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Accurate segmentation of gastric cavities from ultrasound images remains a challenging task due to 
the presence of ultrasound shadow and varying anatomical structures. To address these challenges, 
we collected a Gastric Ultrasound Image (GUSI) dataset using transabdominal techniques, after 
administering an echoic cellulose-based gastric ultrasound contrast agent (TUS-OCCA), and annotated 
the gastric cavity regions. We propose a model called Shadow Adaptive Tracing U-net (SATU-net) for 
gastric cavity segmentation on the GUSI dataset. SATU-net is specifically designed for gastric cavity 
segmentation in ultrasound images. The method introduces an Adaptive Shadow Tracing Module 
(ASTM), Shadow Separation Module (SSM), and an affine transformation mechanism to mitigate the 
impact of ultrasound shadow. The affine transformation aligns ultrasound image regions to reduce 
geometric distortion, while the ASTM dynamically tracks and compensates for ultrasound shadow, 
and the SSM extracts the shadow separation image. Extensive experiments on the gastric ultrasound 
dataset demonstrate that SATU-net achieves superior segmentation performance compared to several 
state-of-the-art deep learning methods, with an IoU improvement of 2.26% over the second-best 
competitor. Further robustness analysis and limited external validation provide preliminary evidence 
that SATU-net generalizes across diverse clinical scenarios. Our method provides a robust solution for 
ultrasound image segmentation and can be extended to other medical imaging tasks. Additionally, the 
ASTM module can be flexibly applied to existing network frameworks.

Keywords  Deep learning, Gastric cavity segmentation, Ultrasound shadow elimination

Although the global incidence of gastric cancer (GC) has declined, it remains the fifth most common malignancy 
and the third leading cause of cancer-related deaths worldwide1,2. The prognosis of GC patients is primarily 
determined by the stage of the disease, the presence of distant metastasis, and the timing of treatment. Early 
detection of existing lesions is critical for the treatment and survival of GC patients3–6.

Abdominal ultrasound examination is one of the most widely used diagnostic tools for the preliminary 
investigation of abdominal symptoms. It is a relatively easy, fast, and cost-effective non-invasive method to assess 
normal and pathological conditions of the hepatobiliary and gastrointestinal tracts7–9. However, due to the low 
resolution of ultrasound imaging and the complexity of different organs, ultrasound examinations heavily rely 
on the radiologist’s expertise. Misdiagnosis and missed diagnoses are common, particularly in underdeveloped 
countries and regions. Moreover, due to irregular and minute lesions, radiologists often require considerable time 
to make accurate diagnoses. Thus, developing automated and precise computer-aided ultrasound examination 
methods is crucial.

In recent years, the exploration of deep learning techniques has significantly advanced the field of computer-
aided diagnosis (CAD) in ultrasound imaging. For ultrasound medical image segmentation tasks, the powerful 
nonlinear learning capabilities of fully convolutional networks (FCNs) and U-nets have achieved remarkable 
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success10–12. Inspired by these advancements, a variety of segmentation tasks in ultrasound scenarios have been 
tackled using state-of-the-art deep learning techniques. For instance, in 2021, Liu et al. proposed a neonatal 
hip bone segmentation network that integrated an enhanced dual attention module, a two-class feature fusion 
module, and a coordinate convolution output head, achieving excellent results across multiple segmentation 
datasets13. That same year, Gilbert et al. introduced a novel approach where they used generative adversarial 
networks to create images from high-quality existing annotations. They then trained a convolutional neural 
network to accurately segment the left ventricle and left atrium using these synthetic images, which resulted in 
positive outcomes14. In 2021, Dong et al. leveraged Guided Backpropagation to drive U-Net, adding noise only 
in non-feature regions and fusing via Laplacian pyramid, achieving a denoising-feature preservation win-win 
in portable ultrasound and laying the groundwork for “feature-first” segmentation modules40. In 2022, Frank 
et al. used B-mode frame, vertical ultrasound shadow information, and pleural line information as inputs to a 
DNN network, achieving significant results in assessing COVID-19 severity15. In 2023, Chen et al. implemented 
a modified U-Net structure with an adaptive attention mechanism, substituting the standard double convolution 
configuration with a hybrid adaptive attention module. This adjustment demonstrated efficacy in segmenting 
breast tumors16. Kaur et al. plugged Grad-CAM into Xception-U-Net to yield GradXcepUNet, highlighting 
lesions with class-activation maps and enforcing explainability41. In 2024, Luo et al. employed a semi-supervised 
anomaly detection model based on an adjacent frame guided detection backbone, achieving high-precision 
segmentation of thyroid nodules in a video training set17.

Deep learning for gastric ultrasound segmentation remains limited, largely due to scarce public datasets 
and challenges from varied sampling planes, complex anatomy, and gas-induced shadows. As shown in Fig. 2, 
shadows occur at strong reflectors, high-attenuation zones18, and calcifications19,20, leading to missing structures 
or blurred boundaries. They also arise from poor probe contact or high-impedance interfaces (air–tissue or 
tissue–lesion)21. As illustrated in Fig. 2, an example of how ultrasound shadows originate in a specific image, 
the air trapped between the gastric body and the wall blocks the acoustic beam, splitting the stomach into 
two disconnected regions. This shadow artifact poses a major challenge to complete gastric recognition and 
segmentation. Its occurrence becomes even more frequent and severe when pathologies such as tumours or 
ulcers are present.

Recent advances in preoperative ultrasound imaging have included the use of transabdominal techniques 
after administering an echoic cellulose-based gastric ultrasound contrast agent (TUS-OCCA). This innovation 
has not only increased the detection rates for gastric cancers (GC), but also improved the assessment of the 
extent of GC invasion22,23.

To mitigate ultrasound shadow, Wang et al. (2021) employed a Cycle-GAN to learn from unpaired images 
and auxiliary masks, matching CNNs trained on manual labels in segmentation performance24. Frank et al. 
(2022) applied affine transformations and thresholding to generate vertical shadow masks for pulmonary 
shadow detection15. Xu et al. used shadow-consistent semi-supervised learning to guide feature extraction from 
shadow-free regions24, and Chen et al. (2023) introduced a semi-supervised, boundary-refined, shadow-aware 
network with mimic regions and masking blocks, achieving strong results on breast ultrasound data25.

In this work, we combine TUS-OCCA contrast imaging, affine rectification, and our SATU-net to address 
complex gastric anatomy and ultrasound shadow artifacts. First, an echoic cellulose agent distends the stomach, 
producing homogeneous mid-to-high echogenicity and minimizing mucus and air interference. Next, we apply 
affine transformations based on probe geometry to realign sector-shaped shadow regions into vertical rectangles, 
facilitating shadow mitigation. Finally, SATU-Net’s independent ASTM adapts to varying shadow depths and 
patterns, restoring obscured structures for accurate segmentation. Evaluated on the GUSI dataset, our approach 
achieves superior gastric cavity delineation under severe shadowing.

Methodology
As shown in Fig. 1, the core architecture of the SATU-net model utilizes the well-established U-net framework, 
which is structured around an encoder (contracting) path and a decoder (expanding) path. The encoder 
path systematically extracts hierarchical features from the input image, and the decoder path is tasked with 
reconstructing these features into the segmented output.

The encoder path of SATU-net is strategically bifurcated into two distinct branches. The first branch utilizes 
ASTM to perform down-sampling on the input feature map via max pooling, systematically capturing the 
comprehensive shadow distribution across various spatial and contextual scales. Simultaneously, the second 
branch is dedicated to feature extraction, analogous to the traditional U-Net framework, but it innovatively 
integrates shadow feature information detected by the ASTM module across multiple scales. This integration 
is meticulously designed to enhance the algorithm’s ability to accurately segment the gastric cavity despite the 
presence of shadow.

Subsequently, SSM is employed to apply attention mechanisms on the extracted shadow features, generating 
shadow-free images. These shadow-free images are then incorporated into the shallow features of the encoder 
path to capture fine-grained details. Conversely, the shadow features are integrated into the deep features of the 
encoder path to enhance the network’s understanding of global context. This strategic integration is meticulously 
designed to bolster the algorithm’s capability to accurately segment the gastric cavity despite the presence of 
shadow.

The SATU-net decoder retains the U-shaped skip connections of the standard U-Net to preserve spatial details 
that may be lost during encoder downsampling, yet replaces every convolution with a wavelet-transform layer 
that simultaneously carries fine-edge cues and global context; a parameter-free inverse wavelet transform then 
up-samples the feature map, drastically reducing parameters and yielding the final gastric-cavity segmentation 
mask.
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All experiments were conducted in accordance with relevant guidelines and regulations, and were approved 
by the Ethics Committee of the Third Central Hospital of Tianjin (Approval No. IRB2024-069-01). Informed 
consent was obtained from all participants or their legal guardians.

Affine transformation
To increase the contact area between the probe and the patient’s skin, clinical abdominal ultrasound commonly 
uses a convex array probe. For convex array probes, several element transmit and receive apertures are arranged 
along the fan-shaped region at the front of the probe26–30. When an ultrasound wave encounters a medium that 
it cannot penetrate, such as air or bone, the wave’s energy is absorbed, reducing the clarity of subsequent images 
and causing ultrasound shadow, which typically exhibit a fan-shaped distribution. To address this, we apply 
affine transformations to the original ultrasound images. This adjustment aligns the image regions generated by 
each emitter to be perpendicular to the image, resulting in vertically rectangular distributions of the ultrasound 
shadow regions in the transformed images, as shown in Fig. 2. This facilitates the algorithm’s ability to accurately 
track and mitigate the impact of ultrasound shadow on the ultrasound images. During clinical gastric ultrasound 
examinations, the depth parameter on the ultrasound device is dynamically adjusted by the physician according 
to the target area and the patient’s physique. This results in varying field shapes under different depth settings. 
To address this, we develop a geometric-assisted sector-shaped field annotation method. First, a Cartesian 
coordinate system is established with the origin at the top-left corner of the image. Annotators then mark the 
intersection points of the inner arc and inner diameter A(xA, yA) and B(xB , yB), the lowest point of the inner 
arc C(xC , yC), and the left intersection of the outer arc and outer diameter E(xE , yE), as shown in Fig. 2. The 
coordinates are geometrically adjusted as follows:

	




ŷB = yA,

x̂C = xA + xB − xA

2 ,

x̂E =
yE −

(
yA − yD−yA

xD−xA
· xA

)
yD−yA
xD−xA

,

� (1)

where D(xD, yD) represents the coordinates of the center of the sector-shaped field of view, which can be 
calculated by:

	





xD = x̂C ,

yD = yC −
(yC − yA) +

√
(x̂C − xA)2 + (yC − yA)2

2(yC − yA)
� (2)

Since the image field of view is distributed as a sector shape centered at D, we establish a polar coordinate system 
with D as the origin, as shown in Fig. 2.

To ensure the rectangular image resulting from the affine transformation fills the entire image, we normalize 
the position of the image within the polar coordinate system. For each pixel I(θi, Ri) in the polar coordinate 
system, the coordinate range is:

Fig. 1.  SATU-net is a dual-path collaborative network consisting of three main components: image feature 
extraction module, ASTM and SSM.
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{ √
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√
(xD − x̂E)2 + (yD − yE)2,

− arctan 2(x̂C − xA, yA − yD) ≤ θi ≤ arctan 2(x̂C − xA, yA − yD)
� (3)

The normalized Cartesian coordinates for any point I(xrecti , yrecti ) are:

	




xrect =
(

θi
2 arctan 2(x̂C −xA, yA−yD) + 0.5

)
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yrect =
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√
(xD − x̂E)2 + (yD − yE)2 −

√
(x̂C − xA)2 + (yD − yA)2

· H
� (4)

where W  and H  are the width and height of the output image, respectively.

Adaptive shadow tracing module
A key innovation of SATU-net is the introduction of the ASTM, specifically designed to address the challenge 
of ultrasound shadow in ultrasound images. The ASTM operates on the features extracted by the encoder 
path, enhancing the network’s ability to accurately segment the gastric cavity by tracing and compensating for 
shadows. The designed ASTM mainly consists of three parts: a shadow feature extraction layer with varying 
kernel sizes, a channel attention layer, and a shadow feature resizing block. Specifically, the input ultrasound 
image undergoes average pooling using 16 parallel Adaptive Shadow Tracing Cores (ASTC) of different sizes, 
resulting in the overall shadow feature of the image, as shown in Fig. 1.

Shadow Feature Extraction Layer: Leveraging the physics of ultrasound shadow formation, shadow artifacts 
predominantly distribute along the transducer’s receptive field in a fan-shaped pattern. After applying an affine 
transformation to the input ultrasound images, these shadow regions are rectified into rectangular dark patches 
of varying sizes. Through extensive ablation studies, we have determined the optimal combination of ASTC 
kernel sizes. The size configuration for each ASTC channel and the corresponding extracted shadow feature 
maps are summarized in Table 1.

Channel Attention Layer: To improve the performance of the SATU-net model in handling ultrasound 
shadow, we employ a Channel Attention Layer, which is specifically designed to enhance the extraction 
of shadow features. The Channel Attention Layer applies a Global Average Pooling (GAP) operation to the 
extracted shadow features to capture global spatial information. The resulting feature map is then passed through 
a fully connected (FC) layer, followed by a sigmoid activation function σ to compute the attention map. This 

Fig. 2.  a Ultrasound shadows from strong reflections, attenuation, poor probe contact and high-impedance 
interfaces. b Examples of how ultrasound shadow originates in specific images. c Original fan-shaped shadow 
pattern before affine mapping. d Rectified image after affine transformation, showing vertically aligned 
shadows. e Annotation of key points in Cartesian coordinates. f Polar coordinate system centered at point D 
for the sector-shaped field of view.
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mechanism enables the network to learn and apply adaptive attention weights to different channels, emphasizing 
the most informative channels while suppressing irrelevant ones.

Shadow Feature Resizing and Integration: The extracted shadow features are first adjusted to match the 
spatial dimensions of the encoder’s deep layers through max pooling and convolution. Max pooling reduces the 
spatial resolution of the shadow features, ensuring compatibility with the encoder’s feature map. The features 
are then refined via convolution to enhance their representation. After adjustment, the shadow features are 
integrated into the encoder path’s features from the 2nd to the 4th deep layers using skip connections. This fusion 
process ensures the network captures both fine-grained details and high-level context, improving the model’s 
ability to differentiate between the gastric cavity and ultrasound shadow, ultimately enhancing segmentation 
accuracy.

Shadow separation module
To eliminate ultrasound shadow, the shadow features extracted by the ASTM are processed in conjunction with 
the original image. Module structure as shown in Fig. 1. The first step is to normalize the channel attention of 
the shadow features, ensuring that the sum of attention across all channels equals 1. This normalization can be 
mathematically expressed as:

	
Attentioni = Attentioni∑C

j=1 Attentionj
� (5)

Where Attentioni is the attention for channel i and C  is the total number of channels. The normalized channel 
attention is then applied to weight the shadow features, yielding the aggregated shadow features Fagg , as follows:

	
Fagg =

C∑
i=1

Fi · Attentioni� (6)

Where Fi  is the shadow feature of the  i-th channel produced by the preceding Shadow Feature Extraction 
Layer in Table 1. Equation (6) therefore fuses multi-resolution shadow cues into a single illumination map that 
encodes both shadow geometry and the vertical intensity roll-off. Next, compute the average brightness Lavg  of 
the input image:

	
Lavg = 1

H × W

H∑
x=1

W∑
y=1

I(x, y)� (7)

Where I(x, y) is the pixel intensity at position (x, y), and H  and W  are the height and width of the image. 
The shadow-compensated image features Fcomp are then obtained by subtracting the average brightness from 
the aggregated shadow features. This zero-centering step converts the illumination map into a relative residual, 
mirroring the Retinex/homomorphic principle widely used in CV.

	 Fcomp = Fagg − Lavg � (8)

Finally, the shadow separation image features Foutput are obtained by adding the shadow-compensated features 
to the original image features Finput:

	 Foutput = Fcomp + Finput� (9)

This process ensures the effective compensation of ultrasound shadow, enhancing the model’s ability to accurately 
segment the gastric cavity. The shadow separation image, computed using the shadow features as shown in Table 
1. Additional image results can be found in Fig. 3. To quantitatively evaluate shadow-compensation performance, 

ASTC Size (4,2) (8,2) (12,2) (16,2) (20,2) (24,2) (28,2) (32,2) SSM output

Shadow
Feature
Map

ASTC Size (36,2) (40,2) (44,2) (48,2) (52,2) (56,2) (60,2) (64,2)

Shadow
Feature
Map

Table 1.  Left: ASTC sizes and their corresponding shadow feature maps for different ASTC 
configurations.   Right: Shadow separation image output by the SSM, spanning and centered across four rows.
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we selected ten representative images and computed–within the mask area of each image–the entropy and 
contrast-to-noise ratio (CNR) of all pixels before and after processing. The proposed method consistently 
reduced image entropy, indicating diminished noise and complexity in shadowed regions. Meanwhile, CNR also 
decreased; this is expected because shadow regions are homogenized and the intensity gap between tissue and 
shadow is narrowed. These trends demonstrate that the model effectively suppresses shadow artifacts, yielding 
more uniform and interpretable ultrasound images and thereby improving segmentation accuracy.

Loss function
In our study, we adopt a combined loss function that incorporates both Binary Cross Entropy (BCE) and the 
Dice loss to effectively handle two-class image segmentation tasks. The Binary Cross Entropy (BCE) term is 
widely used for its ability to measure the direct difference between predicted masks and ground-truth labels. Its 
definition is as follows:

	
lBCE = −

∑
(i,j)

[
Y (i, j) log Ŷ (i, j) + (1 − Y (i, j)) log(1 − Ŷ (i, j))

]
� (10)

Where Y (i, j) ∈ [0, 1] denotes the ground-truth label of pixel (i, j), and Ŷ (i, j) ∈ [0, 1] represents the 
predicted masks. In this work, we employ BCE to minimize pixel-wise differences between the predictions and 
ground truth.

In addition, we include a Dice Loss term to address class imbalance and focus on overlap between the 
predicted and ground-truth masks, which is defined as:

	
lDice = 1 −

2
∑

(i,j) Y (i, j)Ŷ (i, j)∑
(i,j) Y (i, j) +

∑
(i,j) Ŷ (i, j)

� (11)

The total loss function used in training our network combines both BCE and Dice losses, expressed as:

	 lTotal = lBCE + lDice� (12)

The Dice loss encourages the network to maximize the overlap between the prediction and the ground truth, 
while the BCE ensures accurate pixel-wise classification.

Datasets and experimental settings
Dataset
In this study, we employed two gastric ultrasound image datasets based on the TUS-OCCA protocol. The 
first dataset, named GUSI-A, was collected at Tianjin Third Central Hospital and comprises 793 images. Data 
acquisition followed the TUS-OCCA experimental standards17. After fasting for more than eight hours with 
no residual gastric contents, participants received a single oral dose of ultrasound contrast agent. Dynamic 
continuous scans were then performed with the patient in standing, left-lateral, or right-lateral positions using 
a Philips broadband convex abdominal probe (C5-1) to image the gastric cardia, fundus, body, angle, antrum, 
and pylorus. The seven standard gastric sections retained in the dataset and their distribution are shown in 
Table 2. In these images, the gastric cavity regions have been annotated. To ensure objectivity, all annotations 

Fig. 3.  Shadow separation results with quantitative evaluation metrics.
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were first carried out by three master’s students with ultrasound expertise following a standardized protocol, 
then validated by a doctoral student specializing in ultrasound, and finally overseen by three clinical gastric 
ultrasound experts.

Since there is no public TUS-OCCA dataset available for external verification, we used 21 images from 10 
patients presenting to Beijing Friendship Hospital to form a relatively small test set with an average resolution of 
1260 × 910. The part of the gastric cavity in this data set was also annotated under the guidance of three clinical 
gastric ultrasound experts. All participants were informed during ultrasound examinations that ultrasound data 
could be used for research purposes.

Experimental settings and evaluation metrics
We utilized the Adam optimizer to train our network, with the initial learning rate established using a learning 
rate finder to determine the optimal range. During training, a stepwise learning rate scheduler dynamically 
adjusts the rate to ensure stable convergence and optimal performance. Optimal segmentation results were 
achieved when the epoch size and batch size were configured at 50 and 4, respectively. The proposed SATU-
net model contains 16.6 million trainable parameters and requires 37.3 GFLOPs for a single forward pass. The 
average inference time per image is 6.8 ms on an NVIDIA A100 GPU, running Python 3.10 and PyTorch 2.3.1. 
We strictly enforced patient-wise splits throughout the experiments to eliminate any possibility of data leakage. 
To prevent overfitting and improve the generalization ability of our model, we applied data augmentation 
techniques to enhance the robustness of the model. These techniques included horizontal flipping, vertical 
flipping, and diagonal flipping to increase the number of labeled images. In our experiments, we used five widely 
used segmentation metrics to evaluate the accuracy of GUS segmentation, including accuracy, precision, recall, 
intersection over union (IoU), dice similarity coefficient (Dice) and specificity.

Experimental results
Ablation Study
To verify the contribution of each module in the proposed SATU-net model for gastric cavity segmentation, 
we designed an ablation study comparing the performance of the following four model configurations. Table 
3 shows the experimental results of different components on GUSI-A. The ablation study demonstrated that 
adding the affine transformation or the ASTM alone to the U-net does not significantly improve its segmentation 
performance. However, when both are present, the model’s performance is significantly enhanced, especially in 
terms of IoU and Dice score, reaching 80.87% and 89.39%, respectively. This indicates a strong synergistic effect 
between the affine transformation and the ASTM. The affine transformation corrects the geometric distortion 
of the ultrasound images, transforming the originally fan-shaped shadow regions into rectangular ones. This 
provides more consistent and stable shadow features for the ASTM, allowing it to more effectively handle 
complex shadow structures and improve overall segmentation accuracy.

Comparison with state-of-the-art methods
To assess the robustness and effectiveness of the proposed method, we initially compared it with leading deep 
learning techniques for segmenting ultrasound and medical images. Our comparative methods include U-net31, 
R2U-Net32, AAU-net16, LGANet33, Swin-UNet34, Transfuse35, and FAT-Net36. To ensure a fair comparison, all 

Model Accuracy Precision Recall IoU Dice Specificity

Baseline U-Net 96.64±0.20 86.11±2.40 85.96±2.72 75.40±1.26 85.97±0.82 98.09±0.44

Without affine Transform 96.58±0.63 86.71±4.10 84.74±4.14 74.91±3.92 85.60±2.58 98.20±0.63

Without ASTM 96.79±0.31 86.70±5.24 87.42±5.38 76.59±1.23 86.74±0.78 98.07±1.02

Ours 97.39 ± 0.12 89.26 ± 0.72 89.63 ± 0.42 80.87 ± 0.76 89.39 ± 0.47 98.48 ± 0.11

Table 3.  Model performance comparison. Shows the performance differences on GUSI-A between the 
baseline U-Net and modified models. Models combining affine transformations and ASTM exhibit significant 
improvements in IoU and Dice scores.

 

Names of gastric cavity sections Number of images

Normal gastric cardia in sagittal section 70

Normal section of gastric fundus 334

Normal gastric body in coronal section 64

Normal gastric angle in coronal section 94

Normal gastric body in transverse section 108

Normal gastric angle in transverse section 97

Normal section of pylorus 26

Table 2.  Number of images for each section in the GUSI-A dataset.
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competing methods were implemented in identical computing environments and subjected to the same data 
augmentation techniques during our experiments.

Table 4 displays typical challenging ultrasound images alongside the segmentation results from various 
competitors. U-Net, which utilizes simple stacked continuous convolutions to preserve more local information, 
fails to deliver superior segmentation performance due to its inability to model long-range dependencies.

AAU-net, using a hybrid adaptive attention module, can capture more features under different receptive 
fields and performs better in edge fitting. However, due to the difficulty in identifying gastric cavities in areas 
with irregular shapes and sizes of ultrasound shadow under dynamic receptive fields, large areas of false positives 
(FP) or false negatives (FN) are generated.

R2U-Net, by introducing recurrent residual convolutional layers, can accurately segment the texture 
details of images, but under the influence of ultrasound shadow, the texture features of gastric cavity edges are 
inconsistent. As a result, R2U-Net cannot accurately segment the target region in gastric ultrasound images with 
severe ultrasound shadow.

LGANet, with the introduction of a Local Focus Module, focuses more on the image boundary regions and 
can analyze the contextual structural features of boundary regions through a Global Augmentation Module. 
This allows LGANet to accurately segment the target region even when the boundary is unclear. However, the 
widespread presence of ultrasound shadow in the training set, especially large shadow areas, severely interferes 
with LGANet’s ability to learn boundary textures, resulting in large areas of FP due to undetected accurate 
boundaries.

FAT-Net, which utilizes a dual-encoder structure based on CNN and Transformer, uses CNN to extract local 
features and Transformer to capture global contextual information. However, when ultrasound shadow penetrate 
the gastric cavity from different directions, FAT-Net struggles to learn all the combinations of ultrasound shadow 
and gastric cavity patterns, especially with a limited training set. This leads to parts of the gastric cavity being 
inaccurately segmented, forming large FN areas.

Swin-Unet, leveraging a pure Transformer architecture with a shifted window attention mechanism, excels at 
capturing both global contextual information and local details. By integrating a hierarchical Swin Transformer 
encoder and patch-expanding layers in the decoder, Swin-Unet demonstrated strong performance in medical 
image segmentation tasks. However, the use of patch-expanding layers for upsampling, while effective in 
maintaining spatial resolution, may introduce certain limitations in boundary refinement. The resulting 
segmented edges from Swin-Unet sometimes exhibit jagged or serrated ultrasound shadow. This can be 

Metric Ours U-net AAU-net R2U-Net LGANet FAT-Net Swin-Unet Transfuse

Accuracy 97.39 ± 0.12 96.64 ± 0.20 96.71 ± 0.49 94.56±0.26 96.87±0.18 97.06±0.16 96.30±0.09 97.11 ± 0.01

Precision 89.26 ± 0.72 86.11±2.40 85.69±6.48 74.17±1.31 88.66±0.03 89.09±1.75 87.18±1.48 87.83±3.85

Recall 89.63 ± 0.42 85.96±2.72 88.34±5.06 83.96±2.19 84.73±1.73 86.10±1.02 81.14±2.18 88.65±4.95

IoU 80.87 ± 0.76 75.40±1.26 76.40±1.83 64.95±1.45 76.44±1.40 77.86±0.87 72.44±0.88 78.61±1.05

Dice 89.39 ± 0.47 85.97±0.82 86.61±1.19 78.74±1.06 86.64±0.90 87.55±0.55 84.01±0.59 88.02±0.66

Specificity 98.48±0.11 98.09±0.44 97.85±1.21 96.01±0.31 98.52±0.03 98.55± 0.28 98.37±0.25 98.27±0.66

Table 4.  Segmentation results (mean ± std) of different competing methods on the GUSI-A dataset (top) and 
the corresponding qualitative examples (bottom). The best results are in bold.
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attributed to the fixed-size patch mechanism in the Transformer, which might not be flexible enough to handle 
fine-grained boundary details when dealing with high variability in local textures, such as those found in the 
gastric cavity. The fixed nature of patches may limit the model’s ability to precisely capture subtle variations along 
the boundaries, causing jagged edges in the segmentation results.

Transfuse, leveraging a parallel-in-branch architecture combining CNNs and Transformers, excels in 
capturing both local spatial features and global contextual information. This dual-path design enables Transfuse 
to strike a balance between maintaining fine-grained details and capturing long-range dependencies. However, 
in gastric ultrasound segmentation, where training data is often sparse and ultrasound shadow are highly 
variable, the model might not generalize well to all cases, resulting in segmentation inaccuracies, particularly in 
challenging regions where both local and global information are crucial for accurate segmentation.

Our SATU-net extracts alpha shadow features of different sizes from ultrasound images through the 
ASTM and integrates these features into each layer, achieving the best segmentation results compared to other 
competitors, particularly in images affected by large alpha shadows. The quantitative evaluation results of 
different segmentation methods are summarized in Table 3, where our method outperforms others on five key 
metrics. Specifically, the performance values on the GUSI-A dataset are 97.39%, 89.26%, 89.63%, 80.87%, and 
89.39% for each metric. When compared to the second-best results, our method shows improvements of 0.28%, 
0.17%, 0.98%, 2.26%, and 1.37%, respectively.

External verification
Due to the fundamentally different signal formation in ultrasound–where raw acoustic echoes undergo filtering, 
logarithmic compression, and scan-conversion–images from different scanner–probe combinations exhibit 
substantial texture and contrast variability. Such domain shifts can degrade segmentation performance when a 
model trained on one device’s data is applied to another. To assess generalization, we evaluated our SATU-net, 
trained on the GUSI-A cohort (793 TUS-OCCA images), on the independent GUSI-B set (21 images from ten 
patients, acquired with different ultrasound systems). Despite GUSI-B’s limited size, our method consistently 
led all competing architectures across six metrics (Accuracy, Precision, Recall, IoU, Dice, Specificity; Table 5), 

Metric Ours U-net AAU-Net R2U-Net LGANet FAT-Net Swin-UNet Transfuse

Accuracy 98.22 ± 0.22 98.02 ± 0.19 98.06 ± 0.24 96.21 ±0.38 97.93±0.19 97.93±0.21 97.53±0.19 98.02±0.41

Precision 88.10 ± 2.81 86.83±5.57 85.10±6.04 73.36±1.91 86.97±5.87 87.62±4.57 85.07±0.77 87.00±7.14

Recall 90.49±0.70 90.13 ± 5.22 94.30 ±4.51 84.12 ± 8.82 88.68±5.86 87.48±5.63 84.49±1.91 90.32±5.73

IoU 80.60± 1.87 78.78±1.07 80.28±1.53 64.16±4.65 77.67±1.15 77.44±2.30 73.59±1.93 78.91±3.01

Dice 89.25 ± 1.14 88.12±0.67 88.98±0.91 78.07±3.47 87.43±0.73 87.26±1.45 84.77±1.28 88.19±1.89

Specificity 98.91 ± 0.30 98.72±0.63 98.39±0.66 97.27±0.48 98.74±0.68 98.86±0.50 98.69±0.06 98.71±0.79

Original

Processed

Original
Ent

6.37 6.98 6.92 6.73 7.57 7.06 6.74 6.61 6.93

Original
CNR

0.77 1.05 1.96 1.92 1.53 1.15 0.71 1.10 0.41

Processed
Ent

5.71 5.30 6.07 5.76 6.20 5.80 6.15 5.80 5.98

Processed
CNR

0.07 0.16 0.22 0.33 0.13 0.24 0.08 0.19 0.07

Table 5.  The segmentation results (mean ± std) on the external validation dataset GUSI-B. The best results are 
highlighted in bold.
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demonstrating its robustness to device-specific appearance variations and its suitability for real-world gastric 
ultrasound segmentation.

Discussion
In this work, we present SATU-net, a dual-branch Shadow Adaptive Tracing U-Net that leverages affine geometric 
rectification and an ASTM for robust gastric cavity segmentation under severe ultrasound shadowing. Ablation 
experiments demonstrate a strong synergistic effect: the affine pre-warp aligns fan-shaped shadow artifacts into 
axis-aligned rectangles, providing consistent receptive-field contexts for ASTM’s multi-scale shadow kernels. 
When combined, these components yield significant gains in IoU and Dice over the baseline U-Net, validating 
our design for feature fusion under adverse imaging conditions.

Compared to state-of-the-art backbones (U-Net, R2U-Net, AAU-Net, LGANet, Swin-UNet), SATU-net’s 
shadow-aware attention and shadow-separation branch consistently improve boundary delineation and mitigate 
false positives in low-contrast regions. However, large contiguous shadow regions and inter-device texture 
shifts still pose challenges, leading to occasional missing edges and domain-shift degradations. Future work 
will explore transformer-based global context modules and boundary-aware loss functions to further enhance 
robustness, and extend our framework to volumetric gastric modeling and lesion localization for broader clinical 
deployment.

Conclusion
To better address the challenges posed by ultrasound shadow and complex anatomical structures in gastric 
cavity segmentation, we propose SATU-net, a novel Shadow Adaptive Tracing U-net, specifically designed 
for ultrasound image segmentation tasks. By integrating affine transformation and the ASTM, the network 
can more accurately restore normal gastric structures under varying degrees of shadow interference. The 
proposed model significantly improves segmentation accuracy in the presence of ultrasound shadow. Extensive 
experiments, including comparative studies with state-of-the-art segmentation methods, robustness analyses, 
and external validation, demonstrated the superior performance of SATU-net in gastric cavity segmentation 
tasks. The experimental results show that SATU-net surpasses existing methods on several metrics and provides 
preliminary evidence of generalization across devices. We believe that SATU-net provides a robust tool for gastric 
ultrasound image segmentation and will contribute to advancing the field of computer-aided diagnosis. In the 
future, we plan to extend the scope of SATU-net to medical image captioning tasks. Accurate segmentation 
masks produced by SATU-net can serve as pixel-level prior knowledge to guide radiology-report generation, 
thereby automating clinical narratives, improving interpretability, and supporting decision-making, building on 
recent advances37–39.

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author, 
Jun Tian (jtian@nankai.edu.cn), upon reasonable request.
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