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This study introduces a novel topological descriptor, the second Davan index (SDI) based on weighted 
degree of molecular graphs. Its chemical significance is validated through QSPR modelling of octane 
isomers, where it exhibits superior correlation with physico-chemical properties such as entropy, 
acentric factor, density and molar volume, outperforming classical indices like the Sombor index, 
second hyper Zagreb index and redefined third Zagreb index. The second Davan index demonstrates 
enhanced isomer discrimination capability, as evidenced by its high sensitivity values compared 
to established descriptors. Further, bounds are established for connected graphs and closed form 
expressions are computed for standard graph classes and certain nanostructures.
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Graph theory finds profound applications across various scientific domains, with chemistry recognized as one 
of its most prominent beneficiaries. Within the scope of chemical graph theory, topological indices (TIs) serve as 
numerical descriptors that represent the molecular topology of compounds, aiding in the prediction of diverse 
physico-chemical and biological properties1–3.

Over recent decades, TIs have gained considerable attention in pharmacology, bio-inorganic chemistry, 
toxicity analysis and theoretical modelling4–6. Topological indices have played a pivotal role in the development 
of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship 
(QSPR) models, offering computationally efficient tools for predicting molecular behaviour7,8. Their reliability 
stems from the mathematical rigour of graph-based abstraction and elimination of experimental constraints, 
making TIs indispensable in modern theoretical chemistry. In chemical graphs, hydrogen atoms are typically 
omitted to streamline structural analysis. The reliability of QSAR/QSPR predictions is largely influenced by the 
choice of molecular datasets, algorithms and descriptors used9–11.

As purely computational tools, TIs dropping the need for experimental procedures while offering powerful 
insights into molecular behaviour. Recent innovations include descriptors that account for atomic types and 
sub structural patterns, which have improved modelling accuracy12,13. Moreover distance-based indices and 
chirality-aware descriptors have enriched the structural detail offered in drugs discovery and cheminformatics. 
Exponential structure descriptors have demonstrated strong predictive power for thermodynamic properties of 
benzenoid hydrocarbons14.
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Octane isomers and their structural influence
Octane isomers indicate eighteen distinct structural variations of the hydrocarbon C8H18, all sharing the same 
molecular formula but differing in carbon connectivity and branching. These isomers display varied physico-
chemical behaviour, with properties such as melting point, refractive index, density and acentric factor affected 
by their branching geometry and position. One notable example is 2,2,4-trimethylpentane (iso-octane), values 
for its high resistance to engine knocking and use as a reference fuel in octane rating scales15,16.

Recent advancements in graph-theoretic descriptors have improved the predictive modelling of these 
isomers. Topological indices based on neighborhood degrees and line graph transformations have shown strong 
correlations with molecular characteristics, supporting (QSAR) models in computational chemistry17–19. Such 
models help predict molecular behaviour, enhancing compound selection for fuels, solvents and synthetic 
applications. Furthermore, octane isomers serve as benchmark structures for validating novel indices and 
regression schemes, making them indispensable in cheminformatics and theoretical graph analysis.

Statistical analysis of QSPR models for topological indices
In regression analysis20, the following statistical terms are employed to evaluate model performance:

•	 Residual standard error (Sy.x): represents the standard deviation of the residuals, indicating how far the data 
points deviate from the predicted regression line. Lower value signify a better model fit.

•	 F-statistic (F): measures the overall significance of the regression model. A higher F value suggests that the 
model explains a substantial portion of the variability in the data.

•	 P-value: indicates the probability that the observed correlation occurred by chance. P-value less than 0.05 is 
considered statistically significant.

•	 Indicator: qualitative description based on the P- value, specifying whether the relationship is “Significant” 
or “Not significant”.

Methodology
Let G = (V, E) be a simple undirected graph, where V(G) denotes the vertex set and E(G) the edge set, such that 
|V (G)| = n and |E(G)| = m. For foundational definitions and graph-theoretic terminology, readers may refer 
to standard texts such as21,22. If (r, s) ∈ E(G) represents an edge connecting vertices r and s, then dr  denotes 
the degree of vertex r, i.e., the number of edges incident to r. The neighborhood degree Sr  is defined as the sum 
of degrees of all vertices adjacent to r, capturing the local connectivity around vertex r.

The concept of topological indices in molecular graph theory can be traced back to the work of Harold 
Wiener in 1947. He introduced the Wiener index23, a distance-based descriptor that relates molecular structure 
to boiling point predictions.

	
W (H) =

∑
i<j

d(si, sj),

where d(si, sj) denotes the shortest path between vertices si and sj .
Following this, Gutman and Trinajstić proposed the widely cited Zagreb indices in 1972, which capture the 

branching patterns in molecular structures.
Second Zagreb index is formulated as,

	
M2(H) =

∑
rs∈E(H)

d(r) · d(s).

Sombor index24 is defined as,

	
SO(H) =

∑
rs∈E(H)

√
d(r)2 + d(s)2.

Redefined third Zagreb index25 is defined as,

	
ReZG3(H) =

∑
rs∈E(H)

[d(r) + d(s)] · [d(r) · d(s)].

Second hyper Zagreb index26 is defined as,

	
HM2(H) =

∑
rs∈E(H)

[d(r) · d(s)]2.

Neighborhood-based second Zagreb index27 is defined as,

	
M∗

2 (H) =
∑

rs∈E(H)

S(r) · S(s).
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Weighted degree of a vertex28 is defined as,

	
dw

H(r) =
∑
e=rs

d(e).

The notation e = rs indicates that edge e is incident with vertex r and vertex s.

The second Davan index
Classical topological indices in chemical graph theory serve as foundational tools for understanding molecular 
structure and properties. Among them, the Wiener index characterizes a molecule by aggregating shortest path 
distances between pairs of atoms, while Zagreb indices focus on vertex degrees to reflect branching complexity. 
Motivated by their successful applications, we propose a novel topological descriptor termed the second Davan 
index, which is constructed using the weighted degree of vertices in a molecular graph.

This new index provides a refined perspective by incorporating both local and edge-based connectivity 
information through vertex-edge interactions. To assess its chemical relevance, we analyse the statistical 
correlation between the second Davan index and physico-chemical attributes of various compounds, such as 
entropy, acentric factor, density and molar volume. The promising regression results suggest that the second 
Davan index holds significant predictive capability within the QSPR framework.

The second Davan index of a graph H, D2(H) is defined as the sum of the product of the weighted degree of 
a pair of adjacent vertices of H.

	
D2(H) =

∑
rs∈E(H)

dw
H(r)dw

H(s).� (1)

Lemma 5.1  Let H be a simple graph. Then, dw
H(r) = d(r)(d(r) − 2) + S(r).

Proof  Consider a connected graph H with vertex r, edge e = rs.

	

dw
H(r) =

∑
e=rs

d(e)

=
∑
e=rs

[d(r) + d(s) − 2]

= d(r)[d(r) − 2] + S(r).

□

Theorem 5.1  Let H be a simple graph. Then,

	 D2(H) = HM2(H) − 2ReZG3(H) + 4M2(H) + DS2(H) − 2DS1(H) + M∗
2 (H).

Proof  Let dw
H(r) represent the weighted degree of a vertex r in a simple graph H. Lemma 5.1 in Eq. (1) we have

	

D2(H) =
∑

rs∈E(H)

dw
H(r)dw

H(s)

=
∑

rs∈E(H)

[d(r)(d(r) − 2) + S(r)][d(s)(d(s) − 2) + S(s)]

=
∑

rs∈E(H)

(d(r)d(s))2 − 2
∑

rs∈E(H)

[d(r) + d(s)][d(r)d(s)] + 4
∑

rs∈E(H)

[d(r)d(s)]

+
∑

rs∈E(H)

[d2(r)S(s) + d2(s)S(r)] − 2
∑

rs∈E(H)

[d(r)S(s) + d(s)S(r)] +
∑

rs∈E(H)

S(r)S(s)

D2(H) = HM2(H) − 2ReZG3(H) + 4M2(H) + DS2(H) − 2DS1(H) + M∗
2 (H)

where,

DS1(H) =
∑

rs∈E(H)

[d(r)S(s) + d(s)S(r)] , DS2(H) =
∑

rs∈E(H)

[
d2(r)S(s) + d2(s)S(r)

]
.

□

Chemical applicability of second Davan index
In the quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship 
(QSAR) studies, the second Davan index D2 has emerged as a significant topological descriptor due to its strong 
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correlation with various physico-chemical properties. To explore this relevance, a linear regression model was 
formulated to examine the relationship between D2 and several characteristic properties such as acentric factor 
(AcentFac), entropy (S), molar volume (MV) and density of octane isomers.

The physico-chemical data of octane isomers were obtained from the official repository of the NIST Standard 
Reference Database Number 69 (https://webbook.nist.gov/chemistry/). The considered topological indices 
alongside the physical properties for octane isomers are tabulated in Table 1.

The linear equation for each physical property acentric factor (AcentFac), entropy (S), density and molar 
volume (MV) with SDI is obtained in Table 1.

The regression equations derived for the D2 are as follows:

	

S = −0.04252(±0.003122)D2 + 114.8(±0.7557),
AcentF ac = −0.0003400(±1.844e − 5)D2 + 0.4109(±0.004408),
Density = 0.0002150(±4.760e − 5)D2 + 0.6681(±0.01149),
MV = −0.04310(±0.009509)D2 + 169.4(±2.301).

The regression equations derived for the HM2 are as follows:

	

S = −0.01536(±0.006496)HM2 + 108.6(±1.632),
AcentF ac = −9.279e − 5(±5.448e − 5)HM2 + 0.3548(±0.01368),
Density = 3.895e − 5(±4.785e − 5)HM2 + 0.7076(±0.01202),
MV = −0.007389(±0.009612)HM2 + 161.4(±2.414).

The regression equations derived for the ReZG3 are as follows:

	

S = −0.0814(±0.01849)ReZG3 + 117.4(±2.854),
AcentF ac = −0.0006928(±0.0001256)ReZG3 + 0.4390(±0.01938),
Density = 0.0005175(±0.0001200)ReZG3 + 0.6384(±0.01851),
MV = −0.1051(±0.02366)ReZG3 + 175.5(±3.652).

The regression equations derived for the SO are as follows:

	

S = −1.473(±0.1255)SO + 139.8(±2.952),
AcentF ac = −0.01171(±0.0008607)SO + 0.6093(±0.02025),
Density = 0.006225(±0.001979)SO + 0.5702(±0.04654),
MV = −1.231(±0.3998)SO + 188.6(±9.404).

The linear equation, derived from Table 1 is used to generate a Figs. 1, 2, 3 and 4 that displays the correlation 
coefficient.

Octane isomer Entropy AcentFac Density MV SO HM2 ReZG3 D2

n-Octane 111.67 0.397898 0.7025 162.605 18.614 88 92 78

2-Methyl-heptane 109.84 0.377916 0.6980 163.653 20.651 106 108 114

3-Methyl-heptane 111.26 0.371002 0.7058 161.845 20.502 121 134 127

4-Methyl-heptane 109.32 0.371504 0.7046 162.120 20.502 121 116 132

3-Ethyl-hexane 109.43 0.362472 0.7136 160.076 20.353 70 124 143

2,2-Dimethyl-hexane 103.42 0.339426 0.6953 164.289 24.734 732 102 234

2,3-Dimethyl-hexane 108.02 0.348247 0.7121 160.413 22.399 245 202 185

2,4-Dimethyl-hexane 106.98 0.344223 0.7004 163.093 22.539 130 132 170

2,5-Dimethyl-hexane 105.72 0.356883 0.6935 164.715 22.688 124 124 151

3,3-Dimethyl-hexane 104.74 0.322596 0.7100 160.887 24.491 184 112 264

3,4-Dimethyl-hexane 106.59 0.340345 0.7200 158.653 22.250 179 150 197

2-Methyl-3-ethyl pentane 106.06 0.332433 0.7193 158.807 22.250 138 150 200

3-Methyl-3-ethyl pentane 101.48 0.306899 0.7274 157.039 24.247 220 165 285

2,2,3-Trimethyl-pentane 101.61 0.300816 0.7161 159.517 26.373 241 190 330

2,2,4-Trimethyl-pentane 104.03 0.305370 0.6919 165.096 26.771 166 162 285

2,3,3-Trimethyl-pentane 102.02 0.293177 0.7262 157.298 26.278 262 202 341

2,3,4-Trimethyl-pentane 102.30 0.317422 0.7191 158.851 24.296 207 168 244

2,2,3,3-Tetramethylbutane 93.06 0.252940 0.8242 138.598 30.395 352 248 495

Table 1.  Physico-chemical properties and computed topological indices for octane isomers.
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Fig. 2.  Curve fitting of physico-chemical properties with SO index.

 

Fig. 1.  Curve fitting of physico-chemical properties with D2 index.
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Fig. 4.  Curve fitting of physico-chemical properties with ReZG3 index.

 

Fig. 3.  Curve fitting of physico-chemical properties with HM2 index.
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Figures  1, 2, 3 and  4 illustrate the regression modelling and corresponding correlation between four 
representative physico-chemical properties and the topological indices D2, HM2, ReZG3 and SO. From the 
data shown in Table  2, it is evident that the second Davan index D2 exhibits the highest correlation across 
all selected properties. Notably, the correlation coefficient with acentric factor reaches an exceptional value of 
|r| = 0.9778 and entropy follows closely at |r| = 0.9594, both indicating strong predictive power.

Furthermore, D2 maintains consistently high correlations with density (|r| = 0.7495) and molar volume 
(|r| = 0.7498), outperforming other indices such as HM2, ReZG3 and SO. While SO also demonstrates 
considerable correlation with entropy (|r| = 0.9465) and acentric factor (|r| = 0.9594), its correlation with 
density and molar volume is notably weaker. In comparison, HM2 reveals substantially lower correlation 
coefficients, indicating limited predictive reliability.

These findings reinforce the significance of the D2 index as a robust topological descriptor in QSPR/ QSAR 
modelling frameworks, providing strong associative power across multiple molecular attributes and offering 
enhanced statistical relevance relative to traditional indices.

Table  3 presents the regression statistics for the second Davan index D2. It reveals exceptionally strong 
correlations across all selected properties, with particularly high F-values for entropy (F = 185.4) and acentric 
factor (F = 348.6), alongside extremely low residual standard errors (Sy.x). The P-values for all regressions are 
less than 0.05, confirming statistical significance across the board. These results strongly support the predictive 
efficacy of D2 in modelling molecular characteristics.

Table  4 outlines the performance of the HM2 index. Although entropy demonstrates mild significance 
(P = 0.0311), the remaining properties such as acentric factor, density and molar volume yield higher residual 
errors and P-values above the 0.05 threshold. This indicates that HM2 shows limited predictive strength and 
cannot reliably model multiple physical properties within this dataset.

Table  5 contains regression metrics for the ReZG3 index, which exhibits consistent significance for all 
parameters. Notably, acentric factor and molar volume both show high F-values (30.44 and 19.75 respectively) 
and low P-values (< 0.05), affirming the index suitability for QSPR modelling. While residual errors are slightly 

Physical property Sy.x F P value Indicator

Entropy 3.158 18.79 0.0005 Significant

Acentric factor 0.02145 30.44 0.0001 Significant

Density 0.02049 18.61 0.0005 Significant

MV 4.041 19.75 0.0004 Significant

Table 5.  Statistical parameters of linear QSPR model for ReZG3.

 

Physical property Sy.x F P value Indicator

Entropy 4.009 5.588 0.0311 Significant

Acentric factor 0.03362 2.901 0.1078 Not significant

Density 0.02953 0.6626 0.4276 Not significant

MV 5.932 0.5909 0.4533 Not significant

Table 4.  Statistical parameters of linear QSPR model for HM2.

 

Physical property Sy.x F P value Indicator

Entropy 1.312 185.4 0.0001 Significant

Acentric factor 0.007654 348.6 0.0001 Significant

Density 0.01995 20.52 0.0003 Significant

MV 3.996 20.55 0.0003 Significant

Table 3.  Statistical parameters of linear QSPR model for D2.

 

Index Entropy Acentric Factor Density MV

D2 0.9594 0.9778 0.7495 0.7498

HM2 0.5088 0.3917 0.1993 0.1887

ReZG3 0.7349 0.8096 0.7332 0.7432

SO 0.9465 0.9594 0.6182 0.6100

Table 2.  Correlation coefficient (|r|) between various indices and physical property.
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higher compared to D2, the overall statistical profile positions ReZG3 as a reasonably strong topological 
descriptor.

Table  6 summarizes the regression statistics for the SO index. All physical properties show statistical 
significance, with entropy and acentric factor delivering strong F-values (137.7 and 185.2 respectively). Though 
SO exhibits slightly larger residual errors than D2, its consistent significance and moderate error margins 
validate its applicability as a dependable topological index within QSPR frameworks.

Sensitivity measure of topological indices for octane isomers
Topological indices are numerical constructs that encode the structural variations of chemical compounds. 
For an index to be effective, it must distinguish between varying molecular frameworks - particularly among 
isomers. A frequent limitation in many indices is their degeneracy, where distinct isomers are assigned identical 
index values, thereby impeding structural differentiation.

To assess an index ability to distinguish among isomers, Konstantinova29 introduced a measure known as 
sensitivity, mathematically given by:

	
SI = N − NI

N

where:

•	 N is the total number of isomers analysed,
•	 NI  is the number of isomers not distinguishable by the index I.

Greater sensitivity implies a stronger capability to discriminate among molecular structures.
Among the various classes of indices, particularly in the case of octane isomers, recently proposed descriptors 

exhibit higher sensitivity compared to many traditional degree-based indices (see Table 7), affirming their value 
in capturing intricate structural details.

Table 7 presents the sensitivity (SI) values of various topological indices for octane isomers, highlighting 
their structural discrimination ability. The newly proposed index D2 achieves a maximum sensitivity of 1.000, 
meaning it successfully distinguishes all isomers considered in the study. This value, shown in bold in the Table 7, 
clearly establishes the superiority of D2 over traditional descriptors such as M2, HM2, SO and ReZG3, which 
exhibit sensitivity values of 0.389, 0.888, 0.777 and 0.666 respectively. These results underscore the enhanced 
isomer resolution capability of D2, making it a highly effective molecular descriptor for chemical graph-based 
analysis.

The bar chart (Fig. 5) illustrates the comparative sensitivity of five topological indices, with D2 showing the 
highest responsiveness and M2 the lowest. This visualization aids in selecting chemically relevant descriptors for 
QSPR/QSAR modeling.

Impact of second Davan index on cheminformatics applications: the variation in SDI values across 
nanostructure types reflects underlying changes in molecular connectivity and symmetry. Higher SDI values, as 
observed in toroidal forms, suggest increased local and global connectivity, which may correlate with enhanced 
electronic conductivity, mechanical stability and thermal resilience. For instance, the toroidal T UC4C8(S)[x, y] 
structure, with its maximal SDI of 1728xy, implies a highly interconnected framework, potentially favorable for 
charge transport in nanoelectronic applications.

Topological indices Sensitivity

D2 1.000

M2 0.389

HM2 0.888

ReZG3 0.666

SO 0.777

Table 7.  Sensitivity comparison and isomer discrimination of topological indices. Significant values are in 
bold.

 

Physical property Sy.x F P value Indicator

Entropy 1.503 137.7 0.0001 Significant

Acentric factor 0.01030 185.2 0.0001 Significant

Density 0.02369 9.899 0.0062 Significant

MV 3.996 20.55 0.0003 Significant

Table 6.  Statistical parameters of linear QSPR model for SO.
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Bounds for second Davan index
Theorem 8.1  For a connected graph H with n ≥ 3 vertices and m edges. Then,

D2(H) ≤ 4m(n − 1)2(n − 2)2,
and equality holds if and only if H is isomorphic to Kn.

Proof  Consider a connected graph H with n vertex and m edge, where n ≥ 3. Using Lemma 5.1 in Eq. (1), we 
have

	

D2(H) =
∑

rs∈E(H)

dw
H(r)dw

H(s)

=
∑

rs∈E(H)

[(d2(r) − 2d(r) + S(r))(d2(s) − 2d(s) + S(s))]

≤
∑

rs∈E(H)

[((n − 1)2)2 − 2((n − 1)2(2n − 1)) + 4(n − 1)2 + 2((n − 1)2(n − 1)2) − 4((n − 1)2)

+ ((n − 1)2)2]

≤
∑

rs∈E(H)

[(n − 1)4 − 4(n − 1)3 + 4(n − 1)2 + 2(n − 1)4 − 4(n − 1)3 + (n − 1)4]

≤
∑

rs∈E(H)

[(4(n − 1)4 − 8(n − 1)3 + 4(n − 1)3)]

≤ (4(n − 1)4 − 8(n − 1)3 + 4(n − 1)2)m
D2(H) ≤ 4m(n − 1)2(n − 2)2.

□

Theorem 8.2  For a connected graph H with n ≥ 5 vertices and m edges. Then,

16n − 50 ≤ D2(H) ≤ 2n(n − 1)3(n − 2)2,
where, equality for lower bound holds for path and equality for upper bound holds for complete graph.

Second Davan index of standard class of graphs
Proposition 9.1  For path Pm, where m ≥ 5, D2(Pm) = 16m − 50.

Proof  The path Pm has m vertices and (m − 1) edges. For m ≥ 5, we have following partition of edges based 
on the weighted degree of a vertex:

Using the values from Table 8 in Eq. (1), we obtain

Fig. 5.  Bar chart of sensitivity comparison.
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D2(Pm) = 2(1 × 3) + 2(3 × 4) + (m − 5)(4 × 4)
= 16m − 50.

□

Proposition 9.2  For cycle Cm, where m ≥ 3, D2(Cm) = 16m.

Proof  The cycle Cm has m edges and m vertices. For m ≥ 3, the weighted degree of each vertex is four.

D2(Cm) = m(4 × 4) = 16m.

□

Proposition 9.3  For complete graph Km, where m ≥ 3, D2(Km) = 2m(m − 1)3(m − 2)2.

Proof  The complete graph Km consists of (m(m − 1))/2 edges and m vertices. Each vertex in m ≥ 3 has a 
weighted degree of 2(m − 2)(m − 1).

D2(Km) =m C2[(2(m − 2)(m − 1))2]
= 2m(m − 1)3(m − 2)2.

□

Proposition 9.4  For complete bipartite graph Km,n, where m, n ≥ 2,

D2(Km,n) = (mn)2(m + n − 2)2.

Proof  In complete bipartite graph Km,n. For m, n ≥ 2, the weighted degree of vertices of V1 is m(m + n − 2) 
and the weighted degree of vertices of V2 is n(m + n − 2).

D2(Km,n) = mn(m(m + n − 2))(n(m + n − 2))
= (mn)2(m + n − 2)2.

□

Corollary 9.1  Let Kn,n be a complete bipartite graph. Then, D2(Kn,n) = 4n4(n − 1)2.

Corollary 9.2  Let K1,n be a star graph. Then, D2(K1,n) = n2(n − 1)2.

Definition 9.1  30 Crown graph S0
m for an integer m ≥ 3 is the graph with vertex set {u1, u2 . . . um, v1, v2 . . . vm} 

and edge set {uivj ; 1 ≤ i, j ≤ m, i ̸= j}.

Proposition 9.5  For crown graph So
m, where m ≥ 3, D2(So

m) = 4m(m − 1)3(m − 2)2.

Proof  In crown graph So
m, For m ≥ 3, weighted degree of each vertex is 2(m2 − 3m + 2).

D2(So
m) = m(m − 1)(2(m2 − 3m + 2))2

= 4m(m − 1)3(m − 2)2.

□

Proposition 9.6  For ladder graph Lm, where m ≥ 5, D2(Lm) = 768m − 2368.

Proof  By definition of Lm
31, we have following partition of edges based on weighted degree of a vertex:

Using the values from Table 9 in Eq. (1), we obtain

	

D2(Lm) = 2(5 × 5) + 4(5 × 11) + 2(11 × 11) + 4(11 × 16) + (3m − 14)(16 × 16)
= 768m − 2368.

□

(dw
Pm

(r), dw
Pm

(s)),
where rs ∈ E(Pm) (1, 3) (3, 4) (4, 4)

Number of edges 2 2 (m − 5)

Table 8.  Partition of edges of the path based on weighted degree.
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Proposition 9.7  For wheel graph Wm , where m ≥ 4, D2(Wm) = m4 + 7m3 + 56m − 64.

Proof  In wheel graph Wm, the degree of centre vertex is m and degree of each vertex which are located on cycle 
is three. Hence, the weighted degree of centre vertex is m(m − 1) and the weighted degree of rest of vertex of 
Wm is m + 8.

	

D2(Wm) = (m − 1)[(m + 8)2 + (m + 8)(m(m − 1))]
= (m − 1)(m + 8)(m2 + 8)
= m4 + 7m3 + 56m − 64.

□

Proposition 9.8  For gear graph Gm, where m ≥ 3, D2(Gm) = m(m + 7)(m2 + m + 12).

Proof  In gear graph Gm , the outer layer vertex is of degree alternatives 3 and 2, while the central vertex of de-
gree is m. The center vertex’s weighted degree is m(m + 1), each corner vertex next to it has a weighted degree 
of (m + 7) and the other vertices have a weighted degree of 6.

	

D2(Gm) = m[m(m + 1)(m + 7)] + 2m[(m + 7)6]
= m2(m + 1)(m + 7) + 12m(m + 7)
= m(m + 7)(m2 + m + 12).

□

Proposition 9.9  For friendship graph Fm, where m ≥ 2, D2(Fm) = 16m4 + 20m3 + 8m2 + 4m.

Proof  In friendship graph Fm , 2m vertices are of degree two and center vertex is of degree 2m. The weighted 
degree of the center vertex is (2m)2 and weighted degree of the remaining vertices is 2m + 2.

	

D2(Fm) = m[(2m + 2)2] + 2m[(2m)2(2m + 2)]
= 4m(m + 1)2 + 16m3(m + 1)
= 16m4 + 20m3 + 8m2 + 4m.

□

Topological modelling of carbon-based nanostructures
Nanostructures are materials with nano scale dimensions, typically ranging from 1 to 100 nano meters, and 
are typically used for their unique electronic, biological, mechanical and chemical properties. Chemical graph 
theory offers a robust framework to model these structures denoted by atoms as vertices and bonds as edges in a 
graph32. This abstraction facilitates the computation of topological indices (TIs), which are numerical descriptors 
of molecular structure. 2D-lattice nanostructures refer a planar, grid-like pattern of atoms typically organized in 
repeating square or hexagonal units. A notable example is the nano tube, a cylindrical molecular framework 
comprised of carbon atoms arranged in a hexagonal mesh. Depending on the number of concentric layers, 
these are classified as single-walled or multi-walled variants. Similarly, nano torus structures exhibit a toroidal 
geometry formed by folding a two-dimensional lattice into a closed circular surface, resembling a molecular-
scale doughnut.

Among various nanostructure models, the T UC4C8(S)[x, y] (Fig. 6) configuration features a symmetrical 
network of square (C4) and octagonal (C8) units arranged in a planar grid. This structure supports predictable 
weighted degree distributions and facilitates analytical derivations of descriptors like the second Davan index. 
Transforming this lattice into toroidal forms introduces curvature and periodic boundaries, affecting the 
distribution of weighted degree-based properties-factors critical in molecular stability and electronic behaviour 
prediction33.

The rotated counterpart, T UC4C8(R)[x, y] (Fig. 7) modifies the connectivity of C4 and C8 units to produce 
distinct automorphism groups and topological behaviours. This layout often results in increased symmetry 

(dw
Lm

(r), dw
Lm

(s)),
where rs ∈ E(Lm) (5, 5) (5, 11) (11, 11) (11,16) (16, 16)

Number of edges 2 4 2 4 (3m − 14)

Table 9.  Partition of edges of the ladder graph based on weighted degree.
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and uniformity, making it suitable for computing eccentric connectivity and spectral-based descriptors34. 
Additionally, zigzag polyhex nanostructures-denoted by P T UZC6[x, y], T UZC6[x, y] and T T UZC6[x, y]
-are derived from graphene-like hexagonal lattices. SDI-based analysis of these configurations effectively reveals 
structural curvature-induced changes in local connectivity, supporting their application in electronic transport, 
drug delivery and nano medicine35.

In this section, we present explicit formulas for computing the second Davan index for three 
structurally distinct nanostructures: T UC4C8(R)[x, y], T UC4C8(S)[x, y] and the zigzag polyhex  
P T UZC6[x, y], T UZC6[x, y], T T UZC6[x, y] (Fig. 8)36–38. 

Theorem 10.1  Let A be 2D-lattice of T UC4C8(R)[x, y]. Then,

	

(i) D2(A) = 864xy − 550(x + y) + 252,
(ii) D2(S(A)) = 648xy − 280(x + y) + 40,
(iii) D2(L(S(A))) = 2592xy − 1410(x + y) + 352.

Proof  (i) The 2D-lattice T UC4C8(R)[x, y] has 4xy vertices and 6xy − x − y edges. Based on the weighted 
degree of vertex, the edge partition of A is given in Table 10.

	

D2(A) =
∑

rs∈E(A)

dw
A(r)dw

A(s)

= 4(5 × 5) + 8(5 × 11) + (4(x + y) − 16)(6 × 11) + (2(x + y))(11 × 11)
+ (4(x + y) − 16)(11 × 12) + (6xy − 11(x + y) + 20)(12 × 12)
= 864xy − 550(x + y) + 252.

(ii) The subdivision graph S(A) has order 10xy − x − y and size 2(6xy − x − y). The edges is determined by 
the weighted degree of its vertices as shown in Table 11.

Fig. 7.  Nanostructures based on the T UC4C8(R)[4, 3] configuration: (a) 2D-lattice, (b) nano tube, (c) nano 
torus.

 

Fig. 6.  Nanostructures based on the T UC4C8(S)[4, 3] configuration: (a) 2D-lattice, (b) nano tube, (c) nano 
torus.
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D2(S(A)) =
∑

rs∈E(S(A))

dw
S(A)(r)dw

S(A)(s)

= 8(4 × 4) + (4(x + y) − 8)(4 × 5) + (4(x + y) − 8)(5 × 9)
+ (12xy − 10(x + y) + 8)(6 × 9)
= 648xy − 280(x + y) + 40.

(iii)The line graph of subdivision graph L(S(A)) has order 2(6xy − x − y) and size (18xy − 5x − 5y). The 
edges is determined by the weighted degree of its vertices as shown in Table 12.

	

D2(L(S(A))) =
∑

rs∈E(L(S(A)))

dw
L(S(A))(r)dw

L(S(A))(s)

= 4(4 × 4) + 8(4 × 5) + (2(x + y) − 8)(5 × 5) + (4(x + y) − 8)
(5 × 11) + (8(x + y) − 16)(11 × 12) + (18xy − 19(x + y) + 20)(12 × 12)
= 2592xy − 1410(x + y) + 352.

(dw
L(S(A))(r), dw

L(S(A))(s))
where rs ∈ L(S(A)) (4,4) (4,5) (5,5) (5,11) (11,12) (12,12)

Number of edges 4 8 2(x + y) − 8 4(x + y) − 8 8(x + y) − 16 18xy − 19(x + y) + 20

Table 12.  Partition of edges of L(S(A)) for x > 1, y > 1..

 

(dw
S(A)(r), dw

S(A)(s)),
where rs ∈ E(S(A)) (4, 4) (4, 5) (5, 9) (6,9)

Number of edges 8 4(x + y) − 8 4(x + y) − 8 12xy − 10(x + y) + 8

Table 11.  Partition of edges of S(A), when x > 1, y > 1.

 

(dw
A(r), dw

A(s))
where rs ∈ E(A) (5, 5) (5, 11) (6, 11) (11, 11) (11, 12) (12, 12)

Number of edges 4 8 4(x + y) − 16 2(x + y) 4(x + y) − 16 6xy − 11(x + y) + 20

Table 10.  Partition of edges of A when x > 1, y > 1.

 

Fig. 8.  Nanostructures based on the zigzag polyhex configuaration: (a) 2D-lattice P T UZC6[4, 3]; (b) nano 
tube T UZC6[4, 3]; (c) nano torus T T UZC6[4, 3].
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□

Theorem 10.2  Let B be T UC4C8(R)[x, y] nano tubes. Then,

	

(i) D2(B) = 864xy − 550x,
(ii) D2(S(B)) = 648xy − 280x,
(iii) D2(L(S(B))) = 2592xy − 1410x.

Proof  (i) The T UC4C8(R)[x, y] nano tube has 4xy vertices and 6xy − x edges. Based on the weighted degree 
of vertex, the edge partition of B is given in Table 13.

	

D2(B) =
∑

rs∈E(B)

dw
B(r)dw

B(s)

= 4x(6 × 11) + 2x(11 × 11) + 4x(11 × 12) + (6xy − 11x)(12 × 12)
= 864xy − 550x.

(ii) The subdivision graph (S(B)) has the order and size are 10xy − x and 2(6xy − x), respectively. Based on the 
weighted degree of vertex, the edge partition of S(B) is given in Table 14.

	

D2(S(B)) =
∑

rs∈E(S(B))

dw
S(B)(r)dw

S(B)(s)

= 4x(4 × 5) + 4x(5 × 9) + (12xy − 10x)(6 × 9)
= 648xy − 280x.

(iii) The line graph of subdivision graph (L(S(B)) of order and size are 2(6xy − x) and (18xy − 5x), respectively. 
Based on the weighted degree of vertex, the edge partition of L(S(B)) is given in Table 15.

	

D2(L(S(B))) =
∑

rs∈E(L(S(B)))

dw
L(S(B))(r)dw

L(S(B))(s)

= 2x(5 × 5) + 4x(5 × 11) + 8x(11 × 12) + (18xy − 19x)(12 × 12)
= 2592xy − 1410x.

□

Theorem 10.3  Let C be T UC4C8(R)[x, y] nano torus. Then,

	

(i) D2(C) = 864xy,
(ii) D2(S(C)) = 648xy,
(iii) D2(L(S(C))) = 2592xy.

(dw
L(S(B))(r), dw

L(S(B))(s)),
where rs ∈ E(L(S(B))) (5, 5) (5, 11) (11, 12) (12,12)

Number of edges 2x 4x 8x 18xy − 19x

Table 15.  Partition of edges of L(S(B)), when x > 1, y > 1.

 

(dw
S(B)(r), dw

S(B)(s)),
where rs ∈ E(S(B)) (4, 5) (5, 9) (6, 9)

Number of edges 4x 4x 12xy − 10x

Table 14.  Partition of edges of S(B), when x > 1, y > 1.

 

(dw
B(r), dw

B(s)),
where rs ∈ E(B) (6, 11) (11, 11) (11, 12) (12,12)

Number of edges 4x 2x 4x 6xy − 11x

Table 13.  Partition of edges of B, when x > 1, y > 1.
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Proof  (i) The T UC4C8(R)[x, y] nano torus has 4xy vertices and 6xy edges. Based on the weighted degree of 
vertex is as shown in Table 16.

	

D2(C) =
∑

rs∈E(C)

dw
C(r)dw

C(s)

= 6xy(12 × 12)
= 864xy.

(ii) The subdivision graph (S(C)) has the order and size are 10xy and 12xy,  respectively. Based on the weighted 
degree of vertex, the edge partition of S(C) is as shown in Table 17.

	

D2(S(C)) =
∑

rs∈E(S(C))

dw
S(C)(r)dw

S(C)(s)

= 12xy(6 × 9)
= 648xy.

(iii) The line graph of subdivision graph (L(S(C))) of order and size are 12xy and 18xy, respectively. Based on the 
weighted degree of vertex, the edge partition of L(S(C)) is as shown in Table 18.

	

D2(L(S(C))) =
∑

rs∈E(L(S(C)))

dw
L(S(C))(r)dw

L(S(C))(s)

= 18xy(12 × 12)
= 2592xy.

□

Theorem 10.4  Let F1 be zigzag polyhex 2D-structure lattice P T UZC6[x, y]. Then,

D2(F1) = 864xy − 528x − 544y + 278.

Proof  The order and size of F1 are 2y(2x + 1) and 6xy − x + y, respectively. Based on the edge classification 
shown in Table 19, the second Davan index D2(F1) is obtained.

(dw
F1

(r), dw
F1

(s))
where rs ∈ E(F1) (5, 4) (5, 5) (5, 10) (5, 11) (6, 10) (10, 12) (11, 11) (11, 12) (12, 12)

Number of edges 8 2y − 4 4 4y − 4 4x − 8 2x − 2 2y − 2 4y − 4 6xy − 7x − 11y + 12

Table 19.  Partition of edges of F1, when x > 1, y > 1.

 

(dw
L(S(C))(r), dw

L(S(C))(s)),
where rs ∈ E(L(S(C))) (12, 12)

Number of edges 18xy

Table 18.  Partition of edges of L(S(C)), when x > 1,y > 1.

 

(dw
S(C)(r), dw

S(C)(s)),
where rs ∈ E(S(C)) (6, 9)

Number of edges 12xy

Table 17.  Partition of edges of S(C), when x > 1, y > 1.

 

(dw
C(r), dw

C (s)),
where rs ∈ E(C) (12,12)

Number of edges 6xy

Table 16.  Partition of edges of C, when x > 1, y > 1.
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□

Theorem 10.5  Let F2 be zigzag polyhex nano tube T UZC6[x, y]. Then,

D2(F2) = 864xy − 528x.

Proof  The order and size of F2 are 4xy and 6xy − x, respectively. Based on the edge classification shown in 
Table 20, the second Davan index D2(F2) is obtained.

□

Theorem 10.6  Let F3 be zigzag polyhex nano torus T T UZC6[x, y]. Then,

D2(F3) = 864xy.

Proof  The order and size of F3 are 4xy and 6xy,  respectively. Based on the edge classification shown in Table 21. 
Hence we obtain desired result.

□

Theorem 10.7  Let H1 be 2D-lattice of T UC4C8(S)[x, y]. Then,

D2(H1) = 1728xy − 976(x + y) + 14748.

Proof  The order and size of H1 are 8xy and 12xy − 2(x + y), respectively. Based on the edge classification 
shown in Table 22. Thus we obtain final result. □

Theorem 10.8  Let H2 be nano tube of T UC4C8(S)[x, y]. Then,

D2(H2) = 1728xy − 976x.

Proof  The order and size of H2 are 8xy and 12xy − 2x, respectively. Based on the edge classification shown in 
Table 23. The second Davan index D2(H2) is obtained. □

Theorem 10.9  Let H3 be nano torus of T UC4C8(S)[x, y]. Then,

(dw
H2

(r), dw
H2

(s)),
where rs ∈ E(H2) (5, 5) (5, 11) (11, 11) (11,12) (12,12)

Number of edges 2x 4x 2x 4x 12xy − 14x

Table 23.  Partition of edges of H2, when x > 1, y > 1.

 

(dw
H1

(r), dw
H1

(s))
where rs ∈ E(H1) (4, 4) (5, 4) (5, 5) (5,11) (11, 11) (11,12) (12, 12)

Number of edges 4 8 2(x + y) − 8 4(x + y) − 8 2(x + y) − 4 4(x + y) − 8 12xy − 14(x + y) + 16

Table 22.  Partition of edges of H1, when x > 1, y > 1.

 

(dw
F3

(r), dw
F3

(s)),
where rs ∈ E(F3) (12, 12)

Number of edges 6xy

Table 21.  Partition of edges of F3, when x > 1, y > 1.

 

(dw
F2

(r), dw
F2

(s)),
where rs ∈ E(F2) (6, 10) (10, 12) (12, 12)

Number of edges 4x 2x 6xy − 7x

Table 20.  Partition of edges of F2, when x > 1, y > 1.
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D2(H3) = 1728xy.

Proof  The order and size of H3 are 8xy and 12xy,  respectively. Based on the edge classification shown in Ta-
ble 24. Hence the desired result is obtained.

□

Conclusion
In this study, we introduced the second Davan index (SDI), a novel topological descriptor derived from the 
weighted degree of vertices of molecular graphs. Through rigorous quantitative structure-property relationship 
(QSPR) analysis involving octane isomers, the SDI demonstrated superior predictive performance, exhibiting the 
highest correlation coefficients with key physico-chemical properties such as entropy (|r| = 0.9594), acentric 
factor (|r| = 0.9778), molar volume (|r| = 0.7498) and density (|r| = 0.7495), when compared against 
classical indices such as Sombor index, second hyper Zagreb index and redefined third Zagreb index. 
Specifically, the SDI achieved a perfect sensitivity value of 1.000 in isomer discrimination tests, indicating its 
ability to uniquely identify all octane isomers and outperforming the sensitivity levels of established descriptors 
such as M2 (0.389), HM2 (0.888), SO (0.777) and ReZG3 (0.666). Closed form expressions for SDI were 
derived for several standard graph classes including paths, cycles, complete, bipartite, crown, ladder, wheel, 
gear and friendship, thereby validating its structural applicability. Moreover, upper and lower bounds for the 
SDI were established, with extremal cases identified for path and complete graphs. We further extended the 
applicability of SDI to nanostructures by computing explicit formulas for various molecular configurations such 
as T UC4C8(R)[x, y], T UC4C8(S)[x, y], P T UZC6[x, y], T UZC6[x, y] and T T UZC6[x, y], including their 
subdivision and line graph transformations. These results confirm the robustness of SDI across diverse structural 
domains, establishing it as a reliable descriptor in QSPR modelling and nano scale molecular analysis.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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