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Face2Bone explainable Al model
predicts osteoporosis risk from
facial images in proof of concept
study
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Qingjiang Pang%?**

Objectives BMI and age are associated with the risk of osteoporosis (OP). The dynamic facial aging
process involves changes in skin, muscle, fat, and facial bone structures, with facial skeletal aging
affecting facial contours through volumetric reduction and morphological alterations. This study aims
to develop and validate an explainable Al predictive model for opportunistic osteoporosis screening
based on facial images.

Background Effective identification of populations at risk for low bone mass and osteoporosis is
crucial for implementing individualized screening strategies and subsequent orthopedic care. Although
artificial intelligence technology demonstrates broad prospects and excellent performance in disease
prediction using imaging data, its application in osteoporosis risk prediction utilizing facial data
remains insufficiently explored and developed. We propose an explainable artificial intelligence (XAl)
deep learning model named Face2Bone for osteoporosis risk prediction and opportunistic screening of
at-risk populations based on 2D facial images. In this study, we conducted proof-of-concept validation
by establishing predictive models and integrating XAl methods to identify and comparatively analyze
facial phenotypic factors associated with osteoporosis.

Methods An observational study of 1167 patients undergoing DXA (in March-August 2024) was
conducted at Ningbo No.2 Hospital. Standardization for facial images and the collection of clinical
data were performed. A preprocessing pipeline was created to remove the background noise from the
facial images. A hybrid deep learning model was constructed with a pre-trained FaceNet, a custom
Frequency Sparse Attention (FSA) module, a Transformer and CNN backbones, and a Kolmogorov-
Arnold Networks (KAN) as the classifier. The models’ interpretability was analyzed using SHAP and
CRAFT interpretation methods.

Results The Face2Bone model demonstrated superior performance in the validation set, achieving
accuracy, precision, recall, and F1-score of 92.85%, 92.94%, 92.85%, and 92.83%, respectively,

with an AUC of 98.56%, outperforming mainstream models including VGG, ViT, and ResNet. The
model maintained excellent classification performance and calibration across both male and female
subgroups (ECE =0.027, Brier score =0.050, all subgroup Hosmer-Lemeshow test P-values>0.05).
Explainability analysis using SHAP and CRAFT revealed, for the first time, significant facial image
characteristics across three bone mass states (normal, osteopenia, osteoporosis), confirming
morphological consistency between model classifications and facial skeletal aging patterns.
Conclusion We created and validated the first explainable deep learning model for osteoporosis

risk classification using facial images. Facial characteristics associated with bone loss represent
changes to the skeleton that are expected with normal aging. This non-invasive technology allows for
opportunistic screening and early intervention.
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OP Osteoporosis

XAI Explainable artificial intelligence
BMI Body mass index

DXA Dual-energy X-ray absorptiometry
BMD Bone mineral density

VGG Visual geometry group (network)
ViT Vision transformer

ResNet Residual network

LV Lumbar vertebrae

NOF Neck of femur

AS Ankylosing spondylitis

PVP Percutaneous vertebroplasty

LV Lumbar vertebrae

CT Computed tomography

QUS Quantitative ultrasound

MRI Magnetic resonance imaging
CRAFT  Concept recursive activation factorization
FFN Feedforward network

MLP Multilayer perceptron

KAN Kolmogorov-Arnold networks
SHAP Shapely additive explanantions
MSA Multi-head self-attention

FSA Frequency sparse attention

SSAM Spatial supervised attention module
ECE Expected calibration error

BS Brier score

Osteoporosis (OP) and osteopeniaare complex, multifactorial systemic metabolicbone disorders with a worldwide
prevalence!%. These conditions are characterized by low bone mass and deterioration of bone microarchitecture,
which leads to increased bone fragility and susceptibility to fractures®. Hip fractures and vertebral fractures
represent the most severe consequences of osteoporosis. In China, the prevalence of osteoporosis reaches 19.2%
in individuals aged over 50 years and escalates to 32% in those over 65 years®. Against the backdrop of an
increasingly aging population, osteoporosis in middle-aged and elderly populations demonstrates significant
comorbidity with geriatric syndromes. These conditions severely compromise functional capacity and quality
of life in the elderly, imposing substantial burdens on individuals, families, society, and healthcare systems>®.
Consequently, osteoporosis has emerged as a critical global public health challenge.

Early screening for osteoporosis and osteopenia is crucial for addressing this public health challenge.
Quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) are the primary
modalities for osteoporosis risk assessment in clinical practice’~’. However, widespread adoption of these
techniques in primary healthcare settings is significantly constrained by multiple factors, including complex
processing technologies, high equipment costs, a shortage of qualified technicians, and patient compliance
issues!?. Consequently, there is an urgent need to develop a convenient, cost-effective, practical, and reliable
screening tool for osteoporosis risk assessment.

Compared to the limitations of screening methods such as QCT and DXA (e.g., radiation exposure,
equipment dependency, and cost considerations), facial images have been widely applied in medical fields
due to their non-invasive nature, accessibility, and ability to comprehensively reflect facial aging processes and
individual health status, including studies on facial aging!!, metabolic diseases'?, and nutritional status'3-16.
Osteoporosis, as a systemic bone metabolic disease, not only affects axial and weight-bearing bones but also
significantly involves craniofacial skeleton!’, leading to reduced bone density and morphological changes.
Changes in facial bone morphology and volume affect the support and appearance of facial soft tissues, primarily
manifesting in four important facial regions: periorbital, midface, perinasal, and mandibular areas. For example,
facial flattening, soft tissue ptosis, deepened nasolabial folds, nasal tip ptosis, reduced visible eye area, and
maxillomandibular resorption are considered specific morphological changes occurring during facial skeletal
aging'®-2!, and these changes may indirectly reflect systemic bone health status through facial images. One study
found that mandibular bone density in postmenopausal women was significantly correlated with hip and spinal
bone density?? indicating that craniofacial skeleton can serve as an indicator of systemic bone health. Another
study using three-dimensional CT analysis confirmed that mandibular and maxillary bone loss during aging
was related to systemic bone density decline?, which could lead to facial contour changes?*, such as zygomatic
prominence and facial hollowing. Research on facial skeletal aging has revealed that facial bone density changes
follow patterns similar to axial bone density changes, with significant reduction during aging, particularly in the
midface and mandibular regions, and this pattern is more pronounced in osteoporosis patients?*. These studies
indicate that the direct effects of osteoporosis on facial skeleton can be manifested through facial morphological
changes, providing theoretical basis for facial screening. Meanwhile, both osteoporosis and skin aging are
associated with collagen loss®, sharing common pathological mechanisms. Skin collagen content shows
significant correlation with bone mass changes, particularly in postmenopausal women, where estrogen decline
significantly affects collagen content in both skin and bone, suggesting that collagen loss caused by osteoporosis
may be indirectly reflected through facial skin aging features (such as wrinkles or laxity), providing additional
evidence for using facial images in osteoporosis screening. Furthermore, multiple studies have confirmed the
association between BMI and BMD?*%8, with each standard deviation increase in BMI corresponding to a

Scientific Reports |

(2025) 15:40913 | https://doi.org/10.1038/s41598-025-20462-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.087 standard deviation increase in lumbar spine BMD (p=0.006). Based on this association, 2D facial image
analysis technology provides a novel non-invasive method for osteoporosis risk screening by identifying BMI-
related facial geometric morphological features (such as facial contours and fat distribution)?. This technology
can quantify facial features and establish BMI prediction models, thereby indirectly reflecting individual BMD
levels, with its convenience and accessibility providing potential solutions for large-scale osteoporosis screening.

Although the aforementioned evidence has established a theoretical foundation for the application of facial
images in osteoporosis screening, no studies have directly utilized facial images for bone mass status assessment,
reflecting that this field remains in the exploratory stage. Given that these facial features are influenced by
numerous factors when used for osteoporosis risk screening, including: (I) limited variety of relevant facial
features with inconspicuous symptoms and facial characteristics in early disease stages; (II) lack of specific
definitions and quantifiable severity grading criteria; and (III) poor reproducibility of human visual recognition.
Therefore, it is necessary to develop a comprehensive tool that integrates all facial features associated with
osteoporosis or osteopenia risk to enhance screening accuracy and reliability, and to fill the current research gap.

With the advancement of artificial intelligence, deep learning algorithms have emerged as powerful tools
for disease screening, diagnosis, and prediction based on facial images, particularly for cancers, endocrine
disorders, and genetic diseases. These algorithms enable computers to solve complex problems by leveraging
neural network architectures®. Characterized by abundant neurons, multiple layers, and intricate connectivity,
these networks can automatically transform raw input data into meaningful features, thereby achieving pattern
recognition.

Deep learning techniques have been widely applied to osteoporosis screening and diagnosis in recent years.
Current research primarily utilizes radiological data (CT, X-ray, quantitative ultrasound [QUS], MRI) or combines
clinical baseline characteristics with deep learning for opportunistic osteoporosis screening®'. Demonstrating
promising performance. However, these approaches predominantly focus on osteoporosis detection while
neglecting critical issues in vertebral localization and segmentation—data acquisition and annotation processes
burden radiologists significantly’>33. Moreover, regarding clinical translation, deep learning models relying
on clinical or radiological examination data exhibit limited accessibility and convenience for patients. The
substantial operational and learning costs hinder model implementation, often overlooking patient-centered
development principles®*. Furthermore, current methods typically frame osteoporosis as a binary classification
problem, failing to address the clinically important ternary classification (osteoporosis, osteopenia, and normal
bone mass). Although tripartite classification presents greater technical challenges, incorporating osteopenia
and normal bone mass status is crucial for osteoporosis prevention, early diagnosis, public health burden
reduction, and raising population awareness.

Therefore, we propose a deep learning-based ternary classification model for opportunistic osteoporosis
screening using facial images. Given the absence of prior research on osteoporosis prediction via facial imaging,
we incorporate explainable AI (XAI) methods to perform interpretability analysis of our deep learning model.
This study aims to: (1) develop and validate a deep learning algorithm capable of opportunistic screening for
osteoporosis, osteopenia, and normal bone mass using facial images; and (2) investigate whether facial skeletal
aging correlates with systemic bone mineral density changes.

Methods

Study design

We conducted an observational, prospective, randomized sampling study involving patients who underwent
DXA scans at the Bone Density Department of Ningbo No.2 Hospital between March and August 2024,
collecting clinical baseline data and facial images. This study was conducted in accordance with the Declaration
of Helsinki (2013 revision) and received prior ethical approval from the Institutional Review Board of Ningbo
Second Hospital (Approval No. SL-NBEY-KYSB-2024-181-01). All participants provided written informed
consent compliant with the World Medical Association’s Declaration of Helsinki (2013 revision). The study
follows the Standards for Reporting Diagnostic Accuracy Studies (STARD 2015) guidelines.

Study participants

From March to August 2024, a total of 1167 patients were enrolled in this study. Inclusion criteria were as
follows: (1) postmenopausal women; (2) men aged>50 years; (3) complete DXA examination available.
Exclusion criteria were as follows: (1) patients or guardians unwilling to provide written informed consent; (2)
patients with diseases affecting facial color other than anemia (such as jaundice, vitiligo, lupus erythematosus, or
other skin lesions); (3) patients with bone density data from only lumbar vertebrae (LV) or neck of femur (NOF);
(4) bedridden patients or those with previous lumbar spine or hip surgery (joint replacement or percutaneous
vertebroplasty, PVP) that could affect bone density data; (5) patients with ankylosing spondylitis (AS); (6)
patients with cognitive impairment; (7) patients who had previously undergone surgery that could significantly
affect facial color, blood flow, or structure (such as cosmetic surgery, jaw reconstruction, or skin grafting).

Data collection
Baseline questionnaire interviews were conducted to collect information on age, gender, height, weight, and
BM]I, and each patient was assigned a unique ID number to facilitate data traceability and anonymization.

Diagnostic criteria for osteoporosis

The diagnosis of osteoporosis and osteopenia was based on World Health Organization (WHO) criteria®.
For postmenopausal women and men aged>50 years, a T-score<—2.5 SD was diagnosed as osteoporosis,
T-score>— 1.0 SD was considered normal bone mass, and T-score between -1.0 SD and -2.5 SD was classified as
osteopenia. For premenopausal women and men aged < 50 years, a Z-score < — 2.0 SD indicated bone mass below
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the expected age range, while Z-score > —2.0 SD was considered normal bone mass. Following the International
Society for Clinical Densitometry (ISCD) recommendations®®, we applied the "lowest T-score rule," using the
lowest T-score from all measured sites as the basis for final diagnostic classification.

Image acquisition

DXA scanning

All DXA examinations were performed by certified technicians under the supervision of professional
radiologists, strictly adhering to standardized operating procedures. We used a GE Prodigy Primo Lunar DXA
scanner (GE Healthcare, Madison, WI, USA), with daily calibration using manufacturer-provided phantoms
and strict quality control measures implemented. Regions of interest (ROI) for bone density measurements
included L1-L4 lumbar spine, femoral neck, and total hip. Examination reports were generated using enCORE™
2011 software (version 13.6, GE Healthcare), and all DXA scan results underwent dual review by two certified
radiologists to ensure diagnostic accuracy and reliability.

Facial image acquisition

Under standardized lighting conditions, we captured frontal facial images of participants using the rear camera
of an iPad 13.1 (Apple Inc.). Consistent ambient illumination was maintained throughout image acquisition.
During photography, participants were seated in a fixed-position chair against a white wall background, with
the imaging device maintained at a standardized distance and height from the subject to minimize imaging
variability. Participants were instructed to: (1) remove eyeglasses and hats; (2) ensure no hair occlusion of the
forehead; and (3) maintain open eyes with neutral facial expressions—all to guarantee image consistency and
stability.

Image preprocessing

Although quality control was implemented during image acquisition, we used MediaPipe’’ for image
preprocessing to eliminate the influence of confounding factors such as facial pose, body contours, or subject
clothing. MediaPipe (version 0.8.9.1) is an open-source cross-platform multimedia processing framework
developed and released by Google in 2019 for building machine learning-based applications, covering computer
vision, audio processing, pose estimation, and other domains. As an integrated machine learning vision
algorithm toolkit, MediaPipe was utilized in this study specifically for its face detection and face alignment
modules for image preprocessing.

The image preprocessing pipeline is illustrated in Fig. 1, beginning with constructing a face detector using
MediaPipe’s BlazeFace Sparse (Full Range) model, which detects facial regions in the images. Subsequently, a
facial mesh object is constructed based on the detected 468 facial landmarks to determine facial pose, followed
by masking with a black background filling, resulting in a segmented elliptical facial region of 512 x 512 pixels.
Through facial standardization, we can reduce noise in the facial image background, focusing solely on the facial
region.

Data augmentation

We employed the Albumentations library® to perform data augmentation on original facial images, utilizing
various non-rigid and non-destructive image transformation techniques to expand the sample set, thereby
enhancing the model’s generalization capability and robustness. Specific augmentation strategies included:
horizontal flipping (HorizontalFlip), vertical flipping (VerticalFlip), affine transformation (Affine), and Contrast
Limited Adaptive Histogram Equalization (CLAHE).

Development of the models

This study proposes a pre-trained supervised Face2Bone ternary classification diagnostic network for
opportunistic screening of early-stage osteoporosis, with subsequent explainable Al analysis. Figure 2 illustrates
the overall network architecture. The Face2Bone network processes input facial images through two parallel
pathways: (I) Facial contour features are extracted using the pre-trained FaceNet backbone model®’, (1) Facial
image features are extracted through a feature extraction module composed of FSA blocks, where the Spatial
Supervision Attention Module (SSAM) utilizes pre-extracted facial contour features to compute attention
weights for relevant facial features, with final ternary classification performed using a KAN network? as the
classifier. Post-training, the model was interpreted locally and globally using XAI techniques.

Original 468 Landmark Detection Geometric Analysis Face Segmentation

Fig. 1. Standardized preprocessing pipeline for facial images.
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Background knowledge

Multi-head self-attention, MSA

The Transformer model*!. It is built upon multi-head self-attention (MSA), enabling the model to capture long-
range dependencies between tokens at different positions. Specifically, let X € R™ ¥ Denote the input sequence
to a standard multi-head self-attention layer, where N Is the sequence length, D Represents the number of
hidden dimensions. Each self-attention head computes query @, key K and value V' matrices through linear

transformations of X:
Q=XWg K=XW,,V=XW, (1)

where W, W, , W, € RP*Pr Are learnable parameter matrices, and Dy, Is the hidden dimension size per
head? Then, the output of a single self-attention head is a weighted sum of NV Value vectors:

SAjp (X) = Softmax <§D£h> | (2)

For a multi-head self-attention layer with [N} heads, the final output is obtained by concatenating the outputs of
each self-attention head and applying a linear projection, which can be expressed as:

MSA(X)=h € [Ny]°"* [SA, X]W, (3)
where W, € RWrXDPr)XD 1t s 4 learnable parameter matrix. In practice, D It is usually set to Ny X Dy,

Transformer block

A standard Vision Transformer (ViT)*, as shown in Fig. 3, consists of a patch embedding layer, several
transformer blocks, and a prediction head. Let £ Be the block index. Each block contains a Multi-head Self-
Attention (MSA) layer and a Position-wise Feed-Forward Network (FFN), which can be expressed as:

Xy1 = Xo_1 + MSA(LN (X¢_1)) (4)
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Fig. 3. Standard transformer architecture diagram.
X=X, + FFN (LN (X;,l)) (5)

where LN stands for LayerNorm?’, and FFN consists of two fully connected layers with GELU
ADDIN ZOTERO _TEMP Nonlinearity. Recent work on ViT proposes to divide the block into several
phases (usually four stages) to generate a pyramid feature map for intensive prediction tasks.

FaceNet

FaceNet®. Proposed by Google in 2015 is a deep learning-based face recognition system that directly trains a
deep convolutional neural network to map facial images into a 128-dimensional Euclidean space (embedding).
The distance between different facial images in this space correlates with their similarity. The backbone of FaceNet
employs Inception-ResNetV1*%. or MobileNetV1%°. Deep learning networks automatically learn complex facial
features and extract highly abstract feature vectors through multiple convolutional and pooling operations. This
study uses the pre-trained FaceNet network as the backbone for the supervised branch’s feature extraction. The
facial features extracted by FaceNet are used to compute attention weights for the image features extracted by the
image feature extraction branch, ensuring that the final output features are face-related.

Module descriptions
This section provides detailed descriptions of each component in the Face2Bone network.

FSA (frequency sparse attention) module

As previously introduced, the standard self-attention mechanism in Transformers has become an empirical
operation in most existing models. Given query @, key K, and value V' with dimensions R**<, the output of
dot-product attention is typically formulated as:

Att (Q, K, V) = Softmax <§D£h> \% (6)
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Typically, multi-head attention is implemented on each new @, K, and V, producing output channel dimensions
of d = C/k, which are concatenated and then projected through a linear layer to obtain the final result for
all heads. It should be noted that this standard self-attention paradigm is based on dense fully connected
operations, requiring the computation of attention maps for all query-key pairs. However, this process is filled
with information redundancy in facial images. To address this, we designed a Frequency Sparse Attention (FSA)
module that removes feature space information redundancy and then processes high and low-frequency features
separately. This enhances facial skin features with high-frequency texture detail while reducing low-frequency
non-texture features, thereby better preserving face-related characteristics.

Specifically, the channel context is first encoded by applying a 1 x 1 convolution followed by a 3 x 3 depthwise
convolution. Self-attention is applied on the channel rather than the spatial dimension to reduce time and
memory complexity. Subsequently, the similarity between all reshaped query and key pixel pairs is calculated,
and in the transposed attention matrix M with size R Unnecessary elements with lower attention weights
are masked out. Unlike the dropout strategy that randomly discards scores, an adaptive selection of top — k
contribution scores are implemented on M, aiming to retain the most important components while removing
the useless ones. Here, k Is a tunable parameter that dynamically controls the degree of sparsity, formally
obtained through weighted averaging of appropriate scores. Therefore, only the top — k values of each row in M
Within the range [A1, As] . They are normalized for softmax computation. For other elements with scores lower
than the top — k. Their probabilities are replaced with 0 at given indices using the scatter function. This dynamic
selection transforms the attention from dense to sparse, as derived by the following equation:

QK'
SparseAtt (Q, K, V) = softmax | Ty 5\ V, (7)
where Ty (+) is a learnable top — k Selection operator:
Si;  Sij € top—k j
TS ={ 6 otfersior "7 ®

The result is obtained by matrix multiplication with softmax and value. Due to the multi-head strategy, the outputs
from all attention heads are concatenated and then projected through a linear layer to obtain the sparse feature
results of the facial image. High/low-frequency components in the sparse feature map are processed separately
in the attention layer. Essentially, the low-frequency attention branch aims to capture global dependencies of
the input sparse features, which does not require high-resolution feature maps but necessitates global attention.
On the other hand, the high-frequency attention branch is designed to capture fine-grained local dependencies,
which requires high-resolution feature maps but can be accomplished through local attention.

High-frequency attention

Intuitively, since high frequencies encode local details of objects, applying global attention to feature maps is
redundant and computationally expensive. Therefore, high-frequency attention® is utilized to capture fine-
grained high frequencies through local window self-attention (e.g., 2x2 windows), significantly reducing
computational complexity.

Low-frequency attention

Recent studies have demonstrated that global attention in MSA helps capture low frequencies*”*8. However,
applying MSA to high-resolution facial sparse feature maps requires significant computational costs. Since
average pooling acts as a low-pass filter, low-frequency attention first applies average pooling to each window to
obtain low—frec/luQency signals from the input . Subsequently, the average-pooled feature maps are projected into
keys K € RY/*"*Dk and values V € R™N/*" %P where s is the window size. The query Q in low-frequency
attention, it still originates from the original sparse feature map X. Then, standard attention is applied to capture
the rich low-frequency information in the sparse feature map.

High-frequency attention divides the same number of heads in MSA into two groups according to the split
ratio , where (1 — a)) N, Heads are allocated to the high-frequency branch, and the remaining aNj, heads
are assigned to the low-frequency branch. By doing so, since the complexity of each attention is lower than that
of standard MSA, the entire frequency-domain feature enhancement framework ensures low complexity and
guarantees high throughput on GPUs. Finally, the output of FSA is the concatenation of the outputs from both
low-frequency and high-frequency attention.

SSAM (spatial supervised attention module)
After the FSA module extracts rich, sparse frequency-domain image features, they are divided into bold italic
cap Q sub cap F and bold italic cap V sub cap F, respectively. The facial supervision features extracted by
FaceNet are divided into K sub-cap K, and attention is calculated through MSA to obtain the supervised facial
frequency-domain features. The core of the Spatial Supervised Attention Module (SSAM) lies in combining the
FSA module with the pre-trained FaceNet through the QKV mechanism, enhancing the accuracy of feature
extraction through channel supervision.

Assuming the features extracted by the FSA module are Fo € C' x H x W and the facial features extracted
by FaceNet are F'; € L. The facial features are transformed as follows:

K = funsqucczc (funsquczzc (flinear (Fl))) e RC xX1x1 (9)
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where funsqueeze (+) is the dimension expansion operator and fiinear (-) Is the linear mapping operator.
Meanwhile, the features extracted by the FSA module are transformed as follows:

Q:frelu (fcon'u (F)) GRCXHXW (10)
V= frelu (fconv (F)) S RCXHXW

where frer (+) Is the activation layer and feono (+) It is the convolutional layer. Finally, the spatial-channel self-
supervised result is obtained as follows:

F=MSA(Q,K,V) (11)

where M S A (+) represents the Multi-head Self-Attention mechanism.

The SSAM module captures spatial structural dependencies and global semantic information in face
recognition through two sub-modules: spatial self-attention and channel self-attention. This network architecture
is simple yet effective, enabling accurate facial feature prediction. Furthermore, the SSAM module introduces a
novel structural position encoding method that defines a set of structural positions based on geodesic distances.
It divides facial features into multiple parts and encodes the features of each part using the same structural
position encoding. This encoding method can reflect the structural characteristics of the face and improve face
recognition performance.

Kolmogorov-Arnold networks

MLP**30, The fully connected feedforward neural network is the fundamental building block of deep learning
models and is commonly used in machine learning to approximate nonlinear functions. An MLP consisting of K
layers can be described as the action of the transformation matrix W and activation function o. Its mathematical
form is as follows:

MLP(Z):(Wk,1OG’OW}C,QOO'O”'OWlOO'OWQ)Z (12)

Despite the widespread application of MLPs in deep learning models, they also have significant drawbacks.
Due to fixed activation functions and linear combinations, MLPs face issues such as large parameter counts,
computational complexity, catastrophic forgetting, and poor interpretability when processing high-dimensional
image data’!. Recently, Kolmogorov-Arnold Networks (KAN)*. Have been proposed as an alternative to
traditional Multi-Layer Perceptrons (MLPs). Unlike MLPs based on the universal approximation theorem,
KANSs are inspired by the Kolmogorov-Arnold representation theorem. KANs share a similar fully connected
structure with MLPs. Still, unlike MLPs, which rely on fixed activation functions at each node, KANs introduce
learnable activation functions on the edges, fundamentally changing the neural network architecture by utilizing
learnable one-dimensional spline functions and eliminating linear weight matrices. Similar to MLPs, a K -Layer
KAN can be described as the nesting of multiple KAN layers, with its mathematical description as follows:

KAN (Z) = (Pr—1000P,_2000---0P1o00dg) Z (13)
where ®; represents the i-th layer of the KAN network. Each KAN layer has n;,, dimensional input and 7ou:

Dimensional output. ® consists of nin X Nowut Learnable residual activation functions ¢, which can be expressed
as:

(I):{¢q,p}7p:1:27"'77%'7”’1:1727"'7nout (14)
The residual activation function ¢ Is defined as:
¢ (x) = w (b(x) + spline (x)) (15)

where w is the weight, b(x) Is the basis function used to ensure smoothness, and spline(x) is the spline function.
The basis function b(x) is defined as:

The spline function spline(x) is parameterized as a linear combination of B — splines, such that:
spline (x) = Z ¢iB; (x) 17)

i

where c; They are trainable parameters. The KAN network from the layer & to layer k + 1 Can be described as:

br1 () Pr1,2 () o P ()
Pr21 () Pr2,2 (+) o Pr2mg (4)
41 = : : : Z = ®r (18)
¢k,nk+1,l () ¢k,nk+1,2 () e ¢kvnk’+1,nk ()
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Based on these contents, we replace the MLP layers with KAN layers in the Face2Bone model architecture
to enhance the model’s classification performance and interpretability for facial images, thereby improving its
representation capability.

Statistical analysis

This study subjected categorical variables to one-hot encoding, while continuous variables were standardized
using Z-score normalization. Continuous variables were presented as mean =+ standard deviation
(Mean £ SD) or median (IQR), while categorical variables were described using frequency n (%). The
Shapiro-Wilk test (significance threshold P<0.01) was employed to assess the normality of continuous variables.
Intergroup comparisons were conducted using: ® independent samples t-test or Mann-Whitney U test; @ chi-
square test (Fisher’s exact test when E'<5). Model diagnostic performance was evaluated using AUC, predictive
values, accuracy, recall, F1-score, and Kappa coefficient. Data analysis was implemented using Python 3.12
(SciPy 1.11, scikit-learn 1.4).

Results

Experimental settings

In this study, we randomly divided the dataset into training (n =832) and validation (n=208) sets at an 8:2 ratio,
ensuring that all images from the same patient were allocated to a single dataset to prevent data leakage, and
employed stratified random sampling to maintain consistent proportional distribution across the three bone
mass states®2. Based on this foundation, we further stratified the overall dataset by gender, creating male (n=286)
and female (n=754) subgroups to evaluate the model’s generalization performance and clinical applicability
across different gender populations.

The experiment was implemented using the PyTorch deep learning framework, with Visual Studio Code as
the integrated development environment (IDE). The experimental platform used the Ubuntu 22.04 operating
system, CUDA 12.1, and an NVIDIA GeForce RTX 3080 GPU to support model training and inference. To
ensure experimental reproducibility, the random seed was set to 42, training epochs were set to 150, and batch
size was set to 32.

During model training, original images were uniformly resized to 224 x 224-pixel resolution using bilinear
interpolation and underwent standardization processing. Model optimization employed Cross-Entropy Loss,
Adam optimizer, and OneCycle LR dynamic learning rate adjustment strategy. The initial learning rate was set to
le — 3, gradually increasing to a maximum of 0.001 during the warm-up phase (30%), and gradually decreasing
t0 0.000001 during the annealing phase (70%) to avoid local optima traps and promote model convergence. To
prevent overfitting, the early stopping mechanism was introduced, terminating training when the validation set
accuracy showed no relative improvement exceeding 5% for 10 consecutive epochs.

Study population

From March to August 2024, this study collected baseline data and facial image information from 1,167 patients
according to inclusion criteria, including 360 males (31%) and 807 females (69%). 127 patients with unqualified
facial images were excluded during the data cleaning phase. Among the remaining 1,040 patients were 370
patients with normal bone mass, 434 with osteopenia, and 236 with osteoporosis. The baseline demographic
characteristics of the training and validation sets are shown in Table 1 and Fig. 4. In this study, significant
statistical differences (PP<0.001) were observed in age, gender, height, weight, and body mass index (BMI)
among the normal bone mass group, osteopenia group, and osteoporosis group. The non-osteoporosis group
showed significantly higher BMI than the osteoporosis group, with lower proportions of female patients and
younger age than the osteoporosis group (Fig. 5). In this study, we also compared the average faces across normal
bone mass, osteopenia, and osteoporosis datasets. After preprocessing, the facial images of the three bone mass
states were sorted and displayed according to BMD values (Fig. 6). Statistical significance (P<0.05) was observed
in BMD among all three groups. We also employed XAI methods to analyze the model’s output interpretability,

Characteristics | Overall (n=1040) | Train Set (n=832) ‘ Validation Set (n=208) | P>— value
Sex,n (%) 0.274
Male 286(27.5) 222(26.7) 64(30.8)

Female 754(72.5) 610(73.3) 144 (69.2)

Status,n (%)

Normal 370(35.6) 294(35.3) 76(36.5) 0.739
Osteopenia 434(41.7) 345(41.5) 89(42.8)

Osteoporosis 236(22.7) 193(23.2) 43(20.7)

Age(years) 65.03 £10.02" 64.88 £10.07" 65.62 + 9.81% 0.346
Height(cm) 160.0(155.0-165.0)1 | 160.0(155.0-165.0)1 | 160.0(156.0-167.0)F 0.131
Weight(kg) 60.0 (53.0-68.0)f | 60.0 (53.0-68.3)F | 52.0 (47.0-58.0)+ 0.590
BMI (kg/m?2) | 23.55 +£3.37" 23.56 +3.38* 23.50 +3.35* 0.824

Table 1. Baseline demographic characteristics of train and validation sets. tNon-normally distributed
variables. *: Normally distributed.
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Fig. 4. Visualization of data distribution in train and validation sets.

aiming to capture distinguishable facial features and model-attended feature regions across the three different
bone mass states.

Evaluation metrics

To comprehensively evaluate the model’s performance on the dataset, we employed the following evaluation
metrics: accuracy, precision, recall, F1-score®?, AUC, and Kappa coefficient. These evaluations were calculated
using the following formulas:

TP+TN

Accuracy:TP—l—TN—l—FP—l—FN (19)
TP
N 2
Precision TP+ FP (20)
TP
l= ——— 21
Recall = 75 T FN @)

Precision - Recall
F1— =2 22
seore Precision + Recall (22)

po = Accuracy
k
{ pe =Y plmet piree (3)
i=1

Po — Pe
k:
1—p.’
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' TPR = mptry
AUC = [TPR(FPR) dFPR, FPR— 7 (24)
0 = FP+TN

where TP (True Positive) represents the number of positive samples correctly predicted by the model, TN (True
Negative) represents the number of negative samples correctly predicted by the model, FP (False Positive)
represents the number of negative samples incorrectly predicted as positive by the model, FN (False Negative)
represents the number of positive samples incorrectly predicted as negative by the model. p, is the observed
classification agreement (accuracy), and pe is the expected agreement by random classification.

Additionally, we used calibration curves, Expected Calibration Error (ECE)*, and Brier Score (BS) to
evaluate the model’s calibration performance, and employed the Hosmer-Lemeshow (HL) goodness-of-fit test
to assess its calibration ability.

Comparison experiment

In this study, we systematically evaluated the classification performance of the Face2Bone model against several
mainstream deep learning models across different bone mass states. As shown in Table 2, the Face2Bone model
outperformed other models across all evaluation metrics, demonstrating excellent performance in osteoporosis
prediction. Specifically, our model achieved an accuracy of 92.85%, significantly higher than VGG16 (87.13%),
VGGI19 (83.16%), ResNet18 (85.83%), and ResNet34 (87.82%). Regarding precision, Face2Bone reached 92.94%,
4.48% higher than the second-best model, VGG16. For recall and F1-score, Face2Bone achieved 92.85% and
92.83%, respectively, significantly surpassing other comparison models. Particularly noteworthy is our model’s
outstanding performance in AUC value (98.56%) and Kappa coeflicient (88.87%), indicating that Face2Bone
possesses superior classification capability and higher diagnostic consistency.
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Fig. 6. Average faces across different bone mass status.

Method Accuracy | Precision | Recall | Fl-score | AUC | Kappa
VGGl6 0.8713 0.8846 0.8536 | 0.8646 0.9597 | 0.7992
VGGI19 0.8316 0.8410 0.8121 | 0.8226 0.9284 | 0.7370
Resnet18 0.8583 0.8562 0.8499 | 0.8528 0.9576 | 0.7808
Resnet34 0.8782 0.8872 0.8667 | 0.8748 0.9604 | 0.8106
Face2Bone (Ours) | 0.9285 0.9294 0.9285 | 0.9283 0.9856 | 0.8887

Table 2. Performance comparison of different models on the validation set. Bold values indicate the best

performance.
Classes Accuracy | Precision | Recall | F1-score | AUC | Kappa
Normal 0.9577 0.9485 0.9281 | 0.9382 0.9893 | 0.9016

Osteopenia | 0.9416 0.9081 0.9608 | 0.9337 0.9841 | 0.8816
Osteoporosis | 0.9577 0.9406 0.8681 | 0.9029 0.9828 | 0.8759

Table 3. Classification performance of the model for different bone mass states.

In Table 3, the Face2Bone model demonstrated high accuracy and stability in classifying different bone mass
states. To further evaluate the models classification performance, we plotted the confusion matrix (Fig. 7) and
ROC curves (Fig. 8). Our model achieved an overall AUC of 95.86%, with particularly impressive performance
in osteoporosis classification: 98.28% AUC, 86.61% recall, and 94.06% precision, demonstrating extremely high
sensitivity and specificity for identifying high-risk patients. Meanwhile, error analysis revealed that the model
still had some misclassifications at the boundary between osteopenia and osteoporosis (9.34% misclassified as
osteopenia, 1.89% misclassified as osteoporosis), possibly due to overlapping facial features between these two
patient groups.
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Furthermore, we conducted model performance evaluation on male and female subgroup cohorts in this
study, with gender stratification revealing population differences in model performance (Table 4). The female
subgroup demonstrated overall superior classification performance compared to the male subgroup, which
was related to the imbalanced gender distribution in our dataset. Despite these differences, performance across
gender stratifications reached clinically acceptable levels, indicating that the Face2Bone model possesses good
generalization capability across different gender populations.

Given the importance of osteoporosis classification prediction in clinical risk assessment, this study
further evaluated the model’s calibration performance (Fig. 9). The HL test assesses model calibration quality
by comparing consistency between predicted probabilities and observed outcomes, with P-values>0.05
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Validation sets | Accuracy | Precision | Recall | F1-score | AUC | Kappa

Overall model 0.9285 0.9294 0.9285 | 0.9283 0.9856 | 0.8887

Female subgroup | 0.8964 0.8958 0.8964 | 0.8960 0.9657 | 0.7926

Male subgroup 0.8343 0.8349 0.8343 | 0.8341 0.9470 | 0.7400

Table 4. Performance evaluation of Face2Bone model in overall and gender-stratified validation sets.

Calibration Curve: Overall Population

o (ECE=0.027, BS=0.050, HL x?=3.93, p=0.416) .
| / Calibration Curves of Face2Bone
0.8- o
) v in the Overall Cohort and
o
2
206 Gender Subgroups
4
s (a)Overall: ECE = 0.027, Brier = 0.050
£
2.4 o 7e .
g% 2 (b)Male Subgroup: ECE = 0.036, Brier = 0.049
E o
'S e
< (c)Female Subgroup: ECE = 0.040, Brier = 0.074
0.2- -
/,
0.0 0.2 0.4 0.6 0.8 1.0
Mean Predicted Probability
Calibration Curve: Male Subgroup (c) Calibration Curve: Female Subgroup
1.0 - 1.0 .-
(ECE=0.036, BS=0.049, HL x*=1.07, p=0.585) g (ECE=0.040, BS=0.074, HL x*=4.15, p=0.528) /’
/ 7
0.8 // 0.8 g
/ =" //
£ 06 / a7’ £ 06 af
4 - 4 57 4
s 5 # o
c c 2
2Loa Loa / —_—
w . P
0.2 0.2 '/
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Mean Predicted Probability Mean Predicted Probability
Fig. 9. Calibration performance of Face2Bone in the overall cohort and sex-specific subgroups.
indicating good calibration performance. Through comparative analysis of calibration performance across
different validation sets and bone mass states, the overall cohort demonstrated optimal calibration performance
(ECE=0.027, Brier Score=0.050, x? = 3.91, P=0.418), followed by the female subgroup (ECE=0.040, Brier
Score=0.074, X2 = 4.15, P=0.528), while the male subgroup, despite its smaller sample size, maintained good
calibration (ECE =0.036, Brier Score =0.049, X2 = 1.07, P=0.585). All validation sets showed HL test P-values
above the 0.05 threshold, indicating that the Face2Bone model achieved statistically significant good calibration
across different populations, ensuring the reliability of predicted probabilities and safety of clinical applications.
This consistent calibration performance is of great significance for probability-based clinical decision support,
enabling clinicians to trust the model’s probabilistic predictions and make more accurate osteoporosis risk
assessments.
Overall, the model comparison results demonstrate the feasibility and potential application value of the
Face2Bone model in opportunistic osteoporosis screening. Compared to traditional diagnostic methods like
DXA, our approach provides a non-invasive, cost-effective, and convenient alternative for early osteoporosis
screening, offering an innovative technical pathway for preventive medical intervention and public health
management in osteoporosis.
Ablation experiment
To demonstrate the effectiveness of the modules proposed and designed in this study, and to deeply reveal the
contribution of each component of the Face2Bone model and its impact on overall performance, we designed
a series of ablation experiments. By selectively removing or disabling key modules in the model, we tested
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Method Accuracy | Precision | Recall | Fl-score | AUC | Kappa
Remove-FSA 0.6134 0.6951 0.6134 | 0.5775 0.8696 | 0.4215
Remove-SSAM | 0.8794 0.8797 0.8794 | 0.8795 0.9620 | 0.8140
Remove-KAN | 0.8975 0.8978 0.8975 | 0.8974 0.9602 | 0.8412
Face2Bone 0.9285 0.9294 0.9285 | 0.9283 0.9856 | 0.8887

Table 5. Ablation study comparison of Face2Bone on the validation set in Face2Bone. Bold values indicate the
best performance.
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Fig. 10. Overall and classification performance comparison of different module ablation experiments.

and validated the impact of the FSA module, SSAM module, and KAN network classification head on model
performance. The comparison results, as shown in Table 5 and Fig. 10, indicate that all three modules positively
influenced the model’s classification performance. All experimental configurations used the same training and
validation datasets and experimental parameters to ensure result comparability.

Ablation study of the FSA module

The FSA module serves as the core component of the model, integrating residual layers, Top-K attention
mechanism, and high-low frequency feature processing through cascade connections to construct a facial image
feature extraction network for different bone mass states. It processes features at different scales and abstraction
levels across four feature layers (Layerl-Layer4), achieving spatial-frequency dual-domain analysis capability
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for facial images. When this module was removed, the model’s performance significantly declined, with
overall accuracy dropping from 92.85% to 61.34%, a performance decrease of 37.79%. The F1-score decreased
from 92.83% to 57.75%, and precision dropped from 92.94% to 69.51%. Notably, the FSA module is crucial
for identifying the osteopenia category, with its F1-score dropping from 93.37% to 43.11% after removal, a
substantial decrease of 53.83%. This indicates that the FSA module can effectively capture subtle facial image
features of patients in the intermediate osteopenia state and efficiently integrate feature information from
different levels, enhancing the model’s comprehensive understanding of facial osteoporosis features, particularly
in improving the efficiency of integrating features from different facial regions.

Ablation study of the SSAM module

The SSAM module establishes correlation interactions between feature maps and FaceNet embedding vectors
through the QKV mechanism, combining feature maps with embedding vectors to establish associations
between facial structure and facial image representations of different bone mass states, thereby enhancing the
model’s ability to identify facial osteoporosis features. After removing this module, the model’s overall accuracy
decreased by 4.91%, the Fl-score dropped to 87.95%, with a performance decrease of approximately 5.26%.
The SSAM module’s impact on different categories was relatively balanced, revealing its ability to establish
correlations between facial structure and overall facial image representation features. Particularly for the
osteoporosis category, removing the SSAM module caused its F1-score to decrease from 92.29% to 86.5%, a
decrease of 4.2%, indicating that the SSAM module possesses unique advantages in capturing facial features of
osteoporosis patients.

Removal of KAN classification head

The KAN network serves as the classification head in the Face2Bone model, where high-order nonlinear
function approximation enhances the model’s ability to express complex feature relationships. After removing
KAN and replacing it with traditional linear layers (MLP), the model’s overall accuracy decreased by 3.1%, the
F1-score dropped to 89.74%, with a performance decrease of approximately 3.33%. KAN’s contribution to the
overall model was relatively smaller than that of the other two modules. However, it still significantly improved
the model’s classification capability for the normal bone mass category. After removing KAN, the F1-score for
the Normal category decreased from 93.82 to 90.71, revealing that KAN can enhance the model’s boundary
judgment ability and adaptive nonlinear mapping capability for different bone mass states in facial images,
enabling it to handle the complex nonlinear relationships between facial features and bone mineral density
across different bone mass states.

Analysis of inter-module coordination effects

As shown in Fig. 11, we used the F1-score as a metric to measure the actual contribution of model components.
We found significant synergistic effects among the three modules. The base model (with FSA removed) achieved
an Fl-score of 57.75%. After adding the SSAM module, it increased by 4.88% to 62.63%. Further addition
of the KAN module increased it by 3.09% to 65.72%. Finally, adding the FSA module improved it by 27.11%
to 92.83%. This indicates that the relationship between modules is not simply additive but achieves synergy
through information complementarity and feature enhancement. Although the KAN module’s contribution was
relatively smaller in this process, its combination with SSAM and FSA models produced significant synergistic
effects, further demonstrating the effectiveness of KAN in visual tasks>>>C.

Furthermore, this study found that compared to osteopenia, which represents an intermediate disease
progression, the recognition of facial images from osteoporosis patients demonstrated higher robustness. Even in
the simplified model with the core FSA module removed, this category maintained relatively high performance
(F1=66.67%), indicating that the facial representations of osteoporosis patients are more distinctive and can
still be partially recognized even in simplified models. The normal bone mass category showed good balance
across all modules, with all three modules contributing to its overall accuracy. Particularly in the model with the
FSA module removed, although the accuracy (55.64%) significantly decreased, the recall rate (91.9%) remained
high. This asymmetry reveals that the model tends to classify more samples as positive after losing the core FSA
module, leading to a high false-positive rate.

Analysis of explainability

In the medical field, explainable Al technology has been widely applied®”. For medical tasks, explainability
encompasses factors not considered in other domains, including risk, responsibility, and ethics. As emphasized by
the FAT (Fairness, Accountability, and Transparency) principles?, the purpose of explainability in Al algorithm
black boxes is to "ensure that algorithmic decisions and any data driving those decisions can be explained in non-
technical terms to end users and other stakeholders."” Related studies in medical scenarios such as non-invasive
detection®®, skill assessment®, disease prediction®!, and risk analysis®? have further confirmed the critical role of
explainability in clinical decision-making. In this study, we employed two explainability methods for interpretive
analysis of model results: SHAP® and CRAFT®, enhancing the reliability and credibility of model prediction
results through multi-dimensional, complementary explainability analysis. Meanwhile, from the perspective of
model prediction result visualization, we revealed the regions of facial images that the model focuses on for
different bone mass states.

Furthermore, this study constructed a comprehensive quantitative analysis framework to evaluate the
explainability of the Face2Bone model, primarily comprising SHAP quantitative attribution analysis and CRAFT
concept-level analysis. In SHAP quantitative attribution analysis, we divided the face into five anatomical
regions (forehead, periorbital, midface, mandibular, and nasolabial) based on MediaPipe’s 468 key points,
calculated SHAP contribution values for each region across different bone mass states, and assessed intra-
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Fig. 11. Importance analysis of different modules for the model.

class consistency by evaluating the similarity of SHAP value distributions within the same class to verify the
stability of model interpretations. Inter-class discriminative analysis was used to quantify the discriminative
ability of SHAP value distributions between different bone mass states, thereby validating the discriminative
power of model interpretations. Based on this foundation, we analyzed SHAP variation patterns from normal
bone mass to osteoporosis across all regions through SHAP visualization to verify the biological plausibility of
disease progression. In CRAFT concept analysis, we extracted facial concept activation explanation maps under
different bone mass states to identify facial regions of model focus, and used Jensen-Shannon divergence® to
quantify the degree of attention distribution differences between different bone mass states.

SHAP

SHAP (Shapley Additive exPlanations)®® is a model interpretation method developed based on the Shapley
value concept from game theory. This method assigns Shapley weights to each feature of the trained model
and explains model decisions by calculating the marginal contribution of each feature to the model’s prediction
results. For any feature 4, its SHAP value is defined as:
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Fig. 12. SHAP Analysis of Facial Images for Different Bone Mass States in Males and Females.

Facial region | Normal Osteopenia Osteoporosis

Periorbital —0.000286+0.000288 | 0.000094 +0.000182 | 0.000191+0.000166
Midface —0.000222+0.000232 | 0.000070+0.000152 | 0.000148+0.000135
Nasolabial —0.000191£0.000205 | 0.000054+0.000131 | 0.000132+0.000124
Jawline —0.000139+0.000145 | 0.000038 +0.000093 | 0.000095+0.000094
Forehead —0.000102+0.000160 | 0.000020+0.000101 | 0.000077 +0.000097
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Table 6. SHAP Contribution values for facial regions.
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where N is the set of all features, | V| is the total number of features, S is a subset of features, excluding the feature

i, f is the model function, f(.S) represents the model prediction using only the feature set S, w

is the combination weight that considers all possible feature combinations, and f (S U {i}) — f(S) is the
marginal contribution.

We analyzed the facial regions that the model focused on for males and females across three different bone
mass states. SHAP analysis results revealed significant differences in the facial image regions that the model
attended to for patients with different bone mass states. In patients with normal bone mass (Fig. 12a), the model
showed relatively balanced attention across facial regions, with all facial regions exhibiting negative SHAP
contribution values (Table 6). Males and females showed minimal facial feature differences under normal bone
mass conditions, indicating relatively stable facial feature distribution in normal bone density states, which was
consistent with intra-class consistency analysis results (Table 7) and reflected the natural biological diversity
of facial features in healthy populations. In patients with osteopenia (Fig. 12b), the model’s attention pattern
underwent significant changes, with SHAP contribution values shifting from negative to positive across all regions.
Notably, important changes occurred in the nasolabial region, which aligns with facial skeletal aging involving
maxillary bone resorption during osteopenia!®. The periorbital region showed the most significant changes and
became the core region of model attention, consistent with orbital bones being the most vulnerable facial skeletal
structures and being affected earliest in osteoporosis. Meanwhile, we found that female individuals exhibited
relatively more pronounced and concentrated changes during the osteopenia stage, particularly in the periorbital
and nasolabial regions, suggesting more significant facial changes in females during early disease stages. Notably,
in osteoporosis patients (Fig. 12c), the model’s attention regions demonstrated unique changes compared to the
previous two bone mass states, with highly concentrated attention in landmark regions of facial skeletal aging,
particularly the jawline, periorbital, and nasolabial areas showing strong positive contributions, consistent with
age-related facial skeletal aging biomechanical markers?*®: overall facial flattening, soft tissue ptosis, jawline
“discontinuity” phenomenon, deepened nasolabial folds, and reduced visible eye area. The periorbital region
achieved the highest positive contribution, becoming the most important feature for model identification of
the osteoporosis category. At this stage, SHAP value variability across all facial regions significantly decreased
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Bone Status ‘ Similarity (mean +SD) | Consistency level

a. Intra-class consistency analysis

Normal 0.231+0.525 Low

Osteopenia | 0.542+0.412 Medium

Osteoporosis | 0.695+0.240 High

Comparison Discriminative

groups Similarity (Mean+ SD) | power

b. Inter-class discrimination analysis

Normal-_ 1 560+0.537 Moderate

Osteopenia

Normal- 1 0.382:+0.450 Good
steoporosis

Osteopenia- | 470 1 ¢ 344 Fair

Osteoporosis

Table 7. SHAP Similarity analysis results for Face2Bone model

Comparison Jensen-Shannon divergence | Attention difference level
Normal-Osteopenia 0.077 Slight
Normal-Osteoporosis 0.096 Moderate
Osteopenia—-Osteoporosis | 0.155 Significant

Table 8. CRAFT attention map difference analysis results.

(Table 7), indicating highly consistent typical facial change patterns in osteoporosis patients. CRAFT attention
difference Jensen-Shannon analysis further validated this finding (Table 8), demonstrating that attention
distribution differences gradually increased with disease progression.

Based on SHAP explainability analysis comparing changes across different bone mass states, we observed
systematic progression patterns, confirming that all five facial regions exhibited evolution patterns from negative
to positive values, with females showing more pronounced changes across different bone mass states compared
to males, which relates to accelerated bone remodeling due to decreased estrogen levels after menopause®’. To
verify the reliability of this finding, we further analyzed intra-class consistency and inter-class discriminability,
with two-sample t-tests revealing that intra-class similarity was significantly higher than inter-class similarity
(P<0.001). Intra-class consistency and inter-class discriminability analysis results revealed clear increasing
trends and good discriminative ability, reflecting the transition of individual features from natural diversity to
pathological consistency during disease progression.

CRAFT: concept recursive activation factorization

CRAFT® is a Concept Recursive Activation Factorization method that generates concept-based explanations to
answer the questions "where is the model looking simultaneously" and "what is the model seeing." It employs a
recursive strategy to achieve cross-layer detection and concept decomposition. It uses Sobol indices to calculate
the importance of various concepts related to model predictions, then backpropagates concept scores to the pixel
space to generate concept attribution heatmaps. The calculation of Sobol indices is as follows:

_ Emni (Vg (YIMi))
V(Y)

st (26)
_ Enr~i (VMI (h ((U ® M) WT) ‘MNZ))

27)
V(h(UoM)WT))

CRAFT obtains key visual concepts for different bone mass states through concept activation decomposition,
concept importance estimation, and concept mapping attribution. We found that the key facial regions of interest
for the model in predicting osteoporosis exhibit distinct category-specific patterns. As shown in Figs. 13, 14, and
15 we present the concept explanation maps, global concept importance, and the best image patches (facial
regions that the model considers most representative of a particular concept) for facial images in different bone
mass states.

From CRAFT concept maps of different bone mass states, we obtained the osteoporosis-related core visual
concepts and their distributions extracted by the model, providing both macro and micro perspectives for
understanding model decision-making. In normal bone mass facial images, concept distributions were relatively
uniform, covering multiple facial regions and highlighting the structural contours of overall facial skeletal
support, which formed a consistent explanatory framework with the uniform negative value distribution and
higher individual variability shown in SHAP analysis (Table 7), indicating that the model focused on overall
facial coordination rather than specific pathological regions in healthy states. As an intermediate state of disease
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Fig. 13. CRAFT model result interpretation for normal bone mass facial images.
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progression, osteopenia showed concept distributions beginning to concentrate toward specific facial regions,
with increased concept weights in the nasolabial region reflecting early maxillary bone resorption, consistent
with the nasolabial region change patterns in SHAP analysis (Fig. 12b). Obvious concept changes around the
orbital area corresponded to the maximum change magnitude in the periorbital region from SHAP analysis,
indicating that facial orbital structures begin to change in this state. Meanwhile, midface concept weights
were higher than other anatomical regions, possibly related to weakened soft tissue mechanical support due
to age-related facial skeletal aging!®. For osteoporosis facial images, the continuous state of concept maps was
disrupted, with significantly expanded concepts in the orbital region and further enhanced weights in the
nasolabial region, completely consistent with the highest positive contribution in the periorbital region and
nasolabial region enhancement from SHAP analysis (Fig. 12¢), which was also reflected in CRAFT’s best image
patches. This aligns with results from existing studies showing degenerative changes in skeletal structures during
facial aging measured through CT imaging®®®. Jensen-Shannon analysis results from CRAFT attention map
difference analysis further quantified this finding (Table 8), confirming the concept reconstruction phenomenon
during critical disease progression periods, indicating that the model underwent significant attention pattern
redistribution during the transition from osteopenia to osteoporosis.

Through explainability analysis of the model using SHAP and CRAFT, our research results revealed
differences in facial images across different bone mass states, supporting the hypothesis of associations between
facial skeletal aging and systemic bone density status, and confirming that artificial intelligence can achieve
early identification of osteoporosis through facial image analysis. SHAP analysis provided precise regional
contribution quantification for the model, while CRAFT analysis revealed concept-level visual pattern evolution
during disease progression. The consistency between these two methods validated the biological plausibility
and clinical relevance of the Face2Bone model. This dual explainability framework not only opens new research
directions for developing non-invasive osteoporosis screening technologies but also provides possibilities for
further revealing cross-tissue regulatory mechanisms of facial soft tissue-bone metabolism and facial bone phase
quantification.

Discussion

This study first proposed an innovative osteoporosis prediction model, Face2Bone, based on facial 2D images.
SHAP and CRAFT XAI technologies revealed the model’s decision-making mechanism and the biological basis
of facial skeletal aging. Our research results validated the feasibility of osteoporosis risk prediction based on
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Fig. 14. CRAFT model result interpretation for osteopenia bone mass facial images.

facial images and provided necessary algorithmic evidence for applying this method to early risk screening of
osteoporosis.

The model design of Face2Bone is the key driver for osteoporosis prediction using facial images. The FSA
module, SSAM module, and KAN module significantly enhanced the model’s osteoporosis classification
capability, enabling the model to effectively focus on and extract key facial regions related to osteoporosis. This
allowed the model to outperform mainstream models such as VGG, ViT, and ResNet across all evaluation metrics,
achieving 92.85% accuracy and 98.56% AUC. It demonstrated excellent performance in classifying facial images
of osteoporosis patients, which is significant for identifying high-risk patients in early risk screening. The XAI
interpretability analysis in this study provides possibilities for the clinical translation of deep learning models.
SHAP and CRAFT methods transform the neural network black box into visual feature understanding.

In osteoporosis prevention and management, osteopenia, as an intermediate state of disease progression,
requires precise identification for significant clinical and public health implications. As a transitional period of
bone loss, implementing lifestyle interventions and necessary pharmacological treatments during this stage can
significantly delay or reverse bone loss progression’’, providing clinicians with an optimal therapeutic window.
From a public health perspective, early identification of osteopenia populations is of great value for advancing
prevention frontlines. Compared to existing systems utilizing CT imaging or clinical data for osteoporosis
prediction’!7? and traditional DXA examinations, using facial images as an osteoporosis screening gateway,
Face2Bone significantly reduces technical barriers while maintaining high accuracy, simplifies screening
procedures, and enhances implementation feasibility. Input data is more accessible and economically convenient,
particularly suitable for large-scale screening implementation in primary healthcare institutions and community
health service centers, creating favorable conditions for early detection and timely intervention of osteopenia.
Given this, we propose a standardized stratified screening decision pathway based on the Face2Bone model:
for individuals predicted to have normal bone mass, provide bone health education and recommend regular
follow-up to increase awareness and attention to osteoporosis while strengthening preventive consciousness;
for individuals predicted to have osteopenia, recommend DXA examination for confirmation while initiating
lifestyle interventions, including calcium and vitamin D supplementation, enhanced physical exercise, and
consideration of preventive pharmacological treatment based on patients’ overall risk assessment and FRAX
scores”® for high-risk individuals predicted to have osteoporosis, conduct DXA examination confirmation
and specialist referral for systematic evaluation and targeted pharmacological treatment. Through establishing
a risk-stratified screening strategy guided by the Face2Bone model, we aim to achieve optimal allocation of
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Fig. 15. CRAFT model result interpretation for osteoporosis bone mass facial images.

limited DXA resources and maximize individual health benefits, providing innovative technical support for
early detection, timely intervention, and effective prevention of osteoporosis.

Study limitations

Although the Face2Bone model demonstrated excellent performance in osteoporosis prediction, this study has
several limitations. First, this study employed a single-center design with all data derived from Ningbo No.2
Hospital, which may lead to selection bias. This bias stems from bidirectional selection processes in healthcare
settings: on one hand, as a tertiary hospital, the medical institution tends to admit more complex or advanced cases;
on the other hand, patients with more severe symptoms or greater concern about their condition often actively
choose tertiary hospitals, while those with mild symptoms or asymptomatic early-stage patients tend to undergo
routine examinations and preliminary screening at community hospitals or primary healthcare institutions. This
differential healthcare-seeking behavior may result in systematic bias in disease severity distribution within our
study sample. Additionally, patients who can access tertiary hospitals typically have better economic conditions,
medical insurance coverage, and health awareness, and this socioeconomic selection bias further exacerbates
sample non-randomness. The occupational structure dominated by manufacturing and service industries in
Ningbo, along with corresponding occupational exposure patterns (sedentary work, heavy physical labor, etc.),
may systematically affect the bone health status of the local population, making our research results difficult
to generalize to regions with different occupational exposure characteristics. Single-center design also means
that all data collection was conducted under identical environmental and technical conditions, which, while
improving internal consistency, may mask the model’s true performance under different conditions.

Second, sample size limitations constitute another important constraining factor. This study included 1,040
patient images for model construction. Considering the complexity of osteoporosis clinical phenotypes and the
extensive individual differences, the existing sample may not adequately cover all pathological change patterns
and individual variations. Particularly for subtle changes or atypical presentations in early disease stages, the
model’s recognition capability may be limited. The observed gender distribution imbalance (72.5% female), while
somewhat reflecting the epidemiological characteristics of osteoporosis, also introduces significant performance
bias. Detailed stratified analysis revealed that model accuracy in females was slightly higher than in males,
and this difference may stem from more pronounced facial skeletal changes due to postmenopausal estrogen
deficiency, making AI models more capable of identifying pathological features in females. However, this also
suggests that the model’s clinical utility in male populations requires further validation and optimization.
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Furthermore, the inherent limitations of cross-sectional study design restrict our in-depth understanding
of disease dynamic processes. Single time-point data collection cannot establish temporal causal relationships
between facial changes and bone density decline, nor can it validate the model’s predictive capability for disease
progression trajectories. This limitation is particularly pronounced in research on slowly progressive chronic
diseases like osteoporosis, because the temporal course of facial aging may have complex temporal differences
with bone density changes, and these subtle temporal dynamic changes cannot be accurately captured in cross-
sectional studies. Meanwhile, there exists a significant gap between standardized conditions at the technical
implementation level and real-world application scenarios. To ensure data quality, this study employed highly
controlled imaging conditions, including unified equipment, standard lighting, and standardized backgrounds,
but these conditions are difficult to fully replicate in actual clinical screening environments. Equipment diversity,
environmental lighting variations, patient compliance differences, and inconsistent operator skill levels in the
real world could all significantly affect image quality and subsequently influence the model’s actual performance.
Additionally, as a proof-of-concept study, we have not yet systematically validated key implementation elements
such as operational feasibility, healthcare provider acceptance, and patient compliance of this technology in real
clinical workflows.

To systematically address the above limitations, we plan to implement a phased validation strategy in
future research. In the short term, we will expand validation scope through multi-center collaboration within
the Ningbo Medical Consortium, a cooperation model that can reduce technical variability under relatively
standardized clinical environments while incorporating diverse patient populations from different levels of
healthcare institutions, thereby effectively alleviating single-center selection bias issues. Simultaneously, we will
focus on strengthening male patient recruitment and borderline case collection to optimize sample composition
and improve the model’s generalization capability. Medium-term goals include initiating prospective longitudinal
cohort studies to establish temporal relationship models between facial changes and bone density evolution
through 1-2 years of systematic follow-up. We will also develop robust image preprocessing algorithms and
comprehensive quality assessment frameworks to improve the model’s adaptability to variable imaging
conditions. In the long term, we plan to explore collaboration opportunities with broader healthcare networks to
validate the model’s performance consistency across different geographic regions and healthcare environments,
and develop clinical decision support tools to facilitate the practical application of this technology.

Conclusion

In this study, through CRAFT and SHAP interpretability analysis, we have demonstrated that the Face2Bone
model can identify characteristic changes related to osteoporosis from 2D facial images and revealed the
biological connections between these changes and the clinical manifestations of osteoporosis. The research
results validate the feasibility of osteoporosis risk prediction based on facial images and provide algorithmic
foundations for developing convenient, non-invasive osteoporosis screening tools. The interpretability of the
Face2Bone model offers clinicians transparent and comprehensible decision support, which is expected to
improve the early detection rate of osteoporosis and substantially contribute to reducing the global disease
burden caused by osteoporosis.

Data availability
Data are available upon reasonable request due to privacy/ethical restrictions. Requests should be submitted to
the corresponding author with a detailed research proposal.
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