
Face2Bone explainable AI model 
predicts osteoporosis risk from 
facial images in proof of concept 
study
Qing Liang1,2, Jingding Zhao2,3, Fang Yang2,3, Xianjun Chen2, Yang Song5, Zewen Shi2,4 & 
Qingjiang Pang1,2

Objectives  BMI and age are associated with the risk of osteoporosis (OP). The dynamic facial aging 
process involves changes in skin, muscle, fat, and facial bone structures, with facial skeletal aging 
affecting facial contours through volumetric reduction and morphological alterations. This study aims 
to develop and validate an explainable AI predictive model for opportunistic osteoporosis screening 
based on facial images.
Background  Effective identification of populations at risk for low bone mass and osteoporosis is 
crucial for implementing individualized screening strategies and subsequent orthopedic care. Although 
artificial intelligence technology demonstrates broad prospects and excellent performance in disease 
prediction using imaging data, its application in osteoporosis risk prediction utilizing facial data 
remains insufficiently explored and developed. We propose an explainable artificial intelligence (XAI) 
deep learning model named Face2Bone for osteoporosis risk prediction and opportunistic screening of 
at-risk populations based on 2D facial images. In this study, we conducted proof-of-concept validation 
by establishing predictive models and integrating XAI methods to identify and comparatively analyze 
facial phenotypic factors associated with osteoporosis.
Methods  An observational study of 1167 patients undergoing DXA (in March-August 2024) was 
conducted at Ningbo No.2 Hospital. Standardization for facial images and the collection of clinical 
data were performed. A preprocessing pipeline was created to remove the background noise from the 
facial images. A hybrid deep learning model was constructed with a pre-trained FaceNet, a custom 
Frequency Sparse Attention (FSA) module, a Transformer and CNN backbones, and a Kolmogorov-
Arnold Networks (KAN) as the classifier. The models’ interpretability was analyzed using SHAP and 
CRAFT interpretation methods.
Results  The Face2Bone model demonstrated superior performance in the validation set, achieving 
accuracy, precision, recall, and F1-score of 92.85%, 92.94%, 92.85%, and 92.83%, respectively, 
with an AUC of 98.56%, outperforming mainstream models including VGG, ViT, and ResNet. The 
model maintained excellent classification performance and calibration across both male and female 
subgroups (ECE = 0.027, Brier score = 0.050, all subgroup Hosmer–Lemeshow test P -values > 0.05). 
Explainability analysis using SHAP and CRAFT revealed, for the first time, significant facial image 
characteristics across three bone mass states (normal, osteopenia, osteoporosis), confirming 
morphological consistency between model classifications and facial skeletal aging patterns.
Conclusion  We created and validated the first explainable deep learning model for osteoporosis 
risk classification using facial images. Facial characteristics associated with bone loss represent 
changes to the skeleton that are expected with normal aging. This non-invasive technology allows for 
opportunistic screening and early intervention.
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OP	� Osteoporosis
XAI	� Explainable artificial intelligence
BMI	� Body mass index
DXA	� Dual-energy X-ray absorptiometry
BMD	� Bone mineral density
VGG	� Visual geometry group (network)
ViT	� Vision transformer
ResNet	� Residual network
LV	� Lumbar vertebrae
NOF	� Neck of femur
AS	� Ankylosing spondylitis
PVP	� Percutaneous vertebroplasty
LV	� Lumbar vertebrae
CT	� Computed tomography
QUS	� Quantitative ultrasound
MRI	� Magnetic resonance imaging
CRAFT	� Concept recursive activation factorization
FFN	� Feedforward network
MLP	� Multilayer perceptron
KAN	� Kolmogorov-Arnold networks
SHAP	� Shapely additive explanantions
MSA	� Multi-head self-attention
FSA	� Frequency sparse attention
SSAM	� Spatial supervised attention module
ECE	� Expected calibration error
BS	� Brier score

Osteoporosis (OP) and osteopenia are complex, multifactorial systemic metabolic bone disorders with a worldwide 
prevalence1,2. These conditions are characterized by low bone mass and deterioration of bone microarchitecture, 
which leads to increased bone fragility and susceptibility to fractures3. Hip fractures and vertebral fractures 
represent the most severe consequences of osteoporosis. In China, the prevalence of osteoporosis reaches 19.2% 
in individuals aged over 50  years and escalates to 32% in those over 65  years4. Against the backdrop of an 
increasingly aging population, osteoporosis in middle-aged and elderly populations demonstrates significant 
comorbidity with geriatric syndromes. These conditions severely compromise functional capacity and quality 
of life in the elderly, imposing substantial burdens on individuals, families, society, and healthcare systems5,6. 
Consequently, osteoporosis has emerged as a critical global public health challenge.

Early screening for osteoporosis and osteopenia is crucial for addressing this public health challenge. 
Quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) are the primary 
modalities for osteoporosis risk assessment in clinical practice7–9. However, widespread adoption of these 
techniques in primary healthcare settings is significantly constrained by multiple factors, including complex 
processing technologies, high equipment costs, a shortage of qualified technicians, and patient compliance 
issues10. Consequently, there is an urgent need to develop a convenient, cost-effective, practical, and reliable 
screening tool for osteoporosis risk assessment.

Compared to the limitations of screening methods such as QCT and DXA (e.g., radiation exposure, 
equipment dependency, and cost considerations), facial images have been widely applied in medical fields 
due to their non-invasive nature, accessibility, and ability to comprehensively reflect facial aging processes and 
individual health status, including studies on facial aging11, metabolic diseases12, and nutritional status13–16. 
Osteoporosis, as a systemic bone metabolic disease, not only affects axial and weight-bearing bones but also 
significantly involves craniofacial skeleton17, leading to reduced bone density and morphological changes. 
Changes in facial bone morphology and volume affect the support and appearance of facial soft tissues, primarily 
manifesting in four important facial regions: periorbital, midface, perinasal, and mandibular areas. For example, 
facial flattening, soft tissue ptosis, deepened nasolabial folds, nasal tip ptosis, reduced visible eye area, and 
maxillomandibular resorption are considered specific morphological changes occurring during facial skeletal 
aging18–21, and these changes may indirectly reflect systemic bone health status through facial images. One study 
found that mandibular bone density in postmenopausal women was significantly correlated with hip and spinal 
bone density22 indicating that craniofacial skeleton can serve as an indicator of systemic bone health. Another 
study using three-dimensional CT analysis confirmed that mandibular and maxillary bone loss during aging 
was related to systemic bone density decline23, which could lead to facial contour changes24, such as zygomatic 
prominence and facial hollowing. Research on facial skeletal aging has revealed that facial bone density changes 
follow patterns similar to axial bone density changes, with significant reduction during aging, particularly in the 
midface and mandibular regions, and this pattern is more pronounced in osteoporosis patients23. These studies 
indicate that the direct effects of osteoporosis on facial skeleton can be manifested through facial morphological 
changes, providing theoretical basis for facial screening. Meanwhile, both osteoporosis and skin aging are 
associated with collagen loss25, sharing common pathological mechanisms. Skin collagen content shows 
significant correlation with bone mass changes, particularly in postmenopausal women, where estrogen decline 
significantly affects collagen content in both skin and bone, suggesting that collagen loss caused by osteoporosis 
may be indirectly reflected through facial skin aging features (such as wrinkles or laxity), providing additional 
evidence for using facial images in osteoporosis screening. Furthermore, multiple studies have confirmed the 
association between BMI and BMD26–28, with each standard deviation increase in BMI corresponding to a 
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0.087 standard deviation increase in lumbar spine BMD (p = 0.006). Based on this association, 2D facial image 
analysis technology provides a novel non-invasive method for osteoporosis risk screening by identifying BMI-
related facial geometric morphological features (such as facial contours and fat distribution)29. This technology 
can quantify facial features and establish BMI prediction models, thereby indirectly reflecting individual BMD 
levels, with its convenience and accessibility providing potential solutions for large-scale osteoporosis screening.

Although the aforementioned evidence has established a theoretical foundation for the application of facial 
images in osteoporosis screening, no studies have directly utilized facial images for bone mass status assessment, 
reflecting that this field remains in the exploratory stage. Given that these facial features are influenced by 
numerous factors when used for osteoporosis risk screening, including: (I) limited variety of relevant facial 
features with inconspicuous symptoms and facial characteristics in early disease stages; (II) lack of specific 
definitions and quantifiable severity grading criteria; and (III) poor reproducibility of human visual recognition. 
Therefore, it is necessary to develop a comprehensive tool that integrates all facial features associated with 
osteoporosis or osteopenia risk to enhance screening accuracy and reliability, and to fill the current research gap.

With the advancement of artificial intelligence, deep learning algorithms have emerged as powerful tools 
for disease screening, diagnosis, and prediction based on facial images, particularly for cancers, endocrine 
disorders, and genetic diseases. These algorithms enable computers to solve complex problems by leveraging 
neural network architectures30. Characterized by abundant neurons, multiple layers, and intricate connectivity, 
these networks can automatically transform raw input data into meaningful features, thereby achieving pattern 
recognition.

Deep learning techniques have been widely applied to osteoporosis screening and diagnosis in recent years. 
Current research primarily utilizes radiological data (CT, X-ray, quantitative ultrasound [QUS], MRI) or combines 
clinical baseline characteristics with deep learning for opportunistic osteoporosis screening31. Demonstrating 
promising performance. However, these approaches predominantly focus on osteoporosis detection while 
neglecting critical issues in vertebral localization and segmentation—data acquisition and annotation processes 
burden radiologists significantly32,33. Moreover, regarding clinical translation, deep learning models relying 
on clinical or radiological examination data exhibit limited accessibility and convenience for patients. The 
substantial operational and learning costs hinder model implementation, often overlooking patient-centered 
development principles34. Furthermore, current methods typically frame osteoporosis as a binary classification 
problem, failing to address the clinically important ternary classification (osteoporosis, osteopenia, and normal 
bone mass). Although tripartite classification presents greater technical challenges, incorporating osteopenia 
and normal bone mass status is crucial for osteoporosis prevention, early diagnosis, public health burden 
reduction, and raising population awareness.

Therefore, we propose a deep learning-based ternary classification model for opportunistic osteoporosis 
screening using facial images. Given the absence of prior research on osteoporosis prediction via facial imaging, 
we incorporate explainable AI (XAI) methods to perform interpretability analysis of our deep learning model. 
This study aims to: (1) develop and validate a deep learning algorithm capable of opportunistic screening for 
osteoporosis, osteopenia, and normal bone mass using facial images; and (2) investigate whether facial skeletal 
aging correlates with systemic bone mineral density changes.

Methods
Study design
We conducted an observational, prospective, randomized sampling study involving patients who underwent 
DXA scans at the Bone Density Department of Ningbo No.2 Hospital between March and August 2024, 
collecting clinical baseline data and facial images. This study was conducted in accordance with the Declaration 
of Helsinki (2013 revision) and received prior ethical approval from the Institutional Review Board of Ningbo 
Second Hospital (Approval No. SL-NBEY-KYSB-2024–181-01). All participants provided written informed 
consent compliant with the World Medical Association’s Declaration of Helsinki (2013 revision). The study 
follows the Standards for Reporting Diagnostic Accuracy Studies (STARD 2015) guidelines.

Study participants
From March to August 2024, a total of 1167 patients were enrolled in this study. Inclusion criteria were as 
follows: (1) postmenopausal women; (2) men aged > 50  years; (3) complete DXA examination available. 
Exclusion criteria were as follows: (1) patients or guardians unwilling to provide written informed consent; (2) 
patients with diseases affecting facial color other than anemia (such as jaundice, vitiligo, lupus erythematosus, or 
other skin lesions); (3) patients with bone density data from only lumbar vertebrae (LV) or neck of femur (NOF); 
(4) bedridden patients or those with previous lumbar spine or hip surgery (joint replacement or percutaneous 
vertebroplasty, PVP) that could affect bone density data; (5) patients with ankylosing spondylitis (AS); (6) 
patients with cognitive impairment; (7) patients who had previously undergone surgery that could significantly 
affect facial color, blood flow, or structure (such as cosmetic surgery, jaw reconstruction, or skin grafting).

Data collection
Baseline questionnaire interviews were conducted to collect information on age, gender, height, weight, and 
BMI, and each patient was assigned a unique ID number to facilitate data traceability and anonymization.

Diagnostic criteria for osteoporosis
The diagnosis of osteoporosis and osteopenia was based on World Health Organization (WHO) criteria35. 
For postmenopausal women and men aged ≥ 50  years, a T-score ≤ − 2.5 SD was diagnosed as osteoporosis, 
T-score > − 1.0 SD was considered normal bone mass, and T-score between -1.0 SD and -2.5 SD was classified as 
osteopenia. For premenopausal women and men aged < 50 years, a Z-score < − 2.0 SD indicated bone mass below 

Scientific Reports |        (2025) 15:40913 3| https://doi.org/10.1038/s41598-025-20462-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the expected age range, while Z-score ≥ − 2.0 SD was considered normal bone mass. Following the International 
Society for Clinical Densitometry (ISCD) recommendations36, we applied the "lowest T-score rule," using the 
lowest T-score from all measured sites as the basis for final diagnostic classification.

Image acquisition
DXA scanning
All DXA examinations were performed by certified technicians under the supervision of professional 
radiologists, strictly adhering to standardized operating procedures. We used a GE Prodigy Primo Lunar DXA 
scanner (GE Healthcare, Madison, WI, USA), with daily calibration using manufacturer-provided phantoms 
and strict quality control measures implemented. Regions of interest (ROI) for bone density measurements 
included L1-L4 lumbar spine, femoral neck, and total hip. Examination reports were generated using enCORE™ 
2011 software (version 13.6, GE Healthcare), and all DXA scan results underwent dual review by two certified 
radiologists to ensure diagnostic accuracy and reliability.

Facial image acquisition
Under standardized lighting conditions, we captured frontal facial images of participants using the rear camera 
of an iPad 13.1 (Apple Inc.). Consistent ambient illumination was maintained throughout image acquisition. 
During photography, participants were seated in a fixed-position chair against a white wall background, with 
the imaging device maintained at a standardized distance and height from the subject to minimize imaging 
variability. Participants were instructed to: (1) remove eyeglasses and hats; (2) ensure no hair occlusion of the 
forehead; and (3) maintain open eyes with neutral facial expressions—all to guarantee image consistency and 
stability.

Image preprocessing
Although quality control was implemented during image acquisition, we used MediaPipe37 for image 
preprocessing to eliminate the influence of confounding factors such as facial pose, body contours, or subject 
clothing. MediaPipe (version 0.8.9.1) is an open-source cross-platform multimedia processing framework 
developed and released by Google in 2019 for building machine learning-based applications, covering computer 
vision, audio processing, pose estimation, and other domains. As an integrated machine learning vision 
algorithm toolkit, MediaPipe was utilized in this study specifically for its face detection and face alignment 
modules for image preprocessing.

The image preprocessing pipeline is illustrated in Fig. 1, beginning with constructing a face detector using 
MediaPipe’s BlazeFace Sparse (Full Range) model, which detects facial regions in the images. Subsequently, a 
facial mesh object is constructed based on the detected 468 facial landmarks to determine facial pose, followed 
by masking with a black background filling, resulting in a segmented elliptical facial region of 512 × 512 pixels. 
Through facial standardization, we can reduce noise in the facial image background, focusing solely on the facial 
region.

Data augmentation
We employed the Albumentations library38 to perform data augmentation on original facial images, utilizing 
various non-rigid and non-destructive image transformation techniques to expand the sample set, thereby 
enhancing the model’s generalization capability and robustness. Specific augmentation strategies included: 
horizontal flipping (HorizontalFlip), vertical flipping (VerticalFlip), affine transformation (Affine), and Contrast 
Limited Adaptive Histogram Equalization (CLAHE).

Development of the models
This study proposes a pre-trained supervised Face2Bone ternary classification diagnostic network for 
opportunistic screening of early-stage osteoporosis, with subsequent explainable AI analysis. Figure 2 illustrates 
the overall network architecture. The Face2Bone network processes input facial images through two parallel 
pathways: (I) Facial contour features are extracted using the pre-trained FaceNet backbone model39, (II) Facial 
image features are extracted through a feature extraction module composed of FSA blocks, where the Spatial 
Supervision Attention Module (SSAM) utilizes pre-extracted facial contour features to compute attention 
weights for relevant facial features, with final ternary classification performed using a KAN network40 as the 
classifier. Post-training, the model was interpreted locally and globally using XAI techniques.

Fig. 1.  Standardized preprocessing pipeline for facial images.
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Background knowledge
Multi-head self-attention, MSA
The Transformer model41. It is built upon multi-head self-attention (MSA), enabling the model to capture long-
range dependencies between tokens at different positions. Specifically, let X ∈ RN×D  Denote the input sequence 
to a standard multi-head self-attention layer, where N  Is the sequence length, D Represents the number of 
hidden dimensions. Each self-attention head computes query Q, key K  and value V  matrices through linear 
transformations of X:

	 Q = XWq, K = XWk, V = XWv � (1)

where W q, W k, W v ∈ RD×Dh  Are learnable parameter matrices, and Dh Is the hidden dimension size per 
head? Then, the output of a single self-attention head is a weighted sum of N  Value vectors:

	
SAh (X) = Softmax

(
QK√

Dh

)
V � (2)

For a multi-head self-attention layer with Nh heads, the final output is obtained by concatenating the outputs of 
each self-attention head and applying a linear projection, which can be expressed as:

	 MSA (X) = h ∈ [Nh]concat [SAh X] Wo� (3)

where Wo ∈ R(Nh×Dh)×D  It is a learnable parameter matrix. In practice, D It is usually set to Nh × Dh.

Transformer block
A standard Vision Transformer (ViT)42, as shown in Fig.  3, consists of a patch embedding layer, several 
transformer blocks, and a prediction head. Let ℓ Be the block index. Each block contains a Multi-head Self-
Attention (MSA) layer and a Position-wise Feed-Forward Network (FFN), which can be expressed as:

	 X
′
ℓ−1 = Xℓ−1 + MSA (LN (Xℓ−1))� (4)

Fig. 2.  Face2Bone network architecture diagram.
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Xℓ = X

′
ℓ−1 + F F N

(
LN

(
X

′
ℓ−1

))
� (5)

where LN  stands for LayerNorm43, and F F N  consists of two fully connected layers with GELU 
ADDIN ZOTERO_TEMP  Nonlinearity. Recent work on ViT proposes to divide the block into several 

phases (usually four stages) to generate a pyramid feature map for intensive prediction tasks.

FaceNet
FaceNet39. Proposed by Google in 2015 is a deep learning-based face recognition system that directly trains a 
deep convolutional neural network to map facial images into a 128-dimensional Euclidean space (embedding). 
The distance between different facial images in this space correlates with their similarity. The backbone of FaceNet 
employs Inception-ResNetV144. or MobileNetV145. Deep learning networks automatically learn complex facial 
features and extract highly abstract feature vectors through multiple convolutional and pooling operations. This 
study uses the pre-trained FaceNet network as the backbone for the supervised branch’s feature extraction. The 
facial features extracted by FaceNet are used to compute attention weights for the image features extracted by the 
image feature extraction branch, ensuring that the final output features are face-related.

Module descriptions
This section provides detailed descriptions of each component in the Face2Bone network.

FSA (frequency sparse attention) module
As previously introduced, the standard self-attention mechanism in Transformers has become an empirical 
operation in most existing models. Given query Q, key K , and value V  with dimensions RL×d, the output of 
dot-product attention is typically formulated as:

	
Att (Q, K, V ) = Softmax

(
QK√

Dh

)
V � (6)

Fig. 3.  Standard transformer architecture diagram.
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Typically, multi-head attention is implemented on each new Q, K , and V , producing output channel dimensions 
of d = C/k, which are concatenated and then projected through a linear layer to obtain the final result for 
all heads. It should be noted that this standard self-attention paradigm is based on dense fully connected 
operations, requiring the computation of attention maps for all query-key pairs. However, this process is filled 
with information redundancy in facial images. To address this, we designed a Frequency Sparse Attention (FSA) 
module that removes feature space information redundancy and then processes high and low-frequency features 
separately. This enhances facial skin features with high-frequency texture detail while reducing low-frequency 
non-texture features, thereby better preserving face-related characteristics.

Specifically, the channel context is first encoded by applying a 1 × 1 convolution followed by a 3 × 3 depthwise 
convolution. Self-attention is applied on the channel rather than the spatial dimension to reduce time and 
memory complexity. Subsequently, the similarity between all reshaped query and key pixel pairs is calculated, 
and in the transposed attention matrix M  with size Rc×c Unnecessary elements with lower attention weights 
are masked out. Unlike the dropout strategy that randomly discards scores, an adaptive selection of top − k 
contribution scores are implemented on M , aiming to retain the most important components while removing 
the useless ones. Here, k Is a tunable parameter that dynamically controls the degree of sparsity, formally 
obtained through weighted averaging of appropriate scores. Therefore, only the top − k values of each row in M  
Within the range [∆1, ∆2] . They are normalized for softmax computation. For other elements with scores lower 
than the top − k. Their probabilities are replaced with 0 at given indices using the scatter function. This dynamic 
selection transforms the attention from dense to sparse, as derived by the following equation:

	
SparseAtt (Q, K, V) = softmax

(
Tk

(
QK⊤

λ

))
V,� (7)

where Tk (·) is a learnable top − k Selection operator:

	
[Tk (S)]ij =

{
Sij Sij ∈ top − k(row j)
0 otherwise � (8)

The result is obtained by matrix multiplication with softmax and value. Due to the multi-head strategy, the outputs 
from all attention heads are concatenated and then projected through a linear layer to obtain the sparse feature 
results of the facial image. High/low-frequency components in the sparse feature map are processed separately 
in the attention layer. Essentially, the low-frequency attention branch aims to capture global dependencies of 
the input sparse features, which does not require high-resolution feature maps but necessitates global attention. 
On the other hand, the high-frequency attention branch is designed to capture fine-grained local dependencies, 
which requires high-resolution feature maps but can be accomplished through local attention.

High-frequency attention
Intuitively, since high frequencies encode local details of objects, applying global attention to feature maps is 
redundant and computationally expensive. Therefore, high-frequency attention46 is utilized to capture fine-
grained high frequencies through local window self-attention (e.g., 2 × 2 windows), significantly reducing 
computational complexity.

Low-frequency attention
Recent studies have demonstrated that global attention in MSA helps capture low frequencies47,48. However, 
applying MSA to high-resolution facial sparse feature maps requires significant computational costs. Since 
average pooling acts as a low-pass filter, low-frequency attention first applies average pooling to each window to 
obtain low-frequency signals from the input X . Subsequently, the average-pooled feature maps are projected into 
keys K ∈ RN/s2×Dk  and values V ∈ RN/s2×Dn , where s is the window size. The query Q in low-frequency 
attention, it still originates from the original sparse feature map X . Then, standard attention is applied to capture 
the rich low-frequency information in the sparse feature map.

High-frequency attention divides the same number of heads in MSA into two groups according to the split 
ratio α, where (1 − α) Nh Heads are allocated to the high-frequency branch, and the remaining αNh heads 
are assigned to the low-frequency branch. By doing so, since the complexity of each attention is lower than that 
of standard MSA, the entire frequency-domain feature enhancement framework ensures low complexity and 
guarantees high throughput on GPUs. Finally, the output of FSA is the concatenation of the outputs from both 
low-frequency and high-frequency attention.

SSAM (spatial supervised attention module)
After the FSA module extracts rich, sparse frequency-domain image features, they are divided into bold italic 
cap Q sub cap F and bold italic cap V sub cap F, respectively. The facial supervision features extracted by 
FaceNet are divided into K sub-cap KF , and attention is calculated through MSA to obtain the supervised facial 
frequency-domain features. The core of the Spatial Supervised Attention Module (SSAM) lies in combining the 
FSA module with the pre-trained FaceNet through the QKV mechanism, enhancing the accuracy of feature 
extraction through channel supervision.

Assuming the features extracted by the FSA module are F 0 ∈ C × H × W  and the facial features extracted 
by FaceNet are F 1 ∈ L. The facial features are transformed as follows:

	 K = funsqueeze (funsquezze (flinear (F1))) ∈ RC×1×1� (9)
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where funsqueeze (·) is the dimension expansion operator and flinear (·) Is the linear mapping operator. 
Meanwhile, the features extracted by the FSA module are transformed as follows:

	
Q = frelu (fconv (F )) ∈ RC×H×W

V = frelu (fconv (F )) ∈ RC×H×W � (10)

where frelu (·) Is the activation layer and fconv (·) It is the convolutional layer. Finally, the spatial-channel self-
supervised result is obtained as follows:

	 F̃ = MSA (Q, K, V )� (11) 

where MSA (·) represents the Multi-head Self-Attention mechanism.
The SSAM module captures spatial structural dependencies and global semantic information in face 

recognition through two sub-modules: spatial self-attention and channel self-attention. This network architecture 
is simple yet effective, enabling accurate facial feature prediction. Furthermore, the SSAM module introduces a 
novel structural position encoding method that defines a set of structural positions based on geodesic distances. 
It divides facial features into multiple parts and encodes the features of each part using the same structural 
position encoding. This encoding method can reflect the structural characteristics of the face and improve face 
recognition performance.

Kolmogorov-Arnold networks
MLP49,50. The fully connected feedforward neural network is the fundamental building block of deep learning 
models and is commonly used in machine learning to approximate nonlinear functions. An MLP consisting of K  
layers can be described as the action of the transformation matrix W  and activation function σ. Its mathematical 
form is as follows:

	 MLP (Z) = (Wk−1 ◦ σ ◦ Wk−2 ◦ σ ◦ · · · ◦ W1 ◦ σ ◦ W0) Z � (12)

Despite the widespread application of MLPs in deep learning models, they also have significant drawbacks. 
Due to fixed activation functions and linear combinations, MLPs face issues such as large parameter counts, 
computational complexity, catastrophic forgetting, and poor interpretability when processing high-dimensional 
image data51. Recently, Kolmogorov-Arnold Networks (KAN)40. Have been proposed as an alternative to 
traditional Multi-Layer Perceptrons (MLPs). Unlike MLPs based on the universal approximation theorem, 
KANs are inspired by the Kolmogorov-Arnold representation theorem. KANs share a similar fully connected 
structure with MLPs. Still, unlike MLPs, which rely on fixed activation functions at each node, KANs introduce 
learnable activation functions on the edges, fundamentally changing the neural network architecture by utilizing 
learnable one-dimensional spline functions and eliminating linear weight matrices. Similar to MLPs, a K-Layer 
KAN can be described as the nesting of multiple KAN layers, with its mathematical description as follows:

	 KAN (Z) = (Φk−1 ◦ σ ◦ Φk−2 ◦ σ ◦ · · · ◦ Φ1 ◦ σ ◦ Φ0) Z � (13)

where Φi represents the i-th layer of the KAN network. Each KAN layer has nin dimensional input and nout 
Dimensional output. Φ consists of nin × nout Learnable residual activation functions ϕ, which can be expressed 
as:

	 Φ = {ϕq,p} , p = 1, 2, · · ·, nin, q = 1, 2, · · ·, nout� (14)

The residual activation function ϕ Is defined as:

	 ϕ (x) = w (b (x) + spline (x))� (15)

where w is the weight, b(x) Is the basis function used to ensure smoothness, and spline(x) is the spline function. 
The basis function b(x) is defined as:

	
b (x) = silu (x) = x

1 + e−x � (16)

The spline function spline(x) is parameterized as a linear combination of B − splines, such that:

	
spline (x) =

∑
i

ciBi (x)� (17)

where ci They are trainable parameters. The KAN network from the layer k to layer k + 1 Can be described as:

	

Zk+1 =




ϕk,1,1 (·) ϕk,1,2 (·) · · · ϕk,1,nk (·)
ϕk,2,1 (·) ϕk,2,2 (·) · · · ϕk,2,nk (·)
...

... . . .
...

ϕk,nk+1,1 (·) ϕk,nk+1,2 (·) · · · ϕk,nk+1,nk
(·)


 Zk = ΦkZk � (18)
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Based on these contents, we replace the MLP layers with KAN layers in the Face2Bone model architecture 
to enhance the model’s classification performance and interpretability for facial images, thereby improving its 
representation capability.

Statistical analysis
This study subjected categorical variables to one-hot encoding, while continuous variables were standardized 
using Z-score normalization. Continuous variables were presented as mean ± standard deviation 
(Mean ± SD) or median (IQR), while categorical variables were described using frequency n (%). The 
Shapiro–Wilk test (significance threshold P <0.01) was employed to assess the normality of continuous variables. 
Intergroup comparisons were conducted using: ① independent samples t-test or Mann–Whitney U test; ② chi-
square test (Fisher’s exact test when E<5). Model diagnostic performance was evaluated using AUC, predictive 
values, accuracy, recall, F1-score, and Kappa coefficient. Data analysis was implemented using Python 3.12 
(SciPy 1.11, scikit-learn 1.4).

Results
Experimental settings
In this study, we randomly divided the dataset into training (n = 832) and validation (n = 208) sets at an 8:2 ratio, 
ensuring that all images from the same patient were allocated to a single dataset to prevent data leakage, and 
employed stratified random sampling to maintain consistent proportional distribution across the three bone 
mass states52. Based on this foundation, we further stratified the overall dataset by gender, creating male (n = 286) 
and female (n = 754) subgroups to evaluate the model’s generalization performance and clinical applicability 
across different gender populations.

The experiment was implemented using the PyTorch deep learning framework, with Visual Studio Code as 
the integrated development environment (IDE). The experimental platform used the Ubuntu 22.04 operating 
system, CUDA 12.1, and an NVIDIA GeForce RTX 3080 GPU to support model training and inference. To 
ensure experimental reproducibility, the random seed was set to 42, training epochs were set to 150, and batch 
size was set to 32.

During model training, original images were uniformly resized to 224 × 224-pixel resolution using bilinear 
interpolation and underwent standardization processing. Model optimization employed Cross-Entropy Loss, 
Adam optimizer, and OneCycle LR dynamic learning rate adjustment strategy. The initial learning rate was set to 
1e − 3, gradually increasing to a maximum of 0.001 during the warm-up phase (30%), and gradually decreasing 
to 0.000001 during the annealing phase (70%) to avoid local optima traps and promote model convergence. To 
prevent overfitting, the early stopping mechanism was introduced, terminating training when the validation set 
accuracy showed no relative improvement exceeding 5% for 10 consecutive epochs.

Study population
From March to August 2024, this study collected baseline data and facial image information from 1,167 patients 
according to inclusion criteria, including 360 males (31%) and 807 females (69%). 127 patients with unqualified 
facial images were excluded during the data cleaning phase. Among the remaining 1,040 patients were 370 
patients with normal bone mass, 434 with osteopenia, and 236 with osteoporosis. The baseline demographic 
characteristics of the training and validation sets are shown in Table 1 and Fig.  4. In this study, significant 
statistical differences (P <0.001) were observed in age, gender, height, weight, and body mass index (BMI) 
among the normal bone mass group, osteopenia group, and osteoporosis group. The non-osteoporosis group 
showed significantly higher BMI than the osteoporosis group, with lower proportions of female patients and 
younger age than the osteoporosis group (Fig. 5). In this study, we also compared the average faces across normal 
bone mass, osteopenia, and osteoporosis datasets. After preprocessing, the facial images of the three bone mass 
states were sorted and displayed according to BMD values (Fig. 6). Statistical significance (P <0.05) was observed 
in BMD among all three groups. We also employed XAI methods to analyze the model’s output interpretability, 

Characteristics Overall (n = 1040) Train Set (n = 832) Validation Set (n = 208) P − value

Sex,n (%) 0.274

Male 286(27.5) 222(26.7) 64(30.8)

Female 754(72.5) 610(73.3) 144 (69.2)

Status,n (%)

Normal 370(35.6) 294(35.3) 76(36.5) 0.739

Osteopenia 434(41.7) 345(41.5) 89(42.8)

Osteoporosis 236(22.7) 193(23.2) 43(20.7)

Age(years) 65.03 ±10.02∗ 64.88 ±10.07∗ 65.62 ± 9.81∗ 0.346
Height(cm) 160.0(155.0–165.0)† 160.0(155.0–165.0)† 160.0(156.0–167.0)† 0.131
Weight(kg) 60.0 (53.0–68.0)† 60.0 (53.0–68.3)† 52.0 (47.0–58.0)† 0.590
BMI (kg/m2) 23.55 ±3.37∗ 23.56 ±3.38∗ 23. 50 ±3.35∗ 0.824

Table 1.  Baseline demographic characteristics of train and validation sets. †Non-normally distributed 
variables. *: Normally distributed.
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aiming to capture distinguishable facial features and model-attended feature regions across the three different 
bone mass states.

Evaluation metrics
To comprehensively evaluate the model’s performance on the dataset, we employed the following evaluation 
metrics: accuracy, precision, recall, F1-score53, AUC, and Kappa coefficient. These evaluations were calculated 
using the following formulas:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (19)

	
Precision = T P

T P + F P
� (20)

	
Recall = T P

T P + F N
� (21)

	
F 1 − score = 2 · Precision · Recall

Precision + Recall
� (22)

	
k = p0 − pe

1 − pe
,

{ p0 = Accuracy

pe =
k∑

i=1
ppred

i · ptrue
i

� (23)

Fig. 4.  Visualization of data distribution in train and validation sets.
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AUC =

1
∫
0

T P R (F P R) dF P R,

{
T P R = T P

T P +F N

F P R = F P
F P +T N

� (24)

where TP (True Positive) represents the number of positive samples correctly predicted by the model, TN (True 
Negative) represents the number of negative samples correctly predicted by the model, FP (False Positive) 
represents the number of negative samples incorrectly predicted as positive by the model, FN (False Negative) 
represents the number of positive samples incorrectly predicted as negative by the model. po is the observed 
classification agreement (accuracy), and pe is the expected agreement by random classification.

Additionally, we used calibration curves, Expected Calibration Error (ECE)54, and Brier Score (BS) to 
evaluate the model’s calibration performance, and employed the Hosmer–Lemeshow (HL) goodness-of-fit test 
to assess its calibration ability.

Comparison experiment
In this study, we systematically evaluated the classification performance of the Face2Bone model against several 
mainstream deep learning models across different bone mass states. As shown in Table 2, the Face2Bone model 
outperformed other models across all evaluation metrics, demonstrating excellent performance in osteoporosis 
prediction. Specifically, our model achieved an accuracy of 92.85%, significantly higher than VGG16 (87.13%), 
VGG19 (83.16%), ResNet18 (85.83%), and ResNet34 (87.82%). Regarding precision, Face2Bone reached 92.94%, 
4.48% higher than the second-best model, VGG16. For recall and F1-score, Face2Bone achieved 92.85% and 
92.83%, respectively, significantly surpassing other comparison models. Particularly noteworthy is our model’s 
outstanding performance in AUC value (98.56%) and Kappa coefficient (88.87%), indicating that Face2Bone 
possesses superior classification capability and higher diagnostic consistency.

Fig. 5.  Comparison of baseline demographic characteristics across different bone mass states.
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In Table 3, the Face2Bone model demonstrated high accuracy and stability in classifying different bone mass 
states. To further evaluate the model’s classification performance, we plotted the confusion matrix (Fig. 7) and 
ROC curves (Fig. 8). Our model achieved an overall AUC of 95.86%, with particularly impressive performance 
in osteoporosis classification: 98.28% AUC, 86.61% recall, and 94.06% precision, demonstrating extremely high 
sensitivity and specificity for identifying high-risk patients. Meanwhile, error analysis revealed that the model 
still had some misclassifications at the boundary between osteopenia and osteoporosis (9.34% misclassified as 
osteopenia, 1.89% misclassified as osteoporosis), possibly due to overlapping facial features between these two 
patient groups.

Classes Accuracy Precision Recall F1-score AUC Kappa

Normal 0.9577 0.9485 0.9281 0.9382 0.9893 0.9016

Osteopenia 0.9416 0.9081 0.9608 0.9337 0.9841 0.8816

Osteoporosis 0.9577 0.9406 0.8681 0.9029 0.9828 0.8759

Table 3.  Classification performance of the model for different bone mass states.

 

Method Accuracy Precision Recall F1-score AUC Kappa

VGG16 0.8713 0.8846 0.8536 0.8646 0.9597 0.7992

VGG19 0.8316 0.8410 0.8121 0.8226 0.9284 0.7370

Resnet18 0.8583 0.8562 0.8499 0.8528 0.9576 0.7808

Resnet34 0.8782 0.8872 0.8667 0.8748 0.9604 0.8106

Face2Bone (Ours) 0.9285 0.9294 0.9285 0.9283 0.9856 0.8887

Table 2.  Performance comparison of different models on the validation set. Bold values indicate the best 
performance.

 

Fig. 6.  Average faces across different bone mass status.

 

Scientific Reports |        (2025) 15:40913 12| https://doi.org/10.1038/s41598-025-20462-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Furthermore, we conducted model performance evaluation on male and female subgroup cohorts in this 
study, with gender stratification revealing population differences in model performance (Table 4). The female 
subgroup demonstrated overall superior classification performance compared to the male subgroup, which 
was related to the imbalanced gender distribution in our dataset. Despite these differences, performance across 
gender stratifications reached clinically acceptable levels, indicating that the Face2Bone model possesses good 
generalization capability across different gender populations.

Given the importance of osteoporosis classification prediction in clinical risk assessment, this study 
further evaluated the model’s calibration performance (Fig. 9). The HL test assesses model calibration quality 
by comparing consistency between predicted probabilities and observed outcomes, with P -values > 0.05 

Fig. 8.  ROC curves of different models.

 

Fig. 7.  Confusion matrix of different models.
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indicating good calibration performance. Through comparative analysis of calibration performance across 
different validation sets and bone mass states, the overall cohort demonstrated optimal calibration performance 
(ECE = 0.027, Brier Score = 0.050, χ2 = 3.91, P =0.418), followed by the female subgroup (ECE = 0.040, Brier 
Score = 0.074, χ2 = 4.15, P =0.528), while the male subgroup, despite its smaller sample size, maintained good 
calibration (ECE = 0.036, Brier Score = 0.049, χ2 = 1.07, P =0.585). All validation sets showed HL test P -values 
above the 0.05 threshold, indicating that the Face2Bone model achieved statistically significant good calibration 
across different populations, ensuring the reliability of predicted probabilities and safety of clinical applications. 
This consistent calibration performance is of great significance for probability-based clinical decision support, 
enabling clinicians to trust the model’s probabilistic predictions and make more accurate osteoporosis risk 
assessments.

Overall, the model comparison results demonstrate the feasibility and potential application value of the 
Face2Bone model in opportunistic osteoporosis screening. Compared to traditional diagnostic methods like 
DXA, our approach provides a non-invasive, cost-effective, and convenient alternative for early osteoporosis 
screening, offering an innovative technical pathway for preventive medical intervention and public health 
management in osteoporosis.

Ablation experiment
To demonstrate the effectiveness of the modules proposed and designed in this study, and to deeply reveal the 
contribution of each component of the Face2Bone model and its impact on overall performance, we designed 
a series of ablation experiments. By selectively removing or disabling key modules in the model, we tested 

Fig. 9.  Calibration performance of Face2Bone in the overall cohort and sex-specific subgroups.

 

Validation sets Accuracy Precision Recall F1-score AUC Kappa

Overall model 0.9285 0.9294 0.9285 0.9283 0.9856 0.8887

Female subgroup 0.8964 0.8958 0.8964 0.8960 0.9657 0.7926

Male subgroup 0.8343 0.8349 0.8343 0.8341 0.9470 0.7400

Table 4.  Performance evaluation of Face2Bone model in overall and gender-stratified validation sets.
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and validated the impact of the FSA module, SSAM module, and KAN network classification head on model 
performance. The comparison results, as shown in Table 5 and Fig. 10, indicate that all three modules positively 
influenced the model’s classification performance. All experimental configurations used the same training and 
validation datasets and experimental parameters to ensure result comparability.

Ablation study of the FSA module
The FSA module serves as the core component of the model, integrating residual layers, Top-K attention 
mechanism, and high-low frequency feature processing through cascade connections to construct a facial image 
feature extraction network for different bone mass states. It processes features at different scales and abstraction 
levels across four feature layers (Layer1-Layer4), achieving spatial-frequency dual-domain analysis capability 

Fig. 10.  Overall and classification performance comparison of different module ablation experiments.

 

Method Accuracy Precision Recall F1-score AUC Kappa

Remove-FSA 0.6134 0.6951 0.6134 0.5775 0.8696 0.4215

Remove-SSAM 0.8794 0.8797 0.8794 0.8795 0.9620 0.8140

Remove-KAN 0.8975 0.8978 0.8975 0.8974 0.9602 0.8412

Face2Bone 0.9285 0.9294 0.9285 0.9283 0.9856 0.8887

Table 5.  Ablation study comparison of Face2Bone on the validation set in Face2Bone. Bold values indicate the 
best performance.
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for facial images. When this module was removed, the model’s performance significantly declined, with 
overall accuracy dropping from 92.85% to 61.34%, a performance decrease of 37.79%. The F1-score decreased 
from 92.83% to 57.75%, and precision dropped from 92.94% to 69.51%. Notably, the FSA module is crucial 
for identifying the osteopenia category, with its F1-score dropping from 93.37% to 43.11% after removal, a 
substantial decrease of 53.83%. This indicates that the FSA module can effectively capture subtle facial image 
features of patients in the intermediate osteopenia state and efficiently integrate feature information from 
different levels, enhancing the model’s comprehensive understanding of facial osteoporosis features, particularly 
in improving the efficiency of integrating features from different facial regions.

Ablation study of the SSAM module
The SSAM module establishes correlation interactions between feature maps and FaceNet embedding vectors 
through the QKV mechanism, combining feature maps with embedding vectors to establish associations 
between facial structure and facial image representations of different bone mass states, thereby enhancing the 
model’s ability to identify facial osteoporosis features. After removing this module, the model’s overall accuracy 
decreased by 4.91%, the F1-score dropped to 87.95%, with a performance decrease of approximately 5.26%. 
The SSAM module’s impact on different categories was relatively balanced, revealing its ability to establish 
correlations between facial structure and overall facial image representation features. Particularly for the 
osteoporosis category, removing the SSAM module caused its F1-score to decrease from 92.29% to 86.5%, a 
decrease of 4.2%, indicating that the SSAM module possesses unique advantages in capturing facial features of 
osteoporosis patients.

Removal of KAN classification head
The KAN network serves as the classification head in the Face2Bone model, where high-order nonlinear 
function approximation enhances the model’s ability to express complex feature relationships. After removing 
KAN and replacing it with traditional linear layers (MLP), the model’s overall accuracy decreased by 3.1%, the 
F1-score dropped to 89.74%, with a performance decrease of approximately 3.33%. KAN’s contribution to the 
overall model was relatively smaller than that of the other two modules. However, it still significantly improved 
the model’s classification capability for the normal bone mass category. After removing KAN, the F1-score for 
the Normal category decreased from 93.82 to 90.71, revealing that KAN can enhance the model’s boundary 
judgment ability and adaptive nonlinear mapping capability for different bone mass states in facial images, 
enabling it to handle the complex nonlinear relationships between facial features and bone mineral density 
across different bone mass states.

Analysis of inter-module coordination effects
As shown in Fig. 11, we used the F1-score as a metric to measure the actual contribution of model components. 
We found significant synergistic effects among the three modules. The base model (with FSA removed) achieved 
an F1-score of 57.75%. After adding the SSAM module, it increased by 4.88% to 62.63%. Further addition 
of the KAN module increased it by 3.09% to 65.72%. Finally, adding the FSA module improved it by 27.11% 
to 92.83%. This indicates that the relationship between modules is not simply additive but achieves synergy 
through information complementarity and feature enhancement. Although the KAN module’s contribution was 
relatively smaller in this process, its combination with SSAM and FSA models produced significant synergistic 
effects, further demonstrating the effectiveness of KAN in visual tasks55,56.

Furthermore, this study found that compared to osteopenia, which represents an intermediate disease 
progression, the recognition of facial images from osteoporosis patients demonstrated higher robustness. Even in 
the simplified model with the core FSA module removed, this category maintained relatively high performance 
(F1 = 66.67%), indicating that the facial representations of osteoporosis patients are more distinctive and can 
still be partially recognized even in simplified models. The normal bone mass category showed good balance 
across all modules, with all three modules contributing to its overall accuracy. Particularly in the model with the 
FSA module removed, although the accuracy (55.64%) significantly decreased, the recall rate (91.9%) remained 
high. This asymmetry reveals that the model tends to classify more samples as positive after losing the core FSA 
module, leading to a high false-positive rate.

Analysis of explainability
In the medical field, explainable AI technology has been widely applied57. For medical tasks, explainability 
encompasses factors not considered in other domains, including risk, responsibility, and ethics. As emphasized by 
the FAT (Fairness, Accountability, and Transparency) principles58, the purpose of explainability in AI algorithm 
black boxes is to "ensure that algorithmic decisions and any data driving those decisions can be explained in non-
technical terms to end users and other stakeholders." Related studies in medical scenarios such as non-invasive 
detection59, skill assessment60, disease prediction61, and risk analysis62 have further confirmed the critical role of 
explainability in clinical decision-making. In this study, we employed two explainability methods for interpretive 
analysis of model results: SHAP63 and CRAFT64, enhancing the reliability and credibility of model prediction 
results through multi-dimensional, complementary explainability analysis. Meanwhile, from the perspective of 
model prediction result visualization, we revealed the regions of facial images that the model focuses on for 
different bone mass states.

Furthermore, this study constructed a comprehensive quantitative analysis framework to evaluate the 
explainability of the Face2Bone model, primarily comprising SHAP quantitative attribution analysis and CRAFT 
concept-level analysis. In SHAP quantitative attribution analysis, we divided the face into five anatomical 
regions (forehead, periorbital, midface, mandibular, and nasolabial) based on MediaPipe’s 468 key points, 
calculated SHAP contribution values for each region across different bone mass states, and assessed intra-
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class consistency by evaluating the similarity of SHAP value distributions within the same class to verify the 
stability of model interpretations. Inter-class discriminative analysis was used to quantify the discriminative 
ability of SHAP value distributions between different bone mass states, thereby validating the discriminative 
power of model interpretations. Based on this foundation, we analyzed SHAP variation patterns from normal 
bone mass to osteoporosis across all regions through SHAP visualization to verify the biological plausibility of 
disease progression. In CRAFT concept analysis, we extracted facial concept activation explanation maps under 
different bone mass states to identify facial regions of model focus, and used Jensen-Shannon divergence65 to 
quantify the degree of attention distribution differences between different bone mass states.

SHAP
SHAP (Shapley Additive exPlanations)63 is a model interpretation method developed based on the Shapley 
value concept from game theory. This method assigns Shapley weights to each feature of the trained model 
and explains model decisions by calculating the marginal contribution of each feature to the model’s prediction 
results. For any feature i, its SHAP value is defined as:

Fig. 11.  Importance analysis of different modules for the model.
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φi (f) =

∑
S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! [f (S ∪ {i}) − f (S)]

where N  is the set of all features, |N | is the total number of features, S is a subset of features, excluding the feature 
i, f  is the model function, f(S) represents the model prediction using only the feature set S, |S|!(|N|−|S|−1)!

|N|!  
is the combination weight that considers all possible feature combinations, and f (S ∪ {i}) − f(S) is the 
marginal contribution.

We analyzed the facial regions that the model focused on for males and females across three different bone 
mass states. SHAP analysis results revealed significant differences in the facial image regions that the model 
attended to for patients with different bone mass states. In patients with normal bone mass (Fig. 12a), the model 
showed relatively balanced attention across facial regions, with all facial regions exhibiting negative SHAP 
contribution values (Table 6). Males and females showed minimal facial feature differences under normal bone 
mass conditions, indicating relatively stable facial feature distribution in normal bone density states, which was 
consistent with intra-class consistency analysis results (Table 7) and reflected the natural biological diversity 
of facial features in healthy populations. In patients with osteopenia (Fig. 12b), the model’s attention pattern 
underwent significant changes, with SHAP contribution values shifting from negative to positive across all regions. 
Notably, important changes occurred in the nasolabial region, which aligns with facial skeletal aging involving 
maxillary bone resorption during osteopenia19. The periorbital region showed the most significant changes and 
became the core region of model attention, consistent with orbital bones being the most vulnerable facial skeletal 
structures and being affected earliest in osteoporosis. Meanwhile, we found that female individuals exhibited 
relatively more pronounced and concentrated changes during the osteopenia stage, particularly in the periorbital 
and nasolabial regions, suggesting more significant facial changes in females during early disease stages. Notably, 
in osteoporosis patients (Fig. 12c), the model’s attention regions demonstrated unique changes compared to the 
previous two bone mass states, with highly concentrated attention in landmark regions of facial skeletal aging, 
particularly the jawline, periorbital, and nasolabial areas showing strong positive contributions, consistent with 
age-related facial skeletal aging biomechanical markers24,66: overall facial flattening, soft tissue ptosis, jawline 
“discontinuity” phenomenon, deepened nasolabial folds, and reduced visible eye area. The periorbital region 
achieved the highest positive contribution, becoming the most important feature for model identification of 
the osteoporosis category. At this stage, SHAP value variability across all facial regions significantly decreased 

Facial region Normal Osteopenia Osteoporosis

Periorbital − 0.000286 ± 0.000288 0.000094 ± 0.000182 0.000191 ± 0.000166

Midface − 0.000222 ± 0.000232 0.000070 ± 0.000152 0.000148 ± 0.000135

Nasolabial − 0.000191 ± 0.000205 0.000054 ± 0.000131 0.000132 ± 0.000124

Jawline − 0.000139 ± 0.000145 0.000038 ± 0.000093 0.000095 ± 0.000094

Forehead − 0.000102 ± 0.000160 0.000020 ± 0.000101 0.000077 ± 0.000097

Table 6.  SHAP Contribution values for facial regions.

 

Fig. 12.  SHAP Analysis of Facial Images for Different Bone Mass States in Males and Females.
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(Table 7), indicating highly consistent typical facial change patterns in osteoporosis patients. CRAFT attention 
difference Jensen-Shannon analysis further validated this finding (Table 8), demonstrating that attention 
distribution differences gradually increased with disease progression.

Based on SHAP explainability analysis comparing changes across different bone mass states, we observed 
systematic progression patterns, confirming that all five facial regions exhibited evolution patterns from negative 
to positive values, with females showing more pronounced changes across different bone mass states compared 
to males, which relates to accelerated bone remodeling due to decreased estrogen levels after menopause67. To 
verify the reliability of this finding, we further analyzed intra-class consistency and inter-class discriminability, 
with two-sample t-tests revealing that intra-class similarity was significantly higher than inter-class similarity 
(P <0.001). Intra-class consistency and inter-class discriminability analysis results revealed clear increasing 
trends and good discriminative ability, reflecting the transition of individual features from natural diversity to 
pathological consistency during disease progression.

CRAFT: concept recursive activation factorization
CRAFT64 is a Concept Recursive Activation Factorization method that generates concept-based explanations to 
answer the questions "where is the model looking simultaneously" and "what is the model seeing." It employs a 
recursive strategy to achieve cross-layer detection and concept decomposition. It uses Sobol indices to calculate 
the importance of various concepts related to model predictions, then backpropagates concept scores to the pixel 
space to generate concept attribution heatmaps. The calculation of Sobol indices is as follows:

	
ST

i = EM∼i (VMi (Y |M∼i))
V (Y ) � (26)

	
=

EM∼i

(
VMi

(
h

(
(U ⊙ M) W T

)
|M∼i

))
V (h (U ⊙ M) W T ))

� (27)

CRAFT obtains key visual concepts for different bone mass states through concept activation decomposition, 
concept importance estimation, and concept mapping attribution. We found that the key facial regions of interest 
for the model in predicting osteoporosis exhibit distinct category-specific patterns. As shown in Figs. 13, 14, and 
15 we present the concept explanation maps, global concept importance, and the best image patches (facial 
regions that the model considers most representative of a particular concept) for facial images in different bone 
mass states.

From CRAFT concept maps of different bone mass states, we obtained the osteoporosis-related core visual 
concepts and their distributions extracted by the model, providing both macro and micro perspectives for 
understanding model decision-making. In normal bone mass facial images, concept distributions were relatively 
uniform, covering multiple facial regions and highlighting the structural contours of overall facial skeletal 
support, which formed a consistent explanatory framework with the uniform negative value distribution and 
higher individual variability shown in SHAP analysis (Table 7), indicating that the model focused on overall 
facial coordination rather than specific pathological regions in healthy states. As an intermediate state of disease 

Comparison Jensen-Shannon divergence Attention difference level

Normal–Osteopenia 0.077 Slight

Normal–Osteoporosis 0.096 Moderate

Osteopenia–Osteoporosis 0.155 Significant

Table 8.  CRAFT attention map difference analysis results.

 

Bone Status Similarity (mean ± SD) Consistency level

a. Intra-class consistency analysis

Normal 0.231 ± 0.525 Low

Osteopenia 0.542 ± 0.412 Medium

Osteoporosis 0.695 ± 0.240 High

Comparison 
groups Similarity (Mean ± SD)

Discriminative 
power

b. Inter-class discrimination analysis

Normal–
Osteopenia 0.260 ± 0.537 Moderate

Normal–
Osteoporosis 0.382 ± 0.450 Good

Osteopenia–
Osteoporosis 0.470 ± 0.344 Fair

Table 7.  SHAP Similarity analysis results for Face2Bone model
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progression, osteopenia showed concept distributions beginning to concentrate toward specific facial regions, 
with increased concept weights in the nasolabial region reflecting early maxillary bone resorption, consistent 
with the nasolabial region change patterns in SHAP analysis (Fig. 12b). Obvious concept changes around the 
orbital area corresponded to the maximum change magnitude in the periorbital region from SHAP analysis, 
indicating that facial orbital structures begin to change in this state. Meanwhile, midface concept weights 
were higher than other anatomical regions, possibly related to weakened soft tissue mechanical support due 
to age-related facial skeletal aging18. For osteoporosis facial images, the continuous state of concept maps was 
disrupted, with significantly expanded concepts in the orbital region and further enhanced weights in the 
nasolabial region, completely consistent with the highest positive contribution in the periorbital region and 
nasolabial region enhancement from SHAP analysis (Fig. 12c), which was also reflected in CRAFT’s best image 
patches. This aligns with results from existing studies showing degenerative changes in skeletal structures during 
facial aging measured through CT imaging68,69. Jensen-Shannon analysis results from CRAFT attention map 
difference analysis further quantified this finding (Table 8), confirming the concept reconstruction phenomenon 
during critical disease progression periods, indicating that the model underwent significant attention pattern 
redistribution during the transition from osteopenia to osteoporosis.

Through explainability analysis of the model using SHAP and CRAFT, our research results revealed 
differences in facial images across different bone mass states, supporting the hypothesis of associations between 
facial skeletal aging and systemic bone density status, and confirming that artificial intelligence can achieve 
early identification of osteoporosis through facial image analysis. SHAP analysis provided precise regional 
contribution quantification for the model, while CRAFT analysis revealed concept-level visual pattern evolution 
during disease progression. The consistency between these two methods validated the biological plausibility 
and clinical relevance of the Face2Bone model. This dual explainability framework not only opens new research 
directions for developing non-invasive osteoporosis screening technologies but also provides possibilities for 
further revealing cross-tissue regulatory mechanisms of facial soft tissue-bone metabolism and facial bone phase 
quantification.

Discussion
This study first proposed an innovative osteoporosis prediction model, Face2Bone, based on facial 2D images. 
SHAP and CRAFT XAI technologies revealed the model’s decision-making mechanism and the biological basis 
of facial skeletal aging. Our research results validated the feasibility of osteoporosis risk prediction based on 

Fig. 13.  CRAFT model result interpretation for normal bone mass facial images.
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facial images and provided necessary algorithmic evidence for applying this method to early risk screening of 
osteoporosis.

The model design of Face2Bone is the key driver for osteoporosis prediction using facial images. The FSA 
module, SSAM module, and KAN module significantly enhanced the model’s osteoporosis classification 
capability, enabling the model to effectively focus on and extract key facial regions related to osteoporosis. This 
allowed the model to outperform mainstream models such as VGG, ViT, and ResNet across all evaluation metrics, 
achieving 92.85% accuracy and 98.56% AUC. It demonstrated excellent performance in classifying facial images 
of osteoporosis patients, which is significant for identifying high-risk patients in early risk screening. The XAI 
interpretability analysis in this study provides possibilities for the clinical translation of deep learning models. 
SHAP and CRAFT methods transform the neural network black box into visual feature understanding.

In osteoporosis prevention and management, osteopenia, as an intermediate state of disease progression, 
requires precise identification for significant clinical and public health implications. As a transitional period of 
bone loss, implementing lifestyle interventions and necessary pharmacological treatments during this stage can 
significantly delay or reverse bone loss progression70, providing clinicians with an optimal therapeutic window. 
From a public health perspective, early identification of osteopenia populations is of great value for advancing 
prevention frontlines. Compared to existing systems utilizing CT imaging or clinical data for osteoporosis 
prediction71,72 and traditional DXA examinations, using facial images as an osteoporosis screening gateway, 
Face2Bone significantly reduces technical barriers while maintaining high accuracy, simplifies screening 
procedures, and enhances implementation feasibility. Input data is more accessible and economically convenient, 
particularly suitable for large-scale screening implementation in primary healthcare institutions and community 
health service centers, creating favorable conditions for early detection and timely intervention of osteopenia. 
Given this, we propose a standardized stratified screening decision pathway based on the Face2Bone model: 
for individuals predicted to have normal bone mass, provide bone health education and recommend regular 
follow-up to increase awareness and attention to osteoporosis while strengthening preventive consciousness; 
for individuals predicted to have osteopenia, recommend DXA examination for confirmation while initiating 
lifestyle interventions, including calcium and vitamin D supplementation, enhanced physical exercise, and 
consideration of preventive pharmacological treatment based on patients’ overall risk assessment and FRAX 
scores73 for high-risk individuals predicted to have osteoporosis, conduct DXA examination confirmation 
and specialist referral for systematic evaluation and targeted pharmacological treatment. Through establishing 
a risk-stratified screening strategy guided by the Face2Bone model, we aim to achieve optimal allocation of 

Fig. 14.  CRAFT model result interpretation for osteopenia bone mass facial images.
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limited DXA resources and maximize individual health benefits, providing innovative technical support for 
early detection, timely intervention, and effective prevention of osteoporosis.

Study limitations
Although the Face2Bone model demonstrated excellent performance in osteoporosis prediction, this study has 
several limitations. First, this study employed a single-center design with all data derived from Ningbo No.2 
Hospital, which may lead to selection bias. This bias stems from bidirectional selection processes in healthcare 
settings: on one hand, as a tertiary hospital, the medical institution tends to admit more complex or advanced cases; 
on the other hand, patients with more severe symptoms or greater concern about their condition often actively 
choose tertiary hospitals, while those with mild symptoms or asymptomatic early-stage patients tend to undergo 
routine examinations and preliminary screening at community hospitals or primary healthcare institutions. This 
differential healthcare-seeking behavior may result in systematic bias in disease severity distribution within our 
study sample. Additionally, patients who can access tertiary hospitals typically have better economic conditions, 
medical insurance coverage, and health awareness, and this socioeconomic selection bias further exacerbates 
sample non-randomness. The occupational structure dominated by manufacturing and service industries in 
Ningbo, along with corresponding occupational exposure patterns (sedentary work, heavy physical labor, etc.), 
may systematically affect the bone health status of the local population, making our research results difficult 
to generalize to regions with different occupational exposure characteristics. Single-center design also means 
that all data collection was conducted under identical environmental and technical conditions, which, while 
improving internal consistency, may mask the model’s true performance under different conditions.

Second, sample size limitations constitute another important constraining factor. This study included 1,040 
patient images for model construction. Considering the complexity of osteoporosis clinical phenotypes and the 
extensive individual differences, the existing sample may not adequately cover all pathological change patterns 
and individual variations. Particularly for subtle changes or atypical presentations in early disease stages, the 
model’s recognition capability may be limited. The observed gender distribution imbalance (72.5% female), while 
somewhat reflecting the epidemiological characteristics of osteoporosis, also introduces significant performance 
bias. Detailed stratified analysis revealed that model accuracy in females was slightly higher than in males, 
and this difference may stem from more pronounced facial skeletal changes due to postmenopausal estrogen 
deficiency, making AI models more capable of identifying pathological features in females. However, this also 
suggests that the model’s clinical utility in male populations requires further validation and optimization.

Fig. 15.  CRAFT model result interpretation for osteoporosis bone mass facial images.

 

Scientific Reports |        (2025) 15:40913 22| https://doi.org/10.1038/s41598-025-20462-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Furthermore, the inherent limitations of cross-sectional study design restrict our in-depth understanding 
of disease dynamic processes. Single time-point data collection cannot establish temporal causal relationships 
between facial changes and bone density decline, nor can it validate the model’s predictive capability for disease 
progression trajectories. This limitation is particularly pronounced in research on slowly progressive chronic 
diseases like osteoporosis, because the temporal course of facial aging may have complex temporal differences 
with bone density changes, and these subtle temporal dynamic changes cannot be accurately captured in cross-
sectional studies. Meanwhile, there exists a significant gap between standardized conditions at the technical 
implementation level and real-world application scenarios. To ensure data quality, this study employed highly 
controlled imaging conditions, including unified equipment, standard lighting, and standardized backgrounds, 
but these conditions are difficult to fully replicate in actual clinical screening environments. Equipment diversity, 
environmental lighting variations, patient compliance differences, and inconsistent operator skill levels in the 
real world could all significantly affect image quality and subsequently influence the model’s actual performance. 
Additionally, as a proof-of-concept study, we have not yet systematically validated key implementation elements 
such as operational feasibility, healthcare provider acceptance, and patient compliance of this technology in real 
clinical workflows.

To systematically address the above limitations, we plan to implement a phased validation strategy in 
future research. In the short term, we will expand validation scope through multi-center collaboration within 
the Ningbo Medical Consortium, a cooperation model that can reduce technical variability under relatively 
standardized clinical environments while incorporating diverse patient populations from different levels of 
healthcare institutions, thereby effectively alleviating single-center selection bias issues. Simultaneously, we will 
focus on strengthening male patient recruitment and borderline case collection to optimize sample composition 
and improve the model’s generalization capability. Medium-term goals include initiating prospective longitudinal 
cohort studies to establish temporal relationship models between facial changes and bone density evolution 
through 1–2 years of systematic follow-up. We will also develop robust image preprocessing algorithms and 
comprehensive quality assessment frameworks to improve the model’s adaptability to variable imaging 
conditions. In the long term, we plan to explore collaboration opportunities with broader healthcare networks to 
validate the model’s performance consistency across different geographic regions and healthcare environments, 
and develop clinical decision support tools to facilitate the practical application of this technology.

Conclusion
In this study, through CRAFT and SHAP interpretability analysis, we have demonstrated that the Face2Bone 
model can identify characteristic changes related to osteoporosis from 2D facial images and revealed the 
biological connections between these changes and the clinical manifestations of osteoporosis. The research 
results validate the feasibility of osteoporosis risk prediction based on facial images and provide algorithmic 
foundations for developing convenient, non-invasive osteoporosis screening tools. The interpretability of the 
Face2Bone model offers clinicians transparent and comprehensible decision support, which is expected to 
improve the early detection rate of osteoporosis and substantially contribute to reducing the global disease 
burden caused by osteoporosis.

Data availability
Data are available upon reasonable request due to privacy/ethical restrictions. Requests should be submitted to 
the corresponding author with a detailed research proposal.
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