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Karst remote sensing ecological
index KRSEI for monitoring
ecological quality in Southwest
China
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Karst regions are ecologically fragile and highly sensitive to both natural and anthropogenic
disturbances, necessitating accurate and quantitative assessments of ecological quality and its driving
forces. This study introduces a Karst-Specific Remote Sensing Ecological Index (KRSEI), a novel model
tailored to the unique environmental conditions of karst landscapes. Using Guizhou Province in
Southwest China as the study area, the KRSEI was applied to MODIS remote sensing data from 2002 to
2022, and further integrated with Theil-Sen-Mann-Kendall (Sen-MK) trend analysis and an optimized
parameter geographical detector to explore spatiotemporal patterns and key driving mechanisms of
ecological change. The findings reveal that: (1) KRSEI achieves higher information entropy and image
contrast than traditional RSEI, effectively reflecting ecological heterogeneity; (2) ecological quality
remained moderately stable (KRSEI=0.6) over two decades, with regions of lower ecological status
exhibiting a “rise—decline-rebound” trajectory, and 58.25% of the area showing an improving trend;
and (3) vegetation cover, precipitation, and population density were identified as dominant drivers,
with most factor interactions showing synergistic (bivariate enhancement) effects. This research offers
a robust methodological framework for ecological monitoring in karst regions and provides scientific
support for targeted ecological protection and sustainable regional development.

Keywords Karst ecosystem, KRSEI, Ecological quality assessment, Spatiotemporal analysis, Geographical
detector

Karst areas are highly susceptible to disturbances from both natural factors and human activities due to their
unique geological and geomorphic features, fragile ecosystem structure, and low environmental carrying
capacity!~. The karst region in Southwest China is one of the most extensively distributed and well-developed
karst landscapes in the world, where ecological degradation is particularly severe. In recent years, with the
continuous advancement of China’s ecological civilization strategy, environmental protection and restoration in
karst areas have become a strategic national priority. Conducting scientific and accurate assessments of ecological
quality in karst regions® is essential for identifying ecological risks, enhancing the comprehensive control of
rocky desertification®8, and guiding ecological conservation and restoration. It forms a critical foundation for
achieving regional sustainable development.

In recent years, remote sensing technology has been increasingly applied in ecological environment
monitoring. The Remote Sensing Ecological Index (RSEI), as a comprehensive evaluation model that integrates
multi-source remote sensing data to reflect ecosystem conditions, has been widely used for quantitative
assessments of regional ecological quality. Originally proposed by Xu Hangiu and colleagues®!!, the RSEI
model has been extensively employed in various ecological contexts such as urban areas, agricultural zones,
and mining regions, owing to its easy data acquisition, streamlined computational process, and intuitive
results!®!2-17. Ag research has progressed, the limitations of the traditional RSEI model in specific ecological
regions have become increasingly apparent. In areas with complex terrain or unique ecological structures—
such as mountainous zones, karst landscapes, deserts, and mining areas—the RSEI fails to fully capture region-
specific ecological characteristics. To enhance the regional adaptability of the model, numerous scholars have
proposed optimizations and modifications to the RSEI'®-2%, For instance, in plateau regions, elevation and slope
factors have been introduced to improve sensitivity to topographic variations. In mining areas, modified models
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incorporating pollution indices and surface disturbance indicators have been developed. With the widespread
use of multi-source remote sensing data—such as MODIS, Landsat, and Sentinel imagery—along with advances
in computing technology and artificial intelligence algorithms, the construction approaches, indicator selection,
and analytical methods of the RSEI model have become increasingly diverse?>~32. Some studies have begun to
incorporate machine learning techniques into the weighting and validation processes of ecological indices to
further enhance model accuracy and practical applicability>*-4!. Research on remote sensing ecological indices
has evolved from early single-metric evaluations to comprehensive, multi-dimensional, and scale-adaptive
analyses, providing more scientific and efficient technical support for ecological monitoring and assessment.

Although the RSEI has been widely applied in regional ecological assessments due to its general applicability
and ease of use, it primarily relies on conventional indicators such as NDVI, humidity, dryness, and land surface
temperature. This reliance makes it difficult to accurately reflect the ecological characteristics of karst regions,
including complex landforms, severe rocky desertification, and unique vegetation structures, thereby limiting its
applicability in such ecosystems. Most current studies remain limited in spatial and temporal scope, particularly
in aspects such as adaptive weighting of indicators, scale compatibility, and the analysis of long-term ecological
trends and the interactions between natural and anthropogenic driving factors. Therefore, the development
of an improved remote sensing ecological index model with enhanced topographic sensitivity and ecological
representativeness tailored to the unique characteristics of karst ecosystems holds significant theoretical and
practical value.

This study proposes an improved remote sensing ecological index, KRSEI, tailored for karst regions by
integrating four key ecological indicators: the normalized difference mountain vegetation index (NDMVI), the
wetness component index (WET), the rocky desertification index (SIRF), and the land surface temperature index
(LST). Using Guizhou Province as a case study, the model’s validity and superiority were evaluated based on
long-term MODIS data from 2002 to 2022. Trend analysis and the geographical detector method were employed
to comprehensively reveal the spatiotemporal dynamics of ecological quality and its dominant driving forces in
the province. The results provide a scientific basis for comprehensive rocky desertification control, ecological
restoration strategies, and regional ecological management in karst areas.

Materials and methods

Study area

This study focuses on Guizhou Province as the primary research area, which is located between
approximately103°36'E-109°35'E and24°37'N-29°13'N (Fig. 1), covering a total area of 176,167 km’.
The region is representative and diverse in terms of natural environment, intensity of human activities, and
implementation of ecological restoration policies, making it suitable for multi-scale and multi-temporal remote
sensing-based ecological quality assessments. Guizhou is situated on the eastern part of the Yunnan-Guizhou
Plateau, which forms the second step of China’s topography. It lies in a typical subtropical mountainous karst
region, characterized by rugged terrain sloping from west to east and significant vertical relief, with an average
elevation exceeding 1,100 m. Guizhou is one of the most representative karst regions in the world, with karst
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Fig. 1. Overview map of the study area in Guizhou province. The figure was created using ArcGIS 10.6
(https://www.esri.com/en-us/home).
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landforms covering more than 62% of its area. Exposed karst landscapes are widely distributed, forming a variety
of landforms such as peak clusters, depressions, sinkholes, underground rivers, and caves, features indicative
of a typical karst ecosystem. The province experiences a subtropical humid monsoon climate, with an average
annual temperature of around 15 °C and annual precipitation ranging from 1,000 to 1,400 mm. Rainfall and
temperature peaks coincide, resulting in high humidity, limited sunlight, and a rainy season that typically lasts
from May to September. Due to concentrated rainfall, vegetation destruction, and soil erosion, the process of
rocky desertification is particularly pronounced in Guizhou. In recent years, rapid socio-economic development
and excessive resource exploitation have triggered a series of ecological issues, including vegetation degradation,
biodiversity loss, and the expansion of rocky desertification, leading to the continuous deterioration of ecological
environmental quality.

Data sources

This study utilizes multi-source remote sensing imagery and geospatial datasets spanning the years 2002 to
2022. The remote sensing data are derived from the MODIS series products, obtained via the LAADS DAAC
portal (https://ladsweb.modaps.eosdis.nasa.gov). The MODO09A1 product provides surface reflectance data with
an 8-day temporal resolution and 500 m spatial resolution, and is primarily used to derive vegetation greenness
(NDMVI), surface moisture (WET), and rocky desertification index (SIRF). The MOD11A2 product provides
land surface temperature (day and night) and emissivity data, with the same 8-day temporal resolution and
a spatial resolution of 1,000 m. It is used to calculate the land surface temperature index (LST). Additional
spatial data include the 2002-2022 LandScan Global Population Dataset, provided by the Oak Ridge National
Laboratory (ORNL), U.S. Department of Energy (https://landscan.ornl.gov/), and used to calculate population
density in the study area. Monthly precipitation and near-surface air temperature datasets at 1-km resolution for
China were obtained from the National Earth System Science Data Center (https://www.geodata.cn) and used to
calculate precipitation and temperature for the study area. The 30-m resolution CLCD (2002-2022) land cover
dataset for China was obtained from the National Cryosphere Desert Data Center (https://www.ncdc.ac.cn) and
used to extract land use types in the study area. The 30-m resolution SRTM DEM product was obtained from
the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov) and used to compute elevation and
slope across the study area.

Methodology

This study develops a karst-specific remote sensing ecological index (KRSEI) to address the complex topography
and fragile ecological conditions characteristic of Southwest China’s karst regions. The KRSEI integrates multiple
improved ecological indicators—including vegetation greenness, moisture, rocky desertification, and land
surface temperature—using principal component analysis (PCA). It is applied to analyze the spatiotemporal
dynamics of ecological quality based on multi-temporal remote sensing data. The ecological quality trends in
the study area are evaluated, and dominant driving factors are identified using an optimal-parameter geographic
detector model. This enables a comprehensive understanding of the spatiotemporal evolution of the karst
ecological environment and its driving mechanisms. The main technical framework of this study is illustrated
in Fig. 2.

Construction of KRSEI

To construct a remote sensing ecological index (KRSEI) suitable for ecological environment assessment in
karst regions, this study extends the traditional RSEI model by incorporating more region-specific ecological
indicators. By considering the typical features of karst ecosystems—such as significant topographical variation,
exposed surface bedrock, severe soil erosion, rocky desertification, and vegetation degradation—more
representative indicators are introduced to construct the KRSEL including the Normalized Difference Mountain
Vegetation Index (NDMVI), the Wetness Component Index (WET), the Rocky Desertification Index (SIRF),
and the Land Surface Temperature Index (LST). After normalization of the four indicators, principal component
analysis (PCA) is applied to extract the first principal component (PC1) as a comprehensive representation of
ecological quality, ultimately constructing the improved remote sensing ecological index (KRSEI). The KRSEI
has a value range from 0 to 1, with higher values indicating better ecological quality.

(1) The calculation methods for the specific indicators are as follows:

Vegetation Greenness Index. The Normalized Difference Mountain Vegetation Index (NDMVI) is derived
from the NDVT and designed to mitigate the effects of topography by simultaneously reducing reflectance in
both the near-infrared and red bands, making it effective for addressing the influence of complex terrain on
mountain vegetation information?2. For MODO09A1 imagery, the calculation formula is as follows:

NDMVI =
VL= 62 701) = (blowin  62mim)

(1)

Wetness Component Index. The wetness component index (WET) is closely related to the ecological environ-
ment, as it reflects surface moisture conditions, particularly soil moisture, by utilizing the moisture compo-
nent derived from the Hat Transform. It is widely applied in ecological monitoring*®. The calculation formula
is as follows:
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Fig. 2. Flowchart of the methodology.

WET = (0.1147 % b1) + (0.2489 % b2) + (0.2408 % b3) + (0.3132 % b4) + ... (0.3122 # b5) + (0.6416 * b6) + (0.5087 + bT)  (2)

Rocky Desertification Index (SIRF). The index integrates four indicators: Bare Soil Index (SI), Building Index
(IBI), Bedrock Exposure Index (RE), and Vegetation Coverage (FVC), and uses principal component analysis
(PCA) to construct a rocky desertification evaluation model for extracting rocky desertification informa-
tion?~16, The calculation formula is as follows:

(b6 + b1) — (b2 + b3)

I =
ST= 06 1 01) + (52 + 03) 3
24b6 b2 b4
b6+b2 b2+bl b4d+b6
IBI = 2:;)6 t; ;:1 (4)
b6+b2 + b2+b1 + b4+b6
NDRI — NDRIos b7 — b2
E= r NDRI = L=~
RE = DRI, — NDRI;' VPRI = s ®)
e~ NDMVI = NDMV Inin ©

NDMV ILpaz — NDMV Inin
Land Surface Temperature Index (LST). The heat index is closely linked to surface energy flux and is widely

used in ecological risk assessment and related applications. In this study, the land surface temperature index
(LST) was derived from MODI11A2 data using a retrieval method. The calculation formula is as follows:

LST = 0.02 % DN — 273.15 )

(2) Construction of KRSEI.
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Principal component analysis (PCA) reduces data dimensionality and filters out noise by concentrating multiple
feature components into a few principal components?’. The weights of each index are automatically deter-
mined based on their contributions to the first principal component (PC1). Results show that PC1 retains the
highest amount of information among all components. The first two variables in PC1 (greenness and wetness)
exhibit positive loadings, while the latter two (rocky desertification index and temperature) have negative
loadings, which aligns with real-world conditions. Therefore, PC1 was used as the information source for KR-
SEI to ensure the objectivity and rationality of the results. Since the four ecological indicators differ in scale,
they were normalized to a 0-1 range before principal component transformation. The normalization formula
is as follows:

N[:M (8)

I’maz - Imin

In the formula, NI represents the normalized value, I denotes the original value of the indicator, and Lo Loin
refer to the maximum and minimum values of the indicator, respectively.

The initial ecological index (KRSEI)) was constructed using PC1, and is calculated as:

KRSEIp, = PC1[f (NDMVI, WET, SIRF, LST)] 9)
The result of KRSEI, was further normalized to obtain the final Karst Remote Sensing Ecological Index (KRSEI),
which ranges from 0 to 1. Higher KRSEI values indicate better ecological quality.

SRSEIO - SRSEIO’"L’L"IL
SRSEIOmaz - SRSE[O’H’L’LTL

SRSEI = (10)

In the formula, KRSEL, . ﬂ] KRSEL, _ represent the minimum and maximum values of KRSEI, for the target
year, respectively. KRSEI denotes the final Karst Remote Sensing Ecological Index.

Trend analysis of ecological quality change

This study employed a combination of the Theil-Sen slope estimation and the Mann-Kendall test to analyze the
temporal trends of KRSEI The Theil-Sen estimator is a non-parametric method that does not require normality
testing or data transformation®®. It also makes no assumptions about autocorrelation in the time series and is
effective in handling noise and outliers. It calculates the slopes of all pairwise combinations in the time series,
and the median of these slopes (P) is taken as the overall trend. A value of p > 0 indicates ecological improvement,
B < 0 indicates degradation, and = 0 suggests a stable ecological condition. The Mann-Kendall test is used to
assess the significance of the trend. It is robust against outliers and missing data, and is widely applied in trend
detection of long-term time series®.

Optimized parameters geographical detector

The geographical detector is a statistical method used to detect spatial heterogeneity and reveal its underlying
driving factors. By analyzing differences between geographic strata, it quantifies the extent to which explanatory
variables influence dependent variables and has been widely applied in ecological assessment and ecosystem
analysis. Traditional geographical detector methods require manual setting of classification schemes and
class numbers for continuous variables, which often leads to poor discretization and strong subjectivity. The
Optimized Parameters Geographical Detector (OPGD) model addresses this by computing and comparing the
g-values under various classification methods and class numbers for each continuous variable®. A higher g-value
indicates better discretization. This allows for more accurate detection of spatial heterogeneity in ecosystem
services and quantifies the explanatory power of each influencing factor on this spatial heterogeneity. According
to statistical guidelines, classification methods include equal interval, natural breaks, quantiles, geometric
interval, and standard deviation classification. Using the GD package in R, all five classification methods were
applied with class numbers ranging from 4 to 12. The combination yielding the maximum q-value was selected
for spatial discretization.

Factor detection Factor detection evaluates the extent to which an individual influencing factor (X) explains
the spatial distribution of KRSEI This is quantified using the g-value, which measures the explanatory power of
a single factor.

L 2
=1 2z Vo (1)
No?
In the formula, L represents the number of categorles for factor X, N, is the number of samples in category h, and
N is the total number of samples in the study area. o 7 and & represent the variance within category h and the
total variance, respectively. The q-value ranges from 0 to 1, with higher values indicating stronger explanatory
power.

Interaction detection Interaction detection is used to identify the interaction effects between different influ-
encing factors on the dependent variable. It evaluates how the combined influence of two factors affects the
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explanatory power for KRSEI, and determines whether the interaction is enhancing, weakening, or independent
(e.g., nonlinear enhancement, independence). Specific interaction types are summarized in Table 1, where X;
and X, represent distinct driving factors.

Results

Spatiotemporal distribution of ecological quality

To comprehensively reveal the evolution of ecological quality in Guizhou Province, this study classifies ecological
quality into five levels based on KRSEI values: Inferior (I: 0.0-0.2), Poor (II: 0.2-0.4), Moderate (III: 0.4-0.6),
Good (IV: 0.6-0.8), and Excellent (V: 0.8-1.0), with higher values indicating better ecological quality. Figure 3
presents the spatial distribution pattern of KRSEI in Guizhou Province from 2002 to 2022.

From the perspective of spatial distribution, the southeastern region of Guizhou Province exhibits relatively
better ecological quality, primarily due to the region’s relatively gentle terrain, high proportion of forest and
arable land, and stable ecosystem structure. In contrast, the central region of Guizhou Province, including Bijie
City, Guiyang City, and Zunyi City, demonstrates relatively poorer ecological quality. This is attributed to factors
such as significant topographic variations, complex land use, and prominent issues of rock desertification, which
increase the vulnerability of the ecosystem.

Based on the statistical results of different ecological grade areas and their proportions in Table 2; Fig. 4, the
ecological quality of Guizhou Province from 2002 to 2022 shows an evolution of “fluctuation—improvement—
local degradation” The average KRSEI value is generally around 0.6, reflecting an overall ecological level that
remains slightly above moderate. The area of regions with ecological grades below “moderate” first increased,
then decreased, and slightly rebounded, indicating that ecological quality changes are influenced by multiple
factors. Between 2002 and 2009, weak ecological protection awareness and extensive resource development led
to continuous environmental degradation. From 2010 to 2019, Guizhou Province made significant progress in
ecological civilization construction, with policies and measures effectively implemented, resulting in notable
improvements in ecological quality. From 2020 to 2022, however, some areas experienced notable ecological
degradation due to excessive mineral resource exploitation and delayed ecological restoration, particularly in
Xiuwang County of Guiyang and Huangping County in Qiandongnan Prefecture, where ecological destruction
and environmental pollution were prominent. The NDMVI remained at a consistently high level throughout
the study period, indicating relatively stable vegetation cover. In contrast, the WET index exhibited substantial
fluctuations, followed by a rebound after 2015, reflecting a gradual improvement in moisture availability. The
SIRF remained elevated in several years, suggesting that rocky desertification continues to pose a serious
environmental challenge. The LST displayed a declining-then-rising trend, potentially linked to climate warming
and localized urban heat island effects. Overall, ecological environmental quality in Guizhou Province showed
significant spatial heterogeneity and phased temporal evolution, driven by a combination of natural geographic
factors and anthropogenic activities.

Trend analysis of ecological quality

To reveal the temporal evolution of ecological quality in Guizhou Province from 2002 to 2022, this study
employed the Theil-Sen slope estimation and the Mann-Kendall (M-K) test to analyze the time series of the
Karst Remote Sensing Ecological Index (KRSEI). The Theil-Sen method, a robust non-parametric technique,
effectively characterizes the direction and magnitude of temporal trends while being resistant to outliers. The
Mann-Kendall test is widely used in long-term ecological and climatic studies due to its ability to detect the
significance of trends without assuming data normality and its insensitivity to missing or extreme values.
The results indicate that the ecological environment in Guizhou has generally improved over the past two
decades, although localized areas have experienced degradation. As shown in Fig. 5; Table 3, regions exhibiting
an increasing trend in KRSEI accounted for 58.25% of the study area. Among these, 56.71% showed a “non-
significant increase,” primarily located in the northeastern and western parts of Guizhou, such as Tongren,
Liupanshui, and Qiannan Prefecture. In contrast, areas with a decreasing trend accounted for 37.34%, with
“non-significant decrease” areas comprising 36.75%, mostly concentrated in the central, northwestern, and
southeastern regions, including Guiyang, Anshun, and the eastern part of Bijie. Areas with no significant change
were relatively scattered, covering approximately 4.59% of the total study area.

Further analysis reveals that areas showing significant or highly significant improvements in ecological
quality are mainly concentrated in Qiannan. Eastern Tongren, western Liupanshui, and western Bijie, indicating
effective ecological restoration in these regions. In contrast, areas experiencing significant or severe ecological
degradation—such as western Zunyi, suburban areas of Guiyang, Huangping County, and regions surrounding
Anshun—highlight issues related to intensive resource exploitation and delayed ecological restoration. Overall,
the ecological quality in Guizhou has predominantly improved, with localized areas of degradation. This pattern

Type of interaction q-value range

Nonlinear weakened interaction q(X1nX2) <Min(q(X1), q(X2))

Univariate nonlinear weakened interaction | Min(q(X1), q(X2)) < q(X1nX2) < Max(q(X1), q(X2))
Bivariate enhanced interaction Max(q(X1), q(X2)) < q(X1nX2) <q(X1) +q(X2)
Independent effect q(X1nX2)=q(X1) +q(X2)

Nonlinear enhanced interaction q(X1nX2)>q(X1) +q(X2)

Table 1. Interaction detection results.
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Fig. 3. Spatial distribution of KRSEI results in Guizhou Province from 2002 to 2022. The figure was created
using ArcGIS 10.6 (https://www.esri.com/en-us/home).
not only reflects the positive outcomes of ecological civilization initiatives but also underscores the need to
strengthen environmental regulation and restoration efforts in resource-intensive areas, to consolidate ecological
gains and achieve sustainable development.
Analysis of driving factors and interactive mechanisms of ecological quality changes
Analysis of single-factor detection results
Using the Optimal Parameter Geographic Detector (OPGD) method, the explanatory power of seven
natural and human factors on the spatiotemporal changes of KRSEI in Guizhou Province was systematically
evaluated. The evaluation results, shown in Table 4, indicate that all detection factors passed the significance
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2002 |2006 |2010 |2015 |2020 |2022

NDMVI | 0.8789 | 0.8117 | 0.8595 | 0.8751 | 0.8656 | 0.8637
WET 0.8565 | 0.3881 | 0.4108 | 0.3802 | 0.5879 | 0.6199
SIRF 0.3653 | 0.4513 | 0.452 | 0.3604 | 0.3823 | 0.3983
LST 0.5707 | 0.4513 | 0.6829 | 0.7172 | 0.5896 | 0.5708
KRSEI 0.6264 | 0.5911 | 0.5943 | 0.6583 | 0.6329 | 0.6275

Table 2. Statistical summary of mean values for ecological indicators and ecological indexes in Guizhou
Province from 2002 to 2022.
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Fig. 4. Distribution of area proportions of ecological quality levels for each year in Guizhou Province.

test (p <0.001), highlighting their significant impact on the regional ecological quality. In terms of the g-value,
vegetation coverage (FVC) exhibited the strongest explanatory power across all years (q-value range: 0.196-
0.489), consistently being the dominant factor influencing ecological quality. Precipitation and land use type
also showed notable performance in multiple years, indicating that natural water-thermal conditions and land
resource allocation play a key role in shaping the ecological pattern. In contrast, the g-values of factors such as
elevation, slope, and temperature were generally lower, suggesting that their role in the spatial differentiation
of ecological quality in Guizhou Province is relatively minor, possibly due to their small spatial variability or
indirect effects on the ecosystem. The 2022 data show that FVC (q=0.489), population density (q=0.182), and
land use (q=0.165) are the three key drivers of the spatial differentiation of ecological quality. This result reveals
that the influence of human activities on ecosystem evolution is gradually increasing, especially in areas with
population concentration and urban expansion. Among all detection factors, the explanatory power for the
improved remote sensing ecological index is ranked as follows: vegetation coverage > population density >land
use > slope > precipitation > elevation > temperature.

Analysis of factor interaction mechanisms

Further interaction analysis (Table 5) reveals that the combined influence of any two factors is consistently
greater than their individual effects, demonstrating a pattern of “synergistic enhancement” Most interactions
exhibit “bivariate enhancement;” while some display “nonlinear enhancement” No interactions were found to
be independent or weakening in nature. For instance, slope and elevation (q=0.131), elevation and population
density (q=0.254), and temperature and land use (q=0.207) exhibit nonlinear enhancement, suggesting that
the interplay between topography, human activities, and climate variables can drive more pronounced changes
in ecological quality. Notably, combinations such as vegetation cover with precipitation (q=0.513), population
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Fig. 5. Spatial trends of KRSEI in Guizhou Province (2002-2022). The figure was created using ArcGIS 10.6
(https://www.esri.com/en-us/home).

1Z1 < 1.96 Slight decrease (not significant) | 36.75
B<0 | 1.96<IZI < 2.58 | Significant decrease 0.49
121>2.58 Highly significant decrease 0.10
B=0 |Z No significant change 4.59
1Z1>2.58 Slight increase (not significant) | 0.23
B>0 | 1.96<IZI <2.58 | Significant increase 1.31
171 < 1.96 Highly significant increase 56.71

Table 3. Statistical summary of KRSEI change trends in Guizhou Province (2002-2022).

FVC (X1) 0.481 0.000 0.435 0.000 0.196 0.000 0.280 0.000 0.459 0.000 0.489 0.000
Slope (X2) 0.048 0.000 0.019 0.000 0.036 0.000 0.049 0.000 0.080 0.000 0.088 0.000
Elevation (X3) 0.020 0.000 0.022 0.000 0.066 0.000 0.011 0.000 0.072 0.000 0.037 0.000
Precipitation (X4) 0.244 0.000 0.307 0.000 0.135 0.000 0.083 0.000 0.188 0.000 0.066 0.000
Temperature (X5) 0.037 0.000 0.100 0.000 0.050 0.000 0.021 0.000 0.087 0.000 0.033 0.000
Population density (X6) | 0.108 0.000 0.077 0.000 0.039 0.000 0.065 0.000 0.147 0.000 0.182 0.000
Land use (X7) 0.158 0.000 0.123 0.000 0.097 0.000 0.110 0.000 0.197 0.000 0.165 0.000

Table 4. Factor detection results for KRSEI Spatiotemporal changes in Guizhou Province.

density (q=0.513), and elevation (q=0.511) show strong bivariate enhancement, highlighting the intricate
coupled feedbacks between natural conditions and human influences. These factors typically influence ecological
quality not in isolation but through coordinated interactions. For example, vegetation can regulate rainfall
utilization by enhancing transpiration, while rainfall promotes vegetation growth, creating a positive feedback
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Factor FVC | Slope | Elevation | Precipitation | Temperature | Population density | Land use
FvC 0.489

Slope 0.501 | 0.088

Elevation 0.511 | 0.131* | 0.037

Precipitation 0.513 | 0.144 | 0.143* 0.066

Temperature 0.509 | 0.125* | 0.095* 0.146* 0.033

Population Density | 0.513 | 0.218 | 0.254* 0.228 0.244* 0.182

Land use 0.507 | 0.205 | 0.220* 0.217 0.207* 0.233 0.165

Table 5. Interaction detection results of factor pairs based on geographic detector. *Nonlinear enhancement.

Year 2002 2006 2010 2015 2020 2022
Intercept | 0.664 | 0.704 | 0.703 0.575 0.836 0.649
NDMVI 0.205 0.389 | 0.277 | 0.312 0.217 | 0.254

WET 0.335 0.134 | 0.403 0.333 0.232 0.269
SIRF —-0.658 | —0.639 | —0.635 | —0.683 | —0.537 | —0.601
LST -0.282 | -0.433 | -0.327 | -0.110 | —0.532 | —0.294

Table 6. Regression coefficients for each year.

loop. In densely populated areas, rational spatial planning can enhance the efficiency of rainwater utilization
and reduce ecological stress. Meanwhile, the combined effects of slope and precipitation may aggravate the risk
of rocky desertification, although robust vegetation coverage can effectively buffer this impact. These ecological
mechanisms indicate that environmental changes are the result of coupled natural and anthropogenic influences
and thus require integrated, multi-factor management. The evolution of ecological quality in Guizhou is not
driven by any single factor but emerges from the long-term interaction between natural systems (e.g., vegetation,
hydrothermal conditions) and socio-economic activities (e.g., population pressure, land use changes). This
multi-factor coupling mechanism underscores the importance of adopting a systems-based perspective in
regional ecological policymaking, integrating both natural ecological foundations and anthropogenic drivers.

Discussion

Rationality analysis of the KRSEI model construction

To ensure the scientific rigor and applicability of the Karst Remote Sensing Ecological Index (KRSEI), this study
conducted a comprehensive evaluation emphasizing its theoretical foundation, indicator selection, and statistical
robustness. The Remote Sensing Ecological Index (RSEI) is an integrated model that combines multiple ecological
indicators and has been widely used for ecological monitoring in urban and plain areas. However, as a general-
purpose index, RSEI does not account for the distinctive geomorphological and ecological characteristics of
karst regions, such as steep elevation gradients and severe rocky desertification. These limitations reduce its
applicability in mountainous karst environments where terrain effects and rock exposure strongly influence
ecological processes.

To address these challenges and improve adaptability and accuracy under complex karst conditions, we
developed an enhanced index—KRSEI—by incorporating four key indicators: the Normalized Difference
Modified Vegetation Index (NDMVT), wetness index (WET), rocky desertification index (SIRF), and land surface
temperature (LST) into the conventional RSEI framework. Among these components, NDMVT is specifically
designed to suppress topographic shadow effects and increase sensitivity to vegetation dynamics in mountainous
areas, providing more accurate vegetation information than the traditional NDVI. The SIRF indicator integrates
multiple factors—including the bare soil index, built-up index, bedrock exposure, and vegetation coverage—to
comprehensively characterize rocky desertification and demonstrates high sensitivity to ecological degradation
in karst environments. Together with WET and LST, these indicators capture vegetation greenness, surface
moisture, land degradation, and thermal conditions, all of which are essential drivers of ecological quality in
karst landscapes. To validate the representativeness and internal consistency of the KRSEI model, we randomly
selected 3,000 valid sample points within the study area and applied a multiple linear regression analysis using
IBM SPSS Statistics 26. The regression was designed to quantify the relationship between KRSEI and its four
core components (NDMVI, WET, SIRE and LST) across each year from 2002 to 2022. The statistical results are
presented in Table 6.

For all years in the 2002-2022 period, the regression models passed the 1% significance level test, and the
coefficient of determination (R?) consistently equaled 1. This result indicates that KRSEI achieves a perfect
linear combination of its selected indicators, which is expected because the index was constructed using
these components through a principal component-based approach. Nonetheless, the result demonstrates
strong internal coherence and robustness of the model. The estimated coefficients reveal important ecological
relationships. The coefficients for NDMVI and WET were consistently positive, confirming that increased
vegetation greenness and surface moisture contribute positively to ecological quality—consistent with their
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Year

Indes 2002 [2006 [2010 [2015 [2020 2022
KRSEI
Contrast | 114.4624 | 85.7316 | 38.9855 | 66.0649 | 92.04 | 64.2949

Entroy 2.0669 2.03444 | 1.6542 | 1.949 2.1163 | 2.0603

RSEI
Contrast | 90.9726 | 82.6258 | 29.5882 | 91.4326 | 50.4849 | 63.6565
Entroy 2.0626 2.0189 | 1.6147 |1.9247 |2.0686 |1.7022

Table 7. Contrast and entropy metrics for KRSEI and RSEIL
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Fig. 6. RSEI imagery of a severely ecologically fragile area. The figure was created using ArcGIS 10.6 (https://w
ww.esri.com/en-us/home).

ecological roles in maintaining ecosystem stability. Conversely, the coeflicients for SIRF and LST were negative,
indicating that intensified rocky desertification and higher surface temperatures adversely affect ecological
conditions. Among these variables, SIRF exhibited the largest absolute coefficient values throughout the study
period, underscoring its dominant influence on ecological degradation in karst regions. This finding aligns with
the unique vulnerability of karst ecosystems to soil loss and bedrock exposure. Overall, these results confirm
that KRSEI integrates key ecological factors in a scientifically rational manner and provides a comprehensive
and sensitive indicator for characterizing ecological conditions under complex karst geomorphology. Its
strong explanatory power and statistically validated structure highlight its reliability for long-term ecological
monitoring and dynamic assessment in karst environments.4.2. Validation and Comparative Performance of
KRSEI Against RSEL

To comprehensively validate the applicability and superiority of the KRSEI model, a representative ecologically
fragile region in Guizhou Province was selected for multi-year comparative analysis with the traditional RSEL
Contrast and entropy metrics were computed for both indices across multiple years from 2002 to 2022. As
shown in Table 7, KRSEI consistently outperformed RSEI in all years, with both contrast and entropy values
significantly higher. Notably, KRSEI achieved an average entropy improvement of 12.3%, indicating its superior
ability to characterize ecological spatial heterogeneity and capture detailed environmental information. To
further substantiate this conclusion, typical-area imagery was compared (Figs. 6 and 7), clearly demonstrating
that KRSEI produces images with more pronounced texture details and stronger discriminative capability than
RSEL thereby confirming its enhanced sensitivity and expressive power.

In addition, to assess the rationality of the KRSEI component indicators, linear regression analysis was
conducted between KRSEI and its four core ecological indicators. The results reveal that NDMVI and WET
exhibit positive coefficients, suggesting that improvements in vegetation and moisture conditions have a positive
effect on ecological quality—consistent with their essential roles in ecosystem stability. Conversely, SIRF and
LST show negative correlations, indicating that intensified rocky desertification and elevated land surface
temperature negatively affect ecological conditions. These findings collectively confirm the scientific validity
of the KRSEI construction and demonstrate its strong applicability for accurately capturing ecological quality
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Fig. 7. KRSEI imagery of a severely ecologically fragile area. The figure was created using ArcGIS 10.6 (https://
www.esri.com/en-us/home).

under complex karst geomorphological conditions, making it a robust tool for long-term ecological assessment
and dynamic monitoring in karst regions.

Regional applicability assessment

The KRSEI model developed in this study is designed to reflect the unique ecological characteristics of karst
regions, with Guizhou Province serving as a representative case. By integrating vegetation greenness, surface
moisture, rocky desertification intensity, and thermal conditions, KRSEI demonstrates strong capability in
representing ecological heterogeneity under complex topography. Analysis of long-term results reveals clear
spatial differentiation: areas with gentle slopes, deeper soils, and dense vegetation generally exhibit higher KRSEI
values, indicating favorable hydrothermal conditions and stable ecosystems, whereas regions with steep slopes,
shallow soils, and high bedrock exposure maintain persistently low values, reflecting degradation driven by
severe soil erosion and limited water retention. These findings confirm that KRSEI effectively captures ecological
stressors associated with terrain and lithology.

The successful application of KRSEI highlights its robustness and adaptability to heterogeneous karst
environments. Unlike generalized indices that often underestimate ecological stress in high-relief regions, KRSEI
explicitly accounts for rocky desertification while preserving sensitivity to vegetation and moisture variations.
This advantage allows the model to provide a more accurate representation of ecological quality across diverse
geomorphological settings. Although the current validation focuses on Guizhou, the indicator framework
suggests strong potential for extension to other subtropical karst regions, such as Guangxi and Yunnan, and to
other fragile mountainous ecosystems sharing similar environmental constraints. Future work should prioritize
cross-regional comparative assessments and localized parameter calibration to enhance model transferability,
while exploring integration with higher-resolution remote sensing data to improve adaptability and operational
utility in large-scale ecological monitoring and sustainable land management.

Conclusions

In response to the fragile ecosystems and poor remote sensing adaptability in Southwest China’s karst regions,
this study developed the Karst Remote Sensing Ecological Index (KRSEI), which integrates key ecological
variables such as NDMVI, WET, SIRF, and LST. Using Guizhou Province as a case study, the model was applied
to systematically assess the spatiotemporal dynamics and driving mechanisms of ecological quality from 2002
to 2022.

(1) KRSEI more accurately captures the ecological characteristics of karst landscapes. Compared with the tra-
ditional RSEI it improves contrast and information entropy in representing ecological heterogeneity by
12.3% and 9.6%, respectively. Regression analysis indicates that NDMVI and WET contribute positively to
ecological quality, whereas SIRF and LST exert significant negative impacts. The model exhibits stable and
reliable performance, enabling a more comprehensive and accurate reflection of the ecological conditions
in karst environments.

(2) Ecological quality in Guizhou Province exhibited a “decline-recovery-stabilization” trajectory, with pro-
nounced spatial heterogeneity. From 2002 to 2022, regional ecological quality experienced fluctuations
characterized by periods of increase, decline, and subsequent recovery. The average KRSEI value remained
around 0.6, suggesting a moderate level of ecological quality. Following the advancement of ecological civi-
lization initiatives after 2010, ecological conditions improved significantly. However, after 2020, some areas
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faced degradation risks due to excessive resource exploitation. Spatially, ecological conditions were better
in the southeastern regions (with concentrated forest and cropland areas), while central areas and rocky
desertification zones (e.g., Guiyang, Bijie) exhibited lower ecological quality, forming a pattern of better
conditions in the southeast, poorer in the northwest.

(3) Ecological change was driven by multiple factors with significant interaction effects. Vegetation coverage
was the dominant driver, followed by precipitation, land use, and population density. Most factor interac-
tions showed either bivariate enhancement or nonlinear synergistic effects. In particular, the combinations
of FVC with precipitation and FVC with population density had the strongest explanatory power for spatial
ecological variation, reflecting the high sensitivity of karst ecosystems to coupled natural-anthropogenic
changes.

Although the KRSEI model performed well in Guizhou’s karst areas, its application to other karst or mountainous
regions will require region-specific adjustments to the indicator system and parameter settings to enhance its
generalizability and adaptability. This study provides a scientific tool for monitoring and dynamically assessing
ecological quality in typical karst regions. The findings offer valuable data support and methodological insights
for rocky desertification control and ecological restoration in Southwest China, serving as a reference for
promoting sustainable regional ecosystem management.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to the funding re-
sponsibility but are available from the corresponding author on reasonable request.
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