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Design of Al-driven microwave
imaging for lung tumor monitoring

Adarsh Singh**, Sandip Paul®*, Sreetama Gayen?, Bappaditya Mandal?, Debasis Mitra® &
Robin Augustine?™*

The global incidence of lung diseases, particularly lung cancer, is increasing at an alarming rate,
underscoring the urgent need for early detection, robust monitoring, and timely intervention. This
study presents design aspects of an artificial intelligence (Al)-integrated microwave-based diagnostic
tool for the early detection of lung tumors. The proposed method assimilates the prowess of machine
learning (ML) tools with microwave imaging (MWI). A microwave unit containing eight antennas in the
form of a wearable belt is employed for data collection from the CST body models. The data, collected
in the form of scattering parameters, are reconstructed as 2D images. Two different ML approaches
have been investigated for tumor detection and prediction of the size of the detected tumor. The first
approach employs XGBoost models on raw S-parameters and the second approach uses convolutional
neural networks (CNN) on the reconstructed 2-D microwave images. It is found that the XGBoost-based
classifier with S-parameters outperforms the CNN-based classifier on reconstructed microwave images
for tumor detection. Whereas a CNN-based model on reconstructed microwave images performs much
better than an XGBoost-based regression model designed on the raw S-parameters for tumor size
prediction. The performances of both of these models are evaluated on other body models to examine
their generalization capacity over unknown data. This work explores the feasibility of a low-cost
portable Al-integrated microwave diagnostic device for lung tumor detection, which eliminates the risk
of exposure to harmful ionizing radiations of X-ray and CT scans.
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In recent times, advancements in biomedical research continue to shed light on complex health conditions
that demand urgent attention. Respiratory disorders or lung diseases, in particular, have increased globally,
highlighting the need for improved diagnostic and treatment strategies. The lung diseases include a variety of
conditions that affect how the lungs work. These diseases can appear in different ways, making it harder for
people to breathe and impacting their overall health. While the symptoms may seem similar to the flu, lung
diseases are often much more serious and can lead to dangerous outcomes if not treated quickly. This makes early
diagnosis very important to prevent serious complications'.

According to WHO?, lung cancer stands as the primary contributor to cancer-related fatalities globally,
presenting the highest mortality rates across both male and female populations. Lung cancer is a malignant
neoplasm that originates in the tissues of the lungs. It is characterized by the uncontrolled growth of abnormal
cells in the lung tissues, which can form tumors and interfere with the normal functioning of the lungs.

According to the mortality data provided by IARC?, lung cancer emerges as the foremost contributor to
cancer-related deaths, accounting for around 1.8 million fatalities out of the total 9.6 million cancer deaths in
2022. The same study reveals that among males, lung cancer leads with 1.2 million recorded deaths, securing
the highest position. In the female population, lung cancer follows breast cancer as the second-highest cause of
cancer-related deaths, with 0.58 million fatalities. The development of lung cancer is often associated with risk
factors such as smoking (85% of all cases), exposure to secondhand smoke, radon exposure, and a family history
of lung cancer?. Lung cancer is histologically categorized into two primary classifications: small-cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). SCLC constitutes around 15% of lung cancer cases, whereas
NSCLC accounts for approximately 85%®*. NSCLC can be categorized into four major stages based on tumor size
and the spread of the cancer. The chances of recurrence of lung cancer are significantly high; generally, a more
advanced stage indicates a wider spread of cancer and an increased likelihood of its recurrence (5-19% for stage
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I, 11-27% for stage II, 24-40% for stage III, and more than 63% for higher stages)’. With lung cancer being the
foremost threat among cancers, its elevated risk of recurrence underscores the importance of early detection and
consistent post-treatment surveillance. Also, lung cancer is associated with an abnormal growth of tumors in
the lung; so detection of lung cancer primarily involves detection of tumor growth in the lung and subsequent
medical tests for malignancy.

The current screening methods employed in medical practice, namely X-rays and CT scans, which are
extensively utilized for the purpose of identifying lung tumors and other lung disorders, are associated with a
number of drawbacks and limitations®. The utilization of certain equipment in monitoring processes frequently
involves the utilization of bulky and costly apparatus. Moreover, the utilization of ionizing radiation, which is an
integral component of such equipment, can potentially pose risks to the human body if exposed for prolonged
durations repeatedly.

Consequently, this renders the equipments unsuitable for continuous monitoring purposes. In the realm
of disease detection, the utilization of microwave imaging techniques has emerged as a promising avenue for
overcoming the limitations associated with conventional methods’. By utilizing the capabilities of microwave
technology, researchers and medical professionals can potentially surmount the challenges that have impeded
accurate and efficient disease detection in the past®. Microwave imaging (MI) has the potential to revolutionize
healthcare by providing a non-invasive, cost-effective, and reliable method for diagnosing a variety of diseases.
This imaging technique uses low-power electromagnetic waves to capture insights of anomaly in internal tissues,
making it particularly appealing for applications where traditional imaging methods, such as X-rays or CT scans,
may pose radiation risks or require expensive equipment. MI operates primarily in the microwave frequency
range, which allows for better tissue penetration and enhanced contrast between different biological structures
due to the varying dielectric properties of tissues, such as fat, muscle, and tumors’.

A key focus of research in microwave imaging is its potential for tumor detection, particularly in the
brain, breast, and lungs. While effective, traditional imaging techniques like mammography or MRI have
limitations such as exposure to ionizing radiation, high costs, and limited accessibility in resource-constrained
settings. Microwave imaging offers a promising alternative by being non-ionizing and less expensive while
also providing high sensitivity to differences in tissue composition. This is particularly important for early-
stage tumor detection, where minor changes in tissue properties may be difficult to detect with conventional
methods. Despite these advantages, microwave imaging still faces several challenges, such as the relatively low
resolution compared to conventional imaging techniques. Also, microwave wavelengths are larger than the fine
anatomical structures being imaged, which can result in lower spatial resolution. Further, to address this issue,
advanced signal processing algorithms and image reconstruction techniques are being developed to enhance the
clarity and accuracy of MI results. Furthermore, different techniques like time-domain, frequency-domain, and
machine learning-based algorithms have been introduced to improve image quality and diagnostic accuracy,
particularly in distinguishing healthy tissue from tumors!°.

Another limitation of MI is its sensitivity to noise and artifacts caused by factors like body movement
or interference from surrounding tissues. Since microwave signals can be scattered or absorbed by different
types of tissues, it becomes challenging to isolate the specific region of interest, such as a tumor or abnormal
growth. Researchers are developing robust algorithms and sensor arrays to better handle these artifacts and
improve the signal-to-noise ratio, making the technology more reliable for real-time diagnostics'!. When it
comes to lung disease detection, microwave imaging holds promise but also requires further development. The
lungs present a particularly challenging environment for microwave imaging due to their air-filled structure,
which causes significant scattering and absorption of microwave signals. However, recent advancements in
adaptive algorithms and sensor designs have shown that it is possible to achieve more accurate lung imaging by
compensating for these complexities. For example, hybrid imaging techniques that combine microwave imaging
with other modalities, such as ultrasound or MRI, are being explored to enhance the detection and monitoring
of lung conditions, including tumors and pulmonary diseases!.

Previously reported microwave imaging systems for lung disease detection have primarily been externally
mounted and immobile, requiring patients to visit the hospital for examination, which can be inconvenient and
less preferable. One such system, designed for non-invasive detection and monitoring of pulmonary edema,
consists of two linear arrays, each with eight antennas embedded inside a hospital bed where the patient must
lie down'3. Another non-portable torso scanner system features 14 complex 3D antennas in an elliptical array,
placed on a movable flange. In this case, the person must stand inside the scanner system for the torso region
to be scanned!®. These traditional approaches highlight the need for more portable and convenient imaging
solutions for detecting lung diseases.

The integration of microwave techniques and Al greatly improves disease detection by merging non-invasive
imaging with advanced data analysis. Microwaves offer comprehensive tissue information, while AI algorithms
enhance the identification of subtle irregularities, resulting in expedited and more precise diagnoses. This synergy
accelerates decision-making based on Al-analyzed patterns from microwave data'®. These approaches!®!” mark
a major advancement in healthcare, offering greater efficiency, precision, and personalized care.

This study explores the feasibility and design aspects of an Al-based microwave diagnostic system in the
form of a wearable belt that can highlight lung tumors and categorize them into NSCLC stages. The proposed
approach focuses on a wearable belt having eight antennas that will generate a 2D microwave image of the
torso region. Recently, with the advancement of AI, numerous architectures have been developed. However,
based on the nature of the data and the size of the dataset, two different ML approaches have been chosen to
investigate their performance for tumor detection and estimating its size. One of them is an XGBoost-based
model that works with the S-parameter data, and the second one uses convolutional neural networks (CNN) on
the 2D reconstructed microwave images. Both of these models are optimized and tested for both of the tasks,
tumor prediction, and tumor size estimation. It is found that an XGBoost-based classifier with S parameters
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outperforms a CNN-based classifier on reconstructed images for tumor detection. Whereas, a CNN-based
model performs much better than an XGBoost-based regression model for tumor size prediction.

The following section details lung cancer and its development, while the subsequent part outlines the
proposed diagnostic system configuration, encompassing antenna placement, scattering parameter acquisition,
and image reconstruction. Additionally, section 3 delves into the design and comparative study of machine-
learning models used for tumor prediction.

The major contribution of this work contains:

« Design of a wearable antenna configuration in the form of a wearable belt over a body model available in the
simulation environment for microwave imaging and sensing for lung tumor detection.

o Design of an XGBoost-based classifier for the prediction of lung tumors from raw scattering parameters ob-
tained from antenna configuration.

o Development of a CNN-based regression model to predict tumor size.

o Performance examination of both techniques on another body model available in the simulation environment
for the generalization capacity of the models over unknown data.

« Fine-tuning of naive ML models for noisy data and their performance evaluation for real-world scenarios.

This work presents a preliminary study report on the design methodology of an Al-enabled microwave imaging
system for lung tumor detection and estimation of tumor size. Herein, the proposed approach focuses on design
choices of the microwave sensor, on the choice of suitable machine learning models based on their performance
on the simulation dataset.

Disease and its progression
A lung tumor is an atypical proliferation of cellular matter, occurring within the pulmonary system. There are
two types of tumors: benign, which are non-cancerous, and malignant, which are cancerous. There are two main
types of malignant tumors: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). The NSCLC
is the most prevalent form, shown in Fig. 1, accounting for approximately 85% of lung cancer cases. Lung cancer
can also be classified based on the affected region, including central tumors, peripheral tumors, and pleural
tumors. Whereas the most prevalent subtype of non-small cell lung cancer is peripheral tumor!®.

The progression of NSCLC can differ based on various factors, including the type of NSCLC, the stage at
diagnosis, the treatment administered, and the unique characteristics of each patient. Here’s a brief overview of
the progression of NSCLC:

« Stage 0, also known as in situ disease, indicating that the cancer remains localized and has not invaded the
surrounding lung tissues or metastasized beyond the lung.

« Early Stage (Stage I and II): In the early stages, NSCLC is localized to the lungs and has not spread to nearby
lymph nodes or distant organs. Early-stage non-small cell lung cancer (NSCLC) patients have a better prog-
nosis than patients with advanced stages of the disease, with a larger probability of being cured. The stages and
corresponding sizes of tumors are presented in Table 1. By ‘size), the largest dimension of the tumor is denoted,
and ‘radius’ denotes half of it.

o Locally Advanced Stage (Stage III): At this stage, NSCLC extends its reach to lymph nodes or tissues in
the chest vicinity. Stage III cancers typically exhibit significant lymph node involvement while remaining
localized and not spreading to distant areas of the body. Treating locally advanced NSCLC can pose greater
challenges compared to early-stage disease, as surgery is not a viable option. Instead, the standard approach
involves systemic therapy and radiation therapy.

« Metastatic Stage (Stage IV): In this stage, lung cancer can extend beyond its initial site and affect multiple
areas in the other lung, the fluid surrounding the lung or the heart, or even distant parts of the body through
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Fig. 1. Non-small cell lung cancer (NSCLC): (a) tumor size and classifications, and (b) progression of disease.
(Created in BioRender. Singh, A. (2025) https://BioRender.com/kvwc9wn).
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Stage 1A 1B JIVN 1IB
Size (mm) < 30 | >30 & <40 | >40 & <50 | > 50

Equivalent Radius (mm) | < 15 | >15& <20 | >20 &<25 | > 25

Table 1. The stages and corresponding sizes of early-stage tumors.
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Fig. 2. Cross-sectional views of available body model in CST Studio Suite'%in (a) axial and sagittal plane (b)
Dielectric properties of different tissues?2!.

the bloodstream. Once cancer cells enter the bloodstream, they have the potential to metastasize to various
parts of the body. However, NSCLC has a higher tendency to metastasize to the brain, bones, liver, and adre-
nal glands. Stage IV NSCLC is further classified into two distinct substages: Stage IVA cancer has metastasized
within the chest, and Stage IVB indicates the spread of cancer beyond the chest, affecting multiple locations
within one organ or involving more than one organ.

Generally, surgery is not a possibility for advanced stages such as III or IV lung cancers. Therefore, early
detection becomes the most appropriate course of action for preventing lung cancer from going into higher
stages. Even with treatment, there are instances where NSCLC may reoccur following an initial response or
period of remission. Recurrence can manifest either in the lungs or in other parts of the body. Therefore, it is
crucial to maintain continuous or regular assessment following treatment. Overall, the development of NSCLC
can be intricate, and the strategies for treatment may differ depending on personal circumstances. Ensuring early
diagnosis, accurate staging, tailored therapeutic strategies, and consistent post-treatment monitoring are crucial
in enhancing the results and the well-being of individuals with NSCLC.

Due to high water content, the dielectric properties, specifically the relative permittivity and conductivity,
of tumors are much higher compared to the surrounding tissues, as demonstrated in Fig. 2. This difference in
dielectric properties as a biomarker permits the development of safe and accurate microwave imaging techniques
for diagnosing lung tumors.

Methodology

The proposed system for detection of lung tumors and predicting their severity stages (as shown in Fig. 3),
consists of two main subsystems: 1. a microwave sensing and imaging subsystem and 2. a machine learning
subsystem for the detection of tumors and the estimation of size based on the data collected from the other
subsystem.

Microwave sensing and imaging subsystem

The proposed microwave imaging system for lung tumor detection employs a sensor unit (eight antennas in
the form of a wearable belt), a data collection unit (Vector network analyzer, and RF switching matrix), and a
frequency-based imaging algorithm!*. The utilized wearable antenna (Bow-tie antenna with resonance-based
reflector)?? has already been involved in several on-body applications for sensing due to its characteristics like
unidirectional radiation and wideband frequency range. The data collection unit (VNA and switching matrix)
allows antennas to transmit and receive backscattered EM signals to reconstruct the image of the domain of
interest (torso). Using a switching matrix>* with a VNA is cost-effective, enabling multiport testing with a
lower-port VNA instead of an expensive high-port model. It also supports automation for faster, more efficient
measurements. However, testing takes longer since ports are measured sequentially, and the switch can introduce
signal losses and interference, impacting accuracy. The proposed system follows the process flow as depicted in
Fig. 4
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Fig. 3. Proposed methodology for detection of lung tumors and predicting their severity stages.
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Fig. 4. Flowchart for (a) the overall functioning of the proposed system, and (b) microwave imaging to
reconstruct 2D images.

The microwave image resolution is intricately dependent on several factors, such as the number of antennas
utilized, the range of broadband frequencies covered, and the density of sampled frequency points. Each of
these components has a vital function in determining the accuracy and sharpness of the resulting image.
When evaluating the number of antennas, it is crucial to recognize the delicate equilibrium between improving
resolution and handling system complexity. In this context, for cost-effective or portable solutions, fewer
antennas with machine learning-based processing can be a more accurate and practical alternative.

In the proposed work, a strategic decision has been made to employ a configuration featuring eight antennas.
With this, the system strikes a balance, enabling it to capture sufficient spatial information while remaining
practical in terms of limited mutual coupling between antennas, hardware integration in the form of the belt,
and computational requirements. Furthermore, the choice of employing broadband operating frequency (1.5
to 3 GHz) is instrumental in ensuring versatility and adaptability in image capture. By operating across a broad
frequency spectrum, the system can gather a diverse range of information, enriching the final image with
comprehensive insights and details. This particular frequency range (1.5 to 3 GHz) offers an optimal balance
between penetration depth and resolution?!, which is essential for non-invasive biomedical applications.
Moreover, the specific absorption rate (SAR) in this range remains low as per FCC guidelines, which ensures
patient safety, especially in scenarios that require repeated or continuous monitoring®>?°. One significant
advantage of the configuration depicted in Fig. 5 lies in its adaptability for integration into wearable systems,
such as a sensor-embedded belt. The compact design of the eight-antenna array, combined with its wideband
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Fig. 5. Proposed imaging subsystem: placement of antennas in the simulation environment (CST Studio
Suite!®): (a) Isometric view, (b) bottom view, and (c) reconstructed microwave image.
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Fig. 6. Field distributions of antenna element placed on the front side of chest: (a) 3-D pattern, (b) E-field
sagittal (side) & axial (top) view, and (c) H-field sagittal (side) & axial (top) view (generated from CST Studio
Suite!®).

characteristics, enables straightforward incorporation into wearable devices. This integration provides enhanced
mobility and ease of use while maintaining high image resolution with minimal quality degradation.

Field distributions shown in Fig. 6 demonstrate that the antenna element placed in the lower part of the chest
covers the majority of the lungs, making it possible to detect the presence of any tumor in the lungs. Figure 6 (b)
and (c) illustrate the distribution of electric (E) and magnetic (H) fields as they propagate through the human
torso. The sagittal (side) view of the cross-sectional plane shows that the fields from the antennas effectively
cover the lung region. This indicates that the placement and orientation of the antennas are suitable for capturing
signals across the lungs. The axial (top) view further reveals the path of the fields from the transmitting antenna
to the receiving antennas, demonstrating the travel of the EM wave through various tissues in the torso. These
visualizations provide valuable insight into the propagation characteristics of the fields and the effectiveness of
the antenna configuration in ensuring adequate signal coverage across the thoracic region.

There are two major concerns for the detection and size prediction; firstly, dealing with the error due to
measurement and ambient noise; secondly, the error incurred by placement of the antenna belt far from the
actual tumor location, which is generally unknown. To mitigate these issues, multiple measurements should be
taken from different antenna positions. In Fig. 7, only two convenient positions are depicted, one in the lower
part of the chest and another in the upper part of the chest. In an actual scenario, more than two measurements
can be taken, and if the presence of a tumor is detected in any one of the measurements, it is assumed that there is
a tumor. For the prediction of the size of the tumor, the maximum prediction must be taken, since it is observed
in the simulation that as the antenna belt moves farther from the actual tumor location, the S-parameter values
decrease significantly. However, multiple position readings are suggested as shown in Fig. 7, which would
increase the likelihood of making a more robust diagnosis of tumor presence, and accurate prediction regarding
the size of the tumor.

One significant step in the proposed methodology is the pre-processing of the collected data from microwave
sensors (antenna system) and reconstruction of a microwave image by a frequency-based imaging algorithm (as
shown in Fig. 4). In the data pre-processing step, firstly, the calibration step is performed in which S-parameters
(absence of model) are subtracted by respective S-parameters (presence of model) to eliminate the clutter
introduced by the imaging domain and antenna fabrication and assembly errors?”. The chest perimeter of
the patient is required as a priori information in order to calculate S-parameters in the absence of a model;
Secondly, calibrated S-parameters at each frequency are averaged and then subtracted from each S-parameter.
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Fig. 7. (a) Utilized voxel body model available in CST Studio Suite'®; (b) and (c) Antenna belt position
variations along the vertical axis.
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Fig. 8. Reconstructed images from MWI for varying tumor sizes in increasing order: (a) to (e) tumor present
in the left lung of sizes 0 (no tumor), 8, 20, 36, 48 mm, respectively; and (f) to (j) tumor present in the right
lung of sizes 0 (no tumor), 8, 20, 36, 48 mm, respectively.

This step reduces the strong reflections from the skin tissue layer, improving the detection of abnormalities. In
the further step, frequency-based imaging with a multi-static approach!'* has been utilized to generate the 2D
images. Parameters in imaging algorithm like IV, (number of antennas) and Ny (number of frequency points)
have been updated as 8 and 500, respectively; reconstructed images are normalised to the maximum value of
the healthy case as shown in Fig. 8. The proposed simulation process has been carried out on two different body
models from the voxel family: Gustav, a 38-year-old male, and Donna, a 40-year-old female (shown in Fig. 7).
Few samples of reconstructed images of cross-section of the Gustav body model are shown in Fig. 8, illustrating
how the images change with increasing tumor sizes. It is evident from the figure that the reconstructed images
effectively reveal both the presence and extent of the tumor within the complex torso medium. These models are
available in the CST Studio Suite!®. Data processing and image reconstruction were performed using MATLAB?
code.

Machine learning subsystem for tumor prediction

The aim of the designed ML subsystem is twofold: first, to detect whether a tumor is present or not (framed as
a classification problem), and second, to predict the size of the tumor. These two tasks are considered separately
because the tumor size can be estimated accurately if the tumor lies close to the plane of the antenna belt. If the
belt is placed at a location much higher or lower than the position of the tumor, the S parameters are diminished
in amplitude, which hinders the accurate prediction of tumor size, but still can infer the presence or absence of
a tumor.
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Two approaches have been investigated for this purpose: one is based on the raw S-parameters obtained from
the antenna system, and the second one takes into account the reconstructed microwave images. The designed
models are trained and tested on simulation dataset. Their generalization capacity is tested on a separate dataset
that contains previously unseen data obtained from a different body model. In the next section, the performance
of the two types of ML models is discussed in detail.

Investigation and design of appropriate ML models

Three sets of simulations were performed for experimentation. The first set contains a total of 140 readings (70
for each lung, i.e., 70 simulations for tumors of different sizes in each lung) obtained from Gustav’s (male) body
model, corresponding to various tumor sizes varying from 2 mm to 60 mm; such that the tumor is placed at
the axis of the antenna belt. The set of simulations will be referred to as Simulation-A in future references. In
the second set, 20 simulations are conducted on Gustav for various tumor sizes (10 for each lung), where the
position of the tumor is higher or lower than the antenna belt. This simulation will be called as Simulation-B.
Simulation B is required to examine the change of S parameters of the tumor located away from the plane of
the antenna belt. The final set of simulations, referred to as Simulation C, contains 10 readings from the Donna
(female) body model that are used to measure the generalization capacity of the trained ML models on the
unseen data.

XGBoost model over the raw scattering parameters

All the S parameters (amplitude and phase) of the 8-antenna system are recorded for 500 frequency points over
a range of 0.5 GHz to 3.5 GHz. Thus, for a particular tumor size, the raw S-parameter data dimension is 500 X
128 (S11 amplitude, S11 phase, S12 amplitude, S12 phase so on). These S-parameters contain all the necessary
information regarding the presence and size of the tumor.

A very effective algorithm, named XGBoost, has been employed to process the S-parameter data and make
predictions about the presence of the tumor or about its size. XGBoost (Extreme Gradient Boosting)*is a popular
machine learning technology that is currently being hugely used for regression and classification tasks for its
remarkably good and state-of-the-art performance. Also, XGBoost is being widely used in several biomedical
applications®*~32, XGBoost assimilates the decision trees with ensemble learning, where the predictions made by
many decision trees are combined together to make the final prediction.

XGBoost for tumor detection

An XGBoost classifier is designed to predict the presence of a tumor. This is a binary classifier that differentiates
the absence of a tumor or very small tumor of size <= 8mm (Class 0) from the presence of a tumor of size
> 8mm (Class 1).

Dataset construction: The dataset for designing the classifier comprises of datapoints from Simulation A
(140 simulations) and Simulation B (20 simulations). In the dataset, there are 26 data points in Class 0 and
134 data points in Class 1. In Class 0, the 26 datapoints come from tumors having sizes 2 mm to 8 mm. More
datapoints can be generated using simulations, but with very small size variations, for which the S parameters
would not differ significantly. It can be seen that Class 0 has a significantly lower number of data points than
Class 1. This scenario is known as class imbalance®*. This type of imbalance penalizes the performance of the
classifier significantly. Two popular solutions to resolve this problem are: undersampling, where a small number
of samples are collected from the majority class, and oversampling, where the minority class is repeatedly sampled
randomly to increase the number of data points. Undersampling is simpler, but it loses important information
by discarding data points. Also, lessening the dataset size hampers the training performance. One popular
oversampling algorithm is Adaptive Synthetic Sampling (ADASYN)?%. The ADASYN artificially increases the
number of data points in the minority class by synthesizing more data. The algorithm identifies data points in the
minority class that lie closer to the decision boundary and are difficult to classify. After applying the ADASYN
algorithm, 108 new synthetic samples of the minority class are generated to make the number of Class 0 samples
to be equal to the number of Class 1 samples (each to be 134).

Construction and training of classifiers: The balanced dataset is used for designing the
XGBoost classifier. For each case, there are 64 S-parameter amplitude and phase measurements
recorded over 500 frequency points ranging from 0.5 GHz to 3.5 GHz. This gives rise to 64000
(2 (amplitude and phase) x 64 (S-parameters) x 500 (frequency points)) numerical values for each
case. This huge number of input values, each of which may be considered as a “feature”, will mislead the classifier
model and overfit it. To resolve this issue, each of the S parameter values (amplitude and phase) is averaged over
the operating frequency range of 1.5 - 3 GHz (in this range, the variation is most prominent), thus creating a
vector of length 128 S-parameter values for each tumor size.

During training, 80% of the dataset is used as a training set and 20% is used as a test set. The classifier is
designed using Python’s XGBoost package®. During training, the model generates many trees with a predefined
maximum depth and combines the predictions to construct a single prediction. In the training process, some of
the parameters of the XGBoost model are adjusted heuristically to achieve the best performance on the test set.
The best combination of XGBoost parameters, which is obtained heuristically by means of grid search over the
parameter space, is as follows:

o n_estimators =10, i.e., the number of trees whose ensemble is used for classification;

o max_depth = 3, which specifies the maximum depth of each tree;

« eta = 0.3, which is the learning rate.

« subsample = 0.5, which specifies the proportion of training data considered for constructing the tree.

Scientific Reports |

(2025) 15:34287 | https://doi.org/10.1038/s41598-025-20566-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

The performance of the trained XGBoost classifier is examined by using it to make predictions for the data
points in the test set. The classifier performs really well with 100% accuracy over the ADASYN-balanced test
dataset. It signifies that the distinction between class 0 and class 1 is very clear.

XGBoost for tumor size prediction

The raw S-parameters obtained from Simulation A (i.e., 140 simulations on Gustav’s body model with the tumor
residing on the plane of the antenna belt) are used to predict the size of the tumor. Each data point consists of
128 S-parameter readings (amplitude and phase) taken for 500 frequency points over the range of 0.5 GHz to
3.5 GHz. Before feeding the data to the XGBoost regression model, each S-parameter (amplitude and frequency)
is averaged over the operating frequency range of 1.5 - 3 GHz, where the distinction is more prominent. Thus,
corresponding to each tumor size, a vector of 128 S-parameter values (amplitude and phase) is obtained.
Unlike the XGBoost classifier, in the case of designing the regression model, there is no requirement for dataset
balancing since the input data is almost evenly distributed.

Construction and training of regression model: Among the total of 140 simulations, 10 simulations are
separated out as test set. From the rest, 80% of the data is used for training the XGBoost tumor size-prediction
model, and the rest (20%) is used as a validation set for validation of the trained model. The chosen best set of
hyperparameters found by means of grid search over the parameter space are as follows:

o n_estimators =1000,
o mazx_depth =4,

e eta=0.3,

« subsample = 0.5,

The rest of the parameters are kept as per their default values.

Performance on the Test Set: The performance of the designed classifier is examined on the fest set, which
consists of the 10 datapoints that are separated out from the original dataset before the creation of the training
and validation set. This dataset is kept completely hidden from the regression model during training. The
original tumor size and the tumor size predicted by the XGBoost regression model are shown in Table 2. The
mean squared error for the predictions is 1.23 mm. The two-sided, two-tail t-test is performed over the actual
and predicted values of test data. The observed two-tailed p-value equals 0.9070. With conventional criteria, it
denotes that the difference between the two distributions is not statistically significant.

CNN-based model over microwave images reconstructed from S parameters

Convolutional Neural Networks (CNN) are widely used in image-based tasks in deep learning®®-3. CNNs
capture spatial information or spatial features from an image in order to use them for different tasks. Here,
we have employed two separate CNN models over the reconstructed microwave images, synthesized from S
parameters, to detect the presence of a tumor as well as to predict the size. The reconstructed microwave images
are color (3 channel) images having dimensions of 634 x 496 pixels.

CNN model for tumor detection

The CNN-based classifier is designed using the datasets from Simulation A and Simulation B. As described in
section 4.1, the training dataset has an imbalance as there are more readings corresponding to class 1 (134 data
points) than for class 0 (26 data points). This imbalance is eliminated by applying ADASYN algorithm on the
reconstructed microwave images. After the application of ADASYN, synthetically generated data points are a
balanced image dataset of size 268, having equal data points in class 0 and in class 1.

Network design and Training: From the balanced dataset, 80% of the data points are used to train the
designed regression model, and the rest is used for testing and validation of the designed model. Before feeding
the reconstructed images to the regression network, the images are resized to 400 x 400. The designed network
architecture is shown in Fig. 9. Training is run for 300 epochs with the Adam optimizer and the binary cross-
entropy loss function. The training curve is demonstrated in Fig. 9. The test set is constructed from the original
dataset (before balancing by ADASYN), and it contains 28 data points. The accuracy over the test set is 92.8%.

Actual Tumor Radius (mm) | XGBoost Predicted Radius (mm) | CNN on MSI Predicted Radius (mm)
17.2 17.7 17.0
13.2 12.8 12.6
4.8 6.20 5.6
13.6 13.34 12.7
11.6 13.10 12.1
8.8 9.72 10.1
20.8 18.23 19.7
12.4 12.3 11.8
21.6 23.0 21.2
6.0 5.78 5.6

Table 2. Predicted tumor sizes by the XGBoost Regression model, CNN over intensity MW image.
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Fig. 10. Different augmentation schemes on dataset: (a) Original image, (b) Horizontal flip, (c) Vertical flip,
(d) 180° rotation.

CNN model for tumor size prediction

The aim of this model is to utilize the reconstructed S-parameter images to predict the size of lung tumors.
However, more accurate size prediction is expected if the tumor is situated very closely to the plane of the
antenna belt.

Data augmentation: The input simulation data has a total of 140 reconstructed S-parameter images
(Simulation A), 70 simulations for each lung, where tumor size varies from 2 mm to 60 mm in diameter. For a
particular tumor size, there are only two input images (one from each lung), which is insufficient for training the
CNN-based model and may cause overfitting of the designed model. Hence, an appropriate data augmentation
technique is employed to artificially increase the dataset size and generate multiple instances corresponding to
each tumor size. In this work, very simple and straightforward augmentation techniques are employed, that
are:1. Horizontal flip: where the image is flipped across the vertical axis; 2. Vertical flip: where the image is
flipped across the horizontal axis; 3. 180 degree rotation: where the image is gone through both horizontal and
vertical flip. The effect of various augmentation techniques is presented in Fig. 10. Hence, after employing the
augmentation, the dataset size increases four times of the original size, where there are 8 instances for each
tumor size (4 samples for each lung).

Model and training: A convolution neural network-based regression model is developed to predict the
tumor size given the reconstructed S-parameter images. The network is trained with the augmented dataset.
The details of the CNN architecture are shown in Fig. 11. The designed network is very simple, with a very low
number of trainable weights to avoid the risk of overfitting the model. Like the previous case, from the original
dataset, 10 data points are taken out and are considered to be the test set used to measure the designed network’s
performance (these are the same instances that were separated out during the XGBoost model training).
The augmented versions of the corresponding instances have also been removed from the training set. This
is because, if instances from the test set are seen beforehand during training, the estimation of accuracy will
be biased. Hence, the remaining 520 instances comprise the training set, which is then again segregated into
training (80%) and validation (20%) sets. The network is trained with Mean Squared Error (MSE) loss and Adam
optimizer. The training is run for 300 epochs, after which the training and validation losses don’t improve. The
learning curve is shown in Fig. 11 (b).

Performance on the test set: The trained network is fed with the test set, containing 10 instances. These
instances are completely new to the trained model. The actual tumor radius and predicted tumor radius are
shown in Table 2. All the predicted values are sufficiently close to the actual values. The mean square error for
the test samples is 0.58 mm. The two-sided two-tail t-test is performed over the actual and predicted values of
test data. We observe that the two-tailed P value equals 0.9495, which denotes that the difference between the
two distributions is not statistically significant.
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Fig. 11. CNN model: (a) architecture for tumor size prediction, and (b) Learning curve for tumor size
prediction.
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Fig. 12. Performance comparison between different ML models for (a) Simulation-A, and (b) Simulation-C.

Comparative discussion and ultimate model selection

1) Over the Gustav body-model simulation data, i.e., Simulation-A, the XGBoost classifier on the S-parameter
data gives better accuracy than the CNN-based classifier on reconstructed MW images for tumor detection.
Whereas, for the size-prediction task, the CNN-based regression model performs better than the XGBoost
regressor (as can be seen in Fig. 12).

2) The CNN-based regression model works on the reconstructed microwave images. Image data offers many
methods for data augmentation, like rotation, flip, etc, which can not be applied over the raw S-parameters.
Hence, the effective size of the training dataset can be increased by augmentation in the case of image data.
This dataset augmentation is not applicable to the case of collected raw S-parameters. Thus, the CNN-based
regression model is trained over a larger dataset as compared to the XGBoost model for the same collected
dataset. For this reason, CNNs offer better generalization than the XGBoost model in the regression task for
tumor size prediction.

Hence, in the actual workflow, as shown in Fig. 4 (a), the XGBoost-based classifier on raw S-parameters is chosen
for the detection of tumors, and the CNN-based regression model on MW images is selected for tumor size
prediction

Fine-tuning the designed ML models for robustness against Noise
The aforementioned XGBoost classifier and CNN-based regression models have been trained on a simulated
dataset, which is noiseless. However, in the actual scenario, noise is unavoidable. The added noise alters the
actual data and may affect the performance of the ML models. One way to eliminate the problem is to make them
robust against noise by fine-tuning them with an additional noisy version of the simulation dataset. During the
fine-tuning, the previously trained (on noiseless simulation data) models are taken, and they are passed through
additional training iterations with the newly constructed noise-infused dataset. This will alter the parameters of
the trained model and make it adept to the noisy data.

For constructing the training set during fine-tuning, 50% datapoints from Simulation A are taken randomly,
and this data-subset is infused with three different degrees of random noise. The three different noise levels alter
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Actual Tumor Radius (mm) | XGBoost Predicted Radius (mm) | CNN on MWI Predicted Radius (mm)
5.0 (Left) 11.87 6.45
5.0 (Right) 10.85 5.79
10.0 (Left) 13.01 9.53
10.0 (Right) 13.26 10.7
15.0 (Left) 13.04 11.0
15.0 (Right) 17.53 10.8
20.0 (Left) 18.63 11.8
20.0 (Right) 12.7 228

Table 3. Predicted tumor sizes of Donna body model by the XGBoost Regression model, CNN over intensity
MW image.

each of the S parameter values of each data point by 1%, 5%, and 10%, respectively. The previously designed
XGBoost classifier and the CNN-based regression model are once again trained with this noisy dataset. For
XGBoost, this step accounts for incremental learning”. For the CNN, the training is conducted for 100 epochs,
with Adam optimizer and MSE loss function®’.

For estimation of the performance of the fine-tuned models in comparison to the naive models, an additional
test set is generated by taking 20 datapoints from the subset of simulation A, which was not used for fine-tuning,
and then each datapoint is altered by 10% of its original value. In the tumor prediction task, the fine-tuned
XGBoost model gives an accuracy of 90% (making 18 correct predictions out of 20), whereas the naive XGBoost
gives a much poorer accuracy of 65% (making 13 correct predictions out of 20). For the size prediction task on
the testset, the fine-tuned CNN gives an average mean-squared error of 2.1 mm, whereas for the naive regression
model, the error is 5 mm.

Hence, it is seen that when tested with a noisy test dataset, the fine-tuned models perform significantly better
than the naive model trained with the simulated dataset. Thus, this fine-tuning gives some safeguard against the
measurement noise that is present in the actual scenario.

Results and discussion

The methodology and its performance are demonstrated on a simulation set up with a particular body model
(Gustav). To validate the applicability of the proposed method and designed ML models on previously unseen
data coming from some other body model, the procedure is tested on the female body model (Donna) available
in CST Suite. Several simulations were conducted on this particular body model, and as mentioned before, this
set is referred to as Simulation-C.

The XGBoost classifier correctly predicts the presence of a tumor in all simulations (i.e., accuracy 100%),
whereas the CNN-based tumor detector gives 80% accuracy; reinforcing our choice of XGBoost classifier over
the CNN-based classifier for tumor detection. For the tumor size prediction, the actual tumor size and the
predictions made by the CNN-based regression model on reconstructed microwave images and by the XGBoost-
based regression model on S-parameters are shown in Table 3. It is seen that the CNN-based model performs
better, justifying our choice, and it gives sufficiently close predictions for most of the cases.

The performance can be improved by training the model with different types of unseen data.As already
demonstrated in the previous section, that the models can be made robust against noise by fine-tuning with
noisy dataset. Similarly, this fine-tuning can also be performed when real-life data is available, during the trial
process.

The full measurement and diagnosis procedure, which includes equipment setup, antenna calibration, data
acquisition, and image processing, may typically require about 30-40 minutes. Specifically, setting up the VNA
and switching matrix takes around 5-10 minutes, antenna calibration takes about 10 minutes, data collection
varies between 30 seconds and 10 minutes depending on the equipment configuration and multiple readings,
and data processing takes an additional 3-5 minutes. However, if the antennas are already calibrated and the
VNA is pre-warmed, the measurement time in a clinical setting can be reduced to about 15 to 20 minutes. This
makes it a safe and competitive option compared to a chest X-ray (which takes about 10-15 minutes) or a CT
scan (about 15-30 minutes). In the future, automation and integrated systems can further minimize setup and
calibration time, making the process faster and more suitable for routine clinical use, especially in the case of
recurrent tumors.

Conclusion

In this study, the challenge of early and recurring lung tumor detection has been addressed by employing a
combination of microwave imaging and machine learning techniques. The proposed approach involves the
design of an eight-antenna system integrated into a wearable belt, which is used to collect microwave scattering
parameters and reconstruct microwave images. A suitable wideband, high-gain antenna is employed for this
application. The system employs two machine learning models: an XGBoost classifier to predict tumor presence
and a Convolutional Neural Network (CNN) to estimate tumor size, aiding in cancer staging. Initial testing was
performed with simulation data from a CST body model of a 38-year-old male (‘Gustav’) and further validated
with an independent dataset from a CST model of a 40-year-old female (‘Donna’), demonstrating the system’s
robustness and adaptability. To ensure practical use, both models were fine-tuned to handle realistic noisy data,
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resulting in significantly improved performance compared to models trained only on clean simulation data. This
fine-tuning provides resilience against measurement noise commonly encountered in clinical environments.

The key innovation of this work is the integration of a wearable microwave imaging system with machine
learning to enable reliable and frequent monitoring of lung tumors. This approach shows strong potential for
improving early detection and follow-up of recurrent lung cancer, which remains a critical health concern
worldwide. Future research will focus on clinical trials with human subjects, further refinement to handle
individual differences, and technical advancements to reduce overall measurement time, making the system
more practical for real-world clinical workflows.

Data availability
The data sets generated and analyzed during the current study are available from the corresponding author on
a reasonable request.
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