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Growing evidence has revealed that N6-Methyladenosine (m6A) modification is crucial in cancer 
development, yet its role in hepatocellular carcinoma (HCC) remains unclear. To address this, we 
developed a novel m6A regulator-based prognostic signature (m6A-RPS) using comprehensive 
bioinformatics analysis of TCGA, GEO, and ICGC datasets. Our analysis revealed widespread 
dysregulation of m6A regulators in HCC tissues. Unsupervised consensus clustering further revealed 
distinct m6A methylation subtypes with significant survival differences, indicating the potential of 
m6A modification patterns in prognostic stratification for HCC. Using TCGA-LIHC cohort, LASSO Cox 
regression selected five key hub regulators (VIRMA, YTHDF1, YTHDF2, YTHDC1, IGF2BP3) to construct 
the m6A-RPS model.​​ This model proved to be a powerful and independent prognostic indicator 
(HR = 2.849 (1.819–4.461), P < 0.001), and validated in external cohort (ICGC-LIRI-JP). Patients with 
high m6A-RPS scores exhibited significantly poorer overall survival and progression-free interval, 
and the scores were positively correlated with adverse clinical characteristics (e.g., advanced stage, 
vascular invasion). ​ To facilitate clinical translation, we developed a nomogram that integrated the 
m6A-RPS with key clinical variables for individualized survival prediction.​​ Genomically, the high-risk 
group exhibited higher tumor mutation burden and mutation rates in hub regulators. Functional 
enrichment analyses implicated dysregulation in critical pathways like Wnt signaling, DNA replication, 
and cell cycle. Crucially, m6A-RPS stratified the tumor immune microenvironment: high-risk patients 
displayed an immunosuppressive phenotype characterized by enriched Th2 cells and higher potential 
for immune escape, whereas low-risk patients showed enhanced cytotoxic immune infiltration and 
elevated immunophenoscores, suggesting greater potential responsiveness to immune checkpoint 
inhibitors. Differential sensitivity to chemotherapy agents was also predicted. Finally, we constructed 
a regulatory network linking miRNAs, hub regulators, and 2 downstream target genes. Our study 
establishes m6A-RPS as a robust tool for prognosis prediction and immune landscape assessment 
in HCC, offering significant potential to guide personalized therapeutic strategies, particularly 
immunotherapy selection.
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HCC	� hepatocellular carcinoma
m6A	� N6-Methyladenosine
m6A-RPS	� m6A regulators-based prognostic signature
TME	� tumor microenvironment
TIME	� tumor immune microenvironment
TCGA	� The Cancer Genome Atlas
GEO	� Gene Expression Omnibus
ICGC	� International Cancer Genome Consortium
TPM	� transcripts per million
PPI	� protein–protein interaction
OS	� overall survival
PFI	� progression-free interval
HR	� hazard ratio
95% CI	� 95% confidence intervals
PCA	� principal component analysis
CDF	� cumulative distribution function
LASSO	� least absolute shrinkage and selection operator
ROC	� receiver operating characteristic
C-statistics	� Harrell’s c statistic
DCA	� decision curve analysis
TMB	� tumor mutation burden
DEGs	� differentially expressed genes
logFC	� log2-fold change
GSEA	� Gene Set Enrichment Analysis
MSigDB	� Molecular Signatures Database
GO	� Gene Ontology
NES	� normalized enrichment score
FDR	� false discovery rate
ssGSEA	� single-sample gene set enrichment analysis
GSVA	� gene set variation analysis
TISCH	� Tumor Immune Single-Cell Hub
GDSC	� Genomics of Drug Sensitivity in Cancer
IPS	� immunophenoscore
ICIs	� immune checkpoint inhibitors
TCIA	� The Cancer Immunome Atlas
TIDE	� Tumor Immune Dysfunction and Exclusion
AUC	� area under the curve
MCM	� minichromosome maintenance

Hepatocellular carcinoma (HCC) represents a significant global health challenge and is a leading cause of 
cancer-related mortality. The disease imposes a substantial economic burden on healthcare systems while 
severely compromising patients’ quality of life. Current therapeutic strategies for HCC, including surgical 
resection, liver transplantation, and systemic therapies, often yield unsatisfactory outcomes due to late-stage 
diagnosis and the tumor’s inherent resistance to conventional treatments1,2. Furthermore, the heterogeneity of 
HCC complicates treatment outcomes, as existing prognostic models fail to adequately account for the complex 
tumor microenvironment (TME) and molecular alterations3. Recent evidence highlights the potential of N6-
methyladenosine (m6A) modification regulators as prognostic indicators across cancers, underscoring the need 
to comprehensively characterize their roles in HCC4.

m6A RNA modification represents the most prevalent epigenetic RNA alteration in eukaryotic cells. It 
regulates diverse biological pathways by influencing RNA transcription, processing, splicing, degradation, 
and translation. This dynamically reversible modification involves three regulatory factors: methyltransferases 
(“Writers”), demethylases (“Erasers”), and methylation recognition proteins (“Readers”), which collectively 
mediate m6A modification, demethylation, and functional recognition. Dysregulation of m6A modification 
is closely linked to tumorigenesis and cancer progression5. For example, METTL3 upregulation in gastric 
cancer stabilizes STAT5A mRNA via m6A modification, promoting tumor progression, metastasis, and 
poor prognosis6. METTL14 acts as a tumor suppressor in colorectal cancer by inhibiting glycolysis and cell 
proliferation through m6A-dependent regulation of ATF27. In head and neck squamous cell carcinoma, 
ALKBH5 upregulation promotes immune escape by suppressing RIG-I-mediated IFNα secretion via the IKKε/
TBK1/IRF3 pathway8. YTHDF2 promotes hepatocellular carcinoma progression by enhancing immune evasion 
and angiogenesis through the ETV5/PD-L1/VEGFA axis, making it a potential therapeutic target9. It has also 
been reported that HNRNPC promotes glioma progression by stabilizing IRAK1 mRNA in an m6A-dependent 
manner and activating the MAPK signaling pathway10. Critically, m6A modifications influence multiple aspects 
of host immunity, modulate TME immune infiltration, and regulate tumor immunotherapy-related genes11,12. 
While these studies establish m6A correlations with diverse malignancies, their mechanistic roles in HCC 
remain inadequately elucidated. This knowledge gap highlights the need to explore m6A regulators as potential 
biomarkers for HCC patient stratification and therapeutic decision-making.

In this study, we employed comprehensive bioinformatics approaches to investigate m6A methylation 
regulators in HCC. We aimed is to establish a novel m6A regulators-based prognostic signature (m6A-RPS) 
model. This model provides insights into the prognostic significance of m6A regulators, their interactions with 
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the tumor immune microenvironment (TIME), associations with oncogenic pathways, immune infiltration 
patterns, and treatment responses. We propose that m6A-RPS serves as a valuable tool for predicting HCC 
patient outcomes and guiding therapeutic strategies.

Materials and methods
Data collection
Gene expression profiles and corresponding clinical information were obtained from The Cancer Genome Atlas 
(TCGA) database (https://portal.gdc.cancer.gov), Gene Expression Omnibus (GEO) database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​
i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​d​s​​​​​)​, and International Cancer Genome Consortium (ICGC) database (https://dcc.icgc.org). For 
TCGA-LIHC and ICGC-LIRI-JP datasets, only patients with complete follow-up and survival information were 
included, retaining 365 and 240 patients, respectively.

All datasets underwent standardized preprocessing: microarray data were log2-transformed, and RNA-seq 
data were converted to log2 (TPM + 1). Expression matrixes for 21 m6A regulators, including writers (METTL3, 
METTL14, METTL16, RBM15, RBM15B, WTAP, VIRMA, and ZC3H13), erasers (FTO, ALKBH5, and 
ALKBH3), and readers (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3, 
HNRNPA2B1, and HNRNPC), were extracted from TCGA, GEO and ICGC based on previous publications.

The study used anonymized, published data requiring no ethics committee approval.

Expression, correlation, and interaction analysis
The differential mRNA expression of 21 m6A regulators between HCC tissues and adjacent normal tissues from 
TCGA-LIHC dataset (50 normal, 374 tumor) were assessed using Wilcoxon rank-sum test via R package “ggplot2”, 
“stats”, and “car”. Additionally, Spearman correlation analysis was performed to evaluate the relationships among 
these regulators. Protein-protein interaction (PPI) networks were constructed via STRING database ​(​​​h​t​t​p​s​:​/​/​c​n​
.​s​t​r​i​n​g​-​d​b​.​o​r​g​/​​​​​)​.​​

Survival analysis
Overall survival (OS) and progression-free interval (PFI) were evaluated using Kaplan-Meier curves, and 
statistical significance between groups was evaluated with the log-rank test. Univariate and multivariate Cox 
regression analyses were performed to identify independent prognostic factors. Prior to multivariate modeling, 
missing values were addressed following univariate analysis. Hazard ratio (HR) along with their 95% confidence 
intervals (95% CI) were calculated to quantify the magnitude and precision of the associations.

Consensus clustering based on m6A regulators
Molecular subtypes were classified via unsupervised hierarchical clustering of TCGA-LIHC dataset using the 
R package “ConsensusClusterPlus”. The parameters were set as follows: maximum number of clusters = 6, 80% 
of total samples were resampled 500 times, clusterAlg = km, distance = euclidean, innerLinkage = complete. 
Clustering heatmaps were generated using the R package “pheatmap”. Principal component analysis (PCA), 
cumulative distribution function (CDF), and CDF delta area were used to determine the optimal number of 
clusters (k = 2 to 6). Finally, Kaplan-Meier survival analysis was performed to compare OS among the different 
molecular subtypes.

Construction and validation of prognostic signature
Univariate Cox regression analysis was conducted to evaluate the correlation of m6A regulators with OS in 
TCGA-LIHC dataset, and factors with P < 0.05 were subsequently included in the subsequent analysis.

Then, least absolute shrinkage and selection operator (LASSO) regression analysis was performed on TCGA-
LIHC dataset via the R package “glmnet” for dimensionality reduction and identification of representative 
indicators. The optimal regularization coefficient λ was determined using 10-fold cross-validation, with partial 
likelihood deviance as the metric, and a fixed random seed was used to ensure reproducibility. Significant factors 
that incorporated into the model were referred to as hub m6A regulators. The expression patterns of these 
hub regulators were further validated in three independent GEO datasets: GSE55092 (91 normal, 49 tumor), 
GSE102079 (105 normal, 152 tumor), and GSE144269 (70 normal, 70 tumor).

A prognostic signature, termed m6A-RPS, was constructed using the formula: 
m6A − RPS score =

∑ n

i
Coef i ∗ hub m6A regulatori. This model was used to construct m6A-RPS 

to predict the prognosis of HCC patients. HCC patients were further divided into low- and high-risk groups 
according to the median value of m6A-RPS scores.

The predictive performance of m6A-RPS was evaluated by Kaplan-Meier curves and time-dependent receiver 
operating characteristic (ROC) analysis. Clinical utility was evaluated via decision curve analysis (DCA). 
Furthermore, the stability and reliability were validated using ICGC-LIRI-JP dataset.

Construction of prognostic nomogram
Independent prognostic factors were identified using multivariate Cox regression analysis, HR with corresponding 
95% CI were calculated. Subsequently, a nomogram incorporating m6A-RPS and significant clinical parameters 
were developed to facilitate individualized survival prediction. The predictive performance of the nomogram 
was assessed in terms of discrimination and calibration. Discrimination was evaluated using Harrell’s c statistic 
(C-statistics), where a value of 0.5 indicates no discriminative ability beyond chance, whereas a value of 1.0 
represents perfect discrimination. Calibration was visualized via calibration curves, which compare predicted 
probabilities with observed outcomes. To ensure robustness and mitigate overfitting, the calibration curves were 
generated using 800 bootstrap resamples with each drawing 100 samples. A nomogram with perfect calibration 
if the dots on the calibration curves would be close to the diagonal line.
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Genomic alterations and functional enrichment analysis
Tumor Mutation Burden (TMB), which reflects the total number of somatic mutations in tumor cells, serves as 
a potential biomarker for predicting response to immunotherapy. To investigate the relationship between m6A-
RPS and TMB, we analyzed somatic mutation data from TCGA-LIHC dataset. TMB was calculated using the R 
package “maftools”.

Genetic alteration data for hub m6A regulators were obtained from cBioPortal database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​c​b​i​o​
p​o​r​t​a​l​.​o​r​g​/​​​​​) based on the TCGA-LIHC dataset. The names of hub m6A regulators were entered into the query 
interface, and mutation profiles were extracted from the “OncoPrint” and “Cancer Types Summary” modules 
available in cBioPortal.

Additionally, we performed functional annotation of differentially expressed genes (DEGs) between low- and 
high-risk groups using Metascape platform (https://metascape.org/), an online tool designed for ​h​i​g​h​-​t​h​r​o​u​g​h​
p​u​t functional genomics analysis. DEGs were identified by comparing gene expression profiles between the two 
risk groups with the “limma” R package, using a threshold of adjusted P < 0.05 and |log2-fold change (logFC)| >2. 
The expression patterns of these DEGs were visualized in a heatmap generated with the “pheatmap” R package.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) was conducted using the R package “clusterProfiler” with the following 
parameter settings: nPerm = 10,000, minGSSize = 10, maxGSSize = 500, and p-value-Cutoff = 0.05. The DEGs 
identified between the low- and high-risk groups were used as the input for this analysis. GSEA evaluates 
whether a predefined gene set shows statistically significant and concordant differences between two biological 
states. The predefined gene sets were obtained from Molecular Signatures Database (MSigDB) ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​s​
e​a​-​m​s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​/​i​n​d​e​x​.​j​s​p​​​​​)​. Specifically, the C2.Cp.v7.2.symbols.gmt was used as the reference gene 
set for KEGG and Reactome pathways, while the C5. All.v7.2.symbols.gmt collection served as the reference for 
Gene Ontology (GO) terms.

The analysis ranked all genes based on their correlation with the expression patterns of the DEGs. Enriched 
pathways were identified according to the normalized enrichment score (NES), adjusted P-value, and false 
discovery rate (FDR).

Immunological function analysis
We quantified the proportions of immune infiltrating cells in tumor samples using transcriptomic data from 
TCGA-LIHC dataset. The relative abundances of 24 immune cell types within TIME were assessed using 
single-sample gene set enrichment analysis (ssGSEA) implemented in the gene set variation analysis (GSVA) 
R package. Additionally, the deconvolution algorithm CIBERSORT was applied to estimate the abundances of 
specific leukocyte subsets based on the HCC gene expression profiles. Differences in immune infiltration levels 
between the low- and high-risk groups were evaluated using the Wilcoxon rank-sum test.

Furthermore, we calculated Spearman’s rank correlation coefficients to examine associations between 
hub m6A regulators and various immune cells, including DC cells, B cells, T cells, cytotoxic cells, NK cells, 
macrophages, neutrophils, and related subtypes.

Single-cell RNA sequencing data in.h5 format, along with corresponding annotation files, were downloaded 
from Tumor Immune Single-Cell Hub (TISCH) database (https://tisch.comp-genomics.org/home/). We 
obtained 2 independent datasets of HCC (LIHC-GSE140228-Smartseq2 and LIHC-GSE98638-Smartseq2). Data 
processing and analysis were conducted using the MAESTRO and Seurat frameworks in R. Cell subpopulations 
were re-clustered utilizing the UMAP projection method.

Analysis of chemotherapy and immunotherapy efficacy
To evaluate the chemotherapeutic response in HCC patients, we predicted drug sensitivity (half-maximal 
inhibitory concentration, IC₅₀) using the R package “oncoPredict”, based on data from Genomics of Drug 
Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/).

The association between m6A-RPS and immune checkpoint genes was assessed using Spearman correlation 
analysis.

To investigate the relationship between m6A-RPS and the immunophenoscore (IPS), which reflects the tumor 
immune microenvironment and predicts response to immune checkpoint inhibitors (ICIs), we retrieved IPS 
data from The Cancer Immunome Atlas (TCIA) database. Higher IPS values are indicative of a more favorable 
immune profile and potentially better response to immunotherapy.

Additionally, the Tumor Immune Dysfunction and Exclusion (TIDE) score (https://tide.dfci.harvard.edu/) 
was calculated to estimate the likelihood of immune escape and immunotherapy response. Elevated TIDE scores 
suggest a higher potential for immune evasion and thus poorer response to ICIs.

Construction of miRNA-hub m6A regulators-m6A target gene regulatory network
To identify upstream miRNAs potentially associated with key m6A regulators, we acquired predicted miRNA–
target interactions from the starBase database (https://starbase.sysu.edu.cn/), which incorporates multiple 
prediction algorithms including PITA, miRmap, microT, miRanda, PicTar, and TargetScan. Only miRNAs 
predicted by at least one of these tools were retained for subsequent analyses.

Furthermore, a multi-step bioinformatic approach was applied to identify potential m6A-related target 
genes. First, DEGs between HCC and normal tissues were identified from four independent datasets: TCGA-
LIHC (50 normal, 374 tumor), ICGC-LIRI-JP (202 normal, 240 tumor), GSE14520 (220 normal, 225 tumor), 
and GSE76427 datasets (52 normal, 115 tumor). DEGs were selected using thresholds of adjusted P < 0.05 and 
|logFC| > 1, and visualized via volcano plots. Common DEGs across all datasets were then identified using Venn 
diagrams. These overlapping DEGs were further refined based on their correlation with hub m6A regulators, 
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requiring a Spearman correlation coefficient of (|R| > 0.4 with P < 0.05). The resulting gene set was considered as 
candidate m6A target genes coregulated by key m6A regulators.

Based on these results, we constructed a comprehensive regulatory network for HCC depicting interactions 
between miRNAs and hub m6A regulators, as well as between hub m6A regulators and their potential m6A 
target genes, based on co-expression patterns.

Statistical analysis
All analyses were performed using R software version 4.3.1 (Vienna, Austria). Statistical significance was 
set at 0.05 for two-tailed tests. To control the FDR, adjusted P-values were calculated using the Benjamini–
Hochberg procedure, with a significance threshold set at < 0.05. Normality of the data was evaluated with the 
Kolmogorov–Smirnov test. Data visualization was performed using the ggplot2 package. Group comparisons of 
gene expression profiles and clinical characteristics were carried out using the Chi-square test, Fisher’s exact test, 
and Wilcoxon rank-sum test, as appropriate.

Results
Expression, correlation, and interaction of m6A regulators in HCC
Analysis of TCGA-LIHC data revealed significant differential expression of m6A regulators between HCC tissues 
and adjacent normal tissues. The majority of these regulators were significantly upregulated in HCC samples, 
except for ZC3H13 (Fig. 1A). Spearman correlation analysis indicated strong positive correlations among the 
m6A regulators, a finding further supported by a robust protein-protein interaction (PPI) network (Fig. 1B, C).

Consensus clustering based on m6A Regulators​
Based on the expression profiles of 20 differentially expressed m6A regulators, the TCGA-LIHC cohort was 
categorized into distinct clusters using unsupervised consensus clustering. We evaluated cluster numbers (k) 
ranging from 2 to 6 and generated consensus cumulative distribution function (CDF) curves for each k value 
(Fig. 2A-C). The optimal number of clusters was determined to be k = 2, as it achieved the maximum inter-
cluster discrimination with minimal overlap. Accordingly, the patients were stratified into Cluster 1 (n = 237) 
and Cluster 2 (n = 128). PCA demonstrated clear separation between the two clusters (Fig.  2D). Expression 
analysis revealed higher levels of m6A regulators in Cluster 2 compared to Cluster 1 (Fig. 2E). Furthermore, 
Kaplan-Meier survival analysis indicated that patients in Cluster 2 had significantly poorer OS (HR = 1.620 
(1.143–2.297), P = 0.007, Fig.  2F). These results suggest that m6A methylation modification patterns have 
potential implications for molecular subtyping and prognostic assessment in HCC.

Screening of hub m6A regulators and prognostic signature construction
To further investigate m6A regulator-mediated methylation modification patterns in HCC, a novel m6A-RPS 
model was constructed using data from 365 TCGA-LIHC patients. First, univariate Cox regression analysis 
identified 11 m6A regulators significantly associated with OS (P < 0.05, Fig. 3A). Hub m6A regulators were then 
identified using LASSO Cox regression analysis. Five regulators, VIRMA, YTHDF1, YTHDF2, YTHDC1 and 
IGF2BP3, were included in the subsequent m6A-RPS model construction. The optimal regularization parameter 
λ (0.01411) was determined based on minimum partial likelihood deviance (Fig. 3B, C). The m6A-RPS score was 
calculated according to the following formula: (VIRMA * 0.129215664) + (YTHDF1 * 0.461841947) + (YTHDF2 
* −0.232924755) + (YTHDC1 * 0.066869673) + (IGF2BP3 * 0.124743891). Patients were stratified into low- 
and high-risk groups based on the median m6A-RPS score. Baseline clinical characteristics for each group are 
summarized in Table 1. We found that m6A-RPS was significantly associated with OS (P<0.001), PFI (P<0.001), 
histologic grade (P<0.001), vascular invasion (P = 0.040), T stage (P<0.001), M stage (P = 0.008), pathologic stage 

Fig. 1.  Expression of 21 m6A regulators in HCC. (A) The expression level of 21 m6A regulators in HCC from 
TCGA-LIHC dataset. (B) Co-expressions among 20 differentially expressed m6A regulators in HCC. (C) PPI 
network. ns P ≥ 0.05; * P < 0.05; ** P < 0.01 and *** P < 0.001
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(P < 0.001), and AFP level (P = 0.004). The expression levels of hub m6A regulators were validated in GSE55092, 
GSE102079, and GSE144269 datasets (all P < 0.05, Fig. 3D). Survival curves and ROC analyses for individual 
regulators are presented in Fig. S1.

Independent prognostic value of the m6A-RPS model
We evaluated the prognostic significance of m6A-RPS in patients with HCC. The distribution of risk scores, 
expression heatmap for the m6A-RPS model, and survival status of each patient are shown in Fig. 4A. Notably, hub 
m6A regulators were significantly up-regulated in the high-risk group. Kaplan–Meier survival analysis revealed 
that patients in the high-risk group had significantly poorer OS (HR = 1.747 (1.232–2.476), P = 0.002) and PFI 
(HR = 1.723 (1.281–2.316), P < 0.001) compared to those in the low-risk group (Fig.  4B, C). The prognostic 
significance of m6A-RPS was consistently observed across various clinical subgroups, including patients with 
age ≥ 60 years, male, stage I and II, T1 and 2, N0, M0, histologic grade G1 and G2, with the high-risk group 
exhibiting significantly poorer survival in all these strata (all P < 0.05, Fig. 5A-H). Time-dependent ROC curve 
analysis demonstrated the predictive accuracy of m6A-RPS, with area under the curve (AUC) values of 0.741, 
0.674, and 0.685 for 1-, 2-, and 3-year OS, respectively (Fig. 4D). Furthermore, the prognostic performance of 
m6A-RPS was validated in ICGC-LIRI-JP dataset (Fig. 4E-G, Table S1).

Next, multivariate Cox regression analysis confirmed that m6A-RPS serves as an independent prognostic 
factor in HCC (HR = 2.849 (1.819–4.461), P < 0.001), along with TNM stage (Table 2). Based on these findings, 
we developed a nomogram integrating these variables to estimate 1-, 2-, and 3-year OS probabilities in HCC 

Fig. 3.  Construction of a novel m6A regulators-based prognostic signature. (A) Forest map showing 11 
prognostic m6A regulators identified using univariate Cox regression. (B, C) LASSO coefficient profiles and 
ten-fold cross-validation for tuning parameter selection. (D) Validation of expression levels of hub m6A 
regulators in GSE55092, GSE102079 and GSE144269 datasets. ns P ≥ 0.05; * P < 0.05; ** P < 0.01 and *** 
P < 0.001

 

Fig. 2.  Consensus Clustering and survival analysis. (A) Consensus clustering matrix when k = 2. (B) 
Consensus CDF delta area curves. (C) Relative alterations in the area under CDF curve. (D) PCA plot. (E) 
Heatmap of correlations between 21 m6A regulators with clusters. (F) Kaplan-Meier survival analysis between 
different clusters
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Characteristic Low-risk group (n = 182) High-risk group (n = 183) P value

Age 0.082

< 60 74 (40.7%) 91 (49.7%)

≥ 60 108 (59.3%) 92 (50.3%)

Gender 0.602

Male 125 (68.7%) 121 (66.1%)

Female 57 (31.3%) 62 (33.9%)

Race 0.260

White 96 (55.5%) 86 (47.3%)

Asian 69 (39.9%) 86 (47.3%)

Black or african american 7 (4.0%) 10 (5.5%)

American indian or alaska native 1 (0.6%) 0 (0%)

Family cancer history 0.158

No 96 (60.8%) 108 (68.4%)

Yes 62 (39.2%) 50 (31.6%)

m6A-RPS score, median (IQR) 4.13 (3.96, 4.28) 4.70 (4.56, 4.97) < 0.001

OS (days), median (IQR) 659 (395, 1354) 469 (262, 899) < 0.001

PFI (days), median (IQR) 475 (226, 828) 293 (106, 574) < 0.001

Histologic grade < 0.001

G1 32 (17.8%) 23 (12.8%)

G2 105 (58.3%) 70 (38.9%)

G3 39 (21.7%) 79 (43.9%)

G4 4 (2.2%) 8 (4.4%)

Child-Pugh grade 0.303

A 122 (92.4%) 94 (88.7%)

B 9 (6.8%) 12 (11.3%)

C 1 (0.8%) 0 (0%)

Fibrosis ishak score 0.257

0 - No fibrosis 44 (37.9%) 30 (32.3%)

1,2 - Portal fibrosis 15 (12.9%) 16 (17.2%)

3,4 - Fibrous speta 12 (10.3%) 15 (16.1%)

5 - Nodular formation and incomplete cirrhosis 3 (2.6%) 6 (6.5%)

6 - Established cirrhosis 42 (36.2%) 26 (28.0%)

Residual tumor 0.050

R0 165 (92.7%) 155 (86.1%)

R1 7 (3.9%) 10 (5.6%)

R2 1 (0.6%) 0 (0%)

RX 5 (2.8%) 15 (8.3%)

Vascular invasion 0.040

No 116 (71.2%) 89 (60.1%)

Yes 47 (28.8%) 59 (39.9%)

T stage < 0.001

T1 109 (60.6%) 71 (38.8%)

T2 33 (18.3%) 58 (31.7%)

T3 33 (18.3%) 45 (24.6%)

T4 5 (2.8%) 8 (4.4%)

TX 0 (0%) 1 (0.5%)

N stage 0.076

N0 116 (63.7%) 132 (72.5%)

N1 1 (0.5%) 3 (1.6%)

NX 65 (35.7%) 47 (25.8%)

M stage 0.008

M0 120 (65.9%) 143 (78.1%)

M1 3 (1.6%) 0 (0%)

MX 59 (32.4%) 40 (21.9%)

Pathologic stage < 0.001

Stage I 104 (60.8%) 66 (38.8%)

Continued
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patients (C-index: 0.686 (0.659–0.712)). As shown in Fig. 6A, each selected variable in the nomogram is assigned 
a corresponding score based on its prognostic weight. The survival probability for an individual can be identified 
on the points scale after adding up the total scores. Calibration curves demonstrated good agreement between 
the model’s predicted probabilities and the observed outcomes, as the bias-corrected line closely followed the 
ideal diagonal across most of the probability range, indicating well-calibrated predictions (Fig. 6B). Moreover, 
the clinical usefulness of m6A-RPS model was evaluated using DCA by quantifying the net benefit at different 
threshold probabilities (Fig.  6C). As shown in the results, using the m6A-RPS model to identify high-risk 

Fig. 5.  Association between the prognosis value of m6A-RPS and clinicopathologic characteristics. Kaplan–
Meier survival analysis showed that high expression of m6A-RPS was associated with poor OS in (A) ≥ 60 years 
old, (B) male, (C) asian, (D) histologic grade G1 and G2, (E) stage Ⅰ and Ⅱ, (F) stage T1 and T2, (G) stage 
N0, and (H) stage M0

 

Fig. 4.  Prognostic value of m6A-RPS in HCC. (A, E) The analysis of m6A-RPS risk scores distribution in 
TCGA-LIHC and ICGC-LIRI-JP datasets. (B, F) OS curve of m6A-RPS in TCGA-LIHC and ICGC-LIRI-JP 
datasets. (C) PFI curve of m6A-RPS in TCGA-LIHC dataset. (D, G) Time-dependent ROC curve of m6A-RPS 
in TCGA-LIHC and ICGC-LIRI-JP datasets. (H) The expression analysis of m6A-RPS in patients with distinct 
patterns of recurrence in TCGA-LIHC dataset. ns P ≥ 0.05; * P < 0.05; ** P < 0.01 and *** P < 0.001

 

Characteristic Low-risk group (n = 182) High-risk group (n = 183) P value

Stage II 31 (18.1%) 53 (31.2%)

Stage III 32 (18.7%) 51 (30%)

Stage IV 4 (2.3%) 0 (0%)

AFP (ng/ml), median (IQR) 10.0 (4.0, 58.0) 26.5 (5.0, 1373.0) 0.004

Albumin (g/dl), median (IQR) 3.95 (3.50, 4.30) 4.10 (3.50, 4.38) 0.276

Creatinine (mg/dl), median (IQR) 0.90 (0.70, 1.10) 0.90 (0.70, 1.10) 0.577

Prothrombin time (s), median (IQR) 1.10 (1.00, 9.50) 1.10 (1.00, 8.85) 0.136

Platelet count, median (IQR) 208.0 (157.5, 292.0) 213.5 (166.0, 303.75) 0.497

Table 1.  Baseline characteristics of patients with HCC in the low- and high-risk groups IQR, interquartile 
range
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individuals demonstrates a higher clinical net benefit when threshold probabilities range approximately between 
0 and 0.5.

It is well known that the time interval between resection for HCC and recurrence has been reported to 
affect the survival time after surgery. Distinct patterns of recurrence complicate individualized pre-resection 
assessment of risk of recurrence. In this study, 31% of patients experienced recurrence within one year. Those 
with early recurrence (within one year) exhibited significantly higher m6A-RPS scores (P < 0.001, Fig.  4H), 
underscoring the potential utility of m6A-RPS as a biomarker for identifying high-risk individuals who might 
benefit from more aggressive treatment or surveillance strategies.

Taken together, all these results suggested that elevated m6A-RPS scores are consistently associated with 
unfavorable prognosis in HCC patients, and may serve as a valuable tool for risk stratification and treatment 
planning.

Fig. 6.  Construction and validation of nomogram based on m6A-RPS. (A) The nomogram for predicting 
survival probability at 1-, 2- and 3-years in HCC patients. (B) Calibration curves of the nomogram. (C) 
Decision curve analysis of the nomogram

 

Characteristics Total(N)

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 365

≤ 60 173 Reference

> 60 192 1.248 (0.880–1.768) 0.214

Gender 365

Male 246 Reference

Female 119 1.225 (0.860–1.746) 0.260

Histologic gradea 360

G1 + G2 230 Reference

G3 + G4 130 1.120 (0.781–1.606) 0.539

Pathologic stageb 341

Stage I 170 Reference Reference

Stage II 84 1.422 (0.871–2.322) 0.159 1.232 (0.751–2.021) 0.409

Stage III + IV 87 2.764 (1.823–4.190) < 0.001 2.403 (1.575–3.667) < 0.001

m6A-RPS score 365 3.248 (2.170–4.861) < 0.001 2.849 (1.819–4.461) < 0.001

Table 2.  Univariate and multivariate Cox proportional hazard analyses of m6A-RPS
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Genomic alterations and functional enrichment
To investigate the potential association between m6A-RPS and specific genomic features, we obtained tumor 
somatic mutation data from TCGA-LIHC dataset. Analysis revealed that the TMB-high group exhibited 
significantly higher m6A-RPS scores compared to the low-TMB group (P < 0.05, Fig. 7A).

We further characterized the molecular profiles of m6A-RPS subgroups by analyzing gene mutation patterns 
using cBioPortal database. As shown in Fig. 7B and C, the high-risk group showed a markedly higher mutation 
rate in hub m6A regulators. Specifically, among 183 HCC patients in the high-risk group, 45 (24.6%) carried 
mutations in these regulators, compared to only 26 of 182 patients (14.3%) in the low-risk group. The most 
frequently mutated regulators in the high-risk group were VIRMA (17%), YTHDF1 (4%), and IGF2BP3 (4%). 
Amplification was the predominant type of genetic alteration, followed by missense mutations.

To elucidate the biological pathways associated with the m6A-RPS subgroups, we identified DEGs between 
low- and high-risk groups. With |logFC| >2 and adjusted P < 0.05 set as the cut-off criteria, a total of 104 DEGs 
between the low- and high-risk groups were identified (80 of 104 genes were highly expressed and 24 genes were 
lowly expressed). The distribution of these DEGs was visualized via a volcano plot (Fig. 8A), and a heatmap 
demonstrated distinct expression patterns between the two risk groups (Fig.  8B). Functional enrichment 
analyses were performed to interpret the biological implications of these DEGs. GO analysis indicated that 
the biological processes were primarily associated with regulation of the Wnt signaling pathway, mitotic cell 
cycle, metanephros development, mRNA transport, protein autophosphorylation, etc. (Fig. 8C). For molecular 
function, the most enriched terms included cytoskeletal motor activity, protein serine kinase activity, etc. 
(Fig.  8D). Cellular component analysis highlighted enrichment in actin-based cel projection, cullin-RING 
ubiquitin ligase complex, etc. (Fig. 8E). KEGG pathway analysis further identified the Wnt signaling pathway 
and motor proteins as significantly enriched (Fig. 8F).

Molecular characteristics of different m6A-RPS subgroups
To further investigate the functional profiles and biological pathways associated with different m6A-RPS 
subgroups in HCC progression, GSEA was conducted between the low- and high-risk groups. Using the MSigDB 
Collection, we identified the most significantly enriched signaling pathways based on NES, with a FDR < 0.05 
and adjusted P < 0.05 as significance thresholds.

Fig. 8.  Enrichment analysis of DEGs between low- and high-risk groups. (A) The volcano plot of DEGs 
between low- and high-risk groups. (B) Heatmap of expression levels for DEGs between low- and high-risk 
groups. Functional enrichment analysis in (C) GO Biological Process, (D) GO Molecular Function, (E) GO 
Cellular Component, (F) KEGG

 

Fig. 7.  TMB and Genomic alterations of m6A-RPS in HCC. (A) The correlation between m6A-RPS scores and 
TMB. (B, C) Mutation status of low- and high-risk groups. ns P ≥ 0.05; * P < 0.05; ** P < 0.01 and *** P < 0.001
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The high-risk group exhibited significant enrichment in gene sets related to oncogenic processes, including 
the retinoblastoma gene in cancer, DNA replication and structural maintenance (e.g., DNA strand elongation), 
gastric cancer network 1, MCM (minichromosome maintenance) and Aurora B pathway involved in cell cycle 
regulation (Fig. 9A, C). Conversely, the low-risk group was primarily enriched in metabolic pathways, including 
the urea cycle, bile acid metabolism, fatty acid metabolism, epoxygenase P450 pathway, oxidoreductase activity, 
and aromatase activity, etc. (Fig. 9B, D).

These findings suggest that m6A-RPS is closely associated with dysregulation of these functional pathways 
and may play a pivotal role in the pathophysiological mechanisms underlying the high-risk subgroup. This study 
provides valuable insights and directions for further exploration of high-risk HCC characteristics and potential 
therapeutic targets.

Association of m6A-RPS with immune infiltration
The TIME plays a critical role in tumor progression and influences the prognosis of patients with HCC. To 
further investigate the potential role of m6A-RPS in TIME, we calculated infiltration score of 24 immune 
cell types in each HCC patient using the ssGSEA and CIBERSORT method. Significant differences in most 
infiltrating immune cell levels were revealed across the two subtypes. Specifically, the high-risk group exhibited 
higher infiltration of NK CD56bright cells, T helper cells, and Th2 cells, whereas the low-risk group showed 
greater association with B cells, CD8 + T cells, cytotoxic cells, DC cells, neutrophils, NK CD56dim cells, pDC 
cells, T cells, Th17 cells, and macrophages (all P < 0.05, Fig. 10A, B). These results indicate that m6A-RPS plays a 
key role in immune infiltration of HCC. Furthermore, Spearman correlation analysis was performed to evaluate 

Fig. 10.  Correlation between m6A-RPS and immune infiltration. The immune cell infiltration analysis based 
on the (A) ssGSEA and (B) CIBERSORT algorithm for hub m6A regulators. The immune cell infiltration 
analysis based on the (C) ssGSEA and (D) CIBERSORT algorithms in low- and high-risk groups. ns P ≥ 0.05; * 
P < 0.05; ** P < 0.01 and *** P < 0.001

 

Fig. 9.  Enrichment plots from GSEA. (A-D) GSEA describing the relationship of m6A-RPS with different 
kinds of tumors and signal transduction pathways
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the associations between the expression levels of hub m6A regulators and immune cell infiltration abundances 
(Fig. 10C, D).

We also explored the relationship between immune cell distribution and hub m6A regulator expression using 
single-cell RNA sequencing data. In the LIHC-GSE140228-Smartseq2 dataset, hub m6A regulators were highly 
expressed in B cells, CD4 + Tconv cells, CD8 + Tex cells, Tprolif cells, monocytes, and macrophages (Fig. 11A-
C). A similar pattern of high expression in CD4 + Tconv cells, CD8 + Tex cells, Treg cells, and Tprolif cells was 
observed in the LIHC-GSE98638-Smartseq2 dataset (Fig. 11D-F).

Chemotherapy and immunotherapy efficacy analysis
While chemotherapy remains a cornerstone treatment for HCC, drug resistance frequently leads to therapeutic 
failure. To evaluate the relationship between m6A-RPS and chemosensitivity, we analyzed drug response data 
from GDSC database, focusing on the IC₅₀ values. Significant differences in estimated IC₅₀ were observed between 
the low- and high-risk groups stratified by m6A-RPS scores, providing a rationale for further investigation into 
personalized treatment strategies for HCC. Specifically, the high-risk group demonstrated increased sensitivity 
to 5-Fluorouracil, Lapatinib, and Cediranib, but reduced sensitivity to Cisplatin, Irinotecan, Gemcitabine, and 
Oxaliplatin (all P < 0.001). No significant difference in sensitivity to sorafenib was detected between the two 
groups (Fig. 12A).

Given the crucial role of immune checkpoint genes in regulating immune system activity and facilitating 
tumor immune evasion, we further examined the correlation between m6A-RPS and key immune-oncology 
targets in HCC. The m6A-RPS was positively correlated with the expression of several critical immune 
checkpoints, including programmed cell death protein 1 (PD-1; PDCD1), programmed death ligand-1 (PD-
L1; CD274), cytotoxic T lymphocyte antigen-4 (CTLA-4), TIGIT, etc. (all P < 0.001, Fig.  12B), suggesting a 

Fig. 12. ​ Correlation of m6A-RPS with chemotherapy and immunotherapy efficacy. (A) Assessment of 
response to common chemotherapy drugs in patients with low- and high-m6A-RPS scores. (B) The heat map 
of the 10 immune checkpoints correlated to m6A-RPS. (C, D) TCIA and TIDE scores discrepancy between 
low- and high-risk groups. ns P ≥ 0.05; * P < 0.05; ** P < 0.01 and *** P < 0.001

 

Fig. 11. ​  Analysis of TIME in HCC with different levels of hub m6A regulators using scRNA-seq. The UMAP 
plots of single-cell clustering in the (A) LIHC-GSE140228-Smartseq2 and (D) LIHC-GSE98638-Smartseq2 
datasets, where different colors represent different types of cells. The UMAP plots of the expression distribution 
of m6A regulators in different cells in the (B) LIHC-GSE140228-Smartseq2 and (E) LIHC-GSE98638-
Smartseq2 datasets, where different colors represent expression abundance. The darker the color, the lower 
the expression of m6A regulators in the cell, and the brighter the color, the higher the expression of m6A 
regulators in the cell. The violin plots of the expression abundance of m6A regulators in different cells in the 
(C) LIHC-GSE140228-Smartseq2 and (F) LIHC-GSE98638-Smartseq2 datasets
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greater potential for response to immunotherapy in the low-risk group. Using TCIA database, we also assessed 
the association between m6A-RPS and IPS. As shown in Fig.  12C, both IPS-CTLA4 and PD-1 scores were 
significantly higher in the low-risk group (all P < 0.05), indicating enhanced immunogenicity and a more 
favorable microenvironment for immune checkpoint inhibition in these patients. Additionally, TIDE scores, 
derived from the expression levels of immunotherapy biomarkers, were calculated to estimate the likelihood of 
immune escape and immunotherapy response. The results revealed a stronger immune escape capacity in the 
high-risk group, which correlated with a poorer response to immunotherapy (P < 0.001, Fig. 12D).

Collectively, these findings underscore the important role of hub m6A regulators in mediating immune 
escape within TIME and their influence on response to immunotherapy in HCC.

miRNA-hub m6A regulators-m6A target gene regulatory network
To investigate the role of hub m6A regulators and their biological functions in the tumorigenesis and progression 
of HCC, we constructed a comprehensive regulatory network involving miRNAs, hub m6A regulators, and m6A 
target genes.

DEGs from each dataset were visualized using volcano plots (Fig. S2), revealing 2,657 DEGs in TCGA-LIHC 
dataset, 916 in ICGC-LIRI-JP dataset, 960 in GSE14520 dataset, and 242 in GSE76427 dataset. Venn diagram 
analysis identified 48 overlapping DEGs (Fig.  13A). These overlapping DEGs were further refined based on 
Spearman correlation analysis with the five hub m6A regulators (VIRMA, YTHDF1, YTHDF2, YTHDC1, and 
IGF2BP3). Specifically, 5 VIRMA-related genes, 8 YTHDF1-related genes, 4 YTHDF2-related genes, 2 YTHDC1-
related genes, and 5 IGF2BP3-related genes were analyzed for intersections, resulting in 2 genes coregulated by 
all five hub m6A regulators (Fig. 13B, Table S2).

Fig. 13.  Construction of miRNA-hub m6A regulator-m6A target gene regulatory network in HCC. (A) 
Intersection of the DEGs for TCGA-LIHC, ICGC-LIRI-JP, GSE14520, and GSE76427 datasets. Venn diagram 
analysis of (B) m6A target genes and (C) miRNAs associated with hub m6A regulators. (D) Cytoscape was 
used for construction of miRNAs-hub m6A regulators-m6A target genes regulatory network. Green, red and 
blue represent m6A target genes, hub m6A regulators and miRNAs, respectively
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Putative upstream miRNAs targeting these five hub m6A regulators were predicted using the starBase 
database, incorporating multiple prediction tools including PITA, miRmap, microT, miRanda, PicTar, and 
TargetScan. Venn diagram analysis of the predicted miRNAs (Fig. 13C) identified seven candidate miRNAs with 
common binding sites across databases, and their correlation coefficients are summarized in Table S3.

Based on these results, a tripartite regulatory network comprising 7 miRNAs, 5 hub m6A regulators, and 2 
m6A target genes was constructed and visualized using Cytoscape software (Fig. 13D).

Discussion
HCC, characterized by its high incidence and dismal prognosis, is a significant global health challenge. Its 
aggressive nature and resistance to conventional therapies are often linked to its development in the context 
of chronic liver diseases and a complex, heterogeneous molecular landscape13,14. Our study employed 
bioinformatics to systematically analyze the expression and prognostic significance of m6A RNA methylation 
regulators in HCC, leading to the development of a novel m6A-RPS model.

Our analysis revealed significant upregulation of most m6A regulators in HCC tumor tissues compared to 
adjacent normal tissues, aligning with their established roles in tumorigenesis across various cancers5. Spearman 
correlation and PPI network analyses underscored the interconnectedness and potential cooperative functions 
of these regulators in HCC progression, likely influencing key processes like proliferation, apoptosis, and 
metastasis15. Consensus clustering identified distinct HCC patient subgroups with differential survival outcomes, 
highlighting the biological complexity of HCC and the critical role of epitranscriptomic modifications16. This 
reinforces the need for patient stratification beyond traditional staging systems and positions m6A regulators as 
potential prognostic tools.

The prognostic significance of identified hub m6A regulators (VIRMA, YTHDF1, YTHDF2, YTHDC1, 
IGF2BP3) was leveraged to establish the ​m6A-RPS. This signature proved to be a robust predictor of OS and 
PFI. High m6A-RPS scores were significantly correlated with poorer prognosis and adverse clinical parameters, 
including higher histologic grade, vascular invasion, and advanced pathologic stage. Time-dependent ROC curve 
analyses confirmed its strong predictive accuracy over 1, 3, and 5 years. Furthermore, the integration of m6A-
RPS into a nomogram along with traditional clinical variables improved the accuracy of survival prediction. 
The nomogram demonstrated good calibration, which was confirmed through bootstrapping validation, 
supporting its potential clinical utility. Notably, approaches such as Platt scaling or isotonic regression are also 
valid calibration techniques, and our bootstrap-based calibration curves similarly serve to evaluate probability 
calibration. This tool shows significant promise for informing personalized treatment strategies, which is 
particularly important given the high risk of relapse within the first year after resection17–19.

Analysis of the somatic mutation landscape from TCGA data revealed a significantly higher mutation 
rate in hub m6A regulators within the high-risk group (24.6%) compared to the low-risk group (14.3%), with 
amplification and missense mutations being predominant. This disparity underscores the potential contribution 
of m6A regulator alterations to HCC pathogenesis. Mutations in regulators like ​VIRMA, YTHDF1, and 
IGF2BP3​ were notably prevalent in the high-risk group, potentially driving its aggressive phenotype. Gene set 
enrichment analysis further identified significant pathway enrichments in the high-risk group, including the ​Wnt 
signaling pathway​ (implicated in proliferation, differentiation, migration), the ​MCM pathway​ (critical for DNA 
replication and cell cycle progression), and the ​Aurora B pathway​ (key regulator of mitosis and chromosome 
segregation)20–22. Dysregulation of these pathways likely contributes to the aggressive biology observed in high-
risk HCC and presents potential targets for therapeutic intervention.

The immune landscape plays a crucial role in HCC progression and patient prognosis. Our analysis revealed 
notable differences in immune infiltration between risk groups. The high-risk group exhibited increased 
levels of NK CD56bright cells, which demonstrate strong cytotoxic capabilities yet potentially signify a 
compensatory mechanism within an immunosuppressive TME23–25. This group also displayed a higher presence 
of T helper cells, especially Th2 cells. Th2 cells drive tumor progression by secreting cytokines that establish an 
immunosuppressive microenvironment. This Th2-skewed response can facilitate tumor growth and metastasis 
by suppressing anti-tumor immunity, consistent with established literature26,27. In contrast, the low-risk group 
demonstrated higher infiltration of cytotoxic immune cells such as CD8 T cells and macrophages, which are 
linked to improved patient outcomes due to their direct antitumor functions28,29. The association between 
m6A-RPS and immune infiltration further elucidates the interplay between epitranscriptomics and the immune 
microenvironment, which is crucial for developing future immunotherapeutic strategies in HCC.

The elevated expression of immune checkpoints in the context of m6A-RPS underscores the clinical significance 
of these findings, as they highlight a subgroup of HCC patients who may benefit more from immunotherapy. 
Our analysis reveals a positive correlation between m6A-RPS and key immune checkpoint markers, including 
PD-1, PD-L1, and CTLA-4. Previous studies have confirmed the importance of these immune checkpoints in 
regulating T cell mediated antitumor activity, reinforcing their role as therapeutic targets30–32. Furthermore, the 
low-risk group demonstrated a higher IPS, suggesting greater tumor immunogenicity and potentially better 
response to immune checkpoint inhibitors33. Conversely, the high-risk group exhibited elevated TIDE scores, 
indicating a stronger immune escape potential and a TME more adept at evading immune detection34,35. These 
findings underscore the potential of m6A-RPS as a predictive tool to identify patients at risk of immune evasion, 
thereby supporting earlier and more targeted therapeutic intervention.

Although our study did not directly analyze pathways like antigen presentation, chemokine signaling, 
interferon response, or metabolic reprogramming, findings indirectly implicate their roles in forming the 
tumor immunosuppressive microenvironment. Specifically, differential infiltration of DCs, pDCs, and CD8 
T cells suggests potential alterations in antigen presentation and interferon-related immune regulation, while 
distinct immune cell distributions between subgroups may reflect chemokine-driven mechanisms. Additionally, 
enrichment of metabolic pathways (urea cycle, bile acid/fatty acid metabolism, P450 pathway, oxidoreductase 
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activity) and differences in immunotherapy sensitivity highlight metabolic rewiring that may contribute to 
tumor progression and therapeutic response. The immunosuppressive microenvironment arises from complex 
multi-level, multi-system interactions. Metabolic reprogramming (e.g., enhanced glycolysis) drives this 
process by inhibiting interferon signaling (e.g., reduced STAT1 phosphorylation), inducing mitochondrial 
dysfunction (e.g., NDUFB10 overexpression), and causing defective antigen presentation (low MHC-I/II). It 
also synergistically activates the TGF-β/Wnt pathway, promoting M2 myeloid differentiation. Such metabolic-
inflammatory crosstalk further disrupts chemokine axes (e.g., suppressed CXCL9/10) and accumulates lactate, 
inhibiting CD8⁺T cell recruitment and cytotoxicity to form an “immune desert.” This ultimately leads to T 
cell exhaustion and upregulated immune checkpoints. Targeting key nodes can reverse this suppressive state, 
providing a new strategy to overcome resistance to immunotherapy36–38. Recent studies indicate that m6A 
RNA modification plays a critical role in these processes. For instance, ALKBH5 can inhibit the RIG-I/IFNα 
signaling pathway, reducing IFNα secretion, which in turn leads to decreased recruitment of DCs, impaired 
antigen-presenting function, and insufficient T cell activation, ultimately promoting tumor immune evasion8. 
As a key m6A demethylase, FTO inhibits the expression of chemokine-related genes such as PTX3 through 
epigenetic mechanisms, reducing macrophage recruitment to TIME. Changes in its activity may also indirectly 
affect the expression of chemokines like CCL2/CCL5, promoting macrophage polarization toward the M2 
phenotype and MDSC enrichment, collectively driving myeloid cell reprogramming39. Latest review studies 
have systematically demonstrated that m6A modifications shape the immunosuppressive microenvironment 
through four core mechanisms: driving enhanced glycolysis in metabolic reprogramming (e.g., FTO-mediated 
PGK1 upregulation and lactate accumulation); activating TGF-β signaling in inflammatory pathways (e.g., 
YTHDF2-dependent degradation of BAMBI relieves TGF-β inhibition); suppressing key pathways in interferon 
signaling (e.g., YTHDF1-mediated IFNGR1 mRNA degradation impairs IFN-γ responses); and upregulating 
inhibitory molecules in immune checkpoint expression (e.g., METTL3/ALKBH5 regulate PD-L1 through m6A-
dependent translation or stability). These insights provide a rationale for combining m6A-targeting agents 
(e.g., METTL3 inhibitors like STM2457) with immune checkpoint blockade therapy40. In conclusion, the 
convergence of metabolic-epigenetic crosstalk, myeloid cell reprogramming, and immune exhaustion underpins 
the immunosuppressive microenvironment in high-risk group, explaining their poor prognosis and limited 
response to immunotherapy.

Association analysis between m6A-RPS and chemotherapeutic drug sensitivity revealed that the high-risk 
group demonstrated increased sensitivity to 5-Fluorouracil and Lapatinib, but reduced sensitivity to Cisplatin 
and Gemcitabine. This divergence suggests that m6A modifications may influence drug response through 
multiple mechanisms: potentially ​enhancing intracellular uptake​ or ​disrupting DNA repair pathways​ in the 
case of 5-Fluorouracil, and exploiting ​kinase dependency​ for Lapatinib41,42. Conversely, resistance to Cisplatin 
may stem from ​enhanced DNA repair mechanisms​ or ​elevated drug efflux, while insensitivity to Gemcitabine 
could involve ​alterations in nucleoside transporter expression​ or ​metabolic enzyme activity43,44. These findings 
underscore the potential of m6A-RPS as a predictive biomarker for drug response.

Furthermore, the construction of a regulatory network involving 7 miRNAs, 5 hub m6A regulators, and 2 
m6A target genes elucidates intricate molecular interactions governing HCC progression. This network may 
crucially shape the immunological landscape and underlie resistance to conventional therapies45. Further 
studies are warranted to validate these findings and explore the clinical applicability of targeting this regulatory 
network in HCC management.

While this study provides significant insights into the role of m6A modifications in HCC, several limitations 
must be acknowledged. First, the mechanistic investigations into how identified hub m6A regulators influence 
tumor biology remain largely correlative, necessitating further comprehensive bioinformatics analyses and 
experimental validation to establish causative relationships. Second, while we focused on m6A, our model 
may overlook synergistic effects with other epigenetic mechanisms such as DNA or histone modifications. 
These potential interactions could contribute to TME heterogeneity highlighted in our immune infiltration 
analyses. This narrow scope might limit the prognostic model’s comprehensiveness. Third, although validated 
in ICGC-LIRI-JP cohort, m6A-RPS requires broader external validation. This should ​expand validation to 
more representative populations​ and prospective clinical trials to verify its utility for guiding immunotherapy 
responses and chemotherapy selection. Addressing these gaps through in vitro and in vivo functional studies, 
combined with multi-omics integration, will be crucial for clinical translation.

Conclusions
In conclusion, our study elucidates the pivotal role of m6A modifications in the prognosis and treatment of HCC. 
The establishment of a prognostic model based on m6A regulators offers a promising avenue for personalized 
treatment strategies, particularly for high-risk patients. Further validation through independent cohorts and 
functional studies is warranted to strengthen the clinical applicability of our findings.

Data availability
The datasets presented in this study can be found in online repositories including TCGA ​(​h​t​t​p​s​:​/​/​p​o​r​t​a​l​.​g​d​c​.​c​a​
n​c​e​r​.​g​o​v​)​, GEO (https://www.ncbi.nlm.nih.gov/gds), ICGC (https://dcc.icgc.org), STRING ​(​h​t​t​p​s​:​/​/​c​n​.​s​t​r​i​n​g​-​d​
b​.​o​r​g​/​)​, cBioPortal (https://www.cbioportal.org/), Metascape (https://metascape.org/), MSigDB ​(​h​t​t​p​s​:​/​/​w​w​w​.​g​s​
e​a​-​m​s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​/​i​n​d​e​x​.​j​s​p​)​, TISCH (https://tisch.comp-genomics.org/home/), GDSC ​(​h​t​t​p​s​:​/​/​w​w​w​.​
c​a​n​c​e​r​r​x​g​e​n​e​.​o​r​g​/​)​, TCIA (https://tcia.at/home), TIDE (https://tide.dfci.harvard.edu/) and starBase ​(​h​t​t​p​s​:​/​/​s​t​a​
r​b​a​s​e​.​s​y​s​u​.​e​d​u​.​c​n​/​)​. The accession numbers can be found in the article. Further inquiries can be ​d​i​r​e​c​t​e​d to the 
corresponding author.
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