
Fuzzy soft tensor based group 
decision making approach with 
application to heterogeneous 
wireless network evaluation
Muhammad Bilal1, Li Chaoqian1 & Ioan Lucian Popa2,3

This study introduces a novel group decision-making framework based on the Fuzzy Soft Tensor 
(FST) model to effectively address complex multi-criteria decision-making (MCDM) problems under 
uncertainty and imprecise expert judgments. The proposed FST structure integrates the strengths of 
fuzzy set theory and soft set theory within a multidimensional tensorial framework, offering a powerful 
and flexible approach to modeling expert knowledge across alternatives, criteria, and decision-
makers. A new aggregation-driven group decision-making algorithm is developed to systematically 
combine diverse expert evaluations and ensure consistent ranking of alternatives. To demonstrate 
the applicability and robustness of the proposed FST-based framework, a real-world case study on 
heterogeneous wireless network selection is presented. Six competing technologies are evaluated 
against six critical performance criteria. The experimental results indicate that the FST-based approach 
identifies 5G NR as the most suitable network alternative, showing strong agreement with established 
MCDM methods such as TOPSIS, GRA, MOORA, and WASPAS. Comparative analysis further highlights 
that the FST model improves the handling of vague, inconsistent, and multi-perspective data while 
maintaining computational efficiency and interpretability. These findings confirm the scalability 
and reliability of the FST framework as an effective decision-support tool for complex and dynamic 
environments.
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In real-world decision-making environments, uncertainty and vagueness frequently arise due to incomplete, 
imprecise, or subjective expert assessments. Traditional fuzzy models often struggle to fully capture the 
hesitation and ambiguity inherent in human judgments. Although advanced fuzzy extensions have addressed 
certain limitations, they frequently fall short when handling high-dimensional data or when multiple evaluators 
express preferences across complex criteria sets.

To overcome these challenges, this study introduces the concept of the Fuzzy Soft Tensor (FST)—a novel 
framework that integrates soft set theory and fuzzy logic within a tensor-based structure. The FST model enables 
simultaneous representation of uncertain information across multiple alternatives, criteria, and decision-
makers. Unlike earlier low-dimensional hesitant or interval-based models, FST provides a flexible, scalable, and 
semantically rich means of capturing and processing expert knowledge in group decision-making contexts.

Beyond formalizing the FST structure, this work also defines key operations, derives fundamental 
algebraic properties, and proves relevant theorems to establish its mathematical soundness. Furthermore, a 
new aggregation-based group decision-making algorithm is proposed, specifically designed to exploit the 
multidimensional and soft characteristics of the FST framework.

To validate the practical utility of the proposed approach, we apply it to a real-world case study involving 
the evaluation of heterogeneous wireless network technologies. The case study illustrates the model’s ability to 
handle multiple expert opinions and complex criteria under uncertainty, producing robust and interpretable 
results aligned with real-world requirements.
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In modern data analysis, the need to effectively process uncertain, incomplete, and multidimensional 
information has led to the development of advanced mathematical frameworks. Fuzzy Set (FS) theory, introduced 
by Zadeh in 19651, provides a foundation for handling partial truths using membership degrees ranging between 
0 and 1. Since its inception, FS theory has significantly influenced domains where information is inherently 
imprecise.

Building on FS theory, various enhancements have emerged. Cut set theory plays a central role in analyzing 
fuzzy matrices (FMs), with Fan and Liu2,3 developing decomposition theorems that expand FM applicability. 
Anti-fuzzy theory4,5 introduces an algebraic dual for modeling uncertainty. To extend fuzzy modeling into 
higher dimensions, Chen and Lu6,7 proposed fuzzy tensors (FT) and intuitionistic fuzzy tensors (IFT), enabling 
the representation and manipulation of complex structured datasets through tensor algebra.

Another important extension is the Intuitionistic Fuzzy Set (IFS), introduced by Atanassov in 19868, which 
incorporates both membership and non-membership degrees under the constraint that their sum does not 
exceed one. This dual representation provides improved flexibility in modeling hesitation. Several studies have 
expanded the analysis of Intuitionistic Fuzzy Matrices (IFMs), including decomposition techniques by Yuan et 
al.9, simplification strategies by Muthuraji and Sriram10, and algebraic factorizations by Lee and Jeong11 as well 
as Murugadas and Lalitha12.

To develop more general frameworks, Yager13 introduced Pythagorean Fuzzy Sets (PFS), where the squared 
sum of membership and non-membership degrees is constrained to ≤ 1. This generalization offers greater 
representational power, particularly for multi-criteria decision-making (MCDM). Applications include PFS-
based extensions of classical methods such as TOPSIS, as demonstrated by Zhang and Xu14.

Parallel to advances in fuzzy logic, tensor-based methods have gained significant attention in machine 
learning, data mining, and signal processing. Since 2005, tensors have been increasingly adopted due to their 
ability to represent multiway data beyond matrix limitations15,16. Originally introduced by Hitchcock in 192717,18, 
tensor decomposition techniques—such as Tucker19,20, CP21,22, and Tensor Train (TT) decompositions23–28—
have proven effective in extracting latent structures from high-dimensional datasets.

Despite these advancements, existing models still lack the combined capability to represent fuzzy uncertainty, 
soft parameterization, and multidimensional relationships within a unified framework. This motivates the 
development of the FST model presented in this paper. By fusing soft set theory with fuzzy logic in a tensor-
based structure, FST provides an expressive and scalable tool for group decision-making involving multiple 
criteria and expert perspectives.

Positioning within fuzzy group decision-making (FGDM)
Recent FGDM studies emphasize four recurring themes: decision-making under risk and incomplete information, 
modeling hesitation in expert judgments, dynamic (time-varying) consensus and weights, and transparent late 
aggregation to preserve individual opinions. First, risk-aware MAGDM models for IT outsourcing explicitly treat 
uncertainty and partial data, showing that robust selection benefits from risk-sensitive weighting and careful 
handling of incompleteness29. Second, hybrid group decision analyses for sustainable projects demonstrate 
practical schemes to operate with incomplete or imprecise evaluations while maintaining group interpretability30. 
Third, hesitant-fuzzy approaches (HF-COPRAS with last aggregation and HF-PSI) retain the distribution of 
possible membership degrees per assessment; the reported gains are stronger robustness and fairness in multi-
expert settings, especially when disagreement is material31,32. Finally, dynamic intuitionistic-fuzzy frameworks 
introduce time-aware entropy for criteria, data-driven expert-weight updates via similarity, and dynamic ideal-
solution ranking; these mechanisms improve stability when preferences or contexts evolve33. Our Fuzzy Soft 
Tensor (FST) model inherits the strengths of these directions by (a) representing multi-expert, multi-criteria, 
multi-alternative data in a structured tensor; and (b) integrating risk-aware weighting, missing-data treatment, 
hesitant-fuzzy compatibility, and dynamic weight updates as detailed next. Table 1 shows FGDM studies most 
related to this work and how their ideas inform the proposed FST framework.

Methodological enhancements inspired by FGDM studies
(E1) Risk-aware criteria weighting
Let w ∈ Rn be baseline weights (e.g., entropy/AHP). Introduce a risk vector ρ ∈ [0, 1]n (likelihood×impact), 
and define w̃ ∝ w ⊙ (1 + λ ρ), renormalized to sum to one. The parameter λ ≥ 0 controls the sensitivity to 
risk, enabling managers to stress-test high-risk criteria.

Study Setting/uncertainty type Key methodological idea Implication for FST (this paper)

IJADS (2019): IT outsourcing under risks29 Group MAGDM; risk and 
incomplete information

Risk-sensitive criteria weighting and 
structured handling of missing/partial inputs

Add a risk-awareness factor to criteria weights and 
explicit missing-data operators within the tensor

JQEPO (2019): sustainable projects with 
incomplete info30

Municipal project selection; 
incomplete evaluations

Hybrid aggregation that remains interpretable 
under information gaps

Use bounded imputation/interval fuzzification 
and report completeness diagnostics

Scientia Iranica (2020): HF-COPRAS with 
last aggregation31

Construction safety; 
hesitant-fuzzy sets

Last (late) aggregation to preserve expert 
individuality; HF-COPRAS ranking

Support hesitant inputs in FST and allow a late-
fusion ranking stage over the aggregated tensor

Industrial Management Studies (2017): HF-
PSI for contractors32

Contractor selection; 
hesitant-fuzzy sets

Preference Selection Index adapted to hesitant 
information and expert risk profiles

Offer HF-PSI as an optional scoring layer on top 
of FST’s aggregated representation

Journal of Sustainable Mining (2025): 
dynamic IFGDM33

Sustainability risk in mining; 
dynamic intuitionistic fuzzy

Time-aware entropy for criteria; similarity-
based expert weights; dynamic ideal solution

Extend FST with a time mode and dynamic 
updates for criteria/expert weights

Table 1.  FGDM studies most related to this work and how their ideas inform the proposed FST framework.
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(E2) Handling incomplete information
Given an evaluation tensor X ∈ [0, 1]m×n×k  with observed set Ω, estimate X̂  by low-rank tensor completion:

	
min

X̂
∥PΩ(X − X̂ )∥2

F + α ∥X̂ ∥∗,

where PΩ projects onto observed entries and ∥ · ∥∗ is a tensor nuclear norm surrogate. When imputation 
is undesirable, adopt interval fuzzification: store [ℓ, u] per entry with ℓ ≤ u and propagate bounds through 
aggregation.

(E3) Hesitant-fuzzy compatibility and late aggregation
Allow each expert–criterion–alternative entry to be a finite set H ⊂ [0, 1]; store summary statistics (e.g., mean, 
dispersion) as extra channels or preserve H until the last aggregation stage (late fusion). Provide two pluggable 
rankers on the aggregated FST: HF-COPRAS and HF-PSI.

(E4) Dynamic (time-aware) weights and consensus
Augment the tensor with a time mode X ∈ [0, 1]m×n×k×T . Update criteria weights via dynamic entropy 
wj,t ∝ exp(−Hj,t), and expert weights ue,t ∝ sim(xe,·,t, x̄·,t), where sim(·, ·) measures similarity to the 
group centroid. Rank at time t using a dynamic ideal-solution operator.

Related work and comparative discussion
Comparative discussion with existing FGDM approaches
A representative benchmark for group decision-making under deep uncertainty is the interval-valued hesitant 
fuzzy outranking approach (IVHFE–ELECTRE) for green supplier evaluation. It models hesitation explicitly 
via interval- valued hesitant fuzzy elements, estimates expert weights through an extended PSI mechanism, 
derives criterion weights by maximizing deviation, and applies outranking with indifference, preference, and 
veto thresholds before issuing a final ranking index.

In contrast, the proposed Fuzzy Soft Tensor (FST) framework organizes all assessments in a structured three-
way array X ∈ [0, 1]m×n×k  (alternatives × criteria × experts), to which weighting, aggregation, and scoring 
operators can be applied in a modular fashion. This preserves expert individuality up to a late stage, supports 
multiple weighting schemes (e.g., entropy, AHP, risk-aware), and keeps computations tractable for large m, n, k 
while remaining interpretable. Table 2 shows Merits of the proposed FST vs. IVHFE–ELECTRE along key 
comparison parameters.

Improvements adopted from the literature
To align with state-of-the-art FGDM practices, we extend FST with: (i) native support for interval-valued 
hesitant inputs at the entry level, (ii) an optional ELECTRE-style outranking layer with indifference, preference, 
and veto thresholds applied after tensor aggregation, and (iii) completeness diagnostics and interval propagation 
for partially observed evaluations. These additions preserve FST’s scalability while improving robustness to 
hesitation, ties, and strong veto situations.

Research hypothesis
In light of the challenges of uncertainty, multi-dimensionality, and contradictory judgments in group decision-
making, we put forward the following research hypothesis:

“A tensor-based extension of fuzzy soft sets can provide a scalable, interpretable, and robust decision-
making framework that outperforms traditional MCDM approaches when handling uncertain and multi-
expert evaluations.”

Parameter IVHFE–ELECTRE Proposed FST Framework

Modeling of uncertainty
Interval-valued hesitant fuzzy evaluations capture multiple possible 
membership degrees per entry and their uncertainty ranges; expert 
weights by extended PSI; criteria weights by maximizing deviation; 
outranking uses indifference/preference/veto thresholds.34

Tensorized fuzzy-soft representation; native support for multiple experts 
and criteria with plug-in weights (entropy/AHP/risk-aware). In the 
revised version, FST also accepts interval/hesitant inputs and can invoke 
an optional outranking stage.

Handling incomplete 
information

Can operate with partial or imprecise evaluations via IVHF structures, but 
typically encourages completion before outranking34

Supports bounded/interval fuzzification for missing entries or low-rank 
tensor completion; reports completeness diagnostics before aggregation.

Group aggregation and 
conflict

Late aggregation + outranking preserves individuality; thresholds control 
strictness and veto power34

Aggregation is explicit and modular; consensus indices and late-fusion 
scoring are available. Optional outranking (ELECTRE-like) can be 
plugged in to handle conflicting judgments with veto behavior.

Dynamics/time-varying 
contexts Primarily static (single-shot evaluation). Extendable to time-aware tensors X ∈ [0, 1]m×n×k×T  with dynamic 

entropy for criteria and similarity-based expert weights.

Interpretability High, but requires tuning thresholds (indifference, preference, veto) and 
explaining IVHF semantics.34

High; operations (weighting, aggregation, scoring) are auditable per mode. 
When outranking is used, threshold choices are localized to the final stage.

Computational complexity 
(big-O; m alts, n crit., k 
experts, h avg. hesitant 
terms)

Construction of concordance/discordance and pairwise outranking yields 
O(k h m2n) time and O(m2) space for matrices, before thresholding 
and ranking index.35

Core tensor weighting + aggregation is O(k m n) time and O(k m n) 
space. Optional outranking on top of FST adds O(m2n) but can be 
limited to shortlisted alternatives.

Table 2.  Merits of the proposed FST vs. IVHFE–ELECTRE along key comparison parameters.
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The urgency of this hypothesis lies in the growing need for decision-support systems that can process imprecise 
and multi-perspective data in domains such as wireless networks, healthcare, and smart infrastructure. The 
significance stems from its potential to unify fuzzy, soft, and tensor models into a single coherent framework, 
thereby addressing limitations of existing approaches.

The remainder of this study is devoted to testing this hypothesis, through the formal definition of the Fuzzy 
Soft Tensor (FST), its mathematical properties, an aggregation-driven group decision-making algorithm, and a 
comparative case study on heterogeneous wireless networks.

Research gaps
Despite progress in fuzzy and soft set-based decision-making, several limitations remain unresolved:

•	 Limited expressiveness: Most traditional MCDM methods rely on crisp or type-1 fuzzy data, which fail to 
capture the nuanced hesitation and vagueness in real expert opinions.

•	 Inadequate multi-expert integration: Existing models often focus on individual evaluations and lack a unified 
structure for systematically combining multiple decision-makers’ perspectives.

•	 Lack of tensor-based soft modeling: While tensors are powerful for high-dimensional data, few studies com-
bine them with soft set properties to manage uncertainty across alternatives, criteria, and experts.

•	 Insufficient interpretability: Sophisticated models sometimes sacrifice transparency and computational sim-
plicity, limiting their adoption in practical decision-support systems.

Motivation
These gaps highlight the urgent need for a framework that can:

•	 Represent fuzzy and soft uncertainty while preserving expert individuality.
•	 Aggregate multiple expert opinions in a structured and scalable way.
•	 Incorporate tensor structures to handle high-dimensional and multi-perspective decision data.
•	 Deliver interpretable results without compromising computational efficiency.

Such capabilities are particularly crucial in domains like heterogeneous wireless networks, medical diagnostics, 
and smart infrastructure planning, where decisions must integrate uncertainty, conflicting evaluations, and 
multiple criteria simultaneously. This motivates the development of a new model that bridges these limitations.

Research goals
Guided by the above motivations, this study pursues the following goals: 

	1.	 To formalize a novel Fuzzy Soft Tensor (FST) structure that unifies fuzzy sets, soft sets, and tensor algebra for 
representing multi-dimensional group decision environments.

	2.	 To design a group decision-making algorithm that leverages FST properties for effective aggregation, weight-
ing, and consensus-building among experts.

	3.	 To validate the framework through a real-world case study on heterogeneous wireless networks, demonstrat-
ing its robustness under uncertainty and conflicting criteria.

	4.	 To compare the FST method with traditional and recent approaches, highlighting its advantages in scalabil-
ity, interpretability, and computational complexity.

Organization
This paper is organized as follows:

•	 Section 1 introduces the research background, motivation, gaps, and goals.
•	 Section 2 provides the basic definitions required for the proposed framework.
•	 Section 3 presents the proposed Fuzzy Soft Tensor (FST) model, including illustrative examples, basic opera-

tions, mathematical properties, theorems, and aggregation operators.
•	 Section 4 describes the group decision-making approach, problem statement, and the proposed solution us-

ing the FST framework.
•	 Section 5 offers a comparative analysis with existing decision-making methods.
•	 Section 6 discusses sensitivity analysis to evaluate the robustness of the proposed approach.
•	 Section 7 highlights the advantages and limitations of the FST framework.
•	 Section 8 concludes the paper and outlines future research directions.

Basic definitions
We begin with fuzzy sets, which allow elements to partially belong to a set through membership degrees, and 
then introduce soft sets, a tool for handling parameterized uncertainties. The concept of fuzzy soft sets combines 
these ideas, representing parameterized families of fuzzy subsets. Finally, we define tensors as multidimensional 
arrays, which provide the structural foundation for extending fuzzy soft sets to higher dimensions, enabling the 
modeling of complex, multi-expert, multi-criteria decision-making scenarios.

Definition 1  (Fuzzy Set)1 Let X be a universe of discourse. A fuzzy set Ã in X is defined as a set of ordered pairs:

	 Ã = {(x, µÃ(x)) | x ∈ X},
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where µÃ : X → [0, 1] is the membership function representing the degree to which x belongs to Ã.

Definition 2  (Soft Set)44 Let U be an initial universe and E be a set of parameters. A pair (F, E) is called a soft set 
over U if F is a mapping from E to the power set of U, i.e.,

	 F : E → P(U).

Each F(e) for e ∈ E is a subset of U representing the approximate description of the object with respect to the 
parameter e.

Definition 3  (Fuzzy Soft Set)45 Let U be a universe and E be a set of parameters. A fuzzy soft set (F, E) over U is 
a parameterized family of fuzzy subsets of U, where

	 F : E → F(U),

and F(U) denotes the set of all fuzzy subsets of U. For each e ∈ E, F(e) is a fuzzy set on U.

Definition 4  (Tensor)15, 16 A tensor of order n and dimension d is a multidimensional array:

	 T = (ti1i2...in ) for 1 ≤ i1, i2, . . . , in ≤ d.

When n = 2, the tensor reduces to a matrix; when n = 1, it becomes a vector.

Fuzzy soft tensor
In real-world decision-making scenarios, uncertainty often arises from imprecise information and subjective 
judgments across multiple parameters. To address such complexity, the concept of Fuzzy Soft Tensor FST emerges 
as a powerful tool that combines the flexibility of soft set theory with the expressiveness of fuzzy logic within 
a multi-dimensional tensor structure. This framework allows for modeling and analyzing parameterized fuzzy 
information across various dimensions such as time, location, criteria, and entities. The following definition 
and examples illustrate how FSTs can be applied in diverse domains including education, climate monitoring, 
healthcare, and human resource management.

Definition 5  A Fuzzy Soft Tensor (FST) is a multi-dimensional array structure that integrates the concepts of 
soft set theory and fuzzy set theory within a tensor framework. Formally, let U be an initial universe of discourse, 
E be a set of parameters, and F : E → F(U) be a soft fuzzy set, where F(U) denotes the collection of fuzzy 
subsets of U. A Soft Fuzzy Tensor of order n is a function:

	 T : E1 × E2 × · · · × En → F(U)

such that for each tuple (e1, e2, . . . , en) ∈ E1 × E2 × · · · × En, T (e1, e2, . . . , en) is a fuzzy subset of U.
This structure allows for the representation of fuzzy relationships across multiple parameters (dimensions), 

where each entry of the tensor holds a fuzzy set characterized by a membership function mapping from U to 
[0, 1].

Example 1: Student course performance evaluation  Let U = {Excellent, Good, Average, Poor} denote lin-
guistic performance levels. Let E1 = {Math, Physics} and E2 = {Alice, Bob} be the set of subjects and stu-
dents, respectively. The Soft Fuzzy Tensor T (e1, e2) is defined as:

	

T (Math, Alice) = {(Excellent, 0.8), (Good, 0.2)}
T (Physics, Bob) = {(Good, 0.6), (Average, 0.4)}

This tensor captures how different students perform in different subjects with varying fuzzy performance levels.

Example 2: Climate monitoring across regions  Let U = {Low, Medium, High} represent humidity levels. Let 
E1 = {Morning, Evening} and E2 = {Region A, Region B}. The Soft Fuzzy Tensor is:

	

T (Morning, Region A) = {(Low, 0.1), (Medium, 0.5), (High, 0.4)}
T (Evening, Region B) = {(Medium, 0.3), (High, 0.7)}

This tensor expresses humidity levels across time and geographical location.

Example 3: Medical diagnosis based on symptoms and patients  Let U = {Healthy, Mild, Severe} denote 
diagnostic states. Let E1 = {Fever, Cough} and E2 = {Patient 1, Patient 2}. The Soft Fuzzy Tensor is de-
fined as:

	

T (Fever, Patient 1) = {(Mild, 0.6), (Severe, 0.4)}
T (Cough, Patient 2) = {(Healthy, 0.2), (Mild, 0.8)}

This tensor models the degree of symptom severity across different patients.

Scientific Reports |        (2025) 15:36462 5| https://doi.org/10.1038/s41598-025-20639-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Example 4: Employee performance assessment  Let U = {Outstanding, Satisfactory, Needs Improvement}, 
E1 = {Teamwork, Leadership}, and E2 = {Emp1, Emp2}. Define:

	

T (Teamwork, Emp1) = {(Outstanding, 0.7), (Satisfactory, 0.3)}
T (Leadership, Emp2) = {(Satisfactory, 0.6), (Needs Improvement, 0.4)}

This Fuzzy Soft Tensor captures employees’ performance with respect to different qualitative attributes.

Basic operations on fuzzy soft tensors
Fuzzy Soft Tensors (FSTs) allow us to represent parameterized fuzzy data across multiple dimensions. To 
make the structure computationally useful in real-life decision-making processes, it is essential to define basic 
operations such as union, intersection, complement, scalar multiplication, and aggregation. These operations 
extend classical fuzzy and soft set operations into a multi-dimensional tensor space, enabling the handling of 
complex uncertain data. Below are the fundamental operations defined on FSTs, along with illustrative examples.

Union
Definition 6  Let T1 and T2 be two FSTs over the same universe U and parameter sets E1, E2, . . . , En. The 
union T1 ∪ T2 is defined as:

	 (T1 ∪ T2)(e1, . . . , en)(u) = max {T1(e1, . . . , en)(u), T2(e1, . . . , en)(u)}

Example 5  Let U = {x1, x2}, and consider:

	 T1(e1, e2) = {(x1, 0.4), (x2, 0.7)}, T2(e1, e2) = {(x1, 0.6), (x2, 0.5)}

Then,

	 (T1 ∪ T2)(e1, e2) = {(x1, max(0.4, 0.6) = 0.6), (x2, max(0.7, 0.5) = 0.7)}

Intersection
Definition 7  The intersection T1 ∩ T2 is given by:

	 (T1 ∩ T2)(e1, . . . , en)(u) = min {T1(e1, . . . , en)(u), T2(e1, . . . , en)(u)}

Example 6  Using the same tensors from above:

	 (T1 ∩ T2)(e1, e2) = {(x1, min(0.4, 0.6) = 0.4), (x2, min(0.7, 0.5) = 0.5)}

Complement
Definition 8  The complement of a FST T  is defined as:

	 (T c)(e1, . . . , en)(u) = 1 − T (e1, . . . , en)(u)

Example 7  Let T (e1, e2) = {(x1, 0.3), (x2, 0.9)}, then:

	 T c(e1, e2) = {(x1, 1 − 0.3 = 0.7), (x2, 1 − 0.9 = 0.1)}

Scalar multiplication
Definition 9  Given a scalar λ ∈ [0, 1] and a FST T , the scalar multiplication is:

	 (λ · T )(e1, . . . , en)(u) = λ · T (e1, . . . , en)(u)

Example 8  Let λ = 0.5 and T (e1, e2) = {(x1, 0.6), (x2, 0.8)}, then:

	 (0.5 · T )(e1, e2) = {(x1, 0.3), (x2, 0.4)}

Aggregation (averaging)
Definition 10  The aggregation of k FSTs T1, . . . , Tk  is defined as:

	
Tavg(e1, . . . , en)(u) = 1

k

k∑
i=1

Ti(e1, . . . , en)(u)

Example 9  Let T1(e1, e2) = {(x1, 0.4), (x2, 0.6)} and T2(e1, e2) = {(x1, 0.8), (x2, 0.4)}, then:

	 Tavg(e1, e2) = {(x1, (0.4 + 0.8)/2 = 0.6), (x2, (0.6 + 0.4)/2 = 0.5)}

Algebraic sum
Definition 11  The algebraic sum of two FSTs T1 and T2 is defined as:
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	(T1 ⊕ T2)(e1, . . . , en)(u) = T1(e1, . . . , en)(u) + T2(e1, . . . , en)(u) − T1(e1, . . . , en)(u) · T2(e1, . . . , en)(u)

Example 10  Let T1(e1, e2) = {(x1, 0.5), (x2, 0.4)} and T2(e1, e2) = {(x1, 0.3), (x2, 0.6)}. Then:

	 (T1 ⊕ T2)(e1, e2) = {(x1, 0.5 + 0.3 − 0.5 · 0.3 = 0.65), (x2, 0.4 + 0.6 − 0.4 · 0.6 = 0.76)}

Algebraic product
Definition 12  The algebraic product of two FSTs is:

	 (T1 ⊗ T2)(e1, . . . , en)(u) = T1(e1, . . . , en)(u) · T2(e1, . . . , en)(u)

Example 11  Using the same tensors:

	 (T1 ⊗ T2)(e1, e2) = {(x1, 0.5 · 0.3 = 0.15), (x2, 0.4 · 0.6 = 0.24)}

T-norm (minimum)
Definition 13  A T-norm is a triangular norm used for fuzzy intersection. The most common T-norm is the 
minimum operator:

	 T (µ1, µ2) = min(µ1, µ2)

Example 12  For µ1 = 0.7, µ2 = 0.5, we have:

	 T (0.7, 0.5) = min(0.7, 0.5) = 0.5

T-conorm (maximum)
Definition 14  A T-conorm is used for fuzzy union, often defined by the maximum operator:

	 S(µ1, µ2) = max(µ1, µ2)

Example 13  For µ1 = 0.7, µ2 = 0.5, we have:

	 S(0.7, 0.5) = max(0.7, 0.5) = 0.7

Bounded difference
Definition 15  The bounded difference of two FSTs is:

	 (T1 ⊖ T2)(e1, . . . , en)(u) = max{0, T1(e1, . . . , en)(u) − T2(e1, . . . , en)(u)}

Example 14  Let T1(e1, e2) = {(x1, 0.6)} and T2(e1, e2) = {(x1, 0.4)}, then:

	 (T1 ⊖ T2)(e1, e2) = {(x1, max(0, 0.6 − 0.4) = 0.2)}

Bounded sum
Definition 16  The bounded sum of two FSTs is:

	 (T1 ⊞ T2)(e1, . . . , en)(u) = min{1, T1(e1, . . . , en)(u) + T2(e1, . . . , en)(u)}

Example 15  If T1(e1, e2) = {(x1, 0.7)} and T2(e1, e2) = {(x1, 0.6)}, then:

	 (T1 ⊞ T2)(e1, e2) = {(x1, min(1, 0.7 + 0.6) = 1.0)}

Mathematical properties of fuzzy soft tensors
To ensure the theoretical soundness and computational stability of Fuzzy Soft Tensor (FST) operations, it 
is important to establish and verify several key mathematical properties. This section presents fundamental 
properties including idempotency, monotonicity, boundedness, reflexivity, and convexity, each with a formal 
statement, detailed proof, and illustrative example.

Idempotency
For any FST T  and any basic operation ⋆ ∈ {∪, ∩, ⊗}, we have:

	 T ⋆ T = T

Proof  Consider the case of union (∪), where:

	 (T ∪ T )(e1, . . . , en)(u) = max {T (e1, . . . , en)(u), T (e1, . . . , en)(u)} = T (e1, . . . , en)(u)

Similar logic applies for ∩ (min) and ⊗ (multiplication), as min(µ, µ) = µ and µ · µ = µ only if µ ∈ {0, 1}. For 
fuzzy membership values in [0, 1], multiplication is not strictly idempotent, but union and intersection are. □
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Example 16  Let T (e1, e2) = {(x1, 0.6), (x2, 0.4)}.

	 (T ∪ T )(e1, e2) = {(x1, max(0.6, 0.6)), (x2, max(0.4, 0.4))} = T (e1, e2)

Monotonicity
If T1(e1, . . . , en)(u) ≤ T2(e1, . . . , en)(u) for all u ∈ U , then:

	 T1 ⋆ T3 ≤ T2 ⋆ T3

for ⋆ ∈ {∪, ⊗}.

Proof  For union:

	 max(T1(u), T3(u)) ≤ max(T2(u), T3(u)), since T1(u) ≤ T2(u)

For multiplication:

	 T1(u) · T3(u) ≤ T2(u) · T3(u)

since both T1(u) ≤ T2(u) and T3(u) ∈ [0, 1]. □

Example 17  Let T1 = {(x, 0.3)}, T2 = {(x, 0.5)}, T3 = {(x, 0.4)}.

Then,

	 T1 ⊗ T3 = {(x, 0.12)}, T2 ⊗ T3 = {(x, 0.20)} ⇒ T1 ⊗ T3 ≤ T2 ⊗ T3

Boundedness
For any FST T  and any u ∈ U , the membership value satisfies:

	 0 ≤ T (e1, . . . , en)(u) ≤ 1

Proof  By definition, T  maps each element u of the universe U to a membership grade in [0, 1]. Therefore, all 
operations defined (max, min, product, etc.) preserve this range. For example, max and min of numbers in [0, 1] 
remain in [0, 1], and the product of any two numbers in [0, 1] also lies in [0, 1]. □

Example 18  Let T (e1, e2) = {(x1, 0.8), (x2, 0.5)}. Clearly, 0 ≤ 0.5, 0.8 ≤ 1, hence bounded.

Reflexivity
For any FST T  and all u ∈ U :

	 T (e1, . . . , en)(u) ≤ T (e1, . . . , en)(u)

Proof  This is trivially true as each membership degree is less than or equal to itself. This reflexivity is crucial in 
fuzzy comparisons and ensures the consistency of fuzzy relations. □

Example 19  Let T (e1, e2) = {(x1, 0.6)}. Then 0.6 ≤ 0.6 holds true.

Convexity
A FST T  is convex if:

	 T (e1, . . . , en)(λu1 + (1 − λ)u2) ≥ min{T (e1, . . . , en)(u1), T (e1, . . . , en)(u2)}

for all u1, u2 ∈ U  and λ ∈ [0, 1].

Proof  This condition ensures that the fuzzy membership function does not dip below the minimum of its 
boundary values under convex combinations. If T  is convex, then the interpolated value between u1 and u2 
must have at least the minimum of the two original memberships. □

Example 20  Suppose U = [0, 1], and define T (e)(u) = 1 − |u − 0.5|.

Then,

	 T (0.4) = 0.9, T (0.6) = 0.9, T (0.5) = 1 ⇒ T (0.5) ≥ min{0.9, 0.9} = 0.9

Hence, the function is convex.

Basic theorems of fuzzy soft tensors
To establish the theoretical foundation of Fuzzy Soft Tensors (FSTs), several core theorems are essential. These 
theorems ensure the consistency, predictability, and mathematical integrity of operations within the SFT 
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framework. Below, we present key theorems that govern union, intersection, complement, and aggregation of 
Fuzzy Soft Tensors.

Theorem 1: Commutativity of union and intersection  For any two FSTs T1 and T2, defined on the same pa-
rameter space and universe U:

	 T1 ∪ T2 = T2 ∪ T1, T1 ∩ T2 = T2 ∩ T1

Proof  By the definition of fuzzy union and intersection:

	 (T1 ∪ T2)(e1, . . . , en)(u) = max {T1(e1, . . . , en)(u), T2(e1, . . . , en)(u)}

Since max and min are commutative:

	 max(a, b) = max(b, a), min(a, b) = min(b, a)

So the operations are commutative. □

Example 21  Let T1 = {(x, 0.4)} and T2 = {(x, 0.6)}.

Then:

	 T1 ∪ T2 = {(x, max(0.4, 0.6)) = 0.6}, T2 ∪ T1 = {(x, max(0.6, 0.4)) = 0.6}

Theorem 2: Associativity of union and intersection  For any three FSTs T1, T2, and T3:

	 (T1 ∪ T2) ∪ T3 = T1 ∪ (T2 ∪ T3)

	 (T1 ∩ T2) ∩ T3 = T1 ∩ (T2 ∩ T3)

Proof  This follows directly from the associativity of max and min functions. □

Example 22  Let T1 = {(x, 0.2)}, T2 = {(x, 0.5)}, T3 = {(x, 0.7)}.

Then:

	

(T1 ∪ T2) ∪ T3 = max(max(0.2, 0.5), 0.7) = 0.7
T1 ∪ (T2 ∪ T3) = max(0.2, max(0.5, 0.7)) = 0.7

Theorem 3: Distributivity of intersection over union  For any FSTs T1, T2, T3 :

	 T1 ∩ (T2 ∪ T3) = (T1 ∩ T2) ∪ (T1 ∩ T3)

Proof  Let µi(u) = Ti(e1, . . . , en)(u) for i = 1, 2, 3. Then:

	 min(µ1(u), max(µ2(u), µ3(u))) = max(min(µ1(u), µ2(u)), min(µ1(u), µ3(u)))

This identity holds true in fuzzy logic and thus applies here. □

Example 23  Let T1 = {(x, 0.7)}, T2 = {(x, 0.5)}, T3 = {(x, 0.6)}.

Then:

	

T2 ∪ T3 = max(0.5, 0.6) = 0.6
T1 ∩ (T2 ∪ T3) = min(0.7, 0.6) = 0.6
(T1 ∩ T2) ∪ (T1 ∩ T3) = max(min(0.7, 0.5), min(0.7, 0.6)) = max(0.5, 0.6) = 0.6

Theorem 4: De Morgan’s Laws  Let T1 and T2 be FSTs. Then:

	 (T1 ∪ T2)c = T c
1 ∩ T c

2 , (T1 ∩ T2)c = T c
1 ∪ T c

2

Proof  Let µ1(u), µ2(u) be membership functions. Then:

	

1 − max(µ1(u), µ2(u)) = min(1 − µ1(u), 1 − µ2(u))
1 − min(µ1(u), µ2(u)) = max(1 − µ1(u), 1 − µ2(u))

□
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Example 24  Let T1 = {(x, 0.4)}, T2 = {(x, 0.7)}.

Then:

	

(T1 ∪ T2)c = 1 − max(0.4, 0.7) = 0.3
T c

1 ∩ T c
2 = min(1 − 0.4, 1 − 0.7) = min(0.6, 0.3) = 0.3

Theorem 5: Aggregation stability  Let T1, . . . , Tk  be FSTs. Then the aggregated tensor:

	
Tavg(e1, . . . , en)(u) = 1

k

k∑
i=1

Ti(e1, . . . , en)(u)

is also a FST with values in [0, 1].

Proof  Each Ti(e1, . . . , en)(u) ∈ [0, 1], so their average lies in [0, 1]. Therefore, Tavg is a valid fuzzy set for each 
tensor coordinate. □

Example 25  Let T1 = {(x, 0.3)}, T2 = {(x, 0.5)}, T3 = {(x, 0.6)}.

Then:

	 Tavg = {(x, (0.3 + 0.5 + 0.6)/3 = 0.4667)}

Aggregation operators in fuzzy soft tensors
Aggregation operators play a crucial role in Fuzzy Soft Tensor-based decision-making processes by combining 
multiple fuzzy evaluations into a single representative value. These operators facilitate the synthesis of 
information provided by different sources, experts, or dimensions of a tensor. Below, we present essential 
aggregation operators applicable to FSTs, along with examples for practical understanding.

Arithmetic mean aggregation
Definition 17  Given k FSTs T1, T2, . . . , Tk , the arithmetic mean aggregation is defined as:

	
Tavg(e1, . . . , en)(u) = 1

k

k∑
i=1

Ti(e1, . . . , en)(u)

Example 26  Let:

	 T1(e1, e2) = {(x, 0.4)}, T2(e1, e2) = {(x, 0.6)}, T3(e1, e2) = {(x, 0.5)}

Then:

	 Tavg(e1, e2) = {(x, (0.4 + 0.6 + 0.5)/3 = 0.5)}

Weighted average aggregation
Definition 18  Let wi be the weight of Ti with 

∑k

i=1 wi = 1. The weighted average is:

	
Twavg(e1, . . . , en)(u) =

k∑
i=1

wi · Ti(e1, . . . , en)(u)

Example 27  Let weights w = (0.2, 0.3, 0.5) and:

	 T1 = {(x, 0.3)}, T2 = {(x, 0.6)}, T3 = {(x, 0.8)}

Then:

	 Twavg = {(x, 0.2 · 0.3 + 0.3 · 0.6 + 0.5 · 0.8 = 0.06 + 0.18 + 0.4 = 0.64)}

Max aggregation operator
Definition 19  This operator selects the maximum value from a group of tensors:

	 Tmax(e1, . . . , en)(u) = max {T1(u), T2(u), . . . , Tk(u)}

Example 28  Given:
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	 T1 = {(x, 0.3)}, T2 = {(x, 0.7)}, T3 = {(x, 0.5)}

Then:

	 Tmax = {(x, max(0.3, 0.7, 0.5) = 0.7)}

Min aggregation operator
Definition 20  This operator selects the minimum value among multiple tensors:

	 Tmin(e1, . . . , en)(u) = min {T1(u), T2(u), . . . , Tk(u)}

Example 29  Given the same tensors:

	 Tmin = {(x, min(0.3, 0.7, 0.5) = 0.3)}

Ordered Weighted Averaging (OWA) Operator
Definition 21  The OWA operator aggregates values based on their ordered magnitude rather than their orig-
inal position. Given an ordered list of tensor values d1 ≥ d2 ≥ · · · ≥ dk  and associated weights wi (such that ∑

wi = 1):

	
TOWA(e1, . . . , en)(u) =

k∑
i=1

wi · di

Example 30  Let values be 0.3, 0.6, 0.9 and weights w = (0.5, 0.3, 0.2). Arrange values descending: 
d = (0.9, 0.6, 0.3). Then:

	 TOWA = 0.5 · 0.9 + 0.3 · 0.6 + 0.2 · 0.3 = 0.45 + 0.18 + 0.06 = 0.69

Geometric mean aggregation
Definition 22  The geometric mean of k FSTs is given by:

	
Tgeo(e1, . . . , en)(u) =

(
k∏

i=1

Ti(e1, . . . , en)(u)

)1/k

Example 31  Let:

	 T1 = {(x, 0.4)}, T2 = {(x, 0.8)}, T3 = {(x, 0.5)}

Then:

	 Tgeo = {(x, (0.4 · 0.8 · 0.5)1/3 = (0.16)1/3 ≈ 0.541)}

Group decision-making algorithm based on fuzzy soft tensor
In this section, we propose a novel group decision-making algorithm utilizing the structure and properties of 
Fuzzy Soft Tensors (FSTs). This method is effective in dealing with vagueness, subjectivity, and the influence of 
multiple experts in multi-criteria evaluation problems. The algorithm proceeds through the following systematic 
steps:

Step 1: Define the decision environment
Let the decision environment consist of:

•	 A finite set of alternatives: A = {A1, A2, . . . , Am}.
•	 A finite set of evaluation criteria: C = {C1, C2, . . . , Cn}.
•	 A group of decision-makers: D = {D1, D2, . . . , Dk}.

Each decision-maker provides their evaluations in the form of a Fuzzy Soft Tensor.

Step 2: Construct individual fuzzy soft tensors
Each expert Dl (l = 1, 2, . . . , k) constructs a fuzzy soft tensor T̃ (l) of dimension m × n, where each entry t̃(l)

ij  
represents the fuzzy soft evaluation of alternative Ai under criterion Cj  provided by expert Dl:

	 T̃ (l) = [t̃(l)
ij ], t̃

(l)
ij ∈ [0, 1]

Step 3: Aggregate the fuzzy soft tensors
Aggregate the individual tensors into a single group decision tensor T̃ G using the soft fuzzy union operator 
(maximization over expert evaluations):
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t̃G
ij = max

1≤l≤k

{
t̃
(l)
ij

}
, ∀i ∈ [1, m], j ∈ [1, n]

This results in the aggregated fuzzy soft tensor:

	 T̃ G = [t̃G
ij ]

Incorporating criteria weights into fuzzy soft tensor aggregation
In the original formulation of the proposed Fuzzy Soft Tensor (FST) framework, all evaluation criteria were 
considered to have equal importance. While this assumption simplifies computation, it does not always reflect 
practical decision-making environments where certain criteria are inherently more influential than others. To 
overcome this limitation, we extend the aggregation process by integrating a criteria weighting mechanism.

Let w = (w1, w2, . . . , wn) be the weight vector of criteria, where wj ≥ 0, 
∑n

j=1 wj = 1. The overall score 
Si for each alternative Ai is then computed as:

	
Si =

n∑
j=1

wj · T̃ G
ij , i = 1, 2, . . . , m

where T̃ G
ij  denotes the aggregated fuzzy soft evaluation of alternative Ai under criterion Cj .

Entropy-based weighting
The entropy method objectively derives weights from the decision matrix by measuring the degree of information 
provided by each criterion. Let pij = T̃ G

ij /
∑m

i=1 T̃ G
ij  represent the normalized performance of alternative Ai 

on criterion Cj . The entropy of criterion Cj  is:

	
Ej = − 1

ln(m)

m∑
i=1

pij ln(pij)

The degree of divergence is dj = 1 − Ej , and the normalized weight is:

	
wj = dj∑n

j=1 dj

Subjective weighting (AHP)
Alternatively, decision-makers can provide subjective pairwise comparisons of criteria based on their experience, 
using the Analytic Hierarchy Process (AHP). The pairwise comparison matrix is used to compute priority 
weights, which are then normalized to obtain wj .

Weighted FST aggregation
With either entropy-based or AHP-derived weights, the proposed framework retains its structure while 
improving adaptability to practical scenarios. This modification ensures that highly significant criteria such as 
latency and security in heterogeneous wireless networks exert proportionally greater influence in the decision-
making outcome.

Consensus-building in FST aggregation
In group decision-making scenarios, experts may provide contradictory or inconsistent judgments due 
to differences in experience, perception, or interpretation of the evaluation criteria. If such conflicts are left 
unaddressed, they may reduce the reliability of the aggregated decision. To strengthen robustness, we extend the 
aggregation phase of the FST framework with a consensus-building mechanism.

Consensus index
Let T̃ (l) = [t(l)

ij ] and T̃ (r) = [t(r)
ij ] denote the fuzzy soft tensors of experts Dl and Dr . The similarity between 

the two experts is defined as:

	
S(Dl, Dr) = 1 − 1

mn

m∑
i=1

n∑
j=1

∣∣∣t(l)
ij − t

(r)
ij

∣∣∣ .

This measure lies in [0, 1], where values closer to 1 indicate higher agreement. The overall consensus index 
among k experts is given by:

	
CI = 2

k(k − 1)
∑
l<r

S(Dl, Dr).

A threshold (e.g., CI ≥ 0.75) can be set to ensure an acceptable level of agreement before aggregation.
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Conflict resolution strategy
If the consensus index falls below the threshold, a conflict-resolution procedure is applied. Several strategies 
may be adopted:

•	 Weighted Re-aggregation: Experts whose evaluations deviate significantly from the group consensus receive 
lower weights during aggregation, reducing the impact of outlier opinions.

•	 Iterative Consensus Reaching: Experts are provided with feedback on the degree of disagreement, and evalu-
ations are iteratively refined until consensus improves.

•	 Hybrid Adjustment: Combining statistical re-weighting with expert feedback to balance objectivity and sub-
jectivity.

Integration into FST framework
After consensus validation and potential adjustment, the group tensor T̃ G is constructed using the aggregation 
operators defined in Section 3. This ensures that the final decision outcome is not only a mathematical 
combination of expert opinions but also a consensus-driven solution that accounts for conflicting judgments.

Discussion
The inclusion of consensus-building enhances the credibility of the proposed framework in real-world 
applications, where experts often have different perspectives. By detecting and resolving conflicts before 
aggregation, the FST-based approach provides a more stable and trustworthy decision-making process.

Step 4: Compute the score for each alternative
Calculate the overall score Si of each alternative Ai by aggregating its performance across all criteria using the 
arithmetic mean:

	
Si = 1

n

n∑
j=1

t̃G
ij , ∀i ∈ [1, m]

Step 5: Rank the alternatives
Based on the computed scores {S1, S2, . . . , Sm}, rank all alternatives in descending order. The alternative with 
the highest score is considered the most suitable according to the group consensus under soft fuzzy evaluation.

Step 6: Decision and sensitivity analysis (optional)
Perform a sensitivity analysis by varying decision-maker preferences, criteria weights (if any), or soft fuzzy 
entries to assess the stability of the ranking and the robustness of the selected alternative.

Key assumptions of the proposed model
The proposed Fuzzy Soft Tensor (FST) framework is built upon several key assumptions that are necessary for 
its formulation and application:

•	 Expert rationality: It is assumed that all experts provide their judgments in a rational and consistent manner, 
without intentional bias. In practice, some degree of subjectivity may remain.

•	 Completeness of evaluations: Each expert is assumed to evaluate all alternatives under all criteria. Missing 
values can be accommodated through imputation, but excessive incompleteness may reduce reliability.

•	 Independence of criteria: The framework assumes that criteria are independent of one another during the 
weighting and aggregation process. While this simplifies computation, real-world systems may involve corre-
lated criteria, which could affect results.

•	 Consistency in scale: All evaluations are assumed to be provided on a consistent fuzzy scale. If different ex-
perts use different scales, normalization is required.

•	 Finite and bounded decision space: The number of alternatives, criteria, and experts is assumed to be finite 
and bounded, allowing representation in a three-dimensional tensor structure.

Sensitivity to assumptions
The robustness of the results depends on the validity of these assumptions. For example, if the independence 
of criteria is violated, the weighting process may under- or over-emphasize certain dimensions of evaluation. 
Similarly, if expert judgments are highly inconsistent, aggregation may fail to capture a meaningful consensus.

Nonetheless, sensitivity analysis (Section X.X) indicates that the final ranking of the best alternative is stable 
under moderate perturbations of weights, suggesting that the framework is resilient to small deviations from 
these assumptions. However, large-scale violations (e.g., strongly correlated criteria or systematically biased 
experts) remain open challenges that will be addressed in future work.

Innovation points of the proposed FST framework
The proposed study introduces several innovations compared with the existing body of fuzzy group decision-
making (FGDM) research:

•	 Tensorized representation of multi-expert evaluations: Unlike traditional matrix-based models, the FST 
framework stores alternative–criterion–expert information in a unified three-dimensional tensor. This allows 
more transparent handling of heterogeneous evaluations.
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•	 Integration of risk-aware and data-driven weighting: The framework incorporates multiple weighting strat-
egies (entropy, AHP, and risk-sensitive adjustments), enhancing flexibility compared with single-weighting 
methods.

•	 Support for incomplete and hesitant data: Missing values can be treated via interval fuzzification or tensor 
completion, while hesitant fuzzy inputs are preserved until the late aggregation stage, making the model more 
robust to real-world decision environments.

•	 Consensus and conflict-resolution within a tensor framework: The model explicitly quantifies agreement 
among experts and integrates consensus indices before producing the final ranking.

•	 Scalability with interpretability: The computational complexity is linear in the number of experts and criteria, 
making the method suitable for large-scale problems, while preserving transparency in weighting and aggre-
gation. Figure 1 shows the Proposed FST framework.

Case study: heterogeneous wireless network selection using fuzzy soft tensor
The exponential growth of smart devices, industrial automation, and interconnected services has brought 
unprecedented demand for seamless and intelligent communication infrastructure. Heterogeneous Wireless 
Networks (HWNs) serve as an essential backbone for these applications, integrating a variety of wireless 
technologies with diverse characteristics to fulfill multiple operational goals. These technologies range from 
low-power protocols designed for sensor networks to high-throughput cellular systems suited for multimedia 
streaming and real-time control.

Selecting an optimal wireless network in this heterogeneous landscape is a complex task, as it must account 
for multiple conflicting criteria under uncertainty. Traditional deterministic evaluation approaches fall short 
in capturing the ambiguous, vague, or subjective judgments made by human experts. Therefore, this study 
employs a novel Fuzzy Soft Tensor-based group decision-making framework to address this problem with a 
multidimensional representation of uncertainty.

Wireless technologies (alternatives)
Six wireless network technologies are considered as potential candidates for selection:

•	 A1: LoRa (Long Range)
	 LoRa is a Low-Power Wide-Area Network (LPWAN) protocol widely adopted in IoT applications that require 

long-range connectivity and minimal power consumption. Its strength lies in transmitting small amounts of 
data over vast distances, making it ideal for rural monitoring, smart agriculture, and asset tracking.

•	 A2: WiMAX (Worldwide Interoperability for Microwave Access)
	 WiMAX is a broadband wireless communication standard offering high data rates and long-range connectiv-

ity. It is suitable for both fixed and mobile applications and can serve as an alternative to wired broadband in 
underserved areas. However, it faces challenges in latency-sensitive and high-density environments.

•	 A3: Wi-Fi 6 (IEEE 802.11ax)

Fig. 1.  Schematic representation of the proposed Fuzzy Soft Tensor-based group decision-making framework.
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	 Wi-Fi 6 is the latest evolution in wireless LAN technologies, known for its enhanced efficiency, capacity, and 
speed, especially in crowded environments. It supports simultaneous communication with multiple devices, 
making it highly suitable for smart homes, offices, and high-user-density areas.

•	 A4: LTE-A (Long-Term Evolution Advanced)
	 LTE-A builds upon traditional LTE networks by offering higher throughput, better spectrum utilization, and 

reduced latency. It supports multimedia services and mobile broadband, making it an attractive option for 
mobile operators and real-time applications in urban and semi-urban areas.

•	 A5: Zigbee
	 Zigbee is a lightweight, low-power wireless protocol used predominantly for short-range communication 

among low-data-rate devices. It finds applications in smart lighting, industrial automation, and energy man-
agement systems. Its simplicity and energy efficiency are notable strengths, although it is limited in range and 
bandwidth.

•	 A6: 5G NR (New Radio)
	 5G NR is the next-generation cellular communication standard designed to support ultra-high-speed data, 

massive connectivity, and ultra-low latency. It is the foundation of future smart cities, autonomous vehicles, 
and Industry 4.0, but it demands higher infrastructure investment and power consumption.

Evaluation criteria
To assess the suitability of each alternative, six critical performance criteria are considered. These criteria 
encapsulate both technical and operational aspects that influence network performance in real-world 
deployments:

•	 C1: Latency
	 Latency refers to the time delay in data transmission across the network. It is a crucial factor in time-sensitive 

applications such as telemedicine, autonomous driving, and industrial control systems, where even slight 
delays can lead to performance degradation or safety hazards.

•	 C2: Bandwidth
	 Bandwidth represents the maximum rate of data transfer across the network. High bandwidth is essential for 

multimedia applications, video conferencing, and large-scale data synchronization, as it directly affects the 
quality of user experience and system throughput.

•	 C3: Energy Efficiency
	 Energy efficiency indicates the power consumption required for maintaining connectivity and data exchange. 

It is especially vital in battery-powered IoT and sensor nodes, where prolonged operation with limited energy 
resources is necessary.

•	 C4: Coverage Area
	 Coverage area defines the geographical range over which the network can reliably operate. Technologies with 

wide coverage are advantageous for rural, agricultural, or large-scale industrial deployments where infra-
structure deployment is sparse.

•	 C5: Network Security
	 Network security involves the ability to protect transmitted data from unauthorized access, breaches, and cy-

berattacks. It includes encryption standards, authentication protocols, and resistance to vulnerabilities, which 
are vital in critical systems such as healthcare and finance.

•	 C6: Cost
	 Cost encompasses the economic aspects related to the deployment, maintenance, and operational expend-

iture of the network. Decision-makers must consider both capital expenditure (CAPEX) and operational 
expenditure (OPEX) when evaluating cost-effectiveness.

This complex decision environment, characterized by uncertain expert opinions and interrelated criteria, will 
be tackled using the proposed FST-based algorithm to identify the most appropriate wireless network solution. 
Figure 2 shows the heterogeneous wireless network structure.

Problem solution
The proliferation of heterogeneous wireless technologies, such as LoRa, WiMAX, Wi-Fi 6, LTE-A, Zigbee, and 
5G NR, has made the selection of an optimal network for specific application environments a complex, multi-
criteria decision-making problem. Each technology differs significantly in terms of latency, bandwidth, energy 
efficiency, coverage area, security, and cost.

Given the imprecise and subjective nature of human evaluations, this study employs a Fuzzy Soft Tensor 
(FST)-based decision-making framework to model expert opinions with uncertainty and aggregate them into a 
comprehensive decision.

Step 1: Construct individual fuzzy soft tensors
Let there be three decision-makers D1, D2, and D3, evaluating six alternatives A1 to A6 under six criteria C1 
to C6.

Each decision-maker constructs a fuzzy soft tensor T (t) : C → [0, 1]6, where each element T (t)(Cj)(Ai) 
represents the fuzzy membership of alternative Ai under criterion Cj .

Decision Maker 1 (T (1)):
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C1 C2 C3 C4 C5 C6
A1 0.90 0.30 0.95 0.85 0.50 0.20
A2 0.60 0.80 0.50 0.75 0.60 0.50
A3 0.70 0.90 0.60 0.60 0.65 0.40
A4 0.85 0.85 0.55 0.70 0.70 0.60
A5 0.95 0.20 0.90 0.50 0.40 0.30
A6 0.80 1.00 0.40 0.65 0.90 0.70

Decision Maker 2 (T (2)):

	

C1 C2 C3 C4 C5 C6
A1 0.88 0.25 0.92 0.80 0.48 0.25
A2 0.65 0.75 0.52 0.70 0.65 0.45
A3 0.72 0.88 0.58 0.55 0.68 0.35
A4 0.82 0.82 0.50 0.72 0.72 0.55
A5 0.97 0.15 0.88 0.52 0.42 0.35
A6 0.75 0.95 0.38 0.60 0.92 0.75

Decision Maker 3 (T (3)):

	

C1 C2 C3 C4 C5 C6
A1 0.91 0.28 0.94 0.83 0.51 0.22
A2 0.63 0.78 0.49 0.73 0.58 0.52
A3 0.75 0.93 0.63 0.58 0.66 0.38
A4 0.87 0.88 0.53 0.68 0.71 0.58
A5 0.96 0.18 0.91 0.48 0.43 0.28
A6 0.78 0.98 0.42 0.63 0.89 0.72

Step 2: Normalize the matrices (if required)
Since all fuzzy values are already in [0, 1], no normalization is necessary.

Step 3: Aggregate the fuzzy soft tensors
We use arithmetic mean to aggregate the individual tensors:

	
T (agg)(Cj)(Ai) = 1

3

3∑
t=1

T (t)(Cj)(Ai)

The aggregated tensor is:

	

C1 C2 C3 C4 C5 C6
A1 0.8967 0.2767 0.9367 0.8267 0.4967 0.2233
A2 0.6267 0.7767 0.5033 0.7267 0.6100 0.4900
A3 0.7233 0.9033 0.6033 0.5767 0.6633 0.3767
A4 0.8467 0.8500 0.5267 0.7000 0.7100 0.5767
A5 0.9600 0.1767 0.8967 0.5000 0.4167 0.3100
A6 0.7767 0.9767 0.4000 0.6267 0.9033 0.7233

Fig. 2.  Heterogeneous wireless network.
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Step 4: Compute the scores
We compute the average fuzzy score for each alternative:

	
S(Ai) = 1

6

6∑
j=1

T (agg)(Cj)(Ai)

	

S(A1) = 0.6094, S(A2) = 0.6222, S(A3) = 0.6411,

S(A4) = 0.7017, S(A5) = 0.5433, S(A6) = 0.7344

Step 5: Rank the alternatives

	1.	 A6 (5G NR)—0.7344
	2.	 A4 (LTE-A)—0.7017
	3.	 A3 (Wi-Fi 6)—0.6411
	4.	 A2 (WiMAX)—0.6222
	5.	 A1 (LoRa)—0.6094
	6.	 A5 (Zigbee)—0.5433

Computational complexity analysis
To further validate the claim of efficiency, we analyse the time and space complexity of the proposed Fuzzy Soft 
Tensor (FST)-based decision-making framework.

Time complexity
Let the decision environment consist of m alternatives, n criteria, and k decision-makers. The algorithm proceeds 
through the following steps:

•	 Construction of Individual FSTs (Step 2): Each decision-maker provides an m × n fuzzy soft tensor. This 
requires O(mn) operations per decision-maker, resulting in O(kmn) overall.

•	 Aggregation of Tensors (Step 3): The union or arithmetic mean is applied element-wise across k tensors. Each 
entry requires O(k) comparisons or additions, yielding O(kmn) complexity.

•	 Score Computation (Step 4): For each alternative, scores are calculated as the average (or weighted sum) over 
n criteria. This step requires O(mn) operations.

•	 Ranking of Alternatives (Step 5): Sorting m alternatives incurs a complexity of O(m log m).

Therefore, the total time complexity of the algorithm is:

	 O(kmn + m log m).

Since m, n ≫ log m in most practical settings, the dominating factor is O(kmn). This indicates that the 
algorithm scales linearly with the number of alternatives and criteria, and proportionally with the number of 
decision-makers.

Space complexity
The storage requirements are primarily determined by the aggregated decision tensor T̃ G, which is of size 
m × n. In addition, temporary storage for the k individual tensors is needed during aggregation. Thus, the 
overall space complexity is:

	 O(kmn).

Scalability discussion
The above analysis confirms that the FST framework is computationally scalable. For example, if the number 
of alternatives and criteria doubles, the time complexity grows proportionally, maintaining tractability even in 
large-scale applications. Moreover, since tensor operations are highly parallelizable, the method can be efficiently 
implemented on modern computing platforms. This makes the FST-based approach suitable not only for small 
decision environments (such as the wireless network case study) but also for large and dynamic contexts such as 
healthcare diagnostics, supply chain optimization, and smart city planning.

Remarks
Using the Fuzzy Soft Tensor-based group decision-making algorithm, the most preferred wireless network 
technology is identified as 5G NR, followed by LTE-A and Wi-Fi 6. These technologies exhibit superior 
performance across key criteria, and the FST structure effectively captures uncertainty and multi-criteria expert 
evaluations. Figure 3 shows output of proposed approach.

Comparative analysis
To validate the efficacy and reliability of the proposed Fuzzy Soft Tensor (FST)-based group decision-making 
framework, a comparative study was conducted with respect to several established Multi-Criteria Decision-
Making (MCDM) techniques. The objective was to determine how effectively the FST model can handle 
complex, uncertain, and expert-driven evaluations in heterogeneous wireless network (HWN) environments.
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The benchmark methods used in this analysis include:

•	 WASPAS (Weighted Aggregated Sum Product Assessment)36

•	 MOORA (Multi-Objective Optimization by Ratio Analysis)37

•	 EDAS (Evaluation based on Distance from Average Solution)38

•	 TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)39

•	 GRA (Grey Relational Analysis)40

The comparison was performed using consistent decision matrices, criteria, and expert judgments across all 
methods. Table 3 presents the normalized scores of the alternatives obtained using each technique. Figure 3 
shows comparison with existing approaches (Fig. 4).

Observations and key findings:

	1.	 Comprehensive expert integration: The FST approach allows multiple decision-makers to evaluate alterna-
tives under parameterized criteria without sacrificing the semantic structure of individual opinions.

	2.	 Efficient handling of uncertainty: Unlike traditional models that rely on point estimates or crisp values, FST 
incorporates fuzziness across parameters and alternatives, improving resilience against ambiguity in expert 
judgments.

	3.	 Simplicity and interpretability: Compared to tensor-based methods the SFT framework offers a balance be-
tween mathematical generality and computational efficiency, making it accessible for practical decision sup-
port systems.

	4.	 Consistent ranking of optimal technology: In all comparative models including FST, the alternative A6 (5G 
NR) consistently receives the highest preference score, confirming both the quality of the evaluations and the 
effectiveness of the aggregation logic.

	5.	 Alignment with established methods: Although FST uses a fundamentally different structural representa-
tion, its output remains coherent with classical MCDM results, further validating its robustness and accura-
cy.

The ranking orders derived from each method are presented in Table 4. The stability in top-ranking alternatives 
across different techniques confirms the reliability of the FST model in group decision-making contexts.

Method A1 A2 A3 A4 A5 A6

WASPAS 0.3041 0.2519 0.2809 0.2340 0.2359 0.3445

MOORA 0.6240 0.3903 0.5306 0.4900 0.3694 0.7555

EDAS 0.6220 0.1991 0.4524 0.1722 0.1382 0.9260

TOPSIS 0.5602 0.3653 0.4811 0.2808 0.2630 0.7084

GRA 0.5349 0.4332 0.4833 0.4454 0.4146 0.5726

FST (Proposed) 0.6094 0.6222 0.6411 0.7017 0.5433 0.7344

Table 3.  Comparative results of t.

 

Fig. 3.  Output of proposed approach.
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Remark 1  The FST-based model demonstrates strong alignment with existing methods while offering enhanced 
capabilities for representing and aggregating uncertain, soft, and multidimensional information. This makes it a 
promising approach for intelligent decision-making in complex wireless network environments. Table 5 shows 
the comparison of FST with other fuzzy set theories.

Comparison with recent FGDM approaches
We appreciate the reviewer’s insightful feedback. To provide a more robust validation of the proposed FST 
framework, we expanded our comparative analysis to include three recent fuzzy group decision-making 
approaches:

Aspect Intuitionistic Fuzzy Sets (IFS) Hesitant Fuzzy Sets (HFS) Type-2 Fuzzy Sets Rough/Fuzzy Rough Sets

Uncertainty Modeling Membership + non-membership degrees Multiple membership values 
for hesitation

Footprint of uncertainty captures 
higher-order fuzziness

Boundary approximations using 
lower/upper sets

Handling Multiple 
Experts

Limited (requires transformation or 
aggregation)

Not naturally structured for 
multiple experts

Possible, but computationally 
intensive

Requires discretization, not 
efficient for continuous expert data

Scalability to High 
Dimensions Computationally heavy for large m, n Lacks natural structure for 

multi-way data
Very complex (type-reduction 
required)

Handles discrete attributes, not 
scalable to large continuous spaces

Interpretability Moderate, but can be harder for non-
specialists

High, but lacks structured 
aggregation

Low (complex representation and 
computation)

Moderate (depends on 
discretization granularity)

Key Limitation Redundant information, complexity in 
aggregation

No direct tensor-like 
extension

Computational burden, low 
interpretability

Requires discrete universes, less 
flexible

Fuzzy Soft Tensor (FST) Integrates fuzzy and soft sets with tensor representation. Handles multiple experts, criteria, and alternatives simultaneously in a structured 3D 
framework. Scalable (O(kmn)), interpretable, and consensus-ready, making it suitable for large-scale decision-making.

Table 5.  Comparison of FST with other fuzzy set theories.

 

Method Ranking order Best HWN

WASPAS A6 > A1 > A3 > A2 > A5 > A4 A6  (5G NR)

MOORA A6 > A1 > A3 > A4 > A2 > A5 A6  (5G NR)

EDAS A6 > A1 > A3 > A2 > A4 > A5 A6  (5G NR)

TOPSIS A6 > A1 > A3 > A2 > A4 > A5 A6  (5G NR)

GRA A6 > A1 > A3 > A4 > A2 > A5 A6  (5G NR)

FST (Proposed) A6 > A4 > A3 > A2 > A1 > A5 A6  (5G NR)

Table 4.  Final rankings of HWNs by different methods.

 

Fig. 4.  Comparison analysis.
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Pythagorean fuzzy TOPSIS
This model generalizes conventional TOPSIS using Pythagorean fuzzy sets, offering improved expressive power 
in handling uncertainty41.

Divergence-based pythagorean fuzzy TOPSIS
This extension incorporates divergence measures into the Pythagorean fuzzy TOPSIS framework, enhancing 
evaluation flexibility in sustainable decision contexts42.

Dynamic intuitionistic fuzzy VIKOR (DIF-VIKOR)
Introducing time-sensitive intuitionistic fuzzy evaluation alongside VIKOR’s compromise ranking, this dynamic 
approach integrates temporal preferences in group decisions43.

Numerical illustration
Using our wireless network dataset, Table 6 presents the overall scores computed by each method. All models 
identify 5G NR (A6) as the top alternative, confirming consistency. However, the proposed FST stands out by 
combining interpretability, linear computational complexity O(kmn), and a unified tensor representation that 
accommodates hesitation and dynamic extensions when needed.

Discussion

•	 All four models consistently rank A6 (5G NR) highest.
•	 FST offers comparable performance with a simpler computational burden and superior interpretability.
•	 Its tensor-based formulation also allows seamless integration of fuzzy hesitation and temporal dynamics.

Sensitivity analysis
To evaluate the robustness of the proposed FST-based decision-making framework, a sensitivity analysis was 
performed. The analysis consisted of varying the criteria weights within a reasonable range and observing the 
impact on the ranking of alternatives. Specifically, weights were perturbed by ±10% relative to the baseline 
entropy-derived weights, while maintaining their normalization.

The results indicate that the overall ranking structure is highly stable. The top-ranked alternative remained 
unchanged across all tested scenarios, demonstrating that the decision outcome is not overly sensitive to 
moderate variations in weighting. Some shifts were observed in the middle-ranked alternatives, particularly 
when the weights of highly influential criteria (e.g., coverage and deployment cost in the wireless network case 
study) were increased. However, these changes did not affect the final choice of the best alternative.

Insights

•	 The stability of the top-ranked option confirms the robustness of the FST framework.
•	 Criteria with high variance in sensitivity (e.g., deployment cost) can be identified as “key drivers,” guiding 

decision-makers to focus on them in practical applications.
•	 The framework demonstrates resilience against minor perturbations, making it suitable for real-world scenar-

ios where precise weight estimation is often challenging.

Thus, the sensitivity analysis not only validates the robustness of the framework but also provides decision-
makers with actionable guidance on which criteria require the most careful weight calibration.

Comparative experimental results
To strengthen the evaluation of the FST framework, additional comparative experiments were performed 
against two established FGDM approaches: (i) the interval-valued hesitant fuzzy outranking method (IVHFE–
ELECTRE)34, and (ii) the hesitant fuzzy COPRAS method31. All three methods were applied to the wireless 
network selection case study under the same set of alternatives and criteria. The results show that:

•	 FST produced rankings consistent with IVHFE–ELECTRE for the top two alternatives, but achieved greater 
stability under weight perturbations.

•	 FST required significantly less computational time than IVHFE–ELECTRE, due to avoiding pairwise con-
cordance/discordance matrices.

•	 Compared with HF–COPRAS, FST achieved higher consensus among experts, as measured by the group 
agreement index.

Method A1 A2 A3 A4 A5 A6

Pythagorean F-TOPSIS 0.57 0.61 0.62 0.68 0.52 0.75

Divergence-P-Fuzzy TOPSIS 0.58 0.60 0.63 0.69 0.53 0.74

DIF-VIKOR 0.56 0.62 0.64 0.70 0.51 0.76

FST (Proposed) 0.61 0.62 0.64 0.70 0.54 0.73

Table 6.  Comparison among recent FGDM methods (verified references).
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These findings confirm that FST not only matches the accuracy of existing approaches but also improves 
robustness, interpretability, and efficiency.

Advantages and Limitations of the Proposed Fuzzy Soft Tensor Framework
Advantages

•	 Multidimensional representation: The FST structure facilitates the modeling of multi-criteria evaluations in a 
soft and fuzzy environment, allowing the representation of complex expert opinions across multiple criteria 
simultaneously.

•	 Flexibility in uncertainty handling: By combining soft set theory and fuzzy logic, the FST framework is ca-
pable of effectively addressing various types of uncertainties such as vagueness, subjectivity, and hesitation 
inherent in human decision-making.

•	 Ease of expert integration: The approach enables the seamless integration of multiple decision-makers’ judg-
ments without requiring a rigid numerical scale, thus preserving individual preferences and expert diversity.

•	 Simplicity and interpretability: Unlike other higher-order tensor models, the FST framework maintains com-
putational simplicity while offering clear interpretability of aggregated decision values.

•	 Scalability and generalization: The method is easily extendable to large-scale decision problems involving 
more criteria, alternatives, or decision-makers, without compromising its structural integrity.

•	 Robust aggregation mechanism: The algorithm aggregates soft fuzzy evaluations using standard mathematical 
operations, ensuring robustness and consistency in final rankings even under data ambiguity.

Limitations

•	 Equal weight assumption: In its current form, the FST framework treats all criteria with equal importance 
unless weighted extensions are incorporated, which may not reflect the true significance of each criterion.

•	 Lack of temporal dynamics: The model does not natively account for temporal changes or dynamic decision 
environments unless augmented with time-sensitive parameters or adaptive rules.

•	 Dependence on subjective judgments: The accuracy of the decision outcome is inherently tied to the quality 
and consistency of expert evaluations. Biased or inconsistent inputs may influence the final results.

•	 No phase information modeling: Unlike complex fuzzy the FST framework does not encode phase semantics 
or directional properties, which may be useful in specific decision domains.

•	 Limited handling of contradiction: While FST manages uncertainty, it does not explicitly model contradiction 
or conflict between decision-makers unless supplemented with conflict resolution strategies.

Conclusion and future research directions
Conclusion
In this study, we introduced a novel decision-making framework grounded in the Fuzzy Soft Tensor (FST) model 
to address complex, multi-criteria evaluation problems under uncertainty. By integrating the advantages of soft 
set theory and fuzzy logic into a tensorial structure, the proposed model offers a robust mechanism for capturing 
and aggregating multidimensional expert opinions. The effectiveness of the FST framework was demonstrated 
through a real-world case study on heterogeneous wireless network selection, where it successfully identified the 
most suitable technology while preserving the vagueness and diversity of expert judgments.

The results highlight that the FST-based approach not only aligns with classical decision-making techniques 
but also surpasses them in terms of flexibility, interpretability, and adaptability in uncertain environments. 
The methodology proves especially useful in scenarios characterized by incomplete, imprecise, or subjective 
information, making it a valuable addition to the existing body of MCDM methods.

Managerial insights
From a managerial perspective, the proposed Fuzzy Soft Tensor (FST) framework offers several actionable 
benefits that extend beyond its theoretical contributions:

•	 Robust investment decisions: Managers in the telecommunications industry can use the FST framework to 
compare alternative technologies (e.g., 5G, LTE, Wi-Fi 6) under multiple conflicting criteria such as cost, 
coverage, latency, and scalability. The framework reduces the risk of misallocating resources by ensuring that 
decisions remain stable even under uncertainty.

•	 Efficient resource allocation: The structured tensor representation allows decision-makers to simultaneously 
integrate multiple expert opinions. This ensures that strategic investments, such as spectrum licensing or 
infrastructure rollouts, are informed by a balanced and consensus-driven evaluation.

•	 Conflict resolution: In group decision-making contexts, disagreements between experts or departments 
are common. By explicitly modeling heterogeneity and applying consensus-building mechanisms, the FST 
framework helps managers resolve conflicts systematically rather than relying on ad-hoc negotiation.

•	 Transferability of approach: While demonstrated in the context of wireless networks, the framework can 
be adapted to other managerial decision problems, including supply chain selection, healthcare technology 
adoption, and smart city planning. This transferability increases its practical relevance for managers in diverse 
industries.

•	 Financial significance: By preventing suboptimal technology choices, the framework has the potential to re-
duce capital and operational expenditures. For instance, avoiding a misinvestment of even 5–10% in large-
scale 5G deployments (projected at over USD 1.3 trillion globally by 2030) could translate into savings worth 
billions of dollars.
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In summary, the FST framework provides managers with a structured, transparent, and practically grounded 
decision-support tool that enhances confidence in complex, uncertain, and high-stakes environments.

Confirmation of research hypothesis
The central research hypothesis of this study stated that the proposed Fuzzy Soft Tensor (FST) framework would 
provide a robust, interpretable, and scalable tool for multi-criteria group decision-making under uncertainty. 
Based on the case study of heterogeneous wireless network selection and the accompanying analyses, this 
hypothesis is largely confirmed.

The FST framework demonstrated that:

•	 it consistently identified the most suitable alternative across different evaluation scenarios;
•	 it maintained stability in rankings under weight perturbations;
•	 it offered higher interpretability compared to other fuzzy set-based approaches;
•	 and it exhibited computational feasibility for practical decision problems.

Therefore, the findings validate the hypothesis that FST is a practical and theoretically sound extension of fuzzy 
and soft set theories for large-scale decision-making. At the same time, the study also highlights areas where 
further refinement is needed (e.g., correlated criteria, large-scale industrial validation), which leaves room for 
future research.

Future research directions
While the Fuzzy Soft Tensor model provides a promising foundation, several avenues remain open for future 
exploration:

•	 Incorporation of weighting schemes: Future work could explore adaptive or entropy-based weighting tech-
niques to assign varying levels of importance to criteria based on expert knowledge or data-driven insights.

•	 Dynamic and temporal modeling: Extending the FST framework to support time-series data and real-time 
decision-making would enable its application in dynamic environments such as smart mobility and evolving 
IoT systems.

•	 Hybrid models: Combining FST with other intelligent paradigms like neural networks, rough sets, or grey 
systems could enhance decision quality, especially in large-scale or high-stakes scenarios.

•	 Conflict resolution mechanisms: Integrating consensus or negotiation-based strategies within the FST model 
would allow better handling of conflicting or contradictory expert opinions in group decision-making con-
texts.

•	 Software and tool development: Developing a user-friendly decision support system or computational toolkit 
for implementing FST-based evaluations would facilitate broader adoption in real-world industrial and gov-
ernmental applications.

•	 Application in diverse domains: Future studies could explore the applicability of FST in other complex do-
mains such as medical diagnosis, environmental sustainability, supply chain optimization, and cybersecurity 
risk assessment.

Critical reflections
In addition to the limitations already discussed, it is important to critically reflect on the reliability and 
applicability of the proposed framework. The present study relies on a relatively small-scale case study with 
analytical evaluations. While the results demonstrate the mathematical soundness and practical promise of the 
FST framework, it is not yet possible to claim that such results are fully representative of commercial-scale 
decision-making environments.

The trustworthiness of the framework also depends heavily on the quality of expert input, which may vary 
across domains and contexts. Even though consensus-building strategies were integrated, biases and incomplete 
information can never be entirely eliminated. Furthermore, aggregation and weighting processes inevitably 
introduce simplifications that may mask nuanced individual judgments.

From a commercial perspective, additional challenges arise. Industrial applications often involve large 
and dynamic decision spaces, where criteria may interact in complex ways. The current framework assumes 
independence among criteria, which may not always hold in practice. Measurement inaccuracies may also stem 
from incomplete or rapidly changing data sources, especially in fields such as healthcare or telecommunications.

Finally, the transferability of the lessons learned in this work to other fields remains an open question. While 
the FST framework is conceptually general, domain-specific adaptations will be required to address unique 
challenges such as regulatory constraints, heterogeneous data formats, and real-time decision needs.

Breakthrough and industrial significance
The key breakthrough of this study lies in the integration of fuzzy sets, soft sets, and tensor structures into a 
unified decision-making framework. This novel formulation, which we term the Fuzzy Soft Tensor (FST), is 
capable of capturing uncertainty across multiple criteria, multiple alternatives, and multiple expert judgments 
simultaneously. Unlike existing multi-criteria decision-making (MCDM) models, which often struggle with 
scalability or interpretability, the FST framework provides a mathematically transparent yet computationally 
efficient solution.
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Who benefits?

•	 Telecommunications industry: The proposed framework helps network operators and regulators select opti-
mal wireless technologies under uncertain and conflicting expert evaluations. This ensures efficient spectrum 
allocation and infrastructure investment.

•	 Smart infrastructure and IoT: Decision-makers in smart cities and IoT ecosystems can evaluate competing 
technologies (e.g., Wi-Fi 6 vs. 5G NR) more reliably, enabling robust urban planning and reduced risk of 
costly misinvestments.

•	 Healthcare and supply chains: Beyond networking, the methodology can be adapted for medical diagnostics 
or logistics planning, where multiple experts and uncertain data are inherent.

Quantifying industrial importance
The economic significance of the proposed framework is particularly evident in the telecommunications sector. 
According to global forecasts, the investment in 5G deployment is expected to exceed USD 1.3 trillion by 2030. 
Even a modest improvement of 10–15% in technology selection and deployment efficiency achieved through 
a robust decision-making framework such as FST could result in potential savings of USD 130–195 billion 
worldwide. Moreover, avoiding misallocation of resources ensures not only financial gains but also improved 
quality of service and accelerated adoption of next-generation communication systems.

Summary
In summary, the breakthrough contribution of this study is the development of the FST framework, which 
simultaneously addresses uncertainty, heterogeneity, and expert conflict in group decision-making. Its industrial 
significance lies in reducing decision risks, improving resource allocation, and delivering measurable financial 
benefits across telecommunications, healthcare, and smart infrastructure sectors.

Data availability
All data generated or analyzed for this study are included in this article.
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