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Karst regions are ecologically fragile and highly sensitive to both natural and anthropogenic 
disturbances, necessitating accurate and quantitative assessments of ecological quality and its driving 
forces. This study introduces a Karst-Specific Remote Sensing Ecological Index (KRSEI), a novel model 
tailored to the unique environmental conditions of karst landscapes. Using Guizhou Province in 
Southwest China as the study area, the KRSEI was applied to MODIS remote sensing data from 2002 to 
2022, and further integrated with Theil–Sen–Mann–Kendall (Sen–MK) trend analysis and an optimized 
parameter geographical detector to explore spatiotemporal patterns and key driving mechanisms of 
ecological change. The findings reveal that: (1) KRSEI achieves higher information entropy and image 
contrast than traditional RSEI, effectively reflecting ecological heterogeneity; (2) ecological quality 
remained moderately stable (KRSEI ≈ 0.6) over two decades, with regions of lower ecological status 
exhibiting a “rise–decline–rebound” trajectory, and 58.25% of the area showing an improving trend; 
and (3) vegetation cover, precipitation, and population density were identified as dominant drivers, 
with most factor interactions showing synergistic (bivariate enhancement) effects. This research offers 
a robust methodological framework for ecological monitoring in karst regions and provides scientific 
support for targeted ecological protection and sustainable regional development.
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Karst areas are highly susceptible to disturbances from both natural factors and human activities due to their 
unique geological and geomorphic features, fragile ecosystem structure, and low environmental carrying 
capacity1–3. The karst region in Southwest China is one of the most extensively distributed and well-developed 
karst landscapes in the world, where ecological degradation is particularly severe. In recent years, with the 
continuous advancement of China’s ecological civilization strategy, environmental protection and restoration in 
karst areas have become a strategic national priority. Conducting scientific and accurate assessments of ecological 
quality in karst regions4,5 is essential for identifying ecological risks, enhancing the comprehensive control of 
rocky desertification6–8, and guiding ecological conservation and restoration. It forms a critical foundation for 
achieving regional sustainable development.

In recent years, remote sensing technology has been increasingly applied in ecological environment 
monitoring. The Remote Sensing Ecological Index (RSEI), as a comprehensive evaluation model that integrates 
multi-source remote sensing data to reflect ecosystem conditions, has been widely used for quantitative 
assessments of regional ecological quality. Originally proposed by Xu Hanqiu and colleagues9–11, the RSEI 
model has been extensively employed in various ecological contexts such as urban areas, agricultural zones, 
and mining regions, owing to its easy data acquisition, streamlined computational process, and intuitive 
results10,12–17. As research has progressed, the limitations of the traditional RSEI model in specific ecological 
regions have become increasingly apparent. In areas with complex terrain or unique ecological structures—
such as mountainous zones, karst landscapes, deserts, and mining areas—the RSEI fails to fully capture region-
specific ecological characteristics. To enhance the regional adaptability of the model, numerous scholars have 
proposed optimizations and modifications to the RSEI18–24. For instance, in plateau regions, elevation and slope 
factors have been introduced to improve sensitivity to topographic variations. In mining areas, modified models 
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incorporating pollution indices and surface disturbance indicators have been developed. With the widespread 
use of multi-source remote sensing data—such as MODIS, Landsat, and Sentinel imagery—along with advances 
in computing technology and artificial intelligence algorithms, the construction approaches, indicator selection, 
and analytical methods of the RSEI model have become increasingly diverse25–32. Some studies have begun to 
incorporate machine learning techniques into the weighting and validation processes of ecological indices to 
further enhance model accuracy and practical applicability33–41. Research on remote sensing ecological indices 
has evolved from early single-metric evaluations to comprehensive, multi-dimensional, and scale-adaptive 
analyses, providing more scientific and efficient technical support for ecological monitoring and assessment.

Although the RSEI has been widely applied in regional ecological assessments due to its general applicability 
and ease of use, it primarily relies on conventional indicators such as NDVI, humidity, dryness, and land surface 
temperature. This reliance makes it difficult to accurately reflect the ecological characteristics of karst regions, 
including complex landforms, severe rocky desertification, and unique vegetation structures, thereby limiting its 
applicability in such ecosystems. Most current studies remain limited in spatial and temporal scope, particularly 
in aspects such as adaptive weighting of indicators, scale compatibility, and the analysis of long-term ecological 
trends and the interactions between natural and anthropogenic driving factors. Therefore, the development 
of an improved remote sensing ecological index model with enhanced topographic sensitivity and ecological 
representativeness tailored to the unique characteristics of karst ecosystems holds significant theoretical and 
practical value.

This study proposes an improved remote sensing ecological index, KRSEI, tailored for karst regions by 
integrating four key ecological indicators: the normalized difference mountain vegetation index (NDMVI), the 
wetness component index (WET), the rocky desertification index (SIRF), and the land surface temperature index 
(LST). Using Guizhou Province as a case study, the model’s validity and superiority were evaluated based on 
long-term MODIS data from 2002 to 2022. Trend analysis and the geographical detector method were employed 
to comprehensively reveal the spatiotemporal dynamics of ecological quality and its dominant driving forces in 
the province. The results provide a scientific basis for comprehensive rocky desertification control, ecological 
restoration strategies, and regional ecological management in karst areas.

Materials and methods
Study area
This study focuses on Guizhou Province as the primary research area, which is located between 
approximately103°36′E–109°35′E and24°37′N–29°13′N (Fig.  1), covering a total area of 176,167  km². 
The region is representative and diverse in terms of natural environment, intensity of human activities, and 
implementation of ecological restoration policies, making it suitable for multi-scale and multi-temporal remote 
sensing-based ecological quality assessments. Guizhou is situated on the eastern part of the Yunnan–Guizhou 
Plateau, which forms the second step of China’s topography. It lies in a typical subtropical mountainous karst 
region, characterized by rugged terrain sloping from west to east and significant vertical relief, with an average 
elevation exceeding 1,100 m. Guizhou is one of the most representative karst regions in the world, with karst 

Fig. 1.  Overview map of the study area in Guizhou province. The figure was created using ArcGIS 10.6 
(https://www.esri.com/en-us/home).
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landforms covering more than 62% of its area. Exposed karst landscapes are widely distributed, forming a variety 
of landforms such as peak clusters, depressions, sinkholes, underground rivers, and caves, features indicative 
of a typical karst ecosystem. The province experiences a subtropical humid monsoon climate, with an average 
annual temperature of around 15 °C and annual precipitation ranging from 1,000 to 1,400 mm. Rainfall and 
temperature peaks coincide, resulting in high humidity, limited sunlight, and a rainy season that typically lasts 
from May to September. Due to concentrated rainfall, vegetation destruction, and soil erosion, the process of 
rocky desertification is particularly pronounced in Guizhou. In recent years, rapid socio-economic development 
and excessive resource exploitation have triggered a series of ecological issues, including vegetation degradation, 
biodiversity loss, and the expansion of rocky desertification, leading to the continuous deterioration of ecological 
environmental quality.

Data sources
This study utilizes multi-source remote sensing imagery and geospatial datasets spanning the years 2002 to 
2022. The remote sensing data are derived from the MODIS series products, obtained via the LAADS DAAC 
portal (https://ladsweb.modaps.eosdis.nasa.gov). The MOD09A1 product provides surface reflectance data with 
an 8-day temporal resolution and 500 m spatial resolution, and is primarily used to derive vegetation greenness 
(NDMVI), surface moisture (WET), and rocky desertification index (SIRF). The MOD11A2 product provides 
land surface temperature (day and night) and emissivity data, with the same 8-day temporal resolution and 
a spatial resolution of 1,000  m. It is used to calculate the land surface temperature index (LST). Additional 
spatial data include the 2002–2022 LandScan Global Population Dataset, provided by the Oak Ridge National 
Laboratory (ORNL), U.S. Department of Energy (https://landscan.ornl.gov/), and used to calculate population 
density in the study area. Monthly precipitation and near-surface air temperature datasets at 1-km resolution for 
China were obtained from the National Earth System Science Data Center (https://www.geodata.cn) and used to 
calculate precipitation and temperature for the study area. The 30-m resolution CLCD (2002–2022) land cover 
dataset for China was obtained from the National Cryosphere Desert Data Center (https://www.ncdc.ac.cn) and 
used to extract land use types in the study area. The 30-m resolution SRTM DEM product was obtained from 
the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov) and used to compute elevation and 
slope across the study area.

Methodology
This study develops a karst-specific remote sensing ecological index (KRSEI) to address the complex topography 
and fragile ecological conditions characteristic of Southwest China’s karst regions. The KRSEI integrates multiple 
improved ecological indicators—including vegetation greenness, moisture, rocky desertification, and land 
surface temperature—using principal component analysis (PCA). It is applied to analyze the spatiotemporal 
dynamics of ecological quality based on multi-temporal remote sensing data. The ecological quality trends in 
the study area are evaluated, and dominant driving factors are identified using an optimal-parameter geographic 
detector model. This enables a comprehensive understanding of the spatiotemporal evolution of the karst 
ecological environment and its driving mechanisms. The main technical framework of this study is illustrated 
in Fig. 2.

Construction of KRSEI
To construct a remote sensing ecological index (KRSEI) suitable for ecological environment assessment in 
karst regions, this study extends the traditional RSEI model by incorporating more region-specific ecological 
indicators. By considering the typical features of karst ecosystems—such as significant topographical variation, 
exposed surface bedrock, severe soil erosion, rocky desertification, and vegetation degradation—more 
representative indicators are introduced to construct the KRSEI, including the Normalized Difference Mountain 
Vegetation Index (NDMVI), the Wetness Component Index (WET), the Rocky Desertification Index (SIRF), 
and the Land Surface Temperature Index (LST). After normalization of the four indicators, principal component 
analysis (PCA) is applied to extract the first principal component (PC1) as a comprehensive representation of 
ecological quality, ultimately constructing the improved remote sensing ecological index (KRSEI). The KRSEI 
has a value range from 0 to 1, with higher values indicating better ecological quality.

	(1)	 The calculation methods for the specific indicators are as follows:

	 Vegetation Greenness Index. The Normalized Difference Mountain Vegetation Index (NDMVI) is derived 
from the NDVI and designed to mitigate the effects of topography by simultaneously reducing reflectance in 
both the near-infrared and red bands, making it effective for addressing the influence of complex terrain on 
mountain vegetation information42. For MOD09A1 imagery, the calculation formula is as follows:

	
NDMV I = (b2 − b1) + (b1min − b2min)

(b2 + b1) − (b1min + b2min) � (1)

	 Wetness Component Index. The wetness component index (WET) is closely related to the ecological environ-
ment, as it reflects surface moisture conditions, particularly soil moisture, by utilizing the moisture compo-
nent derived from the Hat Transform. It is widely applied in ecological monitoring43. The calculation formula 
is as follows:
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	 WET = (0.1147 ∗ b1) + (0.2489 ∗ b2) + (0.2408 ∗ b3) + (0.3132 ∗ b4) + . . . (0.3122 ∗ b5) + (0.6416 ∗ b6) + (0.5087 ∗ b7)� (2)

	 Rocky Desertification Index (SIRF). The index integrates four indicators: Bare Soil Index (SI), Building Index 
(IBI), Bedrock Exposure Index (RE), and Vegetation Coverage (FVC), and uses principal component analysis 
(PCA) to construct a rocky desertification evaluation model for extracting rocky desertification informa-
tion44–46. The calculation formula is as follows:

	
SI = (b6 + b1) − (b2 + b3)

(b6 + b1) + (b2 + b3) � (3)

	
IBI =

2∗b6
b6+b2 − b2

b2+b1 − b4
b4+b6

2∗b6
b6+b2 + b2

b2+b1 + b4
b4+b6

� (4)

	
RE = NDRI − NDRIp95

NDRIp95 − NDRIp5
, and NDRI = b7 − b2

b7 + b2 � (5)

	
F V C = NDMV I − NDMV Imin

NDMV Imax − NDMV Imin
� (6)

	Land Surface Temperature Index (LST). The heat index is closely linked to surface energy flux and is widely 
used in ecological risk assessment and related applications. In this study, the land surface temperature index 
(LST) was derived from MOD11A2 data using a retrieval method. The calculation formula is as follows:

	 LST = 0.02 ∗ DN − 273.15� (7)

	(2)	 Construction of KRSEI.

Fig. 2.  Flowchart of the methodology.

 

Scientific Reports |        (2025) 15:36382 4| https://doi.org/10.1038/s41598-025-20425-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	Principal component analysis (PCA) reduces data dimensionality and filters out noise by concentrating multiple 
feature components into a few principal components47. The weights of each index are automatically deter-
mined based on their contributions to the first principal component (PC1). Results show that PC1 retains the 
highest amount of information among all components. The first two variables in PC1 (greenness and wetness) 
exhibit positive loadings, while the latter two (rocky desertification index and temperature) have negative 
loadings, which aligns with real-world conditions. Therefore, PC1 was used as the information source for KR-
SEI to ensure the objectivity and rationality of the results. Since the four ecological indicators differ in scale, 
they were normalized to a 0–1 range before principal component transformation. The normalization formula 
is as follows:

	
NI = I − Imin

Imax − Imin
� (8)

	In the formula, NI represents the normalized value, I denotes the original value of the indicator, and Imax, Imin 
refer to the maximum and minimum values of the indicator, respectively.

The initial ecological index (KRSEI0) was constructed using PC1, and is calculated as:

	 KRSEI0 = PC1 [f (NDMV I, W ET, SIRF, LST )]� (9)

The result of KRSEI₀ was further normalized to obtain the final Karst Remote Sensing Ecological Index (KRSEI), 
which ranges from 0 to 1. Higher KRSEI values indicate better ecological quality.

	
SRSEI = SRSEI0 − SRSEI0min

SRSEI0max − SRSEI0min
� (10)

In the formula, KRSEI0 min和KRSEI0 max represent the minimum and maximum values of KRSEI₀ for the target 
year, respectively. KRSEI denotes the final Karst Remote Sensing Ecological Index.

Trend analysis of ecological quality change
This study employed a combination of the Theil–Sen slope estimation and the Mann–Kendall test to analyze the 
temporal trends of KRSEI. The Theil–Sen estimator is a non-parametric method that does not require normality 
testing or data transformation48. It also makes no assumptions about autocorrelation in the time series and is 
effective in handling noise and outliers. It calculates the slopes of all pairwise combinations in the time series, 
and the median of these slopes (β) is taken as the overall trend. A value of β > 0 indicates ecological improvement, 
β < 0 indicates degradation, and β = 0 suggests a stable ecological condition. The Mann–Kendall test is used to 
assess the significance of the trend. It is robust against outliers and missing data, and is widely applied in trend 
detection of long-term time series49.

Optimized parameters geographical detector
The geographical detector is a statistical method used to detect spatial heterogeneity and reveal its underlying 
driving factors. By analyzing differences between geographic strata, it quantifies the extent to which explanatory 
variables influence dependent variables and has been widely applied in ecological assessment and ecosystem 
analysis. Traditional geographical detector methods require manual setting of classification schemes and 
class numbers for continuous variables, which often leads to poor discretization and strong subjectivity. The 
Optimized Parameters Geographical Detector (OPGD) model addresses this by computing and comparing the 
q-values under various classification methods and class numbers for each continuous variable50. A higher q-value 
indicates better discretization. This allows for more accurate detection of spatial heterogeneity in ecosystem 
services and quantifies the explanatory power of each influencing factor on this spatial heterogeneity. According 
to statistical guidelines, classification methods include equal interval, natural breaks, quantiles, geometric 
interval, and standard deviation classification. Using the GD package in R, all five classification methods were 
applied with class numbers ranging from 4 to 12. The combination yielding the maximum q-value was selected 
for spatial discretization.

Factor detection  Factor detection evaluates the extent to which an individual influencing factor (X) explains 
the spatial distribution of KRSEI. This is quantified using the q-value, which measures the explanatory power of 
a single factor.

	
q = 1 −

∑L

h=1 Nhσh
2

Nσ2
� (11)

In the formula, L represents the number of categories for factor X, Nh is the number of samples in category h, and 
N is the total number of samples in the study area. σ 2

h and σ 2 represent the variance within category h and the 
total variance, respectively. The q-value ranges from 0 to 1, with higher values indicating stronger explanatory 
power.

Interaction detection  Interaction detection is used to identify the interaction effects between different influ-
encing factors on the dependent variable. It evaluates how the combined influence of two factors affects the 
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explanatory power for KRSEI, and determines whether the interaction is enhancing, weakening, or independent 
(e.g., nonlinear enhancement, independence). Specific interaction types are summarized in Table 1, where X₁ 
and X₂ represent distinct driving factors.

Results
Spatiotemporal distribution of ecological quality
To comprehensively reveal the evolution of ecological quality in Guizhou Province, this study classifies ecological 
quality into five levels based on KRSEI values: Inferior (I: 0.0–0.2), Poor (II: 0.2–0.4), Moderate (III: 0.4–0.6), 
Good (IV: 0.6–0.8), and Excellent (V: 0.8–1.0), with higher values indicating better ecological quality. Figure 3 
presents the spatial distribution pattern of KRSEI in Guizhou Province from 2002 to 2022.

From the perspective of spatial distribution, the southeastern region of Guizhou Province exhibits relatively 
better ecological quality, primarily due to the region’s relatively gentle terrain, high proportion of forest and 
arable land, and stable ecosystem structure. In contrast, the central region of Guizhou Province, including Bijie 
City, Guiyang City, and Zunyi City, demonstrates relatively poorer ecological quality. This is attributed to factors 
such as significant topographic variations, complex land use, and prominent issues of rock desertification, which 
increase the vulnerability of the ecosystem.

Based on the statistical results of different ecological grade areas and their proportions in Table 2; Fig. 4, the 
ecological quality of Guizhou Province from 2002 to 2022 shows an evolution of “fluctuation—improvement—
local degradation.” The average KRSEI value is generally around 0.6, reflecting an overall ecological level that 
remains slightly above moderate. The area of regions with ecological grades below “moderate” first increased, 
then decreased, and slightly rebounded, indicating that ecological quality changes are influenced by multiple 
factors. Between 2002 and 2009, weak ecological protection awareness and extensive resource development led 
to continuous environmental degradation. From 2010 to 2019, Guizhou Province made significant progress in 
ecological civilization construction, with policies and measures effectively implemented, resulting in notable 
improvements in ecological quality. From 2020 to 2022, however, some areas experienced notable ecological 
degradation due to excessive mineral resource exploitation and delayed ecological restoration, particularly in 
Xiuwang County of Guiyang and Huangping County in Qiandongnan Prefecture, where ecological destruction 
and environmental pollution were prominent. The NDMVI remained at a consistently high level throughout 
the study period, indicating relatively stable vegetation cover. In contrast, the WET index exhibited substantial 
fluctuations, followed by a rebound after 2015, reflecting a gradual improvement in moisture availability. The 
SIRF remained elevated in several years, suggesting that rocky desertification continues to pose a serious 
environmental challenge. The LST displayed a declining-then-rising trend, potentially linked to climate warming 
and localized urban heat island effects. Overall, ecological environmental quality in Guizhou Province showed 
significant spatial heterogeneity and phased temporal evolution, driven by a combination of natural geographic 
factors and anthropogenic activities.

Trend analysis of ecological quality
To reveal the temporal evolution of ecological quality in Guizhou Province from 2002 to 2022, this study 
employed the Theil-Sen slope estimation and the Mann-Kendall (M-K) test to analyze the time series of the 
Karst Remote Sensing Ecological Index (KRSEI). The Theil-Sen method, a robust non-parametric technique, 
effectively characterizes the direction and magnitude of temporal trends while being resistant to outliers. The 
Mann-Kendall test is widely used in long-term ecological and climatic studies due to its ability to detect the 
significance of trends without assuming data normality and its insensitivity to missing or extreme values. 
The results indicate that the ecological environment in Guizhou has generally improved over the past two 
decades, although localized areas have experienced degradation. As shown in Fig. 5; Table 3, regions exhibiting 
an increasing trend in KRSEI accounted for 58.25% of the study area. Among these, 56.71% showed a “non-
significant increase,” primarily located in the northeastern and western parts of Guizhou, such as Tongren, 
Liupanshui, and Qiannan Prefecture. In contrast, areas with a decreasing trend accounted for 37.34%, with 
“non-significant decrease” areas comprising 36.75%, mostly concentrated in the central, northwestern, and 
southeastern regions, including Guiyang, Anshun, and the eastern part of Bijie. Areas with no significant change 
were relatively scattered, covering approximately 4.59% of the total study area.

Further analysis reveals that areas showing significant or highly significant improvements in ecological 
quality are mainly concentrated in Qiannan. Eastern Tongren, western Liupanshui, and western Bijie, indicating 
effective ecological restoration in these regions. In contrast, areas experiencing significant or severe ecological 
degradation—such as western Zunyi, suburban areas of Guiyang, Huangping County, and regions surrounding 
Anshun—highlight issues related to intensive resource exploitation and delayed ecological restoration. Overall, 
the ecological quality in Guizhou has predominantly improved, with localized areas of degradation. This pattern 

Type of interaction q-value range

Nonlinear weakened interaction q(X1∩X2) < Min(q(X1), q(X2))

Univariate nonlinear weakened interaction Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2))

Bivariate enhanced interaction Max(q(X1), q(X2)) < q(X1∩X2) < q(X1) + q(X2)

Independent effect q(X1∩X2) = q(X1) + q(X2)

Nonlinear enhanced interaction q(X1∩X2) > q(X1) + q(X2)

Table 1.  Interaction detection results.
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not only reflects the positive outcomes of ecological civilization initiatives but also underscores the need to 
strengthen environmental regulation and restoration efforts in resource-intensive areas, to consolidate ecological 
gains and achieve sustainable development.

Analysis of driving factors and interactive mechanisms of ecological quality changes
Analysis of single-factor detection results
Using the Optimal Parameter Geographic Detector (OPGD) method, the explanatory power of seven 
natural and human factors on the spatiotemporal changes of KRSEI in Guizhou Province was systematically 
evaluated. The evaluation results, shown in Table 4, indicate that all detection factors passed the significance 

Fig. 3.  Spatial distribution of KRSEI results in Guizhou Province from 2002 to 2022. The figure was created 
using ArcGIS 10.6 (https://www.esri.com/en-us/home).
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test (p < 0.001), highlighting their significant impact on the regional ecological quality. In terms of the q-value, 
vegetation coverage (FVC) exhibited the strongest explanatory power across all years (q-value range: 0.196–
0.489), consistently being the dominant factor influencing ecological quality. Precipitation and land use type 
also showed notable performance in multiple years, indicating that natural water-thermal conditions and land 
resource allocation play a key role in shaping the ecological pattern. In contrast, the q-values of factors such as 
elevation, slope, and temperature were generally lower, suggesting that their role in the spatial differentiation 
of ecological quality in Guizhou Province is relatively minor, possibly due to their small spatial variability or 
indirect effects on the ecosystem. The 2022 data show that FVC (q = 0.489), population density (q = 0.182), and 
land use (q = 0.165) are the three key drivers of the spatial differentiation of ecological quality. This result reveals 
that the influence of human activities on ecosystem evolution is gradually increasing, especially in areas with 
population concentration and urban expansion. Among all detection factors, the explanatory power for the 
improved remote sensing ecological index is ranked as follows: vegetation coverage > population density > land 
use > slope > precipitation > elevation > temperature.

Analysis of factor interaction mechanisms
Further interaction analysis (Table  5) reveals that the combined influence of any two factors is consistently 
greater than their individual effects, demonstrating a pattern of “synergistic enhancement.” Most interactions 
exhibit “bivariate enhancement,” while some display “nonlinear enhancement.” No interactions were found to 
be independent or weakening in nature. For instance, slope and elevation (q = 0.131), elevation and population 
density (q = 0.254), and temperature and land use (q = 0.207) exhibit nonlinear enhancement, suggesting that 
the interplay between topography, human activities, and climate variables can drive more pronounced changes 
in ecological quality. Notably, combinations such as vegetation cover with precipitation (q = 0.513), population 

Fig. 4.  Distribution of area proportions of ecological quality levels for each year in Guizhou Province.

 

2002 2006 2010 2015 2020 2022

NDMVI 0.8789 0.8117 0.8595 0.8751 0.8656 0.8637

WET 0.8565 0.3881 0.4108 0.3802 0.5879 0.6199

SIRF 0.3653 0.4513 0.452 0.3604 0.3823 0.3983

LST 0.5707 0.4513 0.6829 0.7172 0.5896 0.5708

KRSEI 0.6264 0.5911 0.5943 0.6583 0.6329 0.6275

Table 2.  Statistical summary of mean values for ecological indicators and ecological indexes in Guizhou 
Province from 2002 to 2022.
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density (q = 0.513), and elevation (q = 0.511) show strong bivariate enhancement, highlighting the intricate 
coupled feedbacks between natural conditions and human influences. These factors typically influence ecological 
quality not in isolation but through coordinated interactions. For example, vegetation can regulate rainfall 
utilization by enhancing transpiration, while rainfall promotes vegetation growth, creating a positive feedback 

Factor

2002 2006 2010 2015 2020 2022

q-value p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value p-value

FVC (X1) 0.481 0.000 0.435 0.000 0.196 0.000 0.280 0.000 0.459 0.000 0.489 0.000

Slope (X2) 0.048 0.000 0.019 0.000 0.036 0.000 0.049 0.000 0.080 0.000 0.088 0.000

Elevation (X3) 0.020 0.000 0.022 0.000 0.066 0.000 0.011 0.000 0.072 0.000 0.037 0.000

Precipitation (X4) 0.244 0.000 0.307 0.000 0.135 0.000 0.083 0.000 0.188 0.000 0.066 0.000

Temperature (X5) 0.037 0.000 0.100 0.000 0.050 0.000 0.021 0.000 0.087 0.000 0.033 0.000

Population density (X6) 0.108 0.000 0.077 0.000 0.039 0.000 0.065 0.000 0.147 0.000 0.182 0.000

Land use (X7) 0.158 0.000 0.123 0.000 0.097 0.000 0.110 0.000 0.197 0.000 0.165 0.000

Table 4.  Factor detection results for KRSEI Spatiotemporal changes in Guizhou Province.

 

β Z SRSEI change trend Area proportion (%)

IZI < 1.96 Slight decrease (not significant) 36.75

β<0 1.96 ≤ IZI < 2.58 Significant decrease 0.49

IZI ≥ 2.58 Highly significant decrease 0.10

β=0 Z No significant change 4.59

IZI ≥ 2.58 Slight increase (not significant) 0.23

β>0 1.96 ≤ IZI <2.58 Significant increase 1.31

IZI < 1.96 Highly significant increase 56.71

Table 3.  Statistical summary of KRSEI change trends in Guizhou Province (2002–2022).

 

Fig. 5.  Spatial trends of KRSEI in Guizhou Province (2002–2022). The figure was created using ArcGIS 10.6 
(https://www.esri.com/en-us/home).
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loop. In densely populated areas, rational spatial planning can enhance the efficiency of rainwater utilization 
and reduce ecological stress. Meanwhile, the combined effects of slope and precipitation may aggravate the risk 
of rocky desertification, although robust vegetation coverage can effectively buffer this impact. These ecological 
mechanisms indicate that environmental changes are the result of coupled natural and anthropogenic influences 
and thus require integrated, multi-factor management. The evolution of ecological quality in Guizhou is not 
driven by any single factor but emerges from the long-term interaction between natural systems (e.g., vegetation, 
hydrothermal conditions) and socio-economic activities (e.g., population pressure, land use changes). This 
multi-factor coupling mechanism underscores the importance of adopting a systems-based perspective in 
regional ecological policymaking, integrating both natural ecological foundations and anthropogenic drivers.

Discussion
Rationality analysis of the KRSEI model construction
To ensure the scientific rigor and applicability of the Karst Remote Sensing Ecological Index (KRSEI), this study 
conducted a comprehensive evaluation emphasizing its theoretical foundation, indicator selection, and statistical 
robustness. The Remote Sensing Ecological Index (RSEI) is an integrated model that combines multiple ecological 
indicators and has been widely used for ecological monitoring in urban and plain areas. However, as a general-
purpose index, RSEI does not account for the distinctive geomorphological and ecological characteristics of 
karst regions, such as steep elevation gradients and severe rocky desertification. These limitations reduce its 
applicability in mountainous karst environments where terrain effects and rock exposure strongly influence 
ecological processes.

To address these challenges and improve adaptability and accuracy under complex karst conditions, we 
developed an enhanced index—KRSEI—by incorporating four key indicators: the Normalized Difference 
Modified Vegetation Index (NDMVI), wetness index (WET), rocky desertification index (SIRF), and land surface 
temperature (LST) into the conventional RSEI framework. Among these components, NDMVI is specifically 
designed to suppress topographic shadow effects and increase sensitivity to vegetation dynamics in mountainous 
areas, providing more accurate vegetation information than the traditional NDVI. The SIRF indicator integrates 
multiple factors—including the bare soil index, built-up index, bedrock exposure, and vegetation coverage—to 
comprehensively characterize rocky desertification and demonstrates high sensitivity to ecological degradation 
in karst environments. Together with WET and LST, these indicators capture vegetation greenness, surface 
moisture, land degradation, and thermal conditions, all of which are essential drivers of ecological quality in 
karst landscapes. To validate the representativeness and internal consistency of the KRSEI model, we randomly 
selected 3,000 valid sample points within the study area and applied a multiple linear regression analysis using 
IBM SPSS Statistics 26. The regression was designed to quantify the relationship between KRSEI and its four 
core components (NDMVI, WET, SIRF, and LST) across each year from 2002 to 2022. The statistical results are 
presented in Table 6.

For all years in the 2002–2022 period, the regression models passed the 1% significance level test, and the 
coefficient of determination (R²) consistently equaled 1. This result indicates that KRSEI achieves a perfect 
linear combination of its selected indicators, which is expected because the index was constructed using 
these components through a principal component–based approach. Nonetheless, the result demonstrates 
strong internal coherence and robustness of the model. The estimated coefficients reveal important ecological 
relationships. The coefficients for NDMVI and WET were consistently positive, confirming that increased 
vegetation greenness and surface moisture contribute positively to ecological quality—consistent with their 

Year 2002 2006 2010 2015 2020 2022

Intercept 0.664 0.704 0.703 0.575 0.836 0.649

NDMVI 0.205 0.389 0.277 0.312 0.217 0.254

WET 0.335 0.134 0.403 0.333 0.232 0.269

SIRF − 0.658 − 0.639 − 0.635 − 0.683 − 0.537 − 0.601

LST − 0.282 − 0.433 − 0.327 − 0.110 − 0.532 − 0.294

Table 6.  Regression coefficients for each year.

 

Factor FVC Slope Elevation Precipitation Temperature Population density Land use

FVC 0.489

Slope 0.501 0.088

Elevation 0.511 0.131* 0.037

Precipitation 0.513 0.144 0.143* 0.066

Temperature 0.509 0.125* 0.095* 0.146* 0.033

Population Density 0.513 0.218 0.254* 0.228 0.244* 0.182

Land use 0.507 0.205 0.220* 0.217 0.207* 0.233 0.165

Table 5.  Interaction detection results of factor pairs based on geographic detector. *Nonlinear enhancement.
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ecological roles in maintaining ecosystem stability. Conversely, the coefficients for SIRF and LST were negative, 
indicating that intensified rocky desertification and higher surface temperatures adversely affect ecological 
conditions. Among these variables, SIRF exhibited the largest absolute coefficient values throughout the study 
period, underscoring its dominant influence on ecological degradation in karst regions. This finding aligns with 
the unique vulnerability of karst ecosystems to soil loss and bedrock exposure. Overall, these results confirm 
that KRSEI integrates key ecological factors in a scientifically rational manner and provides a comprehensive 
and sensitive indicator for characterizing ecological conditions under complex karst geomorphology. Its 
strong explanatory power and statistically validated structure highlight its reliability for long-term ecological 
monitoring and dynamic assessment in karst environments.4.2. Validation and Comparative Performance of 
KRSEI Against RSEI.

To comprehensively validate the applicability and superiority of the KRSEI model, a representative ecologically 
fragile region in Guizhou Province was selected for multi-year comparative analysis with the traditional RSEI. 
Contrast and entropy metrics were computed for both indices across multiple years from 2002 to 2022. As 
shown in Table 7, KRSEI consistently outperformed RSEI in all years, with both contrast and entropy values 
significantly higher. Notably, KRSEI achieved an average entropy improvement of 12.3%, indicating its superior 
ability to characterize ecological spatial heterogeneity and capture detailed environmental information. To 
further substantiate this conclusion, typical-area imagery was compared (Figs. 6 and 7), clearly demonstrating 
that KRSEI produces images with more pronounced texture details and stronger discriminative capability than 
RSEI, thereby confirming its enhanced sensitivity and expressive power.

In addition, to assess the rationality of the KRSEI component indicators, linear regression analysis was 
conducted between KRSEI and its four core ecological indicators. The results reveal that NDMVI and WET 
exhibit positive coefficients, suggesting that improvements in vegetation and moisture conditions have a positive 
effect on ecological quality—consistent with their essential roles in ecosystem stability. Conversely, SIRF and 
LST show negative correlations, indicating that intensified rocky desertification and elevated land surface 
temperature negatively affect ecological conditions. These findings collectively confirm the scientific validity 
of the KRSEI construction and demonstrate its strong applicability for accurately capturing ecological quality 

Fig. 6.  RSEI imagery of a severely ecologically fragile area. The figure was created using ArcGIS 10.6 ​(​h​t​t​p​s​:​/​/​w​
w​w​.​e​s​r​i​.​c​o​m​/​e​n​-​u​s​/​h​o​m​e​)​.​​​​

 

Indes

Year

2002 2006 2010 2015 2020 2022

KRSEI

 Contrast 114.4624 85.7316 38.9855 66.0649 92.04 64.2949

 Entroy 2.0669 2.03444 1.6542 1.949 2.1163 2.0603

RSEI

 Contrast 90.9726 82.6258 29.5882 91.4326 50.4849 63.6565

 Entroy 2.0626 2.0189 1.6147 1.9247 2.0686 1.7022

Table 7.  Contrast and entropy metrics for KRSEI and RSEI.
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under complex karst geomorphological conditions, making it a robust tool for long-term ecological assessment 
and dynamic monitoring in karst regions.

Regional applicability assessment
The KRSEI model developed in this study is designed to reflect the unique ecological characteristics of karst 
regions, with Guizhou Province serving as a representative case. By integrating vegetation greenness, surface 
moisture, rocky desertification intensity, and thermal conditions, KRSEI demonstrates strong capability in 
representing ecological heterogeneity under complex topography. Analysis of long-term results reveals clear 
spatial differentiation: areas with gentle slopes, deeper soils, and dense vegetation generally exhibit higher KRSEI 
values, indicating favorable hydrothermal conditions and stable ecosystems, whereas regions with steep slopes, 
shallow soils, and high bedrock exposure maintain persistently low values, reflecting degradation driven by 
severe soil erosion and limited water retention. These findings confirm that KRSEI effectively captures ecological 
stressors associated with terrain and lithology.

The successful application of KRSEI highlights its robustness and adaptability to heterogeneous karst 
environments. Unlike generalized indices that often underestimate ecological stress in high-relief regions, KRSEI 
explicitly accounts for rocky desertification while preserving sensitivity to vegetation and moisture variations. 
This advantage allows the model to provide a more accurate representation of ecological quality across diverse 
geomorphological settings. Although the current validation focuses on Guizhou, the indicator framework 
suggests strong potential for extension to other subtropical karst regions, such as Guangxi and Yunnan, and to 
other fragile mountainous ecosystems sharing similar environmental constraints. Future work should prioritize 
cross-regional comparative assessments and localized parameter calibration to enhance model transferability, 
while exploring integration with higher-resolution remote sensing data to improve adaptability and operational 
utility in large-scale ecological monitoring and sustainable land management.

Conclusions
In response to the fragile ecosystems and poor remote sensing adaptability in Southwest China’s karst regions, 
this study developed the Karst Remote Sensing Ecological Index (KRSEI), which integrates key ecological 
variables such as NDMVI, WET, SIRF, and LST. Using Guizhou Province as a case study, the model was applied 
to systematically assess the spatiotemporal dynamics and driving mechanisms of ecological quality from 2002 
to 2022.

	(1)	 KRSEI more accurately captures the ecological characteristics of karst landscapes. Compared with the tra-
ditional RSEI, it improves contrast and information entropy in representing ecological heterogeneity by 
12.3% and 9.6%, respectively. Regression analysis indicates that NDMVI and WET contribute positively to 
ecological quality, whereas SIRF and LST exert significant negative impacts. The model exhibits stable and 
reliable performance, enabling a more comprehensive and accurate reflection of the ecological conditions 
in karst environments.

	(2)	 Ecological quality in Guizhou Province exhibited a “decline–recovery–stabilization” trajectory, with pro-
nounced spatial heterogeneity. From 2002 to 2022, regional ecological quality experienced fluctuations 
characterized by periods of increase, decline, and subsequent recovery. The average KRSEI value remained 
around 0.6, suggesting a moderate level of ecological quality. Following the advancement of ecological civi-
lization initiatives after 2010, ecological conditions improved significantly. However, after 2020, some areas 

Fig. 7.  KRSEI imagery of a severely ecologically fragile area. The figure was created using ArcGIS 10.6 ​(​​​h​t​t​p​s​:​/​/​
w​w​w​.​e​s​r​i​.​c​o​m​/​e​n​-​u​s​/​h​o​m​e​​​​​)​.​​​​
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faced degradation risks due to excessive resource exploitation. Spatially, ecological conditions were better 
in the southeastern regions (with concentrated forest and cropland areas), while central areas and rocky 
desertification zones (e.g., Guiyang, Bijie) exhibited lower ecological quality, forming a pattern of better 
conditions in the southeast, poorer in the northwest.

	(3)	 Ecological change was driven by multiple factors with significant interaction effects. Vegetation coverage 
was the dominant driver, followed by precipitation, land use, and population density. Most factor interac-
tions showed either bivariate enhancement or nonlinear synergistic effects. In particular, the combinations 
of FVC with precipitation and FVC with population density had the strongest explanatory power for spatial 
ecological variation, reflecting the high sensitivity of karst ecosystems to coupled natural–anthropogenic 
changes.

Although the KRSEI model performed well in Guizhou’s karst areas, its application to other karst or mountainous 
regions will require region-specific adjustments to the indicator system and parameter settings to enhance its 
generalizability and adaptability. This study provides a scientific tool for monitoring and dynamically assessing 
ecological quality in typical karst regions. The findings offer valuable data support and methodological insights 
for rocky desertification control and ecological restoration in Southwest China, serving as a reference for 
promoting sustainable regional ecosystem management.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to the funding re-
sponsibility but are available from the corresponding author on reasonable request.
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