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RNA modifications are critical in regulating gene expression and cell functions by affecting RNA 
stability, splicing, translation, and degradation. The catalytic core of N6-adenosine-methyltransferase 
catalytic subunit METTL3  has emerged as a key enzyme in tumorigenesis by enhancing the translation 
efficiency of oncogenic transcripts, which is a promising therapeutic target for cancers, including acute 
myeloid leukemia. In this study, we presented a novel METTL3 inhibitory bioactivity (pIC50) prediction 
model (ML3-mix-DPLIFE) by combining machine learning, protein–ligand docking, and protein–
ligand interaction analysis, through encoding the conventional physicochemical properties, chemical 
fingerprint, and the docking-based protein–ligand interaction features (DPLIFE) with leveraging auto-
stacking 6 algorithms. A feature selection algorithm further optimized the model (ML3-mix-DPLIFE-FS) 
and obtained a promising mean squared error (MSE) of 0.261 and a Pearson’s correlation coefficient 
(CC) of 0.853 on an independent test dataset, and identified 8 residues critical for ligand interactions 
with METTL3. To further test the model, the pIC50s of recently reported inhibitors were predicted 
using the ML3-mix-DPLIFE-FS model, and a good MSE of 0.418 and CC of 0.727 were obtained. This 
innovative strategy seamlessly integrates machine learning prediction with structural biology insights 
and reveals a novel way to identify key protein–ligand interactions for further structural rational drug 
design.

Keywords  Human N6-adenosine-methyltransferase catalytic subunit METTL3 , Machine learning, Feature 
selection, Protein–ligand docking, The docking-based protein–ligand interaction features (DPLIFE)

Abbreviations
UniProtKB 	� The Universal Protein Knowledgebase 
METTL3	� The methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (Uni-

ProtKB primary accession number: Q86U44)
METTL14	� The methyltransferase 14, N6-adenosine-methyltransferase non-catalytic subunit (UniProtKB 

primary accession number: Q9HCE5)
AML 	� Acute myeloid leukemia
MYC 	� Myc proto-oncogene protein (UniProtKB primary accession number: P01106)
BCL2 	� B-cell leukemia/lymphoma 2 protein; Apoptosis regulator Bcl-2 (UniProtKB primary accession 

number: P10415)
DPLIFE 	� The docking-based protein–ligand interaction features
CC	� Pearson’s correlation coefficient
IC50 	� Half maximal inhibition concentration
MSE 	� Mean squared error
RMSD	� Root-mean-square deviation
ECFP	� Extended-connectivity fingerprints
mRMR	� The minimum redundancy and maximum relevance algorithm
PDB ID	� Protein data bank identifier
PCA 	� Principal component analysis
BA 	� Bisubstrate analog

1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 
35053, Taiwan. 2Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 
10675, Taiwan. email: cwtung@nhri.edu.tw

OPEN

Scientific Reports |        (2025) 15:36789 1| https://doi.org/10.1038/s41598-025-20634-1

www.nature.com/scientificreports

http://orcid.org/0000-0003-4437-3530
http://orcid.org/0000-0002-1332-005X
http://orcid.org/0000-0003-3011-8440
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-20634-1&domain=pdf&date_stamp=2025-9-22


RNA modifications are essential for regulating gene expression and cellular functions, influencing various 
biological processes, and governing non-coding RNAs1, including tRNAs, rRNAs, and microRNAs. The most 
abundant internal modification in eukaryotic mRNA significantly impacts various aspects of RNA metabolism, 
including stability, splicing, translation, and degradation2. To date, over a hundred different types of RNA chemical 
modifications have been identified in many types of RNAs, including mRNA, rRNA, tRNA, snRNA, microRNA, 
and long noncoding RNA3. Common modifications include 5-methylcytosine (m5C)4,5, N7-methylguanosine 
(m7G)6, N1-methyladenosine (m1A)7, N4-acetylcytidine (Ac4C)8, pseudouridine (Ψ)9, 2′-O-methylation (Nm)10, 
N6,2′-O-dimethyladenosine (m6Am)11, and N6-methyladenosine (m6A) 12–14. Among these modifications, 
N6-methyladenosine (m6A) stands out as the most prevalent and conserved ribonucleotide modification15, 
in which over 25% of human transcripts have been identified with more than 12,000 m6A occurrences16. The 
N6-methyladenosine (m6A) modification, is a complex process involving the crucial participation of multiple 
proteins that add (writers), recognize (readers), and remove (erasers) the m6A marks3,17.

N6-adenosine-methyltransferase catalytic subunit METTL3 (METTL3) and its non-catalytic subunit 
METTL14 form the catalytic core of the m6A RNA methyltransferase complex, a critical player in post-
transcriptional RNA modification18. These two components were further supported by regulatory elements, 
including WTAP17,19, RBM1520,21, VIRMA22, ZC3H1323, YTHDF23,24, and HAKAI25. METTL3’s primary 
function is to catalyze the addition of methyl groups to the N6 position of adenosine residues, enabling the 
fine-tuning of RNA stability, splicing, and translation. Its critical role in RNA metabolism has positioned 
METTL3 as a key regulator of cellular processes, with its dysfunction linked to a range of diseases. In oncology, 
METTL3 has been extensively studied for its role in promoting tumorigenesis. Elevated METTL3 expression 
has been observed in cancers such as acute myeloid leukemia (AML)26,27, hepatocellular carcinoma28, and lung 
adenocarcinoma29,30. In AML, METTL3-mediated m6A methylation promotes the translation of oncogenic 
transcripts, such as MYC and BCL2, which are crucial for leukemia cell proliferation and survival31. Targeting 
the methyltransferase activity of METTL3 presents a promising strategy to regulate m6A methylation patterns 
and modulate oncogene expression, offering potential therapeutic benefits in cancer treatment32.

Recent advances in prediction models related to METTL3 have primarily focused on identifying m6A RNA 
modification sites. The machine learning model m6Aboost, for instance, tackled the problem of false positives in 
antibody-based m6A detection by using miCLIP2 datasets33. Similarly, the iM6A deep learning model presented 
high accuracy in predicting m6A deposition sites while identifying critical cis-element sequences that govern 
site-specific methylation34. Recent research has demonstrated that METTL3 has an m6A target-selective role31,35, 
with the development of numerous small-molecule inhibitors targeting METTL3 against acute myeloid leukemia, 
gastric cancer, and neuroblastoma tumor suppression, such as UZH2 and STM245718,36,37. Nevertheless, the 
prediction model for METTL3 inhibition on drug development has yet to be developed.

To facilitate the drug development for METTL3, this study presented a prediction model using a novel 
machine learning strategy to conquer the dataset limitation. Due to the small data size of two publicly available 
datasets of METTL3 inhibitors, the bioactivity distribution of the two datasets derived from METTL3 and 
METTL3-METTL14 experiments were carefully compared and merged. To overcome the limited number 
of inhibition bioactivity data for the target protein, a comprehensive approach combining machine learning, 
protein–ligand docking, and protein–ligand interaction analysis was utilized. This innovative strategy seamlessly 
integrates computational predictions with structural biology insights, enabling the accurate identification of 
potent METTL3 inhibitors. Models were developed using AutoGluon, a stacking algorithm leveraging 6 machine 
learning algorithms for achieving high performance. An optimized METTL3 bioactivity prediction model 
was developed using the merged datasets with the integration of contact residues of METTL3-ligand docking 
analysis. Furthermore, key residues with significant impacts on bioactivity were identified using forward feature 
selection through the minimum redundancy maximum relevance (mRMR) algorithm38, providing critical 
guidance for the rational design of future METTL3-targeting inhibitors. The developed model was effective in 
identifying METTL3 inhibitors and was further validated by external data of recently published inhibitors from 
the literature.

Methods
The programs were developed on the Ubuntu 20.04 operating system using Python 3.7.11. To achieve various 
analytical tasks, several Python packages were utilized: numpy and pandas for data manipulation, matplotlib for 
visualization, scikit-learn for machine learning, rdkit-pypi for cheminformatics, torch and AutoGluon v0.5.239 
for machine learning.

Datasets
Two datasets (DB1 and DB2) of chemicals and the human METTL3 IC50 bioactivities were obtained from 
ChEMBL40. DB1 contains 151 IC50 values for METTL3/METTL14 inhibitors (CHEMBL4106140) and DB2 
consists of 607 IC50 values for METTL3 inhibitors (CHEMBL4739695). A merged dataset of DB1 and DB2 was 
developed by removing duplicates and was composed of 644 chemicals and their corresponding IC50 values. The 
negative logarithm of the IC50 values (pIC50) was used as the label for model training.

Protein–ligand docking and docking-based protein–ligand interaction feature encoding 
(DPLIFE)
For conventional model development, each record of protein–ligand bioactivity was encoded by two commonly 
used features of 1024 bits of extended-connectivity fingerprints with a diameter of 6 atoms (ECFP)41 by RDKit42 
and 1444 physicochemical properties by PaDEL-Descriptor43. As protein–ligand docking can provide better 
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structural insights, we propose incorporating the docking-based protein–ligand interaction features (DPLIFE) 
to further improve the prediction model.

To compute the DPLIFE feature, the reported human METTL3-METTL14 ligand-bound crystal structure 
was used (PDB ID: 7O2I)37 for docking experiments with its small inhibitor compound STM2457 removed. 
The open-source RDKit toolkit 2022.9.442 with Python version 3.7.11 was utilized to generate the three-
dimensional structures of ligands. The protein structure was prepared and protonated using the AMBER-FB15 
force field44. Protein–ligand docking was performed to analyze potential binding pockets and protein–ligand 
interactions using AutoDock Vina 1.1.2 following the protein–ligand docking protocol45. The compound 
STM2457 was employed to validate the docking procedure, ensuring the accuracy of the redocking process with 
less than 0.8 Å root-mean-square deviation (RMSD). This threshold confirmed that the docking protocol could 
reliably reproduce the experimentally observed binding pose, thereby validating the precision of the docking 
methodology for further analyses.

DPLIFE features consisting of one feature of docking score and 185 features of protein–ligand interaction 
profile were extracted from the docked complex generated from the abovementioned docking process. 
The protein–ligand interaction features were calculated based on the analysis results of the Protein–Ligand 
Interaction Profiler (PLIP) tool46,47. Target-specific docking analyses were conducted using the crystal structure 
(PDB ID: 7O2I), which comprises 205 residues. The C-terminal 20 residues without interaction with ligands were 
removed. The remaining 185 residues-specific interactions were subsequently encoded into numeric features for 
further model development. The interaction types were coded as follows: 0 for no interaction, 1 for hydrophobic 
interactions, 2 for π-π stacking, 3 for π-cation interactions, 5 for salt bridges, and 6 for hydrogen bonds.

Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) 
analysis
To evaluate the chemical space distribution and compatibility of combining two ligand datasets (DS1: 
CHEMBL4106140 and DS2: CHEMBL4739695) for METTL3 inhibitor modeling, principal component analysis 
(PCA)48 and t-distributed stochastic neighbor embedding (t-SNE)49 were conducted. Prior to dimensionality 
reduction, non-structural features, i.e. molecular identifiers, SMILES strings, and bioactivity labels, were 
excluded. The PCA was performed to extract 2 principal components, with the explained variance examined to 
confirm that the primary chemical variance was captured. The t-SNE was applied to the same preprocessed data 
matrix using a perplexity of 160, 2 dimensions, and 1,000 iterations to preserve local chemical relationships. The 
results of both PCA and t-SNE analyses were visualized as scatter plots, with samples color-coded by dataset, 
allowing assessment of chemical space similarity.

Model development
To ensure a rigorous process for model development, the original dataset was uniformly divided into 64% training, 
16% validation, and 20% test sets ratio for model training, validation, and independent test, respectively. To 
construct a prediction model, the AutoGluon-Tabular39 was used for developing an auto-staking50 model based 
on 6 different algorithms of neural networks51, LightGBM boosted trees52, XGBoost53, CatBoost54, random 
forests55, and extremely randomized trees56. The maximum training time was limited to 2 h. To assess model 
performance, both the mean squared error (MSE) and Pearson’s correlation coefficient (CC) were employed. The 
mean squared error (MSE) was utilized as the objective function for model training, as detailed in Eq. 1 below.

	
MSE =

∑n

i=1 (Yi − yi)2

n
� (1)

In this equation, Yi and yi represent the experimental and predicted values for each instance, and i and n denote 
the specific instance and the total number of instances, respectively. The formula for calculating CC was provided 
in Eq. 2 below.

	

CC =
∑ (

Yi − Y
)

(yi − y)√∑ (
Yi − Y

)2 ·
∑

(yi − y)2
� (2)

In this equation, Y  represents the average of the experimental values for the variable being predicted while y 
denoting the average of the predicted values.

Feature selection for identifying key residues
The minimum redundancy maximum relevance (mRMR) algorithm38 was used to rank the features based on the 
training dataset in order to determine which features were most pertinent for forecasting METTL3 bioactivities. 
Subsequently, a sequential forward feature selection algorithm57 was applied to select the optimal feature subset 
giving the highest validation MSE performance on the validation dataset. In brief, the top-ranked n features 
were selected for model development and validation using the training and validation datasets, respectively, 
where the feature number of n was incrementally increased until reaching a convergence of validation MSE 
values. Since the chemical fingerprint was usually considered as a whole, the feature selection applies only to 
the physicochemical properties and DPLIFE features while keeping the ECFP information unselected for model 
development. The incremental selection stops when less than 5% improvement in validation MSE value was 
obtained by including an additional feature.
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Results and discussion
Ligand-based model development for METTL3 bioactivity
To develop prediction models of METTL3 inhibitory activities, two datasets of DS1 and DS2 sourced from 
CHEMBL4106140 and CHEMBL4739695 were collected. To investigate the potential for combining the two 
datasets to enlarge the training set, the bioactivity distributions of the two datasets were compared and found 
to be similar (Fig. S1). Principal component analysis (PCA)48 and t-distributed stochastic neighbor embedding 
(t-SNE) analysis49, based on ECFP and physicochemical features, were then utilized to visualize the chemical 
spaces of the two datasets. As shown in Fig. 1, both datasets exhibit comparable bioactivity distributions. PCA 
analysis revealed that the first two principal components explain over 92% of the total variance and that the 
chemical spaces of DS1 and DS2 substantial overlap, indicating structural similarity between the datasets. 
Additionally, t-SNE visualization demonstrated that the two datasets occupy partially overlapping regions 
in chemical space, with clear areas of intersection. These analyses indicated that the two datasets possessed 
substantial structural similarity and overlap, suggesting enhancement of the chemical space coverage of the 
developed model by the combination of two datasets.

Two single-dataset models (ML3-DS1 and ML3-DS2) were trained separately on DS1 and DS2 using features 
of ECFP and physicochemical properties employing AutoGluon-Tabular. The mixed-dataset model (ML3-mix) 
was trained on the concatenated DS1 and DS2 dataset, which pooled samples from both DS1 and DS2, removed 
redundant entries, and used their ECFP and physicochemical features. Table 1 shows the validation and test 
results of the developed models. The model training for ML3-DS1, ML3-DS2, and ML3-mix takes 29, 53, and 
60 min. While good validation MSE of 0.176 and test MSE and CC of 0.057 and 0.971, respectively, were obtained 
for the ML3-DS1 model on the DS1 dataset, the generalization ability of ML3-DS1 was poor on the DS2 dataset. 
Similarly, the ML3-DS2 model with a good validation MSE of 0.335 and good test MSE and CC of 0.130 and 
0.935, respectively, using the DS2 dataset performed poorly on the DS1 dataset. The overall test performance on 

Models Training dataset # features MSE (validation)

DS1 test set DS2 test set
Overall test 
set*

MSE CC MSE CC MSE CC

ML3-DS1 DS1 2478
(ECFP & PP) 0.176 0.057 0.971 1.261 0.138 0.972 0.370

ML3-DS2 DS2 2478
(ECFP & PP) 0.335 2.839 0.644 0.130 0.935 0.781 0.620

ML3-mix DS1 + DS2 2478
(ECFP & PP) 0.303 0.231 0.829 0.296 0.830 0.280 0.829

ML3-mix-DPLIFE DS1 + DS2 2664
(ECFP, PP & DPLIFE) 0.307 0.168 0.874 0.299 0.840 0.264 0.849

ML3-mix-DPLIFE-FS DS1 + DS2 1636
(ECFP, PP-FS & DPLIFE-FS) 0.309 0.168 0.874 0.294 0.845 0.261 0.853

Table 1.  The validation and test performance of developed models. CC, Pearson’s correlation coefficient; MSE, 
mean squared error; ECFP, extended-connectivity fingerprints; PP, physicochemical properties, DPLIFE, 
docking-based protein–ligand interaction features; PP-FS, selected PP features; DPLIFE-FS, selected DPLIFE 
features; *: the combined test set of DS1 and DS2 test sets. The baseline performances were indicated with 
underscores, while the improved performances were highlighted in bold font.

 

Fig. 1.  Chemical space visualization of DS1 and DS2 datasets using (A) the first two principal components 
(PC1 and PC2) obtained from a principal component analysis (PCA), with explained variations shown in 
parentheses; (B) t-SNE.
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both DS1 and DS2 datasets of ML3-DS1 and ML3-DS2 was poor performance with an MSE greater than 0.78 
and a CC less than 0.62. It shows that a small dataset was not sufficient to train a robust model even with good 
validation and test results. It was therefore important to investigate the utilization of a combined dataset for 
developing a robust model.

The performance of the ML3-mix model utilizing both DS1 and DS2 datasets was reasonably good with a 
validation MSE of 0.303 and test MSE and CC of 0.280 and 0.829, respectively using the combined dataset. The 
test MSE and CC on individual datasets were satisfying with 0.231 and 0.829 for DS1 and 0.296 and 0.830 for 
DS2. These results indicate that dataset integration was beneficial for model development.

Incorporation of protein–ligand interaction features (DPLIFE) for model improvement
While the ligand-based model provides good performance on the prediction of pIC50 values of METTL3 ligands, 
no structural insights into the protein–ligand interactions can be obtained from ligand-based approaches 
making further validation and investigation difficult. To overcome the limitation, this study incorporated 
the protein–ligand interaction information to facilitate the identification of METTL3 inhibitors. In short, the 
protein–ligand docking process was conducted to identify potential ligand binding poses based on the human 
METTL3-METTL14 heterodimer crystal structure (PDB ID 7O2I)37 with the inhibitor STM2457 removed 
(Fig. 2). The docking-based protein–ligand interaction information (DPLIFE) was then represented as numeric 
feature vectors including one feature of the docking score and 185 protein–ligand interaction features.

A ML3-mix-DPLIFE model was developed using the mixed dataset. As shown in Table 1, a slightly increased 
validation MSE of 0.307 was obtained, while a significant improvement on the DS1 test set and a slight 
improvement on the DS2 test set was found. The test MSE and CC were 0.168 and 0.874 for the DS1 test set, and 
0.299 and 0.840 for the DS2 test set, respectively. The overall test performance of MSE and CC for ML3-mix-
DPLIFE were 0.264 and 0.849, which was better than the ML3-mix model with 0.280 and 0.829, respectively. The 
results showed that the DPLIFE features could facilitate learning from small datasets.

Permutation feature importance assay
A permutation feature importance assay was performed to thoroughly evaluate the individual and combined 
contributions of each feature set (Table S1). The model integrating all features, ECFP, PP, and DPLIFE, 
yielded the highest performance (MSE 0.264, CC 0.849). When evaluated individually, the model using only 
PP demonstrated superior performance (CC 0.833) compared to models using only ECFP (CC 0.788) or only 
DPLIFE (CC 0.500) (Table S1). Combinations of DPLIFE with either ECFP or PP resulted in only marginal 
improvements over the respective single-feature models, with less than a 1% increase in CC. The resulting order 
of feature importance for predictive accuracy was determined as PP > ECFP > DPLIFE. While DPLIFE features 
alone had limited predictive power, their inclusion with molecular fingerprints and physicochemical properties 
improved model robustness and accuracy, resulting in more than a 2.4% improvement in CC. This analysis 

Fig. 2.  Flowchart of the stacked ensemble model development for the METTL3 bioactivities using 186 
docking-based protein–ligand interaction features (DPLIFE), 1024-bit chemical fingerprint (ECFP), and 1444 
physicochemical features.
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suggested the necessity of feature complementarity for developing effective and generalizable predictive models 
for METTL3 bioactivity.

Identification and analysis of key residues for METTL3 bioactivities
Since the incorporation of DPLIFE features was useful for improving the model performance, it was therefore 
interesting to know which were the key residues and interactions by using machine learning algorithms. To 
achieve this goal, an mRMR‐based forward feature selection algorithm was used to identify the most relevant 
DPLIFE features and physicochemical property features.

As shown in Fig. 3A, the MSE performance was converged in the feature number of 1,636 with a validation 
MSE of 0.309 which was similar to the model using the full feature set. The feature selection removed redundant 
and irrelevant features with reduced training time while keeping the performance unaffected. The final feature 
set includes 1,024 ECFP, 603 physicochemical properties, and 9 DPLIFE (i.e. 8 key contact features and one 
docking score feature) (Fig. 3B). The selected DPLIFE features comprised 8 key protein–ligand contact residues 
and one docking score. The model ML3-mix-DPLIFE-FS based on the selected features yields a slightly reduced 
test MSE of 0.261 and an improved test CC of 0.853 (Table 1) for the overall test set. Excluding a significant 
number of DPLIFE features was reasonable by the observation that only a few key residues were responsible 
for the bioactivity of proteins, consistent with the fact that fewer than 2% of protein residues were involved in 
binding and activity58.

The 8 key residues influencing METTL3 bioactivities ranked by the mRMR algorithm were Arg 379, Pro 
396, Ile 400, Trp 431, Trp 457, His 512, Lys 513, and Gln 550, in a sequential order. The identified residues were 
mapped onto the METTL3 structure (PDB ID: 7O2I) (Fig.  3C) for visualization. The mean pIC50 values of 
chemicals interacting with 0 and at least 1, 2, and 3 key residues out of the 8 key residues are 7.357, 7.494, 7.569, 
and 7.600, respectively, indicating a potential influence of the number of interacted key residues on the pIC50.

Numerous studies have explored the significance of key residues in METTL3 through mutagenesis 
experiments, providing critical insights into its catalytic mechanism and structural dynamics. Among the 
identified key residues, Lys 513, ranked second in this study, has been extensively studied using the Lys513Ala 

Fig. 3.  The mRMR‐based forward feature selection. (A) The validation performance of top-ranked features 
with the highlighted final feature set. (B) Composition of the final feature set; the 603 selected physicochemical 
features were listed in Table S2. (C) The identified 8 key residues (red sticks) critical for METTL3 bioactivities 
(PDB ID: 7O2I). The inset table ranks these residues by mRMR relevance score.
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mutant. This mutation abolished the recruitment of the ligand’s adenosine and eliminated METTL3 catalytic 
activity, confirming its essential role in RNA methyltransferase function59. Similarly, His 512, ranked 7th in this 
study, exhibits flexibility in the apo state and was stabilized upon adenosine binding making the catalytic site 
accessible. Furthermore, Trp 457 and Trp 431, ranked 1st and 4th in this study, respectively, have been highlighted 
as essential aromatic residues forming the ligand-binding aromatic cages. These residues play pivotal roles in 
stabilizing the ligand within the METTL3 active site, a process vital for enzymatic activity35. Additionally, Pro 
396, ranked third in this study, contributes significantly to ligand binding through its backbone carbonyl, which 
interacts with reactive groups and nearby ion pairs. This interaction was critical for the stability of the enzyme-
ligand complex and efficient catalysis59. Likewise, Gln 550, ranked 6th in this study, was involved in stabilizing 
the hydroxyl groups of ribose in the ligand. Mutagenesis of this residue to alanine (Gln550Ala) was shown 
to moderately reduce enzymatic activity, indicating its supporting role in METTL3 function60. Furthermore, 
Pro 396 and Ile 400, ranked 3rd and 8th in this study, have been implicated as a key residue within gate loop 1 
(Pro 396 - Gly 407)61, a flexible region critical for regulating cofactor and substrate binding, as well as product 
release62.

Independent test on external data of novel METTL3 inhibitors
Recent studies have introduced a series of novel bisubstrate analogs (BAs) as METTL3 inhibitors, with 
experimentally determined pIC50 values for 5 novel BAs (BA1, BA2, BA3, BA4, BA6) reported59. While the 
independent test on the test dataset has been conducted, an additional test on the unseen BAs structures can 
provide a better understanding of the model performance. The predicted pIC50 values using the ML3-mix-
DPLIFE-FS model and experimentally determined pIC50 values of the 5 BAs were shown in Table 2. The BA2 and 
BA4, the two most effective inhibitors reported in the study, were predicted to be the best inhibitor with pIC50 
values of 7.061 and 7.129, respectively, which closely aligned with the experimentally reported pIC50 of 8.046 and 
7.74559. The CC between the predicted and experimental pIC50 values for all BAs was 0.727, with a mean squared 
error (MSE) of 0.418. BA6 exhibited the lowest predicted (6.021) and experimental (≤ 6.301) values, showing a 
promising tool for prioritizing inhibitors. Since experimental conditions can lead to a large variation of pIC50 
values63, some deviation was expected when comparing the predicted and experimental values.

For external benchmarking, the predictive performance of the ML3-mix-DPLIFE-FS model was evaluated 
against the recently reported deep learning-based bioactivity predictor HAC-Net64 and alternative approaches, 
including NNscore 2.065, and GNINA 1.366 (Table S4). The ML3-mix-DPLIFE-FS model showed strong predictive 
capability, with predicted pIC50 values for BA1, BA2, BA3, BA4, and BA6 closely matching experimental 
measurements, achieving a Spearman correlation coefficient (ρ) of 0.90. In comparison, conventional molecular 
docking with AutoDock Vina yielded a lower correlation (CC 0.62, ρ 0.80). Nevertheless, HAC-Net predictions 
for pKa showed weak association with experimental data (CC − 0.49, ρ − 0.30) (Table 2 and S4). In addition, 
NNscore 2.0 yielded negligible correlations (CC − 0.01, ρ − 0.30), and GNINA predictions were similarly weak 
correlations (CC − 0.43, ρ − 0.40). These results indicated that, for this test set, the ML3-mix-DPLIFE-FS model 
exhibited higher correlation with METTL3 inhibitor bioactivity data.

Since the cocrystal structures of these BAs have been reported59, the analysis of their binding poses and 
interactions with the identified 8 key residues can further validate the developed model. This study therefore 
highlighted the 8 key residues and the key residues within 4 Å of the ligand in the protein–ligand complex on 
the newly available crystal structures (Fig. 4). Results indicated that in every analyzed complex, at least 2 key 
residues were located in close proximity to the ligand, further substantiating their functional importance in 
inhibitor bioactivities. During the course of this study, three new METTL3-inhibitor cocrystal structures were 
published, allowing us to incorporate additional PDB entries (PDB IDs: 9G4S, 9G4U, and 9G4W) into our 
analyses. As shown in Fig. S2, the 8 key residues identified as essential for METTL3 bioactivity were consistently 
detected across all analyzed protein–ligand crystal structures. Analysis of these cocrystal structures further 
supports the elongated ligand binding pocket with 8 key residues in defining the binding pocket architecture 
required for METTL3 inhibition (Fig. S2).

Newly discovered compounds from 
reference59

Key residue interactions from reported 
structure* Experimental pIC50

59 Predicted pIC50

Docking 
score by 
AutoDock 
Vina45 
(kcal/
mol)

BA1 Arg 379, Gln 550 6.461 6.965 − 8.0

BA2 Arg 379, Pro 396, Ile 400, His 512, Lys 513, 
Gln 550 8.046 7.061 − 7.3

BA3 Not available 7.678 7.039 − 8.4

BA4 Arg 379, His 512, Lys 513, Gln 550 7.745 7.129 − 6.9

BA6 Arg 379, His 512, Lys 513, Gln 550  ≤ 6.301 6.021 − 8.5

Table 2.  Comparison of predicted and experimentally reported bioactivities of recently reported METTL3 
inhibitors. Columns included experimentally measured pIC50 values59, the pIC50 values predicted by the ML3-
mix-DPLIFE-FS model, and docking score predicted by the AutoDock Vina45. *Key-residue interactions from 
reported crystal structures were defined as those within 4 Å of the inhibitor.
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Detailed analysis of METTL3–inhibitor cocrystal structures demonstrates that the ligand binding site is 
defined by the spatial arrangement of the 8 key residues: Arg 379, Pro 396, Ile 400, Trp 431, Trp 457, His 512, 
Lys 513, and Gln 550. These residues collectively shape an elongated binding pocket capable of accommodating 
a variety of inhibitors, as illustrated in Fig. 4 and Fig. S2. Notably, Trp 457 was consistently located within 4 Å of 
the bound ligands in the newly reported METTL3–inhibitor cocrystal structures (Fig. S2), indicating its frequent 
involvement as a lower pocket interaction residue. In contrast, this proximity was not observed in the BA-bound 
cocrystal structures (Fig. 4), suggesting potential differences in binding mode and pocket engagement between 
the newly reported inhibitors and the bisubstrate analogs. Further quantification of interaction contributions 
revealed that Trp 457 and Trp 431 are characterized by a high frequency of hydrophobic interactions with ligands 
(22.6% and 22.7%, respectively) (Table S3). Trp 431 also occasionally participates in π–π stacking interactions, 
highlighting the importance of both residues in providing aromatic and hydrophobic stabilization of the ligand. 
Hydrogen bonding is predominantly contributed by Arg 379, Pro 396, Gln 550, and Lys 513, with Gln 550 and 
Pro 396 exhibiting hydrogen bonding in 11.7% and 5.6% of cases, respectively. Additionally, Arg 379 forms salt 
bridges (0.2%) alongside hydrogen bonds, further anchoring the ligand within the binding pocket (Table S3). 
Notably, inhibitors exhibiting interactions with a greater number of these key interaction residues were observed 
to demonstrate enhanced effectiveness, highlighting the importance of these residues in the design of potent 
METTL3 inhibitors.

Conclusion
The discovery of METTL3 inhibitors has garnered significant interest in recent years due to their potential 
applications in cancer treatment67 and their potential as antiviral therapies68. METTL3, a key catalytic subunit of 
the m6A RNA methyltransferase complex, plays a critical role in modulating oncogenic and antiviral pathways 

Fig. 4.  Key residues relevant to METTL3 bioactivities in recently reported protein-inhibitor structures. (A) 
The METTL3-BA1 protein–ligand crystal structure (PDB ID: 8PW9). (B) The METTL3-BA2 protein–ligand 
crystal structure (PDB ID: 8PW8). (C) The METTL3-BA4 protein–ligand crystal structure (PDB ID: 8PWA). 
(D) The METTL3-BA6 protein–ligand crystal structure (PDB ID: 8PWB). The key residues within 4 Å of the 
ligand were highlighted in magenta stick representations.
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by regulating RNA methylation. Targeting METTL3 provides a promising avenue for developing therapeutic 
interventions, particularly for cancers such as acute myeloid leukemia (AML), where it promotes the translation of 
oncogenic transcripts MYC and BCL2. This study introduces a novel method for METTL3 inhibitor discovery. In 
addition to conventional features of chemical fingerprint and physicochemical properties, the newly introduced 
DPLIFE features representing ligand–protein interaction information were found to be useful for improving 
model predictivity and interpretability. Eight key protein–ligand interaction residues were identified via feature 
selection, and the optimized ML3-mix-DPLIFE-FS model achieved high predictive accuracy, with predicted 
pIC50 values closely matching experimental IC₅₀ data for benchmark inhibitors. Validation with additional 
BAs confirmed both the model performance and the relevance of these residues. Considering the importance 
of interaction type and its contribution to the final prediction, which was not fully addressed in this work, 
future studies could incorporate interaction type–wise features derived from advanced protein–ligand complex 
modeling methods, such as NeuralPLexer69 and UMol70, to further improve accuracy and generalizability. This 
approach not only provided a powerful METTL3-focused drug discovery tool for addressing unmet therapeutic 
needs in oncology and virology, but also demonstrated a combinational methodology that could be applied to 
rational drug design for other targets.

Data availability
Data and materials are available on GitHub [https://github.com/drhuangwc/METTL3] ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​d​r​h​
u​a​n​g​w​c​/​M​E​T​T​L​3​​​​​)​.​​
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