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Modeling freshwater yield: deep
learning applications in seawater
greenhouses in Iran
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The seawater greenhouse (SWGH) is an environmentally friendly solution that utilizes solar-

driven desalination techniques to produce freshwater while simultaneously creating a controlled
agricultural environment. Integrating SWGH with green buildings optimizes sustainability by reducing
dependence on conventional water supplies and lowering carbon emissions. This study develops a

deep learning-based predictive model to optimize freshwater production in SWGHs, particularly in the
Makran region. The Makran coast faces severe freshwater shortages due to its arid climate, limited
groundwater resources, and growing agricultural demand. SWGH technology is particularly suitable for
this region, leveraging abundant solar radiation and seawater to sustainably generate freshwater while
enhancing agricultural productivity and environmental resilience. This study aims to develop a deep
learning-based predictive model to forecast freshwater production in SWGHs for integration into green
building frameworks. The model forecasts freshwater yield by analyzing environmental, especially
climate and operational parameters. A two-stage deep learning-based prediction approach was
employed, utilizing CNN-LSTM, BiLSTM, BiGRU, CNN-GRU, and MLP models. First, global horizontal
irradiance (GHI) was predicted as a primary factor influencing SWGH performance. Then, freshwater
production was estimated using predicted solar radiation. Among tested models, CNN-LSTM achieved
the highest accuracy with achieving a R? of 0.9727, a RMSE of 0.0021, and a MSE of 0.0022. The
freshwater production rate was predicted per unit area, and the average annual yield for 2024-2033
was estimated at 1454.25 L/m2. The results confirm SWGH as a viable solution for sustainable water
management in arid coastal regions.
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Abbreviations
Symbols
Q Heat rate
m Mass flow rate
Cp EC Specific heat capacity
Ton Hot water temperature
T Cold water temperature
Acollector  Collector area
Enthalpy
Greek symbols
w  Absolute humidity
n  Efficiency
Acronyms
AARE Average absolute relative error
AEO Artificial ecosystem-based optimization
Al Artificial intelligence
ALO Antlion Optimization Algorithm
ANFIS Adaptive neuro fuzzy inference system
ANN Artificial Neural Network
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AWS Automatic weather stations

BiGRU Bidirectional GRU

BiLSTM Bidirectional LSTM

BRR Bayesian ridge regression

BT Boosted Tree

CNN Convolutional neural networks

CRM Coefficient of residual mass

ConvLSTM  Convolutional long short-term memory
CYP Crop yield prediction

DDMPC Data-driven robust model predictive control
DIF Diftuse horizontal irradiation

DL Deep learning

DNI Direct normal irradiation

DR Dimensionality reduction

DT Decision Tree

EANN Emotional Artificial Neural Network
EC Efficiency coefficient

FV Fractional variance

GHI Global horizontal irradiation

GRU Gated recurrent unit

GTI-opta Global tilted irradiation at optimum angle
1A Index of agreement

KDE Kernel density estimation

LDAPS Local data assimilation prediction systems
LSVM Linear Support Vector Machine

LSTM Long short-term memory networks
MAE Mean absolute error

MAPE Mean absolute predictive error

MLP Multi-layer perceptron

MLPNN Multi-Layer Perceptron Neural Network
MLR Multiple linear regression

MRE Mean relative error

MSE Mean square error

NF Neuro-Fuzzy

NRMSE Normalized root mean square error
NSE Nash Sutcliff efficiency

Ol Overall index

PBIAS Percentage of bias

PCA Principal component analysis

PE Mean predictive error

R? Coefficient of determination

RF Random Forest

RMSE Root mean square error

RVFL Random vector functional link

SST Sea surface temperature

SVM Support Vector Machine

Global issues such as water scarcity, climate change, and demand for more food necessitate the application
of new approaches in agriculture. Water scarcity, which has been described as the insufficient availability
of freshwater to meet demand, is a major constraint to food security, public health, and economic growth'.
Excessive use of freshwater resources poses an increasing risk to agricultural productivity. It is projected that
nearly 2.3 billion individuals live in water-stressed countries and consume nearly 70% of the world freshwater
resources. This reliance poses a significant risk to food security in such areas as sub-Saharan Africa and Asia.
Approximately two-thirds of the world’s population experience severe water scarcity at least one month of the
year?. The population exposed to water scarcity increased from 0.24 billion in the 1900s to 3.8 billion in the
2000s. Climate change and urbanization are exacerbating this issue, with projections suggesting 1.693-2.373
billion urban dwellers will face water scarcity by 2050. India will be the most severely affected, with 153-422
million additional water-scarce urban dwellers. The major cities experiencing water scarcity are expected to rise
from 193 to 193-284°%. Addressing water scarcity challenges requires consideration of uncertainties in water
availability projections and the development of tailored interventions*. Potential solutions include infrastructure
investment, improved water-use efficiency, and better resource sharing.

Itis driven by increasing water demands, dwindling resources, and contamination, facilitated by urbanization,
climate change, and agriculture>®. Seawater greenhouse (SWGH) technology, which was developed in the early
1990 by Charlie Paton, employs seawater to cool and humidify greenhouse air to stimulate plant growth and
produce freshwater via condensation. Successful trials in locations such as the Canary Islands and Australia
have proven its effectiveness, and it has been the subject of research and development activities’. The population
affected by water scarcity has increased from 0.24 billion in the 1900s to 3.8 billion in the 2000s, with water
consumption rising fourfold®. Some attribute scarcity to arid environments or insufficient basin-scale water, while
others blame poor water management®. Water shortage must be alleviated by an integrated approach of pollution

Scientific Reports |

(2025) 15:36647 | https://doi.org/10.1038/s41598-025-20548-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

control, rainwater harvesting, desalination techniques, aquifer replenishment, and water recycling technologies.
Public awareness and cooperative measures at high levels are required for the successful management of water
resources. Conventional agricultural practices that depend on freshwater resources are becoming increasingly
unsustainable, especially in semi-arid and arid regions, and hence the necessity for new-generation farming
technologies!®. One of the most encouraging innovations is the seawater greenhouse, which offers a promising
solution by utilizing ample seawater to produce ideal conditions for the cultivation of crops'!. Agriculture utilizes
about 70-87% of the world’s freshwater resources, and this poses tremendous challenges both in quantity and
quality of water!?. Heightened food production demand, along with economic growth and population increase,
has resulted in agricultural activities that are highly dependent on the use of fertilizers and pesticides®.

Agricultural runoft causes eutrophication and threatens biodiversity. Optimization of irrigation efficiency,
conservation strategies, and control of soil erosion are recommended by experts'®. Adaptation strategies include
choosing crops and irrigations according to local circumstances with the aim of reducing the pressure generated
by increased food demand on land and water resources. Without technological advances, significant price
adjustments for land, water, and food may be necessary'®. A novel solution for freshwater shortages in coastal
areas involves solar-thermal desalination technology, driven sustainably and effectively by solar energy using
a humidification-dehumidification cycle, and is environmentally friendly. Seawater greenhouses employ solar
desalination and evaporative cooling for plants to grow optimally, decreasing the dependency on freshwater
resources and fighting the severe desert and coastal climates. This technology is in harmony with international
sustainability goals, serves both environmental and food security issues, and has shown higher crop yields than
traditional agriculture, thus being promising for raising food output in dry lands.

One of the primary advantages of seawater greenhouses is that they can generate freshwater in arid
environments, thereby minimizing the dependence on external water sources. Research confirms that seawater
greenhouses can cut water consumption by up to 90% when compared to conventional open-field farming
with the same climatic conditions'®. Moreover, seawater greenhouses utilize renewable forms of energy such
as solar energy, which minimizes carbon emissions and lowers the demand for fossil fuels. The combination of
solar power and SWGH technology can enhance sustainability by lowering operational costs!”. Greenhouses
promote sustainable agriculture by saving freshwater and energy, reducing the environmental impact of
traditional farming methods. They also offer a potential solution to food security in water-scarce regions!®. The
initial cost of constructing an SWGH can be high, particularly in remote locations. Seawater and construction
material transport infrastructure can also contribute to the costs'®. The seawater environment also presents
some maintenance problems, such as corrosion of materials and biofouling of equipment and pipes. These can
contribute to operating costs and complexity in terms of sustaining the system in the long run®. Scaling up
SWGH technology to a level that can significantly impact global food production is still a challenge. Factors such
as land availability, economic feasibility, and technical know-how can affect its scalability?!. While the SWGH
reduces freshwater consumption, the disposal of concentrated brine from the desalination process remains an
environmental concern. There must be good brine management practices to mitigate the potential harm to
marine ecosystems?2.

Artificial intelligence (AI) is increasingly being utilized in seawater greenhouses to increase agricultural
yields and optimize water usage. Al regulates and supervises the greenhouse climate, thereby ensuring ideal
growth conditions and effective desalination?®. Sensors monitor a range of parameters, including temperature,
humidity, solar radiation, and the health of the plants. AI algorithms then analyze the data to modulate
ventilation, cooling, and irrigation management, and hence create an ideal microclimate for the crops“. Al
also regulates the evaporation and condensation of seawater based on external weather conditions, ensuring
consistent freshwater production. For instance, Lawal et al.> introduced an improved method for optimizing
humidification-dehumidification desalination systems through the use of hybrid machine learning optimization
method. The study examined the efficiency of a neuro-fuzzy model, a decision algorithm derived from a boosted
tree, and a simple averaging ensemble in improving the performance of humidification-dehumidification
systems. Data-driven methods have shown promise in improving seawater greenhouse performance and
control. Machine learning approaches, such as multilayer perceptron models and support vector clustering, have
been used to develop predictive models for greenhouse climate control>*-28, These models, integrated with data-
driven robust model predictive control (DDRMPC) frameworks, have demonstrated superior performance in
maintaining optimal greenhouse conditions while reducing energy consumption?. DDRMPC approaches have
been shown to outperform traditional rule-based control methods, resulting in lower total costs and reduced
constraint violations. In the example of seawater greenhouses, empirical models were constructed for predicting
the performance of condensers, a parameter that is very important for the overall system effectiveness®. These
data-driven methods have proven very effective in solving the problem of climate control in greenhouses that
are subjected to extreme weather conditions, i.e., high temperature and humidity. In recent years, the rapid
advancement of artificial intelligence technologies and data-driven modeling techniques has introduced new
solutions to these issues.

Mahmood et al.?! created a data-driven, robust model predictive control framework that ensures precise
temperature control and notable energy savings, even in the face of uncertainty. These findings indicate that
data-driven approaches for predicting greenhouse temperatures warrant further investigation. Additionally,
deep learning techniques are receiving increasing attention for time series prediction®?. Additionally, deep
learning models are capable of handling large-scale, high-dimensional, and multi-modal data, effectively
uncovering intrinsic correlations and significantly enhancing prediction accuracy®®. According to the current
era’s high industrialization, energy usage has surged to previously unheard-of levels, worsening the environment
and lead to greenhouse gas emissions®’. Huang et al.>® used a gated recurrent unit (GRU) to forecast the
lowest temperature, achieving better performance than other models, even with exclusive input parameters.
However, because of the sophisticated and changeable nature of greenhouse environments, current approaches
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face difficulties in providing highly accurate forecasting, while also being developed for various approaches
and effective under intense conditions. Therefore, it is crucial to explore combined deep learning models that
leverage their individual strengths, address severe conditions in different locations.

Additionally, Subramaniam etal.* explored an effective combination of deep learning (DL) and dimensionality
reduction (DR) methods for predicting crop yield (CYP) of regional crops in India. The innovation of the
suggested method lies in the integration of DL, DR, and WTDCNN methods for exact crop productivity
forecast. Furthermore, Jun et al.’” introduced a temperature forecast model based on Informer, a variant of the
Transformer architecture that is better suited for time series data. BILSTM is a sequence modeling technique
derived from recurrent neural networks, which is effective at using data, is combined with Transformer. BILSTM
has improved in various sectors. Jiang et al.* suggested an indoor temperature prediction model that combines
attention mechanisms and LSTM, achieving high performance forecasting. Furthermore, to obtain a precise
and comprehensive prediction of the short- and mid-term sea surface temperature (SST) field, Xiao et al.%’
investigated a spatiotemporal deep learning model capable of capturing the correlations of SST across both
spatial and temporal dimensions.

Golabi et al.! proposes an optimal real-time management method using reinforcement learning to minimize
the total daily operation cost of an RO desalination plant with a storage tank system, optimizing energy use and
water quality to meet varying freshwater demands. Reza et al.*? provides a comprehensive review of the use
of Multi-Layer Perceptron (MLP) in water treatment and desalination, covering its applications in automatic
forecasting, resolving missing data issues, and comparing it with conventional modeling approaches. Al
Ghamdi*® proposes a novel control strategy for seawater reverse osmosis desalination using an Interpolation and
Exponential Function-centered Deep Learning Neural Network (IEF-DLNN) and multi-objective optimization,
which demonstrates better performance compared to existing methodologies. Bueso et al.** presents a novel
approach using a Multilayer Perceptron (MLP) to estimate evaporated water mass in cooling tower systems
for Zero Liquid Discharge (ZLD) desalination, demonstrating improved performance over traditional linear
regression and robustness in capturing key variables, with potential applications across different environmental
contexts. Ashraf et al.*> use machine learning and optimization to improve the efficiency of Multi-Effect
Desalination systems by identifying optimal operating conditions for maximum distillate production, thereby
enhancing operational excellence and contributing to the circular economy in desalination.

Collectively, these studies establish a state-of-the-art framework for integrating AI, remote sensing, and
predictive analytics to optimize agricultural productivity, resource use, and food-system resilience from
production to distribution. Table 1 presents an overview of various models for seawater greenhouses.

However, existing studies have not extensively explored the integration of this technology into green buildings
or the use of deep learning models for optimizing freshwater production. A research gap remains in predictive
models that forecast freshwater yield based on climatic parameters. Despite the promising potential of SWGH
technology, existing studies have not thoroughly examined its incorporation into green building frameworks
or the application of advanced deep learning models for optimizing freshwater production. Current research
lacks predictive models that accurately estimate freshwater yield based on climatic parameters, creating a gap in
optimizing SWGH efficiency for long-term water sustainability. This study aims to develop a deep learning-based
predictive model for forecasting freshwater production in seawater greenhouses, particularly in the Makran
region. The predictive models utilized in this research include BiGRU, BiLSTM, CNN-GRU, CNN-LSTM, and
MLP. Initially, the most effective deep learning model among these is identified. Using this prediction, GHI is
forecasted, which then enables the estimation of freshwater productivity per surface between 2024 and 2033,
employing seawater greenhouse technology in green buildings along the Makran coast. By integrating renewable
energy and artificial intelligence, the system aims to improve the efficiency and reliability of SWGH operations
within green building applications. Figure 1 shows the mind map of data-driven method innovation in seawater
greenhouse.

System description

Seawater greenhouse is a modern and up-to-date method that easily integrates into green-focused architectural
systems, providing an environmentally friendly solution for managing significant global issues like water shortage
and energy utilization®”. The method employs the process of seawater evaporation to regulate the temperature
in the greenhouse, thereby establishing a humid climate for plant development along with producing freshwater
through condensation®. Furthermore, the passive seawater evaporation cooling system has the capacity to cut
down the consumption of traditional air conditioning systems, further promoting building energy efficiency.
The technique harnesses renewable resources to provide a mode of sustainable development activities. The
approach integrates the rich resource of seawater and the renewable energy potential of solar radiation to develop
a sustainable mechanism with the potential to generate freshwater and facilitate agricultural processes in areas of
aridity or water stress. This system is not only designed to provide an efficient means for seawater desalination;
it is also designed to achieve optimum energy efficiency, thus reducing the use of fossil fuels drastically™. With
solar energy being used for heating and electricity, the seawater greenhouse reduces carbon emissions and aligns
with global efforts to combat climate change. It also creates a controlled microclimate within the greenhouse,
enabling the growing of plants and farm productivity without any loss of resources. This dual function generation
of drinking water and promotion of agricultural sustainability renders it an innovative component of green
building designs. By integrating high-technology components into natural processes, the seawater greenhouse
illustrates the ability of innovative engineering to resolve multifaceted environmental issues, thereby addressing
the larger objectives of sustainability and resource conservation. This is a big leap towards developing robust
systems in alignment with ecological principles, hence a sustainable future. Figure 2 represents the distribution
of countries involved in seawater greenhouse projects.
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Best evaluation
Ref | Year | Models Target feature Location | Input parameters parameters
% |2021 | MLP Re‘gl}lappg temperature and Qatar Solar re}dlat1on, ambient temperature, humidity gradient, fan velocity, HVAC RMSE
minimizing energy usage regulation
Dehumidification rate of the Solar irradiance, incoming moist air temperature, inlet humidity ratio, and inlet PE, MAPE,
012018 | MLR Oman A X 8 P ’ " RMSE, R?,
condenser air mass flow rate MPE. IA. FV
. . . . . 1 . . - RMSE, EC, O],
16 {2020 | RVFL- AEO Power consumption and water Egypt Solar intensity, ambient relative humidity, ambient air speed and direction, CRM MRE,
productivity seawater temperature, and dry bulb temperature MAE, R?
. . . The greenhouse orientation, transparency of the roof cover, height of the RMSE, MAE,
47
2021 | RBFNN Water production forecasting | China evaporator, planting level, and condenser height MAPE, R?
8 2021 | ANN-ALO Predlctlpg freshwater Oman The evaporators width, length, and height, along with the roof transparency RMSE
production coefficient
Predicting freshwater . .
19 |01 | MLP production and energy Oman ”C[(l)iee ffx:vclicitnht, length, and height of the evaporators, as well as the roof transparency 113]1;/{38% é\;ll‘/\%SE,
consumption >
50 |2023 | MLPNN Power consumption and water China Rf)of transparency, front evaporator height, and the greenhouse’s length and RMSE, R?
production width
St 12019 | MLP Fresh water production Iran Width, length, front evaporator height, and roof transparency QQA RE, RMSE,
o MLPNN, RBENN, | Performance prediction of a Saturation temperature of Fhe evaporator and evaporative condenser, s
2021 Iran temperature of sprayed saline water, refrigerant and air mass flow rates, and dry- | R
ANFIS heat pump . .
bulb and wet-bulb temperatures of ambient air
53 Predicting freshwater Greenhouse width and length, height of the first evaporator, and roof AARE, RMSE,
2018 | SVM . Iran 2
production transparency R
st | 2023 RE LSVM, SVM, | Fresh water production, Cost, China Solar radiation, weather conditions, carrier air flow rate, and temperatures of the | MSE, R%, MAE,
ANN GOR air and water pathways MAPE
NE BT, Ensemble | Fresh water production, Saudi . 1 - R% MAE
25 5 bl 1% 3 > >
2024 | dels Recovery Ratio ‘Arabia Relative humidity, temperature, distillate volume, water flowrate RMSE
55 2024 | ANN, EANN Ereshwater production and Saudl' Inlet water flow, ambient temperature, Inlet water temperature, solar irradiation | MSE, R?
vapor temperatures Arabia
Solar radiation intensity, ambient temperature, relative humidity, wind speed, MAE, RMSE
% 12022 | MLP, DT, BRR Water productivity Egypt humidifier feed water flow rate, airflow rate, and flow rate of water circulating in CRM’ >
the solar water heater

Table 1. The overview of various models for seawater greenhouse.
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First, seawater is drawn from the ocean into a primary treatment system, where large particles are filtered
out to avoid downstream components, including the condenser, from contamination. This also works to keep
salt out of the condenser. Second, the treated seawater flows into the greenhouse condenser, where it delivers
cooling and humidity control, creating optimal conditions for plant growth. The seawater is then directed into a
parabolic solar collector, where it is heated to its saturation temperature before being conveyed through a three-
way valve into the evaporator. In the evaporator, the seawater undergoes a phase transition to superheated steam.
The parabolic solar collector effectively collects a large amount of solar radiation during daylight hours; however,
supplemental support is required at night. In order to sustain operation during these times, a thermal storage
system is included in the cycle. It accumulates excess heat produced during the daytime and feeds it at night,
thereby enabling round-the-clock system operation. The three-way valve connects the thermal energy storage
device to the evaporator®. Superheated steam is blown by a blower into the condenser, where it undergoes
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Fig. 2. The distribution of countries involved in SWGH projects.

cooling to the dew point, causing distilled water droplets to form on the surface of the condenser. The role of
coolant is played by seawater, which is circulated throughout the condenser and thus enhances the efficiency
of the distillation process. The distilled water collected is lastly kept in a tank for use in irrigation or to supply
buildings with water requirements. Figure 3 illustrates a schematic diagram of the seawater greenhouse cycle
integrated with a green building.

The new system greatly minimizes environmental pollution and the use of fossil fuels, highly meeting
the Climate Change Organization criteria for sustainability. By integrating solar panels, the system generates
renewable energy to power its pumps and other components, optimizing overall energy efficiency and keeping
operations environmentally friendly. Solar energy coupled with seawater is a great instance of dedication to
harnessing abundant natural resources, thus reducing carbon footprints and preserving limited energy reserves.
The seawater greenhouse is a model of sustainable building practice, highlighting the importance of resource
efficiency and environmental equilibrium. Technology not only reduces the environmental impact associated
with water production but also reduces greenhouse gas emissions by far, thus helping to combat climate change.
Also, by fostering sustainable production of drinking water and providing favorable conditions for agricultural
production, it enhances sustainable agriculture in areas where water scarcity is a significant problem. As a
key element of sustainable infrastructure, this system responds to environmental challenges on a global scale
while enhancing the resilience of communities suffering from water shortages and climate stresses. Its pairing
of renewable technologies with clever design renders it an innovative response striving to deliver greater
sustainability and a climate-resilient future.

Methodology

Governing equations

The parameters applied to assess the performance of the hybrid desalination system in this study include
freshwater production, inlet water flow rate to desalination plant, N ,umps M collectors T evaporators T condenser-
After extracting the experimental results, each of the performance parameters of the desalination system was
calculated using thermodynamic relations based on the laws of mass and energy conservation. The laws of mass
and energy conservation were implemented to each component of the system. It is worth mentioning that the
vapor flow rate ( thiw) was assumed to be constant throughout the cycle. The energy required and the efficiency
of pumping seawater from the ocean into the primary treatment system is given by Eq. (1) and Eq. (2) :

WPum = 1
PN pumpP W
mswAh
M pump = WS (2)
Pumpp
Scientific Reports|  (2025) 15:36647 | https://doi.org/10.1038/s41598-025-20548-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Hotwater WA WHNER WENER Cold water
 HEENS EEEEE EEEEN
Parabolic Solar Collector

Q

Stdam water

[ ]
Three way valve ‘ 5% Blower
-z
B ) g 3 Seawater pretreatmnet
8 I~
Ay : l
0
=]
—
Brine out i Fresh water E_
tank T ]
2 15 N

T Controller 3

To the buildi‘ng | s — +r Controller 1
— ; Solar panel 2
Input air r~ r’:— "

I 1oued agjos

—l i Pump 1

Seawater

L’
AN LY
W \\\‘&
e ’
ALY
R S5
‘%

Green bulding
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The thermal power input into the water in the parabolic solar water heater is calculated using the Eqs. (3) and

(4)62.
Qcollector = Ihspr (TO,h - Ti,c) =1 collector‘ACOH@CEOTC}HISOlar (3)
titewCp (Ton — Th,
N collector — . . ( L - C) (4)
AcollectorGHIsolar

The governing equations for the performance of the evaporator are determined with Eq. (5) to (7)%.
1’hsw,i,evap = Ihsw,o,evap + (mair (CU o,evap — W i,evap)) (5)
Ihswi,evap - Ihswo,evaLp - Ihw (6)

Qloss,h - Ihwcp (To,evap - Ti,evap) + Ih:3uir,o,evaq::hair,o,ev.’:mp - rhadr,i,evaphair,i,evap + Ihww o,evaphv,o,evap (7)

The evaporator efficiency or the effectiveness of the humidification process (1 ¢yaporator) is Obtained in Eq. (8).

(w o,evap — W i,evap) _ Iillsteaunhlatent (8)

((.U o,evap,s — W i,evap) n CollecmrAcollectorIsolar

n evaporator =

(W o,evap,s) is the absolute humidity corresponding to the condition when the vapor exiting the evaporator is
saturated.

The governing equations for the performance of the condenser are determined with Eq. (9) to (11)%%,
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Ihpr = Iha ((,U i,condenser — W o,condcnscr) (9)
mwi,condenser = rillwmcondenser = rhw (10)
Qcondenger = (mprhlatent) + Ihw (ho,condenser - hi,condenser) (11)

The condenser efficiency or the effectiveness of the dehumidification process (1] ¢ondenser) is Obtained using the
Eq. (12).

_ ((l) i,condenser — wo,condenser) _ Ii'lcooleA T
N condenser = - (12)

(wi,condenser - wo,condenser,s) MgteamNiatent

(W o,condenser,s) is the absolute humidity corresponding to the condition when the vapor exiting the condenser
is at a temperature equal to the condenser temperature and in a saturated state.

The latent heat of vaporization ( hgg) is used. The final amount produced water in the seawater greenhouse
cycle is obtained in Eq. (13).

n pumpn evaporatorn condenser 'l collectorACOHeCtOTGHISOI&T

mfwp = (13)

hlatent

Deep learning models

Bidirectional LSTM (BiLSTM)

LSTM is a particular kind of RNN specifically engineered for addressing the vanishing gradient issue.
LSTM networks include an advanced architecture that enables them to efficiently track and learn long-term
dependencies in sequential data. The BiLSTM developed in this study comprises two autonomous LSTMs: the
forward LSTM and the backward LSTM. The final learning outcome is achieved by integrating the forward and
reverse input sequences, weighed appropriately, while concurrently analyzing data from both past and future
sequences®. The specific model configuration can be seen in Fig. 4.

CNN-LSTM

CNN are a category of feedforward neural networks that incorporate convolutional operations, generally
comprising convolutional, pooling, and fully connected layers. CNN-LSTM is a deep learning architecture
that integrates CNN and LSTM networks, frequently employed for the analysis of time-series data. This work
employs a mixed technique of extracting features via the CNN layer. As illustrated in Fig. 5, the time series data
is initially fed into the convolutional layer of the CNN for feature extraction. The collected feature sequences are
subsequently input into the LSTM for further time-series modelling and forecasting®®.

Bidirectional GRU (BiGRU)

The GRU neural network is an improved model of LSTM that decreases the number of gates while preserving
long-term memory links to address the vanishing gradient problem. The BiGRU consists of two unidirectional
GRUs functioning in opposing directions, hence creating an additional hidden layer. The key difference between
BiGRU and GRU lies in the additional layer of hidden states®”, as seen in Fig. 6.

CNN-GRU

CNN-GRU is a hybrid neural network model that integrates CNN and GRU, with a basic framework seen in Fig.
7. The data serves as the model input, and the convolution technique is employed to extract features and collect
data correlations. The quantity of parameters is subsequently minimized by a pooling process to decrease the
data dimension. Simultaneously, the dropout layer is incorporated to randomly choose neurons in the network
based on a specified possibility to reduce overfitting®®. The GRU layer is employed to analyze the decreased

h; hy Ryis

Fig. 4. The architecture of the BiLSTM hybrid model.
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Fig. 7. The architecture of the CNN-GRU hybrid model.

data and identify the temporal compliance rules among them®. The data are ultimately transformed into a one-
dimensional sequence by the fully connected layer, resulting in the final results.

Multilayered perceptron (MLP)

MLP is one of the most widely used types of ANNs. The structure comprises three fully connected layers: the
input layer, where model inputs are introduced; the output layer, which yields the results of the trained model;
and the hidden layers, which serve as intermediate layers and may range from zero to multiple, as illustrated
in Fig. 8 The relationships among them are founded on a weighted structure, with values adjusted throughout
model training’®72,

Model evaluation
Different error measurement methodologies can evaluate the accuracy of models for prediction. The study
proposes to evaluate the precision of models using five evaluation metrics: mean absolute error (MAE), root
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Fig. 8. The architecture of the CNN-LSTM hybrid model.

mean square error (RMSE), coefficient of determination (R?), square error (MSE), normalized root mean square
error (NRMSE). The five parameters are determined with Egs. (14) to (18)737°.

N
MAE = 2 > ki =il (14)

RMSE =
i=1
N 2
R? oo 2z ) (16)
2 imi ()
1 &
_ a2
i=1
RMSE
NRMSE = mean (observation) (18)
Input data
Case study

The geographical area of this case study is the Makran coast, in the southeastern part of Iran along the northern
coast of the Gulf of Oman. This area stretches between latitudes 25° and 26.5° N and longitudes 57° to 61° E and
is characterized by an arid to semi-arid climate with high temperatures, low annual rainfall, and limited natural
freshwater resources. The Makran coast is of great geographical importance, particularly in light of its increasing
population and expansion of industrial activities, both of which occasion an increasing need for sustainable
and reliable water resources. The geographical and climatic conditions of the Makran coast make the region
exceedingly well-suited for projects relating to renewable energy solutions. Due to its proximity to the Tropic
of Cancer, the area receives high solar radiation and extended sunshine hours all year round, making it an ideal
location for the deployment of solar energy systems. Figure 9 represents the location map of the Makran coast.

Direct Normal Irradiation (DNI) is an essential parameter for establishing the feasibility of solar energy
because it quantifies the solar radiation per square meter received on a surface normal to the solar beam. This
measure is particularly significant to solar technologies such as parabolic solar collectors, whose effectiveness
relies on direct sunlight for effective concentration and conversion of solar energy into heat energy. The Makran
coastal DNI map highlights the huge solar energy potential of the region. Owing to dry climatic conditions,
low cloud cover, and high sunlight duration, the Makran coast offers a suitable arrangement for the installation
of parabolic solar collectors, which find extensive applications in thermal energy systems like heating, cooling,
and other industrial processes. The DNI map for this area (Fig. 10) illustrates yearly solar irradiation averages
in the form of a color-coded spectrum, extending from blue (lower) to pink (higher). The Makran coastline is
predominantly orange to pink in color, designating DNI values from 2200 to 3700 kWh/m? annually. Such high
values point towards the region’s appropriateness for parabolic solar collector systems that demand persistent
and intense sunlight in order to be effective. Utilization of the high solar energy potential of the Makran coast
provides excellent opportunities for the development of sustainable energy plans, facilitating the production
of green thermal energy for local industries and communities while, simultaneously, decreasing the use of
conventional fossil fuels. This is an indicator of the country’s potential to become a center for renewable energy
plans in Iran.
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Fig. 9. Location of the Makran coast in Sistan and Baluchestan, Iran, generated using base maps from Mapbox
and OpenStreetMap (via Mapcarta, https://mapcarta.com/14666356, accessed 23 Jan. 2025), and edited with
EdrawMax. Map data © OpenStreetMap contributors, licensed under ODbL””.
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Fig. 10. Long-term average of annual totals of DNI of the Makran coast in Sistan and Baluchestan,
Iran.Source: Global Solar Atlas (World Bank Group and Solargis, 2025), available at https://globalsolaratlas.info
(accessed 23 Jan. 2025). Licensed under CC BY 4.078..

Figure 11 displays the monthly average values of DNI for the Makran coast of Sistan and Baluchestan, Iran,
and these give considerable insight into the region’s solar energy potential. DNI quantifies the solar radiation
that falls on one square meter of a surface oriented perpendicular to the direction of the solar rays and thus is an
important variable in the evaluation of solar energy projects, especially for such technologies as parabolic solar
collectors. The results indicate high DNI values all year round with maximum values registered during January,
March, April, October, and December, ranging from 175 to 185 kWh/m? monthly on average. These high values
reveal an excellent availability of solar resources in winter and transitional months.
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Fig. 11. Monthly average of DNI of Makran coast in Sistan and Baluchestan, Iran’s.
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Fig. 12. The solar elevation and azimuth for the Makran coast in Sistan and Baluchestan, Iran’®.

Conversely, minimum DNI values range from 100 to 120 kWh/m? during July and August, most likely due
to atmospheric conditions such as increased humidity, haze, or cloud cover that reduce direct sunlight intensity
during these months. The findings show the excellent solar energy potential of the Makran coast year-round,
particularly during cooler months when solar energy systems can be more efficient due to reduced thermal loss.
The high and stable values of DNT make the region an appropriate place for the setup of solar energy systems, like
parabolic solar collectors, ideal for the generation of thermal energy for industrial and household applications.
The results indicate the Makran coast as a prospective site for the feasibility of renewable energy projects, in
agreement with the transition to the utilization of sustainable energy systems in Iran.

Figure 12 demonstrates the solar elevation and azimuth for the Makran coast in Sistan and Baluchestan, Iran,
providing detailed information on the sun’s trajectory across the sky throughout the year.

Solar elevation, represented on the vertical axis, is the altitude of the sun above the horizon, whereas solar
azimuth, represented on the horizontal axis, defines the direction of the sun relative to true north (0° or 360°)
and south (180°). The yellow color represents the active area of solar energy, which signifies the position of the
sun throughout the various seasons. Significant solar paths are also included on the chart, highlighting seasonal
movement. The red curve is the June solstice, where the sun reaches its highest elevation, producing the strongest
and longest solar radiation. The blue curve is the December solstice, with lower solar elevation and shorter
daylight hours. The black curve is the sun’s path during the equinox (spring and fall), when day and night are
approximately equal. In addition, the terrain horizon, which is shown as the shaded black area at the bottom
part, considers potential obstructions, such as hills or mountains that may block sunlight at lower altitudes. This
analysis provides vital information for the optimal location and orientation of solar energy systems, such as
parabolic solar collectors, in the Makran coastal region. The high solar elevation for most of the year underscores
the area high solar energy potential. Orientation of solar collectors to receive optimum exposure during the peak
solar hours can increase efficiency and facilitate the establishment of sustainable energy infrastructure in this
high-irradiation coastal area.

Further, the Gulf of Oman provides a rich source of seawater, which can be effectively desalinated using the
HDH process. This article discusses the key problem of freshwater shortage in the Makran region by incorporating
a deep learning prediction model into the HDH approach. The predictive model offers an empirically derived
approach crafted to improve resource management and facilitate the creation of sustainable water production
systems uniquely adapted to surmount the specific difficulties that face arid coastal regions. Table 2 presents the
geographical coordinates, solar radiation parameters, and climatic features of the Makran Coast.

In order to forecast the freshwater yield on the Makran coast of Iran, a deep learning approach is established
based on both historical and real-time data gathered from a renewable energy-driven Humidification-
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Geographical location

Category

Details

Position

Southeastern Iran, along the Persian Gulf and Gulf of Oman

Coordinates

Approx. 25°N latitude and 60°E longitude

Adjacent Areas

Hormozgan, Sistan and Baluchestan, Kerman Provinces

Coastal Length

1,000 km (620 miles)

Solar Radiation Levels

Category

Details

Average Solar Radiation

5.5-6.0 kWh/m?*/day (High solar radiation, especially in summer)

Peak Radiation

Can exceed 6.0 kWh/m?/day in summer months

Annual Average

Approximately 2,000-2,200 kWh/m?*/year

DNI

1914.2 kWh/m?

GHI

2145.7 kWh/m?

DIF

868.7 kWh/m?

GTI_opta

2368.8 kWh/m?*

Climatic Characteristics

Category

Details

Climate Type

Hot desert climate (BWh according to Képpen-Geiger classification)

Summer Temperature

Average > 40 °C (104 °F), can reach up to 50 °C (122 °F) during heatwaves

Winter Temperature

Milder, ranging from 15 °C (59 °F) to 25 °C (77 °F)

Average Temperature 26.4°C

Humidity Generally low, but can be high during the monsoon season (June to September)
Rainfall Arid region with limited rainfall; 100-200 mm per year, mostly during monsoon
Wind High winds, especially along the coastline; some areas are prone to dust storms

Table 2. The geographical location, solar radiation levels, and Climatic characteristics of the Makran Coast.

Symbol Description Unit
GHI Global Horizontal Irradiation | W/ m?2
T2M Temperature at 2 m °C

T2MDEW | Dew Point Temperature2m | °C
T2MWET | Wet Bulb Temperature at2m | °C

TS Earth Skin Temperature °C
QV2M Specific Humidity at 2 m g/kg
RH2M Relative Humidity at 2 m %

PS Surface Pressure kPa
WS10M Wind Speed at 10 m m/s
WDI10M | Wind Direction at 10 m degrees

Table 3. Dataset’s feature description.

Dehumidification (HDH) desalination plant. All the influencing environmental and operational parameters,
such as solar irradiance, air and seawater temperature, humidity, flow rates, and thermal storage-related
considerations, are embedded in the model. An LSTM neural network is implemented for this task since it is
capable of handling sequential data and learning temporal relations. LSTM network is trained in such a manner
that it links the provided input features to the desired output, which is the quantity of freshwater generated. A
loss function like Mean Squared Error (MSE) is utilized during training to reduce mistakes in the predictions,
while model performance is measured using metrics like Root Mean Squared Error (RMSE) and R-squared.
After validation, the algorithm has shown the ability to accurately predict freshwater production under varying
environmental and operational conditions. It can therefore be used as a reliable tool for system effectiveness
evaluation and to assist in proactive decision-making during water scarcity.

Data Pre-processing and feature selection

The study examined if an increased data volume and multivariate observation enhance predictive performance
or if a univariate data set is enough for generating an acceptable outcome. Consequently, the input data for the
algorithms were multivariate, to improve awareness of this issue. This study used direct technique for predicting
multistep ahead data, utilizing prior time steps as input variables and defining future time steps as target
variables. Table 3 provides a description of the characteristics. The dataset is fully populated, with no missing
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values, however it requires preprocessing. The preprocessing part of this study encompasses feature engineering
and data normalization.

To minimize computational expenses and enhance forecast accuracy, feature selection is performed to
identify the most important features affecting the output value’. This study uses the Pearson matrix as the
mechanism for feature selection. Figure 13 demonstrates the heatmap of the Pearson correlation matrix for global
horizontal irradiation (GHI) in Makran coast. This coefficient is suitable for continuous time series input and
target variables, quantifying correlations on a scale from — 1 to 1. The Pearson correlation coefficient is generally
utilized to calculate the standard deviations between input and target variables, with the coefficient indicating
the strength of the relationship. When a coeflicient stands between 0 and 1, the target variable increases as the
input variable rises. Conversely, when a coefficient ranges from 0 to —1, the target variable decreases as the
input variable increases®’. Figure 13 illustrates the significant correlation among wet bulb temperature at 2 m
(T2MWET), Temperature at 2 m (T2M), Specific Humidity at 2 m (QV2M), surface temperature (TS), relative
humidity at 2 m (RH2M), and surface pressure (PS), Dew Point Temperature at 2 m (T2MDEW), with GHI for
Makran coast. Consequently, these attributes have been taken to be inputs for the multivariate.

Data normalization

Moreover, data may have disparities in scale and range, thus impacting the effectiveness of deep learning models.
Normalization eliminates this issue by standardizing all numeric columns to a common scale, thus preventing
any particular feature from unfairly impacting the model due to its range. This approach standardizes data
obtained by rescaling it based on the maximum and minimum values. This standardizes the data ranges between
0 and 1, facilitating meaningful comparisons and clarity across various data types®!. The dataset is divided
into an 80 — 20 ratio for training and testing to prevent overfitting and underfitting. Figure 14 represents the
methodology utilized in this study for forecasting solar radiation. This methodology comprises five main steps:
(a) Meteorological data collection, (b) Data preprocessing, (c¢) Model training, (d) Model evaluation, and (e)
Best model selection.

Results

Deep learning models

Table 4 defines the specifications of the hyperparameters for the suggested models. The model is supposed
to forecast GHI as the primary output. It is important to consider that hyperparameters must be readjusted
when the prediction priority varies. A higher volume of data and multivariate observations enhance predictive
performance. Table 5 presents the result of the evaluation parameters for multivariate multistep ahead forecasting
within the specified time horizon. The performance of different models for predicting GHI is presented. Across
all metrics, the CNN-LSTM model demonstrated the highest accuracy, with the lowest RMSE (0.0021), MSE
(0.0022), and MAE (0.0363) for testing. Its R* value of 0.9727 further indicates a strong correlation between the
predicted and actual values. The MLP model, while slightly less accurate, demonstrated consistent performance
across target features, achieving an R? of 0.9707. The BiGRU and BiLSTM models also showed competitive
performance, with LSTM slightly outperforming CNN-LSTM in terms of R?> and MAE. However, their
performance was inferior to that of the standalone CNN-LSTM models, suggesting that simpler models can
suffice for GHI prediction in this region for forecasting Makran coast over a 10-year horizon. To ensure clarity
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Fig. 13. Heatmap of Makran coast based on Pearson coefficient.
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Fig. 14. The process of the present study for prediction.

Model Layers characteristics Value
Bidirectional GRU 100
Bidirectional GRU 100

BiGRU
Dense/Activation function | 200/ReLU

Dense/Activation function | 12-240/Linear
Bidirectional LSTM 150
Bidirectional LSTM 100
Dense/Activation function | 300/ReLU

BiLSTM

Dense/Activation function | 12-240/Linear

Convld/Kernel size 64/2

GRU 100
CNN-GRU | GRU 100
Dense/Activation function | 200/ReLU

Dense/Activation function | 12-240/Linear
Convld/Kernel size 64/2

LSTM 100
CNN-LSTM | LSTM 100
Dense/Activation function | 200/ReLU

Dense/Activation function | 12-240/Linear

Flatten -

Dense/Activation function | 256/ReLU
MLP

Dense/Activation function | 128/ReLU

Dense/Activation function | 12-240/Linear

Table 4. Hyperparameters of proposed models.

MAE R? RMSE MSE NRMSE
Model Train | Test Train | Test | Train | Test Train | Test Train | Test
BiGRU 0.0372 | 0.0381 | 96.97 | 96.82 | 0.0024 | 0.0025 | 0.0024 | 0.0025 | 0.0024 | 0.0025
BiLSTM 0.0406 | 0.0422 | 96.62 | 96.32 | 0.0026 | 0.0029 | 0.0026 | 0.0029 | 0.0026 | 0.0029

CNN-GRU | 0.0434 | 0.0465 | 96.18 | 95.60 | 0.0030 | 0.0034 | 0.0030 | 0.0034 | 0.0030 | 0.0034
CNN-LSTM | 0.0363 | 0.0381 | 97.27 | 96.97 | 0.0021 | 0.0023 | 0.0022 | 0.0023 | 0.0020 | 0.0028
MLP 0.0376 | 0.0396 | 97.07 | 96.78 | 0.0023 | 0.0025 | 0.0031 | 0.0025 | 0.0023 | 0.0025

Table 5. Irradiance evaluation parameters of models.
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and reproducibility of the proposed hybrid forecasting framework, the full hybridization process is outlined in
Appendix A, which provides a structured pseudo-code representation of the CNN-LSTM model. The algorithm
begins with data preprocessing, including feature selection, aggregation, and normalization. Subsequently,
the input-output pairs are generated through a sliding window approach, which enables the construction of
supervised learning sequences. The core of the hybrid model is a CNN-LSTM architecture, where convolutional
layers are employed to extract local temporal patterns, and stacked LSTM layers are used to capture long-term
dependencies. Dense layers are then applied to map the learned representations to the forecast horizon. Finally,
the model is trained and evaluated using multiple performance metrics.

The proposed hybrid CNN-LSTM model for time-series forecasting was designed with carefully tuned
hyperparameters. A 12-step input window captures full seasonality, while a longer forecasting horizon tests both
short- and long-term predictive ability. The CNN layer (kernel size 2, 64 filters) extracts local temporal features,
and stacked LSTM layers (100 units each) capture long-term dependencies efficiently. A fully connected layer
with ReLU activation enhances non-linear feature learning, while dropout was set to zero due to limited data
but may be increased for larger datasets. The model is optimized with Adam for stable and fast convergence,
using MSE loss to emphasize large errors. A small batch size improves generalization on small datasets, and 200
training epochs allow convergence without overfitting.

Figure 15 represents the value of the loss function in relation to epochs, as well as the MAE assessment
throughout epochs. Clearly, an increase of epochs results in a reduction of the MAE value, indicating the
completion of the learning process. A significant number of epochs (exceeding 200) increases the probability of
overfitting, resulting in decreased model efficiency; conversely, fewer epochs provide poor learning outcomes.

Figures 16 and 17 illustrate the CNN-LSTM performance algorithms in predicting GHI in the Makran
ocean over the next ten years, utilizing testing and training data. An alternative method to assess the algorithm
performance is to establish a regression line correlating the actual and forecasted values. The distribution of
points near the line y=x demonstrates a robust relationship between the predicted and actual data. Figures 18
and 19 illustrate the regression plots for the training and testing datasets. A substantial correlation exists between
the actual and predicted data of GHI. The final simulation result, as shown in Fig. 20, demonstrates that the
proposed CNN-LSTM model can reliably and effectively forecast solar radiation over the next ten years, which
was the study goal.

Green building freshwater prediction

Figure 21 shows the performance of the CNN-LSTM model in forecasting freshwater production in the Makran
Ocean over the coming decade. The figure sketches the rate of freshwater production per unit surface area (L/
m?) between 1984 and 2033, comprising historical data through 2023 and projecting the 2024-2033 period as
achieved through the application of the CNN-LSTM model. The GHI value was forecasted with the help of this
model, and according to Eq. Seawater greenhouse system freshwater production capacity in green buildings
can be predicted (13). The decade (2024-2033) average annual freshwater production is predicted as 1454.25 L/
m®. This combined approach enhances the predictive accuracy by taking solar radiation into consideration
as a significant parameter affecting freshwater production efficiency. Parameters describing the quantities of
freshwater yields per unit area are given in Table 6.

Following historical trends, freshwater production has displayed variability across the decades with an overall
trend of rise from the 1990's to around 2020. Inflection points representing significant growth stages are found in
the late 1990 s and early 20005, reaching a peak around 2020, after which there is a downturn prior to stabilization
being reached. The oscillations noted can be attributed to changes in climatic conditions, improvements in
efficiencies of operations, or extraneous influences on the seawater greenhouse system. From the year 2024,
the model foresees stabilization in freshwater production with minor fluctuations and a consistent increase to
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Fig. 15. The variation of the loss function and MAE versus epochs.
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Fig. 16. Predicted test data of solar radiation for CNN-LSTM.
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Fig. 17. Predicted train data of solar radiation for CNN-LSTM.
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Fig. 18. Regression plot of the forecasted and true train data of GHI data of CNN-LSTM model.
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Fig. 19. Regression plot of the forecasted and true test data of GHI data of CNN-LSTM model.
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Fig. 21. Freshwater production diagram with CNN-LSTM model diagram by month from 1984 to 2033.
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Symbol Description Unit Value

GHIgo1ar Global Horizontal Irradiation | W/ m? | Predicted by CNN-LSTM model
hiatent Latent heat for condensation | kJ/kg 2260

Mfwp Fresh water production rate | kg/s Predicted by CNN-LSTM model
M pump Pump efficiency ** 0.9

M evaporator | Evaporator efficiency i 0.9

M condenser | Condenser efficiency ** 0.9

M collector Collector efficiency o 0.8

Table 6. The parameters of quantities of freshwater production per unit area.

be witnessed up to 2033. The application of CNN-LSTM for GHI prediction is pivotal in this case since solar
radiation is a significant driver of evaporation and condensation processes in seawater greenhouses. First, the
system creates a model for GHI, then uses the results to improve forecasting of freshwater production. The method
allows for more precise understanding of variations in water yield under different environmental conditions.
This predictive model facilitates the creation of sustainable seawater greenhouse technology, especially for green
building applications, by enhancing water resource efficiency over the solar energy potential. The anticipated
stabilization and gradual rise in freshwater output indicate that, with continually advancing predictive modeling
and system optimization, seawater greenhouses have much to contribute to water sustainability efforts in the
future.

Discussion

The predictive modeling framework developed in this study, centered on a CNN-LSTM hybrid architecture,
achieved superior accuracy in forecasting both GHI and corresponding freshwater yield for seawater greenhouse
(SWGH) systems in the Makran region. The achieved R* of 0.9727 and RMSE of 0.0021 for GHI prediction
surpass the performance metrics reported in most recent SWGH modeling efforts. Panahi et al.*® employed
an ANN-ALO approach for predicting freshwater production in Oman and reported RMSE values exceeding
those obtained in this study, while Wu et al.*” using RBENN also exhibited lower accuracy compared to CNN-
LSTM results. Similarly, Essa et al.*® integrated a Random Vector Functional Link with Artificial Ecosystem
Optimization for predicting water productivity in Egypt, achieving reliable performance but without addressing
long-term, multistep-ahead forecasts as implemented here.

Several prior works have explored deep learning architectures for agricultural or desalination applications,
but with different objectives and environmental contexts. Huang et al.>® and Jiang et al.* applied attention-based
CNN-LSTM and LSTM models for microclimate forecasting in controlled agricultural systems, showing the
benefit of temporal-spatial feature extraction. However, these models primarily targeted short-term predictions
(hours to days) and did not explicitly link irradiance prediction to desalination output. The two-stage approach;
first forecasting solar input and then using it to estimate freshwater yield extends the applicability of deep
learning to long-term water production planning in arid coastal zones. From a technological integration
perspective, previous studies have generally modeled SWGH systems in isolation from green building concepts.
Al-Ismaili”!! documented SWGH operational benefits but did not consider their synergy with building-scale
resource management. In contrast, the present study explicitly evaluates SWGH freshwater yield within a green
building framework, aligning with the food-energy-water nexus approach discussed by Valencia et al.*®. This
integration is crucial for improving overall system sustainability, as it allows co-optimization of building cooling
loads, water supply, and agricultural production.

The forecasted average freshwater yield of 1454.25 L/m’/year for 2024-2033 compares favorably with
production capacities reported in other high-solar-irradiance sites. Zarei et al.’! in Iran and Ehteram et al.*’
in Oman demonstrated freshwater outputs of similar magnitude under optimal seasonal conditions but did
not account for interannual variability. By leveraging CNN-LSTM, our approach captures both seasonal and
decadal-scale fluctuations, offering a more robust planning tool for infrastructure investment. Importantly, while
this study demonstrates high predictive performance, it also highlights the sensitivity of SWGH output to solar
resource availability. This finding is consistent with the observations of Lawal et al.2>, who showed that optimizing
humidification-dehumidification parameters can significantly improve productivity under fluctuating weather
conditions. The implication for policy and design is that predictive control systems potentially combined with
hybrid renewable inputs such as wind or biomass?’ could further enhance year-round stability®?. By embedding
Al-driven prediction into SWGH operation, this research addresses a gap in current literature noted by Ghiat
et al.2* and Mahmood et al.2%, who emphasize the need for adaptive, data-driven control under harsh climates.
Results demonstrate that deep learning not only improves forecast accuracy but also provides actionable insights
for operational planning, long-term water security, and integration into sustainable architecture.

Conclusion

This research proves the viability of the combination of deep learning methods and SWGH technology for
enhancing freshwater generation for sustainable building utilization. Sophisticated machine learning methods
were used to create a predictive model that can estimate freshwater yield as a function of both operational
and environmental conditions with great reliability. Of the models compared, the CNN-LSTM showed the best
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prediction accuracy with R? of 0.9727, and the least RMSE (0.0021) and MSE (0.0022), thereby being the top
performing model for the prediction of solar irradiance and freshwater production. This model was used to
predict the value of GHI, and the freshwater production from the seawater greenhouse system in green buildings
can be derived from freshwater production per unit area, which is very much reliant on the GHI value. The
analysis of historical trends in freshwater production between 1984 and 2023 indicated variability because of
climatic conditions and system efficiency. However, 2024-2033 forecasts predict stabilization with a gradual
increase in freshwater yield at an approximate average annual value of 1454.25 L/m?. The trend is indicative
of the SWGH technology potential as a sustainable tool for water management in water-deficient regions,
particularly when integrated into green building systems. From the CNN-LSTM model, the outcomes imply
that with increased solar radiation, freshwater yield in SWGHs can be optimized, making this technology more
reliable for sustainable water management. Beyond predictive accuracy, the findings underscore the broader
implications for sustainable development:

o Technical relevance: Al-enhanced SWGH systems can adapt to fluctuating climatic conditions, improving
operational planning and reducing downtime.

« Environmental sustainability: The reliance on solar-driven desalination minimizes fossil fuel use and green-
house gas emissions while enabling brine management strategies to protect marine ecosystems.

« Economic and social value: Stable freshwater production supports agricultural activities, reduces dependen-
cy on costly imported water, and strengthens the resilience of coastal communities.

The seawater greenhouse is a significant development in sustainable building systems by efficiently integrating
desalination processes relying on renewable energy and ecological infrastructure. It employs the evaporation of
seawater in regulating greenhouse temperatures, thereby creating favorable conditions for plant growth while
simultaneously generating freshwater from the condensation process. One such example of advancement in
this field is the use of solar-powered desalination using a thermal storage system that is integrated, thus making
continuous operation possible even at times of low solar irradiance. Additionally, passive cooling systems
facilitate optimal energy efficiency by reducing the reliance on conventional air conditioning systems within
green building architecture designs. Maximum use of water and energy resources is achievable due to the closed-
loop nature of such systems, hence making it a viable green solution to application in desert climates. Seawater
greenhouses incorporated in green building architecture designs present an environmentally friendly solution
to water-scarce regions. These systems harness renewable solar energy, thus reducing carbon emissions and
providing potable water for irrigation, cooling, and other building purposes.

Future work should focus on expanding model inputs to incorporate socio-economic factors and seasonal
agricultural demand data, enabling more comprehensive integration within food—energy-water nexus planning.
In addition, research should investigate the use of hybrid renewable energy systems, such as solar-wind or solar-
biomass combinations, to ensure continuous seawater greenhouse (SWGH) operation and enhance resilience
against fluctuations in solar availability. Finally, efforts should be directed toward scaling the proposed approach
for multi-site deployments, coupled with an assessment of policy frameworks that can facilitate the adoption of
SWGH-integrated green building solutions in water-scarce regions. The synergy between advanced deep learning
methods and SWGH technology offers a practical, scalable pathway to sustainable water management. Artificial
intelligence application in solar water generation systems is a significant move towards water sustainability as well
as promoting the development of green infrastructure in regions that lack water. When deployed strategically
within green building systems, this integrated approach has the potential to significantly mitigate water scarcity
challenges in arid coastal zones worldwide.

Appendix A: Pseudo code for CNN-LSTM model
Input:
Dataset D with features (GHI, T2M, ...).
Input window size W.
Forecast horizon H.
Output:
Predicted values Y_pred for next H steps.
1: Load dataset D.
2: Remove irrelevant columns.
3: Aggregate data into monthly means.
4: Normalize features using MinMaxScaler.
5: Create windowed dataset (X, Y) with size W and horizon H.
6: Split data into training set (X_train, Y_train) and test set (X_test, Y_test).
7: Initialize Sequential model.
8: Add Conv1D layer with filters =64, kernel size =2, activation = ReLU.
9: Add MaxPooling1D with pool size=2.
10: Flatten output.
11: Reshape output for LSTM input.
12: Add LSTM layer with 100 units, return_sequences = True.
13: Add another LSTM layer with 100 units.
14: Add Dense layer with 200 units, activation = ReLU, regularizer =L2.
15: Add Dropout layer (rate=0.0).
16: Add Dense layer with (H x 2) units, activation = Linear.
17: Reshape output to (H, 2).
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18: Compile model with optimizer = Adam, loss = MSE, metrics = MAE.
19: Train model on (X_train, Y_train) with validation on (X_test, Y_test).
20: Predict Y_pred = model(X_test).

21: Evaluate using metrics {R?, RMSE, MSE, MAE, NRMSE}.

22: Return Y_pred.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author
on reasonable request.

Received: 18 May 2025; Accepted: 15 September 2025
Published online: 21 October 2025

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Taylor, R. J. K. Rethinking water scarcity: the role of storage. Eos Trans. AGU. 90, 237-238. https://doi.org/10.1029/2009E0280001
(2009).

Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, €1500323. https://doi.org/10.1126
/sciadv.1500323 (2016).

Greve, P. et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 1, 486-494.
https://doi.org/10.1038/s41893-018-0134-9 (2018).

. He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667. https://doi.org/10.1038/s41467-0

21-25026-3 (2021).

. Belhassan, K. Water scarcity management. In: Water Safety, Security and Sustainability: Threat Detection and Mitigation 443-462

(Springer International Publishing, 2021).https://doi.org/10.1007/978-3-030-76008-3_19.

. Barzigar, A., Hosseinalipour, S. M. & Pani, A. An irreversible future: declining soil moisture, persistent droughts and emerging

challenges for drying technology. Dry. Technol. https://doi.org/10.1080/07373937.2025.2543624 (2025).

. Al-Ismaili, A. M. & Jayasuriya, H. Seawater greenhouse in Oman: A sustainable technique for freshwater conservation and

production. Renew. Sustain. Energy Rev. 54, 653-664 (2016). https://doi.org/10.1016/j.rser.2015.10.016

. Kummu, M. et al. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability.

Sci. Rep. 6, 38495 (2016).https://doi.org/10.1038/srep38495

. Molden, D. Scarcity of water or scarcity of management? Int. J. Water Resour. Dev. 36, 258-268. https://doi.org/10.1080/07900627

.2019.1676204 (2020).

Sharma, A. et al. A comprehensive update on traditional agricultural knowledge of farmers in India. In: Wild Food Plants for Zero
Hunger and Resilient Agriculture 331-386 (2023). https://doi.org/10.1007/978-981-19-6502-9_14

Bait-Suwailam, T. K. & Al-Ismaili, A. M. Review on seawater greenhouse: achievements and future development. Recent Pat. Eng.
13, 312-324 (2019).https://doi.org/10.2174/1872212113666181211151658

Pimentel, D. et al. Water resources: agricultural and environmental issues. BioScience 54, 909-918. https://doi.org/10.1641/0006-3
568(2004)054[0909:WRA AEI]2.0.CO;2 (2004).

Pericherla, S., Karnena, M. K. & Vara, S. A review on impacts of agricultural runoff on freshwater resources. Int. J. Emerg. Technol.
11, 829-833 (2020).

Majeed, L. R. et al. Apple Academic Press,. Influence of Catchment on Freshwater Biodiversity. In: Biodiversity of Freshwater
Ecosystems 93-104 (2022).

Mahmoudi, H. et al. Wind energy systems adapted to the seawater greenhouse desalination unit designed for arid coastal countries.
Rev. Energ. Renouvelables. 10, 19-30 (2007).

Katakam, V. S. S. & Bahadur, V. Reverse osmosis-based water treatment for green hydrogen production. Desalination 581, 117588.
https://doi.org/10.1016/j.desal.2024.117588 (2024).

Al-Obaidi, M. A. et al. Integration of renewable energy systems in desalination. Processes 12, 770. https://doi.org/10.3390/pr12040
770 (2024).

ElSoudani, M. Cooling Techniques for Building-Greenhouse Interconnections in Hot-Arid Climates: The Case of Red Sea, Egypt. PhD
thesis, Technische Universitaet Berlin (2016).

Ghaffour, N., Missimer, T. M. & Amy, G. L. Technical review and evaluation of the economics of water desalination: current
and future challenges for better water supply sustainability. Desalination 309, 197-207. https://doi.org/10.1016/j.desal.2012.10.015
(2013).

Qiblawey, H. M. & Banat, E. Solar thermal desalination technologies. Desalination 220, 633-644. https://doi.org/10.1016/j.desal.2
007.01.059 (2008).

Gevorkov, L., Dominguez-Garcia, J. L. & Trilla, L. The Synergy of Renewable Energy and Desalination: An Overview of Current
Practices and Future Directions. (2025).

Khawaji, A. D., Kutubkhanah, I. K. & Wie, ]. Advances in seawater desalination technologies. Desalination 221, 47-69. https://doi
.0org/10.1016/j.desal.2007.01.067 (2008).

Sayed, E. T. et al. Application of artificial intelligence techniques for modeling, optimizing, and controlling desalination systems
powered by renewable energy resources. J. Clean. Prod. 413, 137486. https://doi.org/10.1016/j.jclepro.2023.137486 (2023).

Ghiat, I, Govindan, R. & Al-Ansari, T. Data-driven predictive model for irrigation management in greenhouses under CO2
enrichment and high solar radiation. In: Computer Aided Chem. Engineering 52, 1585-1590 (Elsevier, 2023). https://doi.org/10.10
16/B978-0-443-15274-0.50252-3

Lawal, D. U. et al. Effective design of sustainable energy productivity based on the experimental investigation of the humidification-
dehumidification-desalination system using hybrid optimization. Energy Convers. Manag. 319, 118942. https://doi.org/10.1016/j.e
nconman.2024.118942 (2024).

Mahmood, E et al. Energy utilization assessment of a semi-closed greenhouse using data-driven model predictive control. J. Clean.
Prod. 324, 129172. https://doi.org/10.1016/j.jclepro.2021.129172 (2021).

Chen, W. & You, E. Semiclosed greenhouse climate control under uncertainty via machine learning and Data-Driven robust model
predictive control. IEEE Trans. Control Syst. Technol. 30, 1186-1197. https://doi.org/10.1109/TCST.2021.3094999 (2022).
Barzigar, A., Hosseinalipour, S. M. & Mujumdar, A. S. Al for enhanced solar dryer performance: integration of PV/T Panels, solar
Collectors, energy Storage, Biomass, and desalination units. Dry. Technol. https://doi.org/10.1080/07373937.2025.2540730 (2025).
Chen, W. & You, F. Smart greenhouse control under harsh climate conditions based on data-driven robust model predictive control
with principal component analysis and kernel density Estimation. J. Process. Control. 107, 103-113. https://doi.org/10.1016/j.jpro
cont.2021.10.004 (2021).

Al-Ismaili, A. M. et al. Empirical model for the condenser of the seawater greenhouse. Chem. Eng. Commun. 205, 1252-1260.
https://doi.org/10.1080/00986445.2018.1443081 (2018).

Scientific Reports |

(2025) 15:36647 | https://doi.org/10.1038/s41598-025-20548-y nature portfolio


https://doi.org/10.1029/2009EO280001
https://doi.org/10.1126/sciadv.1500323
https://doi.org/10.1126/sciadv.1500323
https://doi.org/10.1038/s41893-018-0134-9
https://doi.org/10.1038/s41467-021-25026-3
https://doi.org/10.1038/s41467-021-25026-3
https://doi.org/10.1007/978-3-030-76008-3_19
https://doi.org/10.1080/07373937.2025.2543624
https://doi.org/10.1016/j.rser.2015.10.016
https://doi.org/10.1038/srep38495
https://doi.org/10.1080/07900627.2019.1676204
https://doi.org/10.1080/07900627.2019.1676204
https://doi.org/10.1007/978-981-19-6502-9_14
https://doi.org/10.2174/1872212113666181211151658
https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2
https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2
https://doi.org/10.1016/j.desal.2024.117588
https://doi.org/10.3390/pr12040770
https://doi.org/10.3390/pr12040770
https://doi.org/10.1016/j.desal.2012.10.015
https://doi.org/10.1016/j.desal.2007.01.059
https://doi.org/10.1016/j.desal.2007.01.059
https://doi.org/10.1016/j.desal.2007.01.067
https://doi.org/10.1016/j.desal.2007.01.067
https://doi.org/10.1016/j.jclepro.2023.137486
https://doi.org/10.1016/B978-0-443-15274-0.50252-3
https://doi.org/10.1016/B978-0-443-15274-0.50252-3
https://doi.org/10.1016/j.enconman.2024.118942
https://doi.org/10.1016/j.enconman.2024.118942
https://doi.org/10.1016/j.jclepro.2021.129172
https://doi.org/10.1109/TCST.2021.3094999
https://doi.org/10.1080/07373937.2025.2540730
https://doi.org/10.1016/j.jprocont.2021.10.004
https://doi.org/10.1016/j.jprocont.2021.10.004
https://doi.org/10.1080/00986445.2018.1443081
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

. Mahmood, F. et al. Data-driven robust model predictive control for greenhouse temperature control and energy utilisation
assessment. Appl. Energy. 343, 121190. https://doi.org/10.1016/j.apenergy.2023.121190 (2023).

Torres, J. E. et al. Deep learning for time series forecasting: a survey. Big Data. 9, 3-21. https://doi.org/10.1089/big.2020.0159
(2021).

Liu, G. et al. A state of Art review on time series forecasting with machine learning for environmental parameters in agricultural
greenhouses. Inf. Process. Agric. 11, 143-162. https://doi.org/10.1016/j.inpa.2022.10.005 (2024).

Fallah, M. et al. Comprehensive review of methodologies and case studies in advanced Exergy, Exergo-Economic, and Exergo-
Environmental analyses. Energy 137606 https://doi.org/10.1016/j.energy.2025.137606 (2025).

Huang, S. et al. Edible mushroom greenhouse environment prediction model based on attention cnn-Istm. Agronomy 14, 473.
https://doi.org/10.3390/agronomy14030473 (2024).

Subramaniam, L. K. & Marimuthu, R. Crop yield prediction using effective deep learning and dimensionality reduction approaches
for Indian regional crops. e-Prime 8, 100611 (2024). https://doi.org/10.1016/j.prime.2024.100611

Jun, J. & Kim, H. K. Informer-based temperature prediction using observed and numerical weather prediction data. Sensors 23,
7047. https://doi.org/10.3390/s23167047 (2023).

Ghasemlounia, R. et al. Developing a novel framework for forecasting groundwater level fluctuations using Bi-directional long
Short-Term memory (BiLSTM) deep neural network. Comput. Electron. Agric. 191, 106568. https://doi.org/10.1016/j.compag.202
1.106568 (2021).

Jiang, B. et al. Attention-LSTM architecture combined with bayesian hyperparameter optimization for indoor temperature
prediction. Build. Environ. 224, 109536. https://doi.org/10.1016/j.buildenv.2022.109536 (2022).

Xiao, C. et al. A Spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data.
Environ. Model. Softw. 120, 104502. https://doi.org/10.1016/j.envsoft.2019.104502 (2019).

Golabi, A. et al. Optimal operation of reverse osmosis desalination process with deep reinforcement learning methods. Appl. Intell.
https://doi.org/10.1007/s10489-024-05452-8 (2024).

Reza, A. E et al. An integral and multidimensional review on multi-layer perceptron as an emerging tool in the field of water
treatment and desalination processes. Desalination 586, 117849. https://doi.org/10.1016/j.desal.2024.117849 (2024).

Alghamdi, A. A novel IEF-DLNN and multi-objective based optimizing control strategy for seawater reverse osmosis desalination
plant. Heliyon 9, e13814. https://doi.org/10.1016/j.heliyon.2023.e13814 (2023).

Bueso, M. C. et al. Cooling tower modeling based on machine learning approaches: application to zero liquid discharge in
desalination processes. Appl. Therm. Eng. 242, 122522 https://doi.org/10.1016/j.applthermaleng.2024.122522 (2024).

Ashraf, W. M. et al. Machine learning assisted improved desalination pilot system design and experimentation for the circular
economy. J. Water Process. Eng. 63, 105535. https://doi.org/10.1016/j.jwpe.2024.105535 (2024).

Essa, F. A, Elaziz, M. A. & Elsheikh, A. H. Prediction of power consumption and water productivity of seawater greenhouse system
using random vector functional link network integrated with artificial ecosystem-based optimization. Process. Saf. Environ. Prot.
144, 322-329. https://doi.org/10.1016/j.psep.2020.07.044 (2020).

Wu, Y,, Xie, P. & Dahlak, A. Utilization of radial basis function neural network integrated with different optimization methods for
the prediction of water productivity of seawater greenhouse system. Energy Rep. 7, 6658-6676 (2021).

Panahi, E et al. Predicting freshwater production in seawater greenhouses using hybrid artificial neural network models. J. Clean.
Prod. 329, 129721 https://doi.org/10.1016/j.jclepro.2021.129721 (2021).

Ehteram, M. et al. Predicting freshwater production and energy consumption in a seawater greenhouse based on ensemble
frameworks using optimized multi-layer perceptron. Energy Rep. 7, 6308-6326. https://doi.org/10.1016/j.egyr.2021.09.079 (2021).
Liu, J. & Shao, M. The forecast of power consumption and freshwater generation in a solar-assisted seawater greenhouse system
using a multi-layer perceptron neural network. Expert Syst. Appl. 213, 119289. https://doi.org/10.1016/j.eswa.2022.119289 (2023).
Zarei, T. & Behyad, R. Predicting the water production of a solar seawater greenhouse desalination unit using multi-layer
perceptron model. Sol Energy. 177, 595-603. https://doi.org/10.1016/j.solener.2018.11.059 (2019).

Faegh, M. et al. Development of artificial neural networks for performance prediction of a heat pump assisted humidification-
dehumidification desalination system. Desalination 508, 115052. https://doi.org/10.1016/j.desal.2021.115052 (2021).

Zarei, T., Behyad, R. & Abedini, E. Study on parameters effective on the performance of a humidification-dehumidification
seawater greenhouse using support vector regression. Desalination 435, 235-245. https://doi.org/10.1016/j.desal.2017.05.033
(2018).

An, M. et al. Discovering a robust machine learning model for predicting the productivity of a solar-driven humidification-
dehumidification system. Appl. Therm. Eng. 228, 120485. https://doi.org/10.1016/j.applthermaleng.2023.120485 (2023).
Alhamami, A. H. et al. Solar desalination system for fresh water production performance Estimation in net-zero energy
consumption building: A comparative study on various machine learning models. Water Sci. Technol. 89, 2149-2163. https://doi.o
1rg/10.2166/wst.2024.092 (2024).

Salem, H. et al. Predictive modelling for solar power-driven hybrid desalination system using artificial neural network regression
with Adam optimization. Desalination 522, 115411. https://doi.org/10.1016/j.desal.2021.115411 (2022).

Mohammed, A. et al. An optimization of hybrid renewable energy system for seawater desalination in Saudi Arabia. Int. . Environ.
Sci. Technol. 22, 4463-4480. https://doi.org/10.1007/s13762-024-05904-1 (2025).

Valencia, A. et al. Synergies of green Building retrofit strategies for improving sustainability and resilience via a Building-scale
food-energy-water nexus. Resour. Conserv. Recycl. 176, 105939. https://doi.org/10.1016/j.resconrec.2021.105939 (2022).

Xiang, Y. et al. Research on sustainability evaluation of green Building engineering based on artificial intelligence and energy
consumption. Energy Rep. 8, 11378-11391. https://doi.org/10.1016/j.egyr.2022.08.266 (2022).

Barzigar, A., Hosseinalipour, S. M. & Mujumdar, A. S. Toward sustainable post-harvest practices: A critical review of solar and
wind-assisted drying of agricultural produce with integrated thermal storage systems. Dry. Technol. https://doi.org/10.1080/07373
937.2025.2542440 (2025).

Barzigar, A., Mujumdar, A. S. & Hosseinalipour, S. M. Review of seawater greenhouses: integrating sustainable agriculture into
green Building. Water Conserv. Sci. Eng. 10, 1-31. https://doi.org/10.1007/s41101-025-00406-8 (2025).

Hamdi, M. et al. Analysis and comparison of four recent laboratory-made integrated collector storage solar water heaters
(ICSSWH) designs: parameters identification for long-term prediction. Appl. Therm. Eng. 125610 https://doi.org/10.1016/j.applth
ermaleng.2025.125610 (2025).

AbdelMeguid, H. Year-round performance evaluation of a solar-powered compact HDH desalination system for remote water
scarce regions. Int. J. Green. Energy. https://doi.org/10.1080/15435075.2025.2454255 (2025).

Kwan, T. H. et al. Thermodynamic analysis of an energy-efficient thermal-desalination based on coupling absorption chiller, freeze
and humidification-dehumidification. Desalination 118625 https://doi.org/10.1016/j.desal.2025.118625 (2025).

Ouyang, Z. et al. A novel integrated method for improving the forecasting accuracy of crude oil: ESMD-CFastICA-BiLSTM-
Attention. Energy Econ. 138, 107851. https://doi.org/10.1016/j.eneco.2024.107851 (2024).

Shi, H. et al. A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: A case of
shenzhen’s carbon market in China. J. Environ. Manage. 352, 120131. https://doi.org/10.1016/j.jenvman.2024.120131 (2024).
Qiao, Y. et al. A BiGRU joint optimized attention network for recognition of drilling conditions. Pet. Sci. 20, 3624-3637. https://d
o0i.org/10.1016/j.petsci.2023.05.021 (2023).

Srivastava, N. et al. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014).

Scientific Reports |

(2025) 15:36647 | https://doi.org/10.1038/s41598-025-20548-y nature portfolio


https://doi.org/10.1016/j.apenergy.2023.121190
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.1016/j.inpa.2022.10.005
https://doi.org/10.1016/j.energy.2025.137606
https://doi.org/10.3390/agronomy14030473
https://doi.org/10.1016/j.prime.2024.100611
https://doi.org/10.3390/s23167047
https://doi.org/10.1016/j.compag.2021.106568
https://doi.org/10.1016/j.compag.2021.106568
https://doi.org/10.1016/j.buildenv.2022.109536
https://doi.org/10.1016/j.envsoft.2019.104502
https://doi.org/10.1007/s10489-024-05452-8
https://doi.org/10.1016/j.desal.2024.117849
https://doi.org/10.1016/j.heliyon.2023.e13814
https://doi.org/10.1016/j.applthermaleng.2024.122522
https://doi.org/10.1016/j.jwpe.2024.105535
https://doi.org/10.1016/j.psep.2020.07.044
https://doi.org/10.1016/j.jclepro.2021.129721
https://doi.org/10.1016/j.egyr.2021.09.079
https://doi.org/10.1016/j.eswa.2022.119289
https://doi.org/10.1016/j.solener.2018.11.059
https://doi.org/10.1016/j.desal.2021.115052
https://doi.org/10.1016/j.desal.2017.05.033
https://doi.org/10.1016/j.applthermaleng.2023.120485
https://doi.org/10.2166/wst.2024.092
https://doi.org/10.2166/wst.2024.092
https://doi.org/10.1016/j.desal.2021.115411
https://doi.org/10.1007/s13762-024-05904-1
https://doi.org/10.1016/j.resconrec.2021.105939
https://doi.org/10.1016/j.egyr.2022.08.266
https://doi.org/10.1080/07373937.2025.2542440
https://doi.org/10.1080/07373937.2025.2542440
https://doi.org/10.1007/s41101-025-00406-8
https://doi.org/10.1016/j.applthermaleng.2025.125610
https://doi.org/10.1016/j.applthermaleng.2025.125610
https://doi.org/10.1080/15435075.2025.2454255
https://doi.org/10.1016/j.desal.2025.118625
https://doi.org/10.1016/j.eneco.2024.107851
https://doi.org/10.1016/j.jenvman.2024.120131
https://doi.org/10.1016/j.petsci.2023.05.021
https://doi.org/10.1016/j.petsci.2023.05.021
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Lynn, H. M., Pan, S. B. & Kim, P. A deep bidirectional GRU network model for biometric electrocardiogram classification based
on recurrent neural networks. IEEE Access. 7, 145395-145405. https://doi.org/10.1109/ACCESS.2019.2939947 (2019).

Li, D. etal. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: comparisons with multilayer-
perceptron-only, Bp neural network, and information value models. Appl. Sci. 9, 3664. https://doi.org/10.3390/app9183664 (2019).
Bahiraei, M. et al. Using neural network optimized by imperialist competition method and genetic algorithm to predict water
productivity of a nanofluid-based solar still equipped with thermoelectric modules. Powder Technol. 366, 571-586. https://doi.org
/10.1016/j.powtec.2020.02.055 (2020).

Yusoff, N. I. M. et al. Engineering characteristics of nanosilica/polymer-modified bitumen and predicting their rheological
properties using multilayer perceptron neural network model. Constr. Build. Mater. 204, 781-799. https://doi.org/10.1016/j.conbu
ildmat.2019.01.203 (2019).

Caldas, M. & Alonso-Sudrez, R. Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance
measurements. Renew. Energy. 143, 1643-1658. https://doi.org/10.1016/j.renene.2019.05.069 (2019).

Rumelhart, D. E., Hinton, G. E. & Williams, R. ]. Learning representations by back-propagating errors. Nature 323, 533-536.
https://doi.org/10.1038/323533a0 (1986).

Uluocak, I. & Bilgili, M. Daily air temperature forecasting using LSTM-CNN and GRU-CNN models. Acta Geophys. 72, 2107~
2126. https://doi.org/10.1007/s11600-023-01241-y (2024).

Badal, M. K. I. & Saha, S. Performance analysis of deep neural network models for weather forecasting in bangladesh. In:
Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering: TCCE 2021 (Springer
Nature Singapore, 2022). https://doi.org/10.1007/978-981-16-7597-3_7

Mapbox & OpenStreetMap. Makran Coast, Sistan and Baluchestan, Iran. Mapcarta. Jan. (2025). https://mapcarta.com/14666356
(accessed 23.

World Bank Group and Solargis. Global Solar Atlas & World Bank Group. ( (2025). https://globalsolaratlas.info/map?c=25.27388
3,60.886917,10&s=25.252083,61.006306&m=site&pv=ground,180,29,1000 (accessed 23 Jan. 2025).

Moustafa, E. B, Hammad, A. H. & Elsheikh, A. H. A new optimized artificial neural network model to predict thermal efficiency
and water yield of tubular solar still. Case Stud. Therm. Eng. 30, 101750. https://doi.org/10.1016/j.csite.2021.101750 (2022).
Chakraborty, D. et al. Computational solar energy-Ensemble learning methods for prediction of solar power generation based on
meteorological parameters in Eastern India. Renew. Energy Focus. 44, 277-294. https://doi.org/10.1016/j.ref.2023.01.006 (2023).
Ahmed, U. et al. Short-term global horizontal irradiance forecasting using weather classified categorical boosting. Appl. Soft
Comput. 155, 111441. https://doi.org/10.1016/j.as0c.2024.111441 (2024).

Pirkandi, J. et al. Parametric study and thermodynamic performance analysis of a hybrid solid oxide fuel cell-Stirling engine
system for cogeneration applications. Process. Saf. Environ. Prot. 176, 25-39. https://doi.org/10.1016/j.psep.2023.05.062 (2023).

Acknowledgements
Not applicable.

Author contributions

A.B. and S.A. developed the deep learning models, conducted data analysis, and prepared the manuscript draft.
M.E contributed to the system modeling and integration of SWGH into green building applications. A.S.M. and
S.M.H. supervised the research, provided administrative support, and contributed to manuscript review and
revisions. All authors reviewed and approved the final manuscript.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval
Not applicable.

Consent to participate
All participants provided informed consent to take part in the study.

Consent for publication
All participants consented to the publication of data and results arising from the research.

Additional information
Correspondence and requests for materials should be addressed to S.M.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports |

(2025) 15:36647 | https://doi.org/10.1038/s41598-025-20548-y nature portfolio


https://doi.org/10.1109/ACCESS.2019.2939947
https://doi.org/10.3390/app9183664
https://doi.org/10.1016/j.powtec.2020.02.055
https://doi.org/10.1016/j.powtec.2020.02.055
https://doi.org/10.1016/j.conbuildmat.2019.01.203
https://doi.org/10.1016/j.conbuildmat.2019.01.203
https://doi.org/10.1016/j.renene.2019.05.069
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11600-023-01241-y
https://doi.org/10.1007/978-981-16-7597-3_7
https://mapcarta.com/14666356
https://globalsolaratlas.info/map?c=25.273883,60.886917,10&s=25.252083,61.006306&m=site&pv=ground,180,29,1000
https://globalsolaratlas.info/map?c=25.273883,60.886917,10&s=25.252083,61.006306&m=site&pv=ground,180,29,1000
https://doi.org/10.1016/j.csite.2021.101750
https://doi.org/10.1016/j.ref.2023.01.006
https://doi.org/10.1016/j.asoc.2024.111441
https://doi.org/10.1016/j.psep.2023.05.062
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports|  (2025) 15:36647 | https://doi.org/10.1038/s41598-025-20548-y nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Modeling freshwater yield: deep learning applications in seawater greenhouses in Iran
	﻿System description
	﻿Methodology
	﻿Governing equations
	﻿Deep learning models
	﻿Bidirectional LSTM (BiLSTM)
	﻿CNN-LSTM
	﻿Bidirectional GRU (BiGRU)
	﻿CNN-GRU
	﻿Multilayered perceptron (MLP)


	﻿Model evaluation
	﻿Input data
	﻿Case study
	﻿Data Pre-processing and feature selection
	﻿Data normalization

	﻿Results


