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Chemical significance and
degeneracy of weighted degree-
based topological descriptor
second Davan index for octane
iIsomers and computation of certain
nanostructures

B. S. Swapna?, G. Chetana?, M. C. Shanmukha®>"?, G. Manjunath® & A. Usha*

This study introduces a novel topological descriptor, the second Davan index (SDI) based on weighted
degree of molecular graphs. Its chemical significance is validated through QSPR modelling of octane
isomers, where it exhibits superior correlation with physico-chemical properties such as entropy,
acentric factor, density and molar volume, outperforming classical indices like the Sombor index,
second hyper Zagreb index and redefined third Zagreb index. The second Davan index demonstrates
enhanced isomer discrimination capability, as evidenced by its high sensitivity values compared

to established descriptors. Further, bounds are established for connected graphs and closed form
expressions are computed for standard graph classes and certain nanostructures.
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Graph theory finds profound applications across various scientific domains, with chemistry recognized as one
of its most prominent beneficiaries. Within the scope of chemical graph theory, topological indices (TIs) serve as
numerical descriptors that represent the molecular topology of compounds, aiding in the prediction of diverse
physico-chemical and biological properties'—.

Over recent decades, TIs have gained considerable attention in pharmacology, bio-inorganic chemistry,
toxicity analysis and theoretical modelling®-°. Topological indices have played a pivotal role in the development
of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship
(QSPR) models, offering computationally efficient tools for predicting molecular behaviour’. Their reliability
stems from the mathematical rigour of graph-based abstraction and elimination of experimental constraints,
making TIs indispensable in modern theoretical chemistry. In chemical graphs, hydrogen atoms are typically
omitted to streamline structural analysis. The reliability of QSAR/QSPR predictions is largely influenced by the
choice of molecular datasets, algorithms and descriptors used”!.

As purely computational tools, TIs dropping the need for experimental procedures while offering powerful
insights into molecular behaviour. Recent innovations include descriptors that account for atomic types and
sub structural patterns, which have improved modelling accuracy'>!. Moreover distance-based indices and
chirality-aware descriptors have enriched the structural detail offered in drugs discovery and cheminformatics.
Exponential structure descriptors have demonstrated strong predictive power for thermodynamic properties of
benzenoid hydrocarbons!.
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Octane isomers and their structural influence

Octane isomers indicate eighteen distinct structural variations of the hydrocarbon Cs H g, all sharing the same
molecular formula but differing in carbon connectivity and branching. These isomers display varied physico-
chemical behaviour, with properties such as melting point, refractive index, density and acentric factor affected
by their branching geometry and position. One notable example is 2,2,4-trimethylpentane (iso-octane), values
for its high resistance to engine knocking and use as a reference fuel in octane rating scales!>°.

Recent advancements in graph-theoretic descriptors have improved the predictive modelling of these
isomers. Topological indices based on neighborhood degrees and line graph transformations have shown strong
correlations with molecular characteristics, supporting (QSAR) models in computational chemistry'’-!°. Such
models help predict molecular behaviour, enhancing compound selection for fuels, solvents and synthetic
applications. Furthermore, octane isomers serve as benchmark structures for validating novel indices and
regression schemes, making them indispensable in cheminformatics and theoretical graph analysis.

Statistical analysis of QSPR models for topological indices
In regression analysis®, the following statistical terms are employed to evaluate model performance:

+ Residual standard error (Sy.x): represents the standard deviation of the residuals, indicating how far the data
points deviate from the predicted regression line. Lower value signify a better model fit.

o F-statistic (F): measures the overall significance of the regression model. A higher F value suggests that the
model explains a substantial portion of the variability in the data.

o P-value: indicates the probability that the observed correlation occurred by chance. P-value less than 0.05 is
considered statistically significant.

o Indicator: qualitative description based on the P- value, specifying whether the relationship is “Significant”
or “Not significant”.

Methodology
Let G = (V, E) be a simple undirected graph, where V(G) denotes the vertex set and E(G) the edge set, such that
|V(G)| = nand |E(G)| = m. For foundational definitions and graph-theoretic terminology, readers may refer
to standard texts such as??2. If (r, s) € E(G) represents an edge connecting vertices r and s, then d,- denotes
the degree of vertex r, i.e., the number of edges incident to r. The neighborhood degree .S is defined as the sum
of degrees of all vertices adjacent to r, capturing the local connectivity around vertex r.

The concept of topological indices in molecular graph theory can be traced back to the work of Harold
Wiener in 1947. He introduced the Wiener index?, a distance-based descriptor that relates molecular structure
to boiling point predictions.

W(H) = d(si,s),
i<j
where d(s;, sj) denotes the shortest path between vertices s; and s;.
Following this, Gutman and Trinajsti¢ proposed the widely cited Zagreb indices in 1972, which capture the

branching patterns in molecular structures.
Second Zagreb index is formulated as,

rs€E(H)

Sombor index** is defined as,

SO(H) = > \/d(r)?+d(s).

rscE(H)
Redefined third Zagreb index? is defined as,

ReZGs(H) = Y [d(r)+d(s)]-[d(r) - d(s)].

rs€cE(H)
Second hyper Zagreb index®® is defined as,

HMy(H) = ) [d(r)-d(s)]".

rscE(H)
Neighborhood-based second Zagreb index?” is defined as,

M;(H)= Y S(r)-S(s).

rs€E(H)
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Weighted degree of a vertex® is defined as,

diz(r) =" _ d(e).

e=rs

The notation e = rs indicates that edge e is incident with vertex r and vertex s.

The second Davan index

Classical topological indices in chemical graph theory serve as foundational tools for understanding molecular
structure and properties. Among them, the Wiener index characterizes a molecule by aggregating shortest path
distances between pairs of atoms, while Zagreb indices focus on vertex degrees to reflect branching complexity.
Motivated by their successful applications, we propose a novel topological descriptor termed the second Davan
index, which is constructed using the weighted degree of vertices in a molecular graph.

This new index provides a refined perspective by incorporating both local and edge-based connectivity
information through vertex-edge interactions. To assess its chemical relevance, we analyse the statistical
correlation between the second Davan index and physico-chemical attributes of various compounds, such as
entropy, acentric factor, density and molar volume. The promising regression results suggest that the second
Davan index holds significant predictive capability within the QSPR framework.

The second Davan index of a graph H, D2(H) is defined as the sum of the product of the weighted degree of
a pair of adjacent vertices of H.

Dy(H)= Y di(r)di(s). (1)

rscE(H)
Lemma 5.1 Let H be a simple graph. Then, dy; (r) = d(r)(d(r) — 2) + S(r).

Proof Consider a connected graph H with vertex r, edge e = rs.

diy(r) =) d(e)

> ld(r) +d(s) - 2]

=d(r)[d(r) — 2] + S(r).
a
Theorem 5.1 Let H be a simple graph. Then,
Dy (H) = HM,(H) — 2ReZG3(H) + AMy(H) + DSy (H) — 2DSy (H) + M3 (H).

Proof Let d% () represent the weighted degree of a vertex r in a simple graph H. Lemma 5.1 in Eq. (1) we have

Dy(H)= Y dis(r)dis(s)

rsCB(H)
= %;H)[d(r)(d(r) —2)+ S(M)][d(s)(d(s) — 2) + 5(s)]
= %;H)w(r)d(s))?w %%H)[d(rwd(smd(r)d(s)]+4 %H)[d(rm(s)]
+ Z [d*(r)S(s) + d*(s)S(r)] — 2 Z [d(r)S(s) + d(s)S(r)] + Z S(r)S(s)
. DQEEJ)ES}{MQ(H) — 2ReZGs(H) + 4]\2(;11; + DSs>(H) — 2DS) (H) +€]\}jl(:?H)
7D51(H): zE;H) [d(r)S(s) + d(s)S(r)], DS:(H) = EE;H) [d®(r)S(s) + d*(s)S(r)] -
0

Chemical applicability of second Davan index
In the quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship
(QSAR) studies, the second Davan index D- has emerged as a significant topological descriptor due to its strong
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correlation with various physico-chemical properties. To explore this relevance, a linear regression model was
formulated to examine the relationship between D5 and several characteristic properties such as acentric factor

(AcentFac), entropy (S), molar volume (MV) and density of octane isomers.

The physico-chemical data of octane isomers were obtained from the official repository of the NIST Standard
Reference Database Number 69 (https://webbook.nist.gov/chemistry/). The considered topological indices

alongside the physical properties for octane isomers are tabulated in Table 1.

The linear equation for each physical property acentric factor (AcentFac), entropy (S), density and molar

volume (MV) with SDI is obtained in Table 1.
The regression equations derived for the Dy are as follows:

S = —0.04252(40.003122) Dy + 114.8(£0.7557),

AcentFac = —0.0003400(+1.844e — 5)Da + 0.4109(+0.004408),
Density = 0.0002150(44.760¢ — 5) Dy + 0.6681(40.01149),

MV = —0.04310(£0.009509) D2 + 169.4(£2.301).

The regression equations derived for the H M5 are as follows:

S = —0.01536(+0.006496) H M5 + 108.6(+1.632),

AcentFac = —9.279e — 5(£5.448¢ — 5) H M5 + 0.3548(+0.01368),
Density = 3.895e — 5(£4.785e — 5)H M2 + 0.7076(+0.01202),
MV = —0.007389(£0.009612) H Ma + 161.4(£2.414).

The regression equations derived for the ReZ G are as follows:

S = —0.0814(+0.01849) Re ZG'5 + 117.4(+2.854),
AcentFac = —0.0006928(+0.0001256) Re ZG'5 + 0.4390(+0.01938),

Density = 0.0005175(£0.0001200) ReZG's + 0.6384(£0.01851),

MV = —0.1051(£0.02366) ReZG3 + 175.5(+3.652).

The regression equations derived for the SO are as follows:

S = —1.473(£0.1255)SO + 139.8(+2.952),

AcentFac = —0.01171(40.0008607) SO + 0.6093(40.02025),

Density = 0.006225(40.001979) SO + 0.5702(40.04654),
MV = —1.231(£0.3998) SO + 188.6(+9.404).

The linear equation, derived from Table 1 is used to generate a Figs. 1, 2, 3 and 4 that displays the correlation

coeflicient.

Octane isomer Entropy | AcentFac | Density | MV SO HM> | ReZG3 | D2
n-Octane 111.67 0.397898 | 0.7025 162.605 | 18.614 | 88 92 78

2-Methyl-heptane 109.84 0.377916 | 0.6980 163.653 | 20.651 | 106 108 114
3-Methyl-heptane 111.26 0.371002 | 0.7058 161.845 | 20.502 | 121 134 127
4-Methyl-heptane 109.32 0.371504 | 0.7046 162.120 | 20.502 | 121 116 132
3-Ethyl-hexane 109.43 0.362472 | 0.7136 160.076 | 20.353 | 70 124 143
2,2-Dimethyl-hexane 103.42 0.339426 | 0.6953 164.289 |24.734 | 732 102 234
2,3-Dimethyl-hexane 108.02 0.348247 | 0.7121 160.413 | 22.399 | 245 202 185
2,4-Dimethyl-hexane 106.98 0.344223 | 0.7004 | 163.093 | 22.539 | 130 132 170
2,5-Dimethyl-hexane 105.72 0.356883 | 0.6935 164.715 | 22.688 | 124 124 151
3,3-Dimethyl-hexane 104.74 0.322596 | 0.7100 160.887 |24.491 | 184 112 264
3,4-Dimethyl-hexane 106.59 0.340345 | 0.7200 158.653 |22.250 | 179 150 197
2-Methyl-3-ethyl pentane | 106.06 0.332433 | 0.7193 158.807 |22.250 | 138 150 200
3-Methyl-3-ethyl pentane | 101.48 | 0.306899 | 0.7274 | 157.039 | 24.247 | 220 165 285
2,2,3-Trimethyl-pentane 101.61 0.300816 | 0.7161 159.517 | 26.373 | 241 190 330
2,2,4-Trimethyl-pentane 104.03 0.305370 | 0.6919 165.096 |26.771 | 166 162 285
2,3,3-Trimethyl-pentane 102.02 0.293177 | 0.7262 157.298 | 26.278 | 262 202 341
2,3,4-Trimethyl-pentane 102.30 0.317422 | 0.7191 158.851 | 24.296 | 207 168 244
2,2,3,3-Tetramethylbutane | 93.06 0.252940 | 0.8242 138.598 | 30.395 | 352 248 495

Table 1. Physico-chemical properties and computed topological indices for octane isomers.
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Index Entropy | Acentric Factor | Density | MV

D> 0.9594 | 0.9778 0.7495 | 0.7498
H M, 0.5088 | 0.3917 0.1993 | 0.1887
ReZG3 | 0.7349 | 0.8096 0.7332 | 0.7432
SO 0.9465 | 0.9594 0.6182 | 0.6100

Table 2. Correlation coefficient (|r|) between various indices and physical property.

Physical property | Sy.x F Pvalue | Indicator

Entropy 1.312 185.4 | 0.0001 | Significant
Acentric factor 0.007654 | 348.6 | 0.0001 | Significant
Density 0.01995 |20.52 | 0.0003 | Significant
MV 3.996 20.55 | 0.0003 | Significant

Table 3. Statistical parameters of linear QSPR model for Ds.

Physical property | Sy.x F Pvalue | Indicator
Entropy 4.009 5.588 | 0.0311 | Significant
Acentric factor 0.03362 | 2.901 | 0.1078 | Not significant
Density 0.02953 | 0.6626 | 0.4276 | Not significant
MV 5.932 0.5909 | 0.4533 | Not significant

Table 4. Statistical parameters of linear QSPR model for H M.

Physical property | Sy.x F Pvalue | Indicator

Entropy 3.158 18.79 | 0.0005 | Significant
Acentric factor 0.02145 | 30.44 | 0.0001 | Significant
Density 0.02049 | 18.61 | 0.0005 | Significant
MV 4.041 19.75 | 0.0004 | Significant

Table 5. Statistical parameters of linear QSPR model for ReZG3.

Figures 1, 2, 3 and 4 illustrate the regression modelling and corresponding correlation between four
representative physico-chemical properties and the topological indices D2, H M2, ReZG3 and SO. From the
data shown in Table 2, it is evident that the second Davan index D2 exhibits the highest correlation across
all selected properties. Notably, the correlation coefficient with acentric factor reaches an exceptional value of
|r] = 0.9778 and entropy follows closely at |r| = 0.9594, both indicating strong predictive power.

Furthermore, D> maintains consistently high correlations with density (|| = 0.7495) and molar volume
(Ir] = 0.7498), outperforming other indices such as HM3, ReZG3 and SO. While SO also demonstrates
considerable correlation with entropy (|r| = 0.9465) and acentric factor (|| = 0.9594), its correlation with
density and molar volume is notably weaker. In comparison, H M- reveals substantially lower correlation
coefficients, indicating limited predictive reliability.

These findings reinforce the significance of the D> index as a robust topological descriptor in QSPR/ QSAR
modelling frameworks, providing strong associative power across multiple molecular attributes and offering
enhanced statistical relevance relative to traditional indices.

Table 3 presents the regression statistics for the second Davan index Ds. It reveals exceptionally strong
correlations across all selected properties, with particularly high F-values for entropy (F' = 185.4) and acentric
factor (F = 348.6), alongside extremely low residual standard errors (Sy.x). The P-values for all regressions are
less than 0.05, confirming statistical significance across the board. These results strongly support the predictive
efficacy of D2 in modelling molecular characteristics.

Table 4 outlines the performance of the H M index. Although entropy demonstrates mild significance
(P = 0.0311), the remaining properties such as acentric factor, density and molar volume yield higher residual
errors and P-values above the 0.05 threshold. This indicates that H M2 shows limited predictive strength and
cannot reliably model multiple physical properties within this dataset.

Table 5 contains regression metrics for the ReZ(Gs index, which exhibits consistent significance for all
parameters. Notably, acentric factor and molar volume both show high F-values (30.44 and 19.75 respectively)
and low P-values (< 0.05), affirming the index suitability for QSPR modelling. While residual errors are slightly
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Physical property | Sy.x F Pvalue | Indicator

Entropy 1.503 137.7 | 0.0001 | Significant
Acentric factor 0.01030 | 185.2 | 0.0001 | Significant
Density 0.02369 | 9.899 | 0.0062 | Significant
MV 3.996 20.55 | 0.0003 | Significant

Table 6. Statistical parameters of linear QSPR model for SO.

Topological indices | Sensitivity
D» 1.000
Mo 0.389
HM> 0.888
ReZG3 0.666
SO 0.777

Table 7. Sensitivity comparison and isomer discrimination of topological indices. Significant values are in
bold.

higher compared to D2, the overall statistical profile positions ReZG3 as a reasonably strong topological
descriptor.

Table 6 summarizes the regression statistics for the SO index. All physical properties show statistical
significance, with entropy and acentric factor delivering strong F-values (137.7 and 185.2 respectively). Though
SO exhibits slightly larger residual errors than D, its consistent significance and moderate error margins
validate its applicability as a dependable topological index within QSPR frameworks.

Sensitivity measure of topological indices for octane isomers
Topological indices are numerical constructs that encode the structural variations of chemical compounds.
For an index to be effective, it must distinguish between varying molecular frameworks - particularly among
isomers. A frequent limitation in many indices is their degeneracy, where distinct isomers are assigned identical
index values, thereby impeding structural differentiation.

To assess an index ability to distinguish among isomers, Konstantinova® introduced a measure known as
sensitivity, mathematically given by:

N — Ny
) A
N

where:

o Nis the total number of isomers analysed,
o Ny is the number of isomers not distinguishable by the index I.

Greater sensitivity implies a stronger capability to discriminate among molecular structures.

Among the various classes of indices, particularly in the case of octane isomers, recently proposed descriptors
exhibit higher sensitivity compared to many traditional degree-based indices (see Table 7), affirming their value
in capturing intricate structural details.

Table 7 presents the sensitivity (SI) values of various topological indices for octane isomers, highlighting
their structural discrimination ability. The newly proposed index D2 achieves a maximum sensitivity of 1.000,
meaning it successfully distinguishes all isomers considered in the study. This value, shown in bold in the Table 7,
clearly establishes the superiority of D2 over traditional descriptors such as Mz, H M2, SO and ReZG3, which
exhibit sensitivity values of 0.389, 0.888, 0.777 and 0.666 respectively. These results underscore the enhanced
isomer resolution capability of D2, making it a highly effective molecular descriptor for chemical graph-based
analysis.

The bar chart (Fig. 5) illustrates the comparative sensitivity of five topological indices, with D2 showing the
highest responsiveness and M> the lowest. This visualization aids in selecting chemically relevant descriptors for
QSPR/QSAR modeling.

Impact of second Davan index on cheminformatics applications: the variation in SDI values across
nanostructure types reflects underlying changes in molecular connectivity and symmetry. Higher SDI values, as
observed in toroidal forms, suggest increased local and global connectivity, which may correlate with enhanced
electronic conductivity, mechanical stability and thermal resilience. For instance, the toroidal TU C4Cs(S) [z, y]
structure, with its maximal SDI of 1728xy, implies a highly interconnected framework, potentially favorable for
charge transport in nanoelectronic applications.
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Bounds for second Davan index

Theorem 8.1 For a connected graph H with n > 3 vertices and m edges. Then,
Do(H) < 4m(n — 1) (n — 2)?,
and equality holds if and only if H is isomorphic to K,,.

Proof Consider a connected graph H with n vertex and m edge, where n > 3. Using Lemma 5.1 in Eq. (1), we
have

Do(H) = > dii(r)dii(s)

rscE(H)
= D (@ (r) = 2d(r) + S(r)(d*(s) — 2d(s) + S(5))]
rs€E(H)
Z [(n=1)*)%=2((n—1)*(2n — 1)) +4(n — )* +2((n — 1)*(n = 1)*) = 4((n — 1)?)
rs€E(H)
+((n=1)%)7
< Z (n—1)*—4(n—-1°+4n -1 +2n—1)* —4(n—1)* + (n — )"
rs€E(H)

IN

< 0 -1 = 8(n—1)° +4(n—1)*)]

rscE(H)
<(@Amn—-1)"=8n—-1)"+4n—-1>*m
Dy (H) < 4m(n —1)*(n —2)°.

O

Theorem 8.2 For a connected graph H with n > 5 vertices and m edges. Then,

16n — 50 < Do(H) < 2n(n —1)3(n — 2)3,
where, equality for lower bound holds for path and equality for upper bound holds for complete graph.

Second Davan index of standard class of graphs
Proposition 9.1 For path Py,, where m > 5, Da(Py,) = 16m — 50.

Proof The path P, has m vertices and (m — 1) edges. For m > 5, we have following partition of edges based
on the weighted degree of a vertex:

Using the values from Table 8 in Eq. (1), we obtain
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(dg,, (1), dp_ (s))s
wherers € E(Pr) | (1,3) | (3,4) | 4.9
Number of edges 2 2 (m —5)

Table 8. Partition of edges of the path based on weighted degree.

Ds(P) = 2(1 x 3) +2(3 x 4) 4+ (m — 5)(4 x 4)
= 16m — 50.
O

Proposition 9.2 For cycle Cp,, where m > 3, D2(Cly,) = 16m.
Proof The cycle Cy, has m edges and m vertices. For m > 3, the weighted degree of each vertex is four.

D3(Ch) = m(4 x 4) = 16m.
O

Proposition 9.3 For complete graph K ,,, where m > 3, Da(K.,) = 2m(m — 1)3(m — 2).

Proof The complete graph K, consists of (m(m — 1))/2 edges and m vertices. Each vertex in m > 3 has a
weighted degree of 2(m — 2)(m — 1).

Da(Km) =" Ca[(2(m — 2)(m — 1))’]
=2m(m —1)*(m — 2)°.
O

Proposition 9.4 For complete bipartite graph Ko, n, where m,n > 2,
D2(K7n,n) = (mn)2(m +n— 2)2

Proof In complete bipartite graph K, .. For m,n > 2, the weighted degree of vertices of V1 is m(m + n — 2)
and the weighted degree of vertices of V2 is n(m + n — 2).

Dy(Km,n) = mn(m(m+n —2))(n(m+n—2))
= (mn)*(m +n —2)°.
g

Corollary 9.1 Let K, ,, be a complete bipartite graph. Then, Do (K, ) = 4n*(n — 1),
Corollary 9.2 Let K1, be a star graph. Then, D2(K1 n) = n2(n — 1)2.

Definition9.1 *° Crown graph SS, for an integerm > 3 is the graph with vertex set {u1, Uz . . . Um, V1,02 . . . U }
and edge set {u;v;;1 < 4,5 <m,i#j}.

Proposition 9.5 For crown graph SS,, wherem > 3, D2(S2,) = 4m(m — 1)*(m — 2)2.
Proof In crown graph S%,, For m > 3, weighted degree of each vertex is 2(m? — 3m + 2).

D2(S5,) = m(m — 1)(2(m* — 3m +2))?
= 4m(m —1)*(m — 2)°.
O

Proposition 9.6 For ladder graph L., where m > 5, Da(Ly,) = 768m — 2368.
Proof By definition of L.,*!, we have following partition of edges based on weighted degree of a vertex:

Using the values from Table 9 in Eq. (1), we obtain

Da(Lm) = 2(5 x 5) +4(5 x 11) 4 2(11 x 11) + 4(11 x 16) + (3m — 14)(16 x 16)
= 768m — 2368.
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(dg,, (r),dy  (s)),
wherers € E(Ly) | (5,5) | (5,11) | (11,11) | (11,16) | (16, 16)

Number of edges 2 4 2 4 (3m — 14)

Table 9. Partition of edges of the ladder graph based on weighted degree.

Proposition 9.7 For wheel graph Wi, , where m > 4, Da(Wp,) = m?* + 7m> + 56m — 64.

Proof In wheel graph Wi, the degree of centre vertex is m and degree of each vertex which are located on cycle
is three. Hence, the weighted degree of centre vertex is m(m — 1) and the weighted degree of rest of vertex of

W ism + 8.
Dy (Wy,) = (m — 1)[(m + 8)* + (m + 8)(m(m — 1))]
=(m-1)(m+ 8)(m2 +38)
=m* 4+ ™m® + 56m — 64.
O

Proposition 9.8 For gear graph G, where m > 3, Do(Gi,) = m(m -+ 7)(m? 4+ m + 12).

Proof In gear graph Gy, , the outer layer vertex is of degree alternatives 3 and 2, while the central vertex of de-
gree is m. The center vertex’s weighted degree is m(m + 1), each corner vertex next to it has a weighted degree
of (m + 7) and the other vertices have a weighted degree of 6.

D2 (Gm) = m[m(m + 1)(m + 7)] + 2m[(m + 7)6]
=m?(m+1)(m+7)+ 12m(m +7)
=m(m +7)(m* +m+ 12).

O

Proposition 9.9 For friendship graph Fy,,, wherem > 2, Do(Fy,) = 16m* + 20m?® + 8m? + 4m.

Proof In friendship graph Fy, , 2m vertices are of degree two and center vertex is of degree 2m. The weighted
degree of the center vertex is (2m)? and weighted degree of the remaining vertices is 2m 4 2.

Dy(Fp) = m[(2m + 2)%] + 2m[(2m)*(2m + 2)]
=4m(m +1)> + 16m>(m + 1)
=16m" + 20m> + 8m> + 4m.

O

Topological modelling of carbon-based nanostructures

Nanostructures are materials with nano scale dimensions, typically ranging from 1 to 100 nano meters, and
are typically used for their unique electronic, biological, mechanical and chemical properties. Chemical graph
theory offers a robust framework to model these structures denoted by atoms as vertices and bonds as edges in a
graph?2. This abstraction facilitates the computation of topological indices (TIs), which are numerical descriptors
of molecular structure. 2D-lattice nanostructures refer a planar, grid-like pattern of atoms typically organized in
repeating square or hexagonal units. A notable example is the nano tube, a cylindrical molecular framework
comprised of carbon atoms arranged in a hexagonal mesh. Depending on the number of concentric layers,
these are classified as single-walled or multi-walled variants. Similarly, nano torus structures exhibit a toroidal
geometry formed by folding a two-dimensional lattice into a closed circular surface, resembling a molecular-
scale doughnut.

Among various nanostructure models, the TUC4Cs(S)[z, y] (Fig. 6) configuration features a symmetrical
network of square (Cy) and octagonal (Cg) units arranged in a planar grid. This structure supports predictable
weighted degree distributions and facilitates analytical derivations of descriptors like the second Davan index.
Transforming this lattice into toroidal forms introduces curvature and periodic boundaries, affecting the
distribution of weighted degree-based properties-factors critical in molecular stability and electronic behaviour
prediction®.

The rotated counterpart, T'U C4sCs(R) [z, y] (Fig. 7) modifies the connectivity of C4 and C's units to produce
distinct automorphism groups and topological behaviours. This layout often results in increased symmetry
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(a)

(b) (c)

Fig. 6. Nanostructures based on the TU C4Cs(S)[4, 3] configuration: (a) 2D-lattice, (b) nano tube, (c) nano
torus.

(b) ()

Fig. 7. Nanostructures based on the TU C4Cs(R)[4, 3] configuration: (a) 2D-lattice, (b) nano tube, (c) nano
torus.

and uniformity, making it suitable for computing eccentric connectivity and spectral-based descriptors.
Additionally, zigzag polyhex nanostructures-denoted by PTUZCs[z,y], TU ZCs[x,y] and TTU ZCs[x, y|
-are derived from graphene-like hexagonal lattices. SDI-based analysis of these configurations effectively reveals
structural curvature-induced changes in local connectivity, supporting their application in electronic transport,
drug delivery and nano medicine®.

In this section, we present explicit formulas for computing the second Davan index for three
structurally distinct nanostructures: TUC4Cs(R)[z,y], TUC4Cs(S)[z,y] and the zigzag polyhex
PTUZCg[x,y], TU ZCs|x,y], TTU ZCs|x, y| (Fig. 8)°¢-3¢.

Theorem 10.1 Let A be 2D-lattice of TUC4Cs(R)[x, y]. Then,

(i) D2(A) = 864xy — 550(x + y) + 252,
(i1) D2(S(A)) = 648zy — 280(z + y) + 40,
(iii) D2(L(S(A))) = 25922y — 1410(z + y) + 352.

Proof (i) The 2D-lattice TU C4Cs(R)[z,y] has 4xy vertices and 6zy —  — y edges. Based on the weighted
degree of vertex, the edge partition of A is given in Table 10.

Da(A) = Y dS(rdi(s)

rs€E(A)
=4(5 x 5) +8(5 x 11) + (4(z + y) — 16)(6 x 11) + (2(z + y))(11 x 11)
+ 4(z+y) —16)(11 x 12) 4+ (6zy — 11(z + y) + 20)(12 x 12)
= 864zy — 550(x + y) + 252.

(ii) The subdivision graph S(A) has order 10zy — x — y and size 2(6xy — = — y). The edges is determined by
the weighted degree of its vertices as shown in Table 11.
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(a) () (c)

Fig. 8. Nanostructures based on the zigzag polyhex configuaration: (a) 2D-lattice PT'U ZC[4, 3]; (b) nano
tube TU ZCi[4, 3]; () nano torus TTU ZCs 4, 3].

Number of edges 4 8 Az +y) =16 |2(z +y) |4z +y) — 16 | 6zy — 11(z + y) + 20

Table 10. Partition of edges of A whenx > 1,y > 1.

Number of edges 8 4(zr+y)—8 |4z +y)—8 |12zy — 10(z + y) + 8

Table 11. Partition of edges of S(A), whenx > 1,y > 1.

Number of edges 4 8 2x+y)—8 |4(z+y)—8 |8(x+y)— 16 | 18zy — 19(z + y) + 20

Table 12. Partition of edges of L(S(A)) forz > 1,y > 1..

Da(S(A) = > d¥ay(r)dsa(s)
rs€E(S(A))
= 8(4 x 4) + (4(x +y) = 8)(4 x 5) + (4(x +y) —8)(5 x 9)
+ (12zy — 10(z +y) + 8)(6 x 9)
= 648zy — 280(z + y) + 40.

(iii) The line graph of subdivision graph L(S(A)) has order 2(6zy — = — y) and size (18zy — 5z — 5y). The
edges is determined by the weighted degree of its vertices as shown in Table 12.

Ds(L(S(A))) = Z dr(s(ay (r)diis ay (s)
rs€E(L(S(A)))
=4(4x4)+8(4x5)+(2(x+y)—8)(5x5)+ (4(z+y) —8)
(5% 11) + (8(z + y) — 16)(11 x 12) + (18zy — 19(z + y) + 20)(12 x 12)
= 2592y — 1410(z + y) + 352.
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(dg(r), dE(s)),
where rs € E(B) | (6,11) | (11,11) | (11,12) | (12,12)

Number of edges 4x 2x 4x 6zy — 11z

Table 13. Partition of edges of B, whenz > 1,y > 1.

av v )
»(vh‘feﬁf%fsré ES(%?()E(;?%) “5) | 5,9 | (69

Number of edges 4x 4x 12zy — 10x

Table 14. Partition of edges of S(B), whenz > 1,y > 1.

av v )
fvh%£§£§>é(2<Lfé*%Sé%B)>(s)) G,5) | G,11) | (1,12) | a2,12)

Number of edges 2x 4x 8x 18zy — 19z

Table 15. Partition of edges of L(S(B)), whenz > 1,y > 1.

O

Theorem 10.2 Let Bbe TU C4+Cs(R)[z, y] nano tubes. Then,

(i) D2(B) = 864zy — 550z,
(if) D2(S(B)) = 648zy — 280z,
(iii) D2(L(S(B))) = 25922y — 1410z

Proof (i) The TUC4Cs(R)|x, y] nano tube has 4xy vertices and 6zy — x edges. Based on the weighted degree
of vertex, the edge partition of B is given in Table 13.

Dy(B)= > di(r)di(s)
rs€E(B)
=4z(6 x 11) + 2x(11 x 11) + 4=(11 x 12) + (6zy — 112)(12 x 12)
= 864xy — 550x.

(i1) The subdivision graph (S(B)) has the order and size are 10zy — x and 2(6xy — x), respectively. Based on the
weighted degree of vertex, the edge partition of S(B) is given in Table 14.

DoAS(B) = D> d¥m(r)dim ()
rs€E(S(B))
=42(4 x 5) + 42(5 x 9) + (12zy — 10z)(6 x 9)
= 648xy — 280x.

(#ii) The line graph of subdivision graph (L(S(B)) of order and size are 2(6zy — =) and (18xy — 5x), respectively.
Based on the weighted degree of vertex, the edge partition of L(S(B)) is given in Table 15.

Dy(L(S(B))) = Z di sy (r)dL(sp))(s)

rs€ B(L(S(B)))

22(5 % 5) + 4z(5 x 11) + 8z(11 x 12) + (18zy — 19z)(12 x 12)
= 2592zy — 1410x.

O

Theorem 10.3 Let C be TUC4Cs(R)[x, y] nano torus. Then,

(i) D2(C) = 864zy,
(if) D2(S(C)) = 648xy,
(iii) D2(L(S(C))) = 2592zy.
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(d&(r), d"’(S))
wherers € E(C) | (12,12)

Number of edges 6xy

Table 16. Partition of edges of C, whenz > 1,y > 1.

(ds(c) (r), d %g) (5))s

where s € E(.S( (6,9)

Number of edges 12xy

Table 17. Partition of edges of S(C), whenz > 1,y > 1.

d r),d s)),
S tesn | 1 1

Number of edges 18xy

Table 18. Partition of edges of L(S(C)), when x > 1,y > 1.

(df, (r), di, ())
where s € BE(Fy) | (5,4) | (5,5) | (510) | (5,11) |(6,10) |(10,12) | (11,11) | (11,12) | (12,12)

Number of edges 8 2y —4 |4 4y —4 |4 —8 |20 —2 |2y — 2 |4y — 4 | 6zy — Tx — 11y + 12

Table 19. Partition of edges of F1, whenz > 1,y > 1.

Proof (i) The TUC4Cs(R)[x, y] nano torus has 4xy vertices and 6xy edges. Based on the weighted degree of
vertex is as shown in Table 16.

Dy(C) = Y dé(r)dé(s)
rseE(C)
= 6zy(12 x 12)
= 864xy.

(ii) The subdivision graph (S(C)) has the order and size are 10xy and 12xy, respectively. Based on the weighted
degree of vertex, the edge partition of S(C) is as shown in Table 17.

Dy(S(C) = Y d¥ic)(r)d¥ic)(s)
rseE(S(C))
= 12zy(6 X 9)
= 648xy.

(#if) The line graph of subdivision graph (L(S(C))) of order and size are 12xy and 18xy, respectively. Based on the
weighted degree of vertex, the edge partition of L(S(C)) is as shown in Table 18.

DALSC))) = > disen)dise(s)

rseE(L(S(C)))
= 18zy(12 x 12)
= 2592zy.

g
Theorem 10.4 Let F; be zigzag polyhex 2D-structure lattice PTU ZCg[x, y]. Then,
Ds(Fy) = 864zy — 528z — 544y + 278.

Proof The order and size of F'; are 2y(2z + 1) and 6zy — = + y, respectively. Based on the edge classification
shown in Table 19, the second Davan index D2 (F1) is obtained.
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Number of edges 4x 2x 6ry — Tx

Table 20. Partition of edges of >, whenz > 1,y > 1.

Number of edges 6xy

Table 21. Partition of edges of F3, whenz > 1,y > 1.

Number of edges 4 8 2(z+y) -8 |4z +y)—8 |2 +y)—4 |4(x+y) —8 | 12zy — 14(z + y) + 16

Table 22. Partition of edges of Hy, whenz > 1,y > 1.

Number of edges 2x 4x 2x 4x 12zy — l4x

Table 23. Partition of edges of H2, whenz > 1,y > 1.

O

Theorem 10.5 Let F> be zigzag polyhex nano tube TU Z Cs[x, y]. Then,
Dy (F>) = 864zy — 528z.

Proof The order and size of F» are 4xy and 6xy — x, respectively. Based on the edge classification shown in
Table 20, the second Davan index D2 (F%) is obtained.

g
Theorem 10.6 Let F’ be zigzag polyhex nano torus TTU ZCg|x, y]. Then,

Proof The order and size of F’3 are 4xy and 6xy, respectively. Based on the edge classification shown in Table 21.
Hence we obtain desired result.

O
Theorem 10.7 Let Hy be 2D-lattice of TU C4Cs(S)[x, y]. Then,
Do (Hy) = 1728zy — 976(x + y) + 14748.

Proof The order and size of H; are 8xy and 122y — 2(z + y), respectively. Based on the edge classification
shown in Table 22. Thus we obtain final result. [J

Theorem 10.8 Let H be nano tube of TU C4Cs(S)[x, y]. Then,
DQ(HQ) = 1728:ry — 976x.

Proof The order and size of H3 are 8xy and 12xy — 2z, respectively. Based on the edge classification shown in
Table 23. The second Davan index D3 (H>) is obtained. [J

Theorem 10.9 Let Hs be nano torus of TUC4Cs(S)[x, y]. Then,

Scientific Reports|  (2025) 15:36568 | https://doi.org/10.1038/s41598-025-20539-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(df, (1), i, (5))s
where rs € Eq’(H3) (12,12)
Number of edges 12xy

Table 24. Partition of edges of H3, whenz > 1,y > 1.

Dz(Hg) = 1728273].

Proof The order and size of H3 are 8xy and 12xy, respectively. Based on the edge classification shown in Ta-
ble 24. Hence the desired result is obtained.

O

Conclusion

In this study, we introduced the second Davan index (SDI), a novel topological descriptor derived from the
weighted degree of vertices of molecular graphs. Through rigorous quantitative structure-property relationship
(QSPR) analysis involving octane isomers, the SDI demonstrated superior predictive performance, exhibiting the
highest correlation coefficients with key physico-chemical properties such as entropy (|r| = 0.9594), acentric
factor (|r| = 0.9778), molar volume (|r| = 0.7498) and density (|r| = 0.7495), when compared against
classical indices such as Sombor index, second hyper Zagreb index and redefined third Zagreb index.
Specifically, the SDI achieved a perfect sensitivity value of 1.000 in isomer discrimination tests, indicating its
ability to uniquely identify all octane isomers and outperforming the sensitivity levels of established descriptors
such as M> (0.389), HM; (0.888), SO (0.777) and ReZG3 (0.666). Closed form expressions for SDI were
derived for several standard graph classes including paths, cycles, complete, bipartite, crown, ladder, wheel,
gear and friendship, thereby validating its structural applicability. Moreover, upper and lower bounds for the
SDI were established, with extremal cases identified for path and complete graphs. We further extended the
applicability of SDI to nanostructures by computing explicit formulas for various molecular configurations such
asTUC4Cs(R)[z,y], TUC4Cs(S)[z,y], PTU ZCs [z, y], TU ZCs[z,y] and TTU Z Cs|[z, y], including their
subdivision and line graph transformations. These results confirm the robustness of SDI across diverse structural
domains, establishing it as a reliable descriptor in QSPR modelling and nano scale molecular analysis.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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