 8.  ROC curve.

 

Fig. 7.  Comparative performance analysis.

 

Metric SVM U-Net ACU-Net

DSC 0.75 0.85 0.97

Precision 0.73 0.84 0.89

Recall 0.77 0.86 0.91

F1-Score 0.75 0.85 0.90

Table 3.  Comparative performance Metrics.
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The performance of each channel or spatial attention separately is better than the baseline U-Net. Merging 
the two forms of attention in the decoder augments precision even further, as presented in Table 4. But most 
effective performance occurs when attention modules are used parallel and on all stages of the network, such as 
in the complete ACU-Net. This proves the usefulness of multi-stage attention integration rationalization strategy 
that we propose giving to better segmentation accuracy and model robustness.

Table 5 provides a comparative analysis of computational costs, including the number of parameters (Params 
in million), floating-point operations (FLOPs in giga), and inference time per image (in seconds). The results 
show that ACU-Net, while slightly more computationally intensive than some baseline models, delivers superior 
segmentation accuracy, making it a feasible solution for clinical applications.

Table  6 provides a detailed performance comparison of our proposed ACU-Net model against several 
existing models using the BraTS 2018 dataset. The comparison is done based on the DSC for different classes of 
tumors: WT, TC, and ET.

The 3D-UNet architecture achieved Dice scores of 91.17% for WT, 84.11% for TC, and 77.00% for ET. A 3D 
convolutional network model for volumetric data ensures high segmentation accuracy for any task in medical 
imaging. In the HTTU-Net model, attention mechanisms were adopted to enhance segmentation performance. 
It yielded 91.50% of the Dice score for WT, 92.30% of the Dice score for TC, and 88.70% of the Dice score 
for ET, showing significant improvement in delineating tumor boundaries. The RMU-Net model sharpens the 
segmentation accuracy by integrating the residual connection with multi-scale features. It achieved 90.80% for 
WT, 86.75% for TC, and 79.36% for ET.

One CNN-based model found Dice scores of 89.93% for WT, 92.11% for TC, and 92.23% for ET. The deep-
learning scheme can improve the segmentation accuracy, especially in the tumor region. Another CNN model 
achieved Dice scores of 91.20% for WT, 88.34% for TC, and 81.84% for ET. The approach enhances the feature-
extraction capability for better segmentation performance.

Another 3D-UNet model achieved Dice scores of 90.00% for WT, 83.00% for TC, and 71.00% for ET. This 
model used 3D convolutions to help capture more spatial context in volumetric MRI data. Our proposed ACU-
Net model significantly outperformed existing models, with Dice scores of 94.04% for WT, 98.63% for TC, and 

Model Dataset
Dice
WT

Dice
TC

Dice
ET

HD95
WT

HD95
TC

HD95
ET

ASSD
WT

ASSD
TC

ASSD
ET

3D-UNet4 BRATS 2018 91.17 84.11 77.00 6.02 7.25 8.40 2.30 2.85 3.40

HTTU-Net5 BRATS 2018 91.50 92.30 88.70 5.80 6.90 7.85 2.10 2.50 3.10

RMU-Net31 BRATS 2018 90.80 86.75 79.36 6.10 7.10 8.10 2.45 2.90 3.50

CNN10 BRATS 2018 89.93 92.11 92.23 6.45 6.85 7.95 2.50 2.75 3.30

CNN11 BRATS 2018 91.20 88.34 81.84 5.92 7.05 8.20 2.15 2.80 3.20

3D-UNet12 BRATS 2018 90.00 83.00 71.00 6.78 7.50 8.70 2.60 3.00 3.60

ACU-Net (Proposed) BRATS 2018 94.04 98.63 98.77 3.50 3.20 3.10 1.20 1.10 1.05

Table 6.  Performance analysis of the proposed ACU-Net model with existing works.

 

Model Dataset Params (M) FLOPs (G) Inference Time (s)

3D-UNet4 BRATS 2018 19.0 145.6 0.95

HTTU-Net5 BRATS 2018 21.5 158.4 1.05

RMU-Net27 BRATS 2018 17.8 139.2 0.87

CNN10 BRATS 2018 15.2 120.5 0.75

CNN11 BRATS 2018 16.9 125.8 0.80

3D-UNet12 BRATS 2018 20.3 148.7 1.00

ACU-Net (Proposed) BRATS 2018 22.1 165.2 1.10

Table 5.  Computational cost analysis of ACU-Net and existing models.

 

Model Variant WT (Dice %) TC (Dice %) ET (Dice %)

Baseline U-Net 89.76 86.43 85.12

U-Net + Channel Attention 91.88 88.71 87.03

U-Net + Spatial Attention 92.10 89.35 87.59

ACU-Net (Decoder Only Attention) 92.93 90.82 89.44

ACU-Net (Proposed) 94.04 98.63 98.77

Table 4.  Ablation study results on brats 2018 dataset.
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98.77% for ET. Adding attention mechanisms to the U-Net architecture makes our model more reliable for 
clinical applications, with higher accuracy and robustness in segmenting different tumor classes.

Discussion
The core improvement of ACU-Net resides in applying spatial and channel attention components to the 
classic U-Net architecture for brain tumor segmentation processes. The developed ACU-Net achieved higher 
performance than other segmentation models, as shown by enhanced values for DSC, HD95, and Average 
Symmetric Surface Distance (ASSD) measures. The research proves that attention-based feature refinement 
produces superior outcomes when delineating tumor boundaries, even when dealing with complex tumor shapes. 
The advanced attention mechanism in ACU-Net makes tumor boundary refinement more effective than the 
standard U-Net and Attention U-Net. The main attention gate operation of Attention U-Net occurs at the decoder 
stage. Still, ACU-Net uses spatial and channel attention locks through all levels across the complete encoder-
decoder network paths. By implementing this method, features become more modifiable, which promotes better 
distinction between tumors and background components. Segmentation accuracy shows a significant decline 
in the ablation study when researchers disable the attention mechanisms in ACU-Net, demonstrating these 
mechanisms’ essential role in performance enhancement. Unlike traditional U-Net variants, where attention is 
either applied globally or only at the decoder, ACU-Net introduces multi-stage attention refinement. Spatial and 
channel attention modules are embedded in parallel branches and placed at each encoder-decoder level, ensuring 
both spatial precision and feature selectivity throughout the network. Furthermore, our design enhances skip 
connections by applying attention gating to encoder outputs before fusing with decoder features. This selective 
gating reduces background noise propagation. Additionally, we introduce parameter-efficient attention modules 
using shared projections to ensure scalability and deployment feasibility in clinical settings.

The medical image segmentation field now utilizes attention mechanisms according to recent network 
designs, including SPA-Net (2024). The main distinction of ACU-Net lies in its implementation of multi-
stage attention integration that delivers attention-based refinements through multiple layers instead of using 
a single attention module at the conclusion. ACU-Net uses parallel spatial and channel attention mechanisms, 
while SPA-Net focuses mainly on spatial attention; thus, the combination allows both spatial dependencies 
and feature-level improvements to boost segmentation accuracy. A failure of segmentation arises in cases of 
irregularly shaped tumors that lack contrast difference with their surroundings. ACU-Net demonstrates better 
DSC and IoU measurements results than traditional models specifically when segmenting tumor cores and 
improving tumor enhancement. The attention mechanism plays a significant role in feature refinement, enabling 
the model to precisely identify tumor structures. The research findings demonstrate that ACU-Net applies its 
high segmentation accuracy across various tumor types and multiple MRI sequence configurations.

The main advantage of ACU-Net lies in its ability to enhance segmentation performance by requiring minimal 
computational resources. The model demonstrates reduced floating-point operations (FLOPs) and parameters 
but achieves enhanced performance, making these numbers acceptable. ACU-Net achieves efficient learning of 
detailed information through its combination of attention-based feature enhancement with skip connections. 
ACU-Net demonstrates strong potential for clinical real-world implementations due to its dual strengths of 
inaccurate performance and efficient computing operations.

The current state of ACU-Net requires further investigation to address specific deficiencies that researchers 
should focus on. The BraTS 2018 dataset represents a significant evaluation limitation because the research 
project conducting the analysis only included this single dataset for its examination. The benchmarking dataset 
can be found in BraTS 2018, but researchers should consider newer versions, including BraTS 2019, 2020, 2021, 
and 2022, which present tumor characteristics alongside imaging variations. The evaluation, being expanded to 
additional datasets, will offer better verification regarding ACU-Net’s functionality when dealing with diverse 
data distributions. The main disadvantage of attention mechanisms comes from their computational complexity 
requirements. The enhanced performance of ACU-Net might encounter limitations in real-time use due to its 
marginal increase in parameter numbers and Floating-point Operations Per Second requirements in clinical 
settings with restricted resources. Future research will study multi-objective optimization methods to make 
ACU-Net more efficient by applying either model-pruning or refined attention mechanisms while maintaining 
accuracy. This study fails to investigate explainability and interpretability, which represent two essential aspects 
of medical AI applications. Health professionals must grasp how deep learning models reach their clinical 
decisions to endorse prediction results from these systems. The upcoming research will employ methods 
from explainability such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic 
Explanations (LIME), to reveal exact details about how ACU-Net detects tumor regions. Better interpretability 
for segmentation tools makes their adoption more acceptable for clinical use. Segmentation accuracy of brain 
tumors improves substantially when attention-based methods are incorporated into the analysis. ACU-Net 
establishes superior tumor boundary definition through its combination of spatial and channel attention 
mechanisms, thereby becoming more accurate than established U-Net derivative models for segmentation tasks. 
The ablation studies demonstrate that attention enables better segmentation results. The research also shows that 
ACU-Net achieves better results than contemporary models through its refined features.

Conclusion and future work
This study presented ACU-Net, an advanced attention-based U-Net architecture designed for accurate brain 
tumor segmentation in MRI images. By integrating spatial and channel attention mechanisms in parallel 
across multiple stages of the encoder-decoder network and enhancing skip connections, ACU-Net effectively 
captures both spatial detail and contextual relevance. The proposed model achieved outstanding segmentation 
performance on the BraTS 2018 dataset, with Dice scores of 94.04% for Whole Tumor (WT), 98.63% for 
Tumor Core (TC), and 98.77% for Enhancing Tumor (ET). These results demonstrate the model’s superiority 
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over several state-of-the-art methods, affirming its robustness, precision, and potential suitability for clinical 
applications where accuracy and reliability are essential.

Building on these results, future work will focus on extending the model’s capabilities in several key areas. 
One important direction is the integration of multi-modal imaging, such as combining MRI with PET or CT, 
to capture complementary information and improve tumor characterization. Additionally, the ACU-Net model 
will be adapted for longitudinal analysis, enabling consistent segmentation of tumor regions across time to track 
progression or treatment response. To improve generalizability, future versions of the model will be evaluated 
on newer datasets, including BraTS 2020 and 2021, and potentially on diverse institutional data to better 
assess cross-domain performance. Model interpretability will also be addressed through the incorporation of 
explainable AI techniques such as SHAP or LIME, making the decision-making process more transparent and 
trustworthy for clinical users. Furthermore, optimizing the model’s computational efficiency through pruning, 
quantization, or lightweight attention mechanisms will help ensure its suitability for deployment in real-world 
healthcare environments, including those with limited resources.

By addressing these directions, the ACU-Net framework can evolve into a more versatile and clinically 
impactful tool, supporting accurate diagnosis, treatment planning, and monitoring in neuro-oncology and 
related medical imaging domains.

Data availability
Data is provided within the manuscript or supplementary information files.
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