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As urban populations grow and vehicle numbers surge, traffic congestion and road accidents continue 
to challenge modern transportation systems. Conventional traffic management approaches, 
relying on static rules and centralized control, struggle to adapt to unpredictable road conditions, 
leading to longer commute times, fuel wastage, and increased safety risks. Vehicle-to-Everything 
(V2X) communication has emerged as a transformative solution, creating a real-time, data-driven 
traffic ecosystem where vehicles, infrastructure, and pedestrians seamlessly interact. By enabling 
instantaneous information exchange, V2X enhances situational awareness, allowing traffic systems 
to respond proactively to accidents and congestion. A critical application of V2X technology is 
accident-aware traffic management, which integrates real-time accident reports, road congestion 
data, and predictive analytics to dynamically reroute vehicles, reducing traffic bottlenecks and 
improving emergency response efficiency. Advanced computational algorithms, including heuristic 
methods, machine learning models, and AI-driven optimization techniques, play a vital role in 
enhancing routing decisions within V2X networks. By leveraging these algorithms, modern traffic 
systems can transition from reactive congestion management to proactive traffic optimization, 
significantly improving urban mobility. Despite its potential, the large-scale deployment of V2X-
enabled traffic management systems faces several challenges, including network reliability, data 
privacy, cybersecurity risks, and interoperability issues. Additionally, concerns related to algorithmic 
transparency, ethical decision-making, and standardization of V2X communication protocols must 
be addressed to ensure seamless integration into existing infrastructure. Unlike existing surveys that 
broadly examine V2X communication or intelligent transportation systems (ITS), this review uniquely 
focuses on accident-aware traffic management and route optimization. It synthesizes state-of-the-
art accident detection methods, routing strategies, and optimization algorithms, while identifying 
research gaps and proposing future directions for integrating V2X technologies into safer, adaptive, 
and intelligent transportation systems. By providing these targeted insights, the study contributes to 
the development of smarter, safer, and more efficient road networks, offering valuable guidance for 
researchers, policymakers, and industry professionals working to shape the future of urban mobility.
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VEINS	� Vehicles in Network Simulation
VANETs	� Vehicular Ad-Hoc Networks
V2V	� Vehicle-to-Vehicle
V2I	� Vehicle-to-Infrastructure
SUMO	� Simulation of Urban MObility
DRL	� Deep Reinforcement Learning
RL	� Reinforcement Learning
DSRC	� Dedicated Short-Range Communication
C-V2X	� Cellular-V2X

Urban mobility is facing unprecedented challenges due to traffic congestion, rising accident rates, and inefficient 
traffic management systems. The growing number of vehicles on the road, coupled with unpredictable traffic 
dynamics, road incidents, and infrastructure limitations, has pushed conventional traffic control strategies to 
their limits1. Traffic congestion not only leads to longer travel times but also results in excessive fuel consumption, 
increased emissions, and economic losses. Road accidents further exacerbate these issues, causing significant 
disruptions, delays in emergency response, and safety concerns2. Consequently, intelligent, data-driven solutions 
are essential to improving transportation efficiency, reducing congestion, and enhancing road safety3,4.

One of the most transformative innovations in modern transportation systems is V2X communication, 
which enables seamless real-time data exchange between vehicles and their surrounding environment5. 
Unlike traditional traffic management systems that rely on centralized control and static rules, V2X fosters a 
dynamic, decentralized, and intelligent transportation ecosystem where vehicles communicate with each other, 
roadside infrastructure, pedestrians, and cloud-based network services6. This interconnected network enhances 
situational awareness, allowing vehicles and traffic management systems to detect, predict, and respond to traffic 
incidents in real time, thereby reducing congestion and improving safety7.

A key application of V2X technology is accident-aware traffic management, which leverages real-time 
accident reports, road congestion data, and predictive analytics to dynamically reroute vehicles, minimizing 
delays and ensuring rapid emergency response8. Traditional traffic control mechanisms, which often rely on 
historical data and pre-defined traffic rules, struggle to adapt to rapidly evolving traffic conditions, such as 
accidents, road closures, or unexpected congestion. To overcome these limitations, advanced computational 
techniques have been integrated into V2X networks to optimize traffic flow and improve route planning9,10.

Various algorithmic approaches play a crucial role in traffic optimization and decision-making within V2X-
enabled ITS. These include optimization algorithms, reinforcement learning models, heuristic-based approaches, 
and predictive analytics methods11,12. While search algorithms such as Dijkstra’s shortest path, A* search, and 
evolutionary computing methods remain essential for identifying optimal routes, machine learning-based 
models, deep reinforcement learning, and hybrid AI-driven approaches have gained traction in recent years13. 
These adaptive algorithms consider multiple real-time parameters, such as accident severity, congestion levels, 
road conditions, vehicle density, and environmental factors, to generate dynamic and intelligent traffic control 
strategies14. By integrating V2X communication with these advanced computational techniques, transportation 
systems can transition from reactive congestion management to proactive traffic optimization, significantly 
enhancing urban mobility15.

Despite these advancements, several challenges must be addressed to ensure the widespread adoption of V2X-
based traffic management systems. Network reliability, data security, privacy concerns, computational complexity, 
and interoperability remain key obstacles16–19. Additionally, the standardization of V2X communication 
protocols and the integration of heterogeneous data sources are critical for seamless interoperability across 
vehicles, traffic control centers, and infrastructure providers20. As AI-driven decision making becomes more 
prevalent, concerns related to algorithmic transparency, ethical considerations, and bias mitigation must also be 
carefully examined21.

This paper provides a comprehensive and focused review of accident-aware traffic management within 
V2X networks, emphasizing the latest advancements, critical challenges, and open research opportunities. 
Unlike previous surveys that broadly examine V2X communication or ITS, this work specifically links accident 
detection, real-time routing, and optimization within a unified framework. The main contributions of this study 
are:

•	 Focused synthesis of V2X communication technologies, ITS integration, accident detection, routing, and 
optimization, highlighting their interplay in accident-aware traffic management.

•	 Critical comparison of prior surveys, showing how existing studies remain fragmented and how this article 
provides a unified perspective.

•	 Evaluation of techniques for accident detection, prediction, and routing optimization—including AI-based 
approaches, heuristic algorithms, and multi-objective models—emphasizing their strengths, limitations, and 
real-world challenges.

•	 Identification of open challenges and research opportunities, including scalability, cybersecurity, explainabili-
ty, data standardization, and ethical considerations, offering a structured roadmap for future studies.

The remainder of this paper is structured as follows: Section “Literature Retrieval methodology” outlines the 
Literature Retrieval Methodology, detailing the databases consulted, the time span covered, the search strings 
adopted, and the inclusion and exclusion criteria, supported by a flow diagram. Section “V2X communication 
technologies” explores the underlying technologies of V2X communication and their significance in modern 
transportation. Section “Intelligent transportation systems” delves into the role of ITS in enhancing traffic 
efficiency and safety. Section “Traffic management in V2X networks” examines various traffic management 
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approaches in V2X networks and their implications for real-time control. Section “Accident-aware routing 
strategies” reviews accident-aware routing strategies and their contribution to proactive incident handling. 
Section “Algorithms for route optimization” evaluates different algorithmic approaches for optimizing routes 
and traffic flow. Section “Discussion” provides a discussion of the reviewed literature, highlighting key insights, 
unresolved challenges, and opportunities for integrating accident-aware V2X systems into future intelligent 
transportation frameworks. Finally, Section “Conclusion and future directions” presents the conclusions and 
outlines potential future research directions.

Literature retrieval methodology
To ensure the comprehensiveness and replicability of this review, a structured literature retrieval methodology 
was adopted. The process involved selecting relevant databases, defining precise search keywords, and applying 
inclusion and exclusion criteria to filter studies. A summary of the retrieval process is presented in Table 1, which 
outlines the databases searched, the keywords employed, and the criteria used for article selection.

V2X communication technologies
V2X communication encompasses four core interactions—Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure 
(V2I), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Network (V2N)—each designed to enhance road safety, 
traffic efficiency, and overall transportation systems22. V2V enables the exchange of speed, direction, and hazard 
information to reduce collision risks, while V2I allows vehicles to interact with infrastructure such as traffic 
lights to improve flow and provide real-time updates. V2P enhances pedestrian safety by alerting drivers to 
nearby pedestrians, and V2N connects vehicles to broader networks, offering access to cloud services and real-
time data essential for autonomous driving23–26.

Two primary wireless access technologies dominate current V2X research and deployment. Dedicated 
Short-Range Communication (DSRC), developed under IEEE 802.11p/WAVE standards, was an early enabler 
of V2X by supporting Basic Safety Messages (BSMs) to enhance situational awareness27. Despite its low-latency 
benefits, DSRC faces significant challenges, including channel congestion, lack of acknowledgment mechanisms, 
and susceptibility to interference, which limit scalability in dense environments28. In contrast, Cellular-V2X 
(C-V2X) leverages cellular infrastructure to expand communication range and reliability. Applications include 
emergency message prioritization29 and eco-driving support via traffic signal communication30. However, the 
debate over the most suitable standard—DSRC, C-V2X, or 5G/6G—remains unresolved, creating fragmentation 
in both research and deployment31.

Emerging 5G-based V2X architectures promise ultra-low latency and support for high-bandwidth applications, 
including Intelligent Perception Systems (IPS) for blind intersections, though trade-offs exist between deployment 
cost, mmWave capacity, and Sub-6GHz scalability32. Alongside these advances, researchers highlight persistent 
cross-cutting challenges. Security remains a major concern, as increased connectivity exposes V2X systems to 
cyberattacks, requiring robust cryptographic, intrusion detection, and AI-driven defenses17,33. Communication 
imperfections—such as packet loss, message delays, and inconsistent ordering—can significantly degrade the 
performance of autonomous intersection control algorithms, necessitating redundancy and standardized testing 
frameworks34. Moreover, edge-assisted motion planning must adapt to latency variations and imperfect channel 
state information, balancing aggressive and conservative driving strategies to maintain safety35.

Taken together, these studies underscore both the promise and complexity of V2X technologies. While 
DSRC and C-V2X offer foundational capabilities, large-scale deployment continues to face hurdles related to 
standardization, interoperability, scalability, and resilience to cyber-physical threats. The integration of 5G, edge 
computing, and blockchain may alleviate some of these limitations, but they also introduce new challenges 
around cost, energy efficiency, and security. Future research must focus on harmonizing communication 
standards, optimizing wireless resource allocation, and embedding adaptive AI models to ensure safe, scalable, 
and resilient V2X-enabled transportation systems.

A comparison of these technologies, their key features, and associated challenges is summarized in Table 2. 
A comprehensive understanding of V2X communication requires distinguishing between network-based and 
direct communication methods. Fig. 1 illustrates the distinction between network-based communications and 
direct communications, emphasizing their respective roles in improving road safety and traffic efficiency.

V2X technologies play a pivotal role in modern Intelligent Transportation Systems by enabling real-time 
communication among vehicles, infrastructure, pedestrians, and networks. Their applications extend across 
multiple domains: safety, where V2V and V2P help prevent collisions and protect vulnerable road users; traffic 
efficiency, where V2I supports eco-driving, adaptive traffic signaling, and congestion reduction; autonomous 
driving, where V2N provides access to cloud and edge services for cooperative maneuvers and motion planning; 
and sustainability, where reduced fuel consumption and optimized traffic flow contribute to greener urban 

Aspect Details

Databases Searched IEEE Xplore, ScienceDirect, SpringerLink, ACM Digital Library, Google Scholar

Keywords Used “V2X communication”, “vehicle-to-everything”, “intelligent transportation systems”, “accident-aware routing”, “traffic management”, “route optimization”

Publication Period 2019–2025

Inclusion Criteria Peer-reviewed journal and conference papers Focused on V2X technologies, ITS applications, accident-aware traffic management, or optimization algorithms

Exclusion Criteria Non-English publications, non-peer-reviewed works, Studies focused only on vehicular hardware without communication or routing aspects

Table 1.  Literature retrieval methodology.
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mobility. Emerging technologies such as DSRC, C-V2X, and 5G/6G further enhance these applications by offering 
low-latency, high-capacity communication for advanced scenarios like intelligent intersection management, 
coordinated lane merging, and emergency response optimization. The main applications, advantages, and 
challenges of these V2X technologies are summarized in Table 3.

Intelligent transportation systems
In the ever-evolving landscape of urban transportation, integrated and adaptive traffic management systems 
have emerged as essential solutions to combat congestion, enhance safety, and improve overall efficiency. 
Various researchers have contributed to this field, each proposing innovative approaches to address modern 
traffic challenges36.

Lupi et al. introduced the LIST Port ITS System, a comprehensive solution integrating traffic video cameras, 
variable message signs (VMS), and a mobile application. This system provides real-time traffic and noise data, 
allowing users to select optimal routes to port terminals, ultimately reducing delays and improving travel 
efficiency37.

Building on this concept, Cheng et al. analyzed the impact of the 511 systems implemented across the U.S. 
Their findings demonstrated a significant reduction in congestion, with an estimated annual saving of over $4.7 
billion and 175 million hours. By offering real-time travel information, the system has empowered commuters 
to make informed decisions, alleviating traffic bottleneck38.

Further enhancing safety within traffic management, Smith et al. developed an adaptive system that integrates 
formal traffic safety rules based on Traffic Conflict Techniques (TCTs). By dynamically adjusting vehicle speeds, 
this system aims to prevent collisions. The researchers evaluated its effectiveness using traffic flow data from 
the SR528 highway in Orlando, Florida. Utilizing safety indicators such as time-to-collision and space headway, 
alongside the Mathematica computer algebra system and the Simulation of Urban Mobility (SUMO) micro-
simulation tool, they demonstrated a notable increase in safety margins and a reduction in collision risks39.

Fig. 1.  V2X Communication overview.

 

Reference Study Year Technology Key Features Challenges

31 Clancy et al. 2024 DSRC, C-V2X, 5G Extends perceptual range of autonomous vehicles, 
enhances ITS

Lack of unified standard, interoperability issues, 
network congestion, security vulnerabilities

27 Yin et al. 2014 DSRC (IEEE 
802.11p)

Supports BSMs, improve situational awareness and 
road safety

Channel congestion, no handshake mechanism, 
self-interference issues

28 Wu et al. 2013 DSRC (WAVE) WLAN-based, low-latency vehicle communication Communication failures in high traffic, no 
internet access support, message delivery issues

29 Nair et al. 2024 C-V2X Optimized emergency resource allocation Implementation complexity
30 Liang et al. 2024 C-V2X Enhances eco-driving, reduces traffic stops Data transmission challenges

25,26
Bhargavi et 
al., Arikumar 
et al.

2022,
2023 C-V2X V2V, V2I, and V2P for safety and efficiency Connectivity reliability

32 Clancy et al. 2024 C-V2X (5G NR) Private 5G network with Sub-6GHz and mmWave for 
IPS

Deployment cost, bandwidth limitations, data 
compression trade-offs

Table 2.  V2X communication technologies.
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Zhao et al. took traffic optimization further by incorporating user preferences into an integrated 
management system designed for large cities. Using connected vehicles (CVs) to estimate traffic conditions, 
the system generates multi-layer control instructions, optimizing mobility, energy consumption, and driving 
comfort. Microscopic simulations revealed impressive results, including a 32% reduction in vehicle delay, a 
4% decrease in fuel consumption, and a 24% restriction on unnecessary left and right turns. At an optimal 
market penetration rate, travel time delays dropped by 38%, fuel consumption by 4.5%, and trip distances by 2%. 
However, limitations were identified, including the assumption of single-user preferences per vehicle and the 
need for dynamic regional boundaries40.

Expanding the scope of intelligent traffic management, Surekha et al. proposed an Intelligent Traffic 
Management System (ITMS) leveraging advanced technologies such as computer vision, machine learning, and 
artificial intelligence. By utilizing the YOLO v7 algorithm, the system enforces helmet compliance, detects traffic 
signal violations, and identifies vehicle number plates through optical character recognition. This automated 
approach enhances road safety, mitigates accidents, and improves overall traffic regulation41.

Recognizing the importance of adaptive control in urban traffic systems, Damadam et al. presented a Multi-
Agent Reinforcement Learning (MARL)-based Adaptive Traffic Signal Control (ATSC) system integrated with 
Internet of Things (IoT) devices to optimize traffic flow in Shiraz City. The system utilizes real-time traffic data 
from surveillance cameras and sensors to dynamically adjust traffic signals, reducing congestion and improving 
overall traffic efficiency. MARL enables cooperation between multiple intersections, enhancing decision-making 
by incorporating local and adjacent intersection data. Simulations conducted on both synthetic intersections and 
a real-world map of Shiraz City demonstrate that the proposed system significantly outperforms the traditional 
fixed time scheduling approach, reducing vehicle queue lengths and waiting times. The findings highlight the 
system’s effectiveness, especially during peak hours, and suggest future expansion to additional intersections 
while considering pedestrian impact for enhanced traffic management. A schematic representation of the IoT 
and MARL approach is illustrated in Fig. 242.

Additionally, Nguyen et al. introduced a bi-level control framework for vehicle route optimization, integrating 
Connected and Automated Vehicles (CAVs) and ITS to enhance traffic flow and reduce congestion. The 
framework combines system-level traffic flow control with individual vehicle speed control, ensuring optimal 
fuel efficiency, reduced stops, and improved road safety. A group-based method is proposed to synchronize 
macroscopic and microscopic traffic models, optimizing vehicular trajectories while maintaining network-wide 
efficiency. The approach employs Mixed-Integer Linear Programming (MILP) models at both control levels, 
iteratively solving them to achieve optimal traffic management. Numerical results demonstrate the framework’s 
effectiveness in minimizing vehicular emissions, reducing queue formations, and improving overall traffic flow43.

Incorporating more advanced computational techniques, Jia et al. developed an adaptive traffic signal control 
method based on Graph Neural Networks (GNN) and the Dynamic Entropy-Constrained Soft Actor–Critic 
(DESAC) algorithm. This model extracts global and local traffic features, optimizing signal control dynamically. 
Simulations on the CityFlow platform demonstrated that G-DESAC outperforms traditional methods like DQN, 
SAC, Max-Pressure, and DDPG, achieving lower delays, shorter queues, and improved throughput. While 
computationally demanding, this approach offers a robust and scalable solution for traffic control44.

Similarly, Wang et al. introduced an adaptive traffic signal control system utilizing offline reinforcement 
learning (Offline RL) through the SD3-Light model. By dynamically adjusting signal phases and durations 
based on real-time intersection states, the system reduces reliance on live data, cutting operational costs while 

V2X Type/Technology Key Applications Advantages Challenges/Limitations References

V2V Exchange of speed, direction, and hazard data 
to prevent collisions

Improves situational awareness; reduces 
crash risks

Communication delays, packet loss, 
message order issues can degrade 
safety

22,34

V2I
Communication with traffic lights, road 
sensors, and infrastructure for traffic flow 
optimization

Real-time traffic updates; smoother 
mobility (eco-driving); reduced stops

Infrastructure cost, interoperability, 
dependence on coverage

23,30,32

V2P Alerts drivers to pedestrian presence via 
connected devices Enhances pedestrian safety Device dependency; privacy concerns 23,25

V2N Connection to cloud services, edge servers, IoT 
platforms

Enables real-time info sharing; 
supports autonomous driving; access to 
advanced analytics

Latency, congestion, scalability of 
network

24,33,35

DSRC (IEEE 802.11p/WAVE) Broadcast of Basic Safety Messages (BSMs); 
short-to-medium range comms

Low latency; no server required; 
effective in areas without cellular 
coverage

Channel congestion; no ACK 
mechanism; limited scalability

27,28

C-V2X, 4G/5G Safety messages, eco-driving, emergency service 
support, traffic light integration

Higher capacity; supports V2V, V2I, 
V2P; scalable with 5G

Spectrum allocation, network load, 
rural coverage

25,26,29,30

5G/6G-based V2X High-bandwidth, low-latency communication; 
intelligent perception at junctions

Supports high-resolution sensing, 
mmWave capacity, scalable autonomous 
driving

Deployment cost, bandwidth trade-
offs, new attack surfaces

17,31,32

Security in V2X Protecting data, authentication, intrusion 
detection, blockchain integration

Enhances trust, protects privacy, 
supports resilient networks

High computation cost (blockchain), 
adaptive key management, adversarial 
AI risks

17,33

Edge-assisted V2X Motion planning, adaptive driving strategies, 
joint optimization with power control

Reduces collision risks, adapts to real-
time delays

Scalability, unpredictable latency in 
real-world

35

Table 3.  Applications of V2X technologies.
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improving traffic efficiency. Evaluations on real-world datasets demonstrated significant reductions in average 
travel time, along with high performance on novel metrics such as destination–arrival average travel time 
(DATT) and destination–arrival rate (DAR)45.

Exploring AI-powered traffic optimization, Patil et al. presented a dynamic signal timing adjustment system 
based on real-time vehicle density analysis. Their Python-based simulation model indicated that adaptive 
traffic control leads to reduced travel times, lower emissions, and improved pedestrian safety. The system also 
contributes to alleviating driver fatigue and ensuring fair access to transportation infrastructure46.

Finally, Agrahari conducted an extensive study on Adaptive Traffic Signal Control (ATSC) systems, 
categorizing various approaches, including Fuzzy Logic (FL), Metaheuristic (MH), Dynamic Programming 
(DP), Reinforcement Learning (RL), Deep Reinforcement Learning (DRL), and hybrid models. The study 
highlighted the efficiency of AI-driven ATSC systems in adjusting traffic signals dynamically. However, it also 
identified a crucial research gap in optimizing multi-intersection ATSC, where coordinated signal control is 
essential. Future research should explore multi-agent systems capable of handling real-time fluctuations while 
considering additional real-world factors such as pedestrian movement, weather, and emergency scenarios47.

To address these challenges, ITS have been developed, utilizing cutting-edge technologies to improve 
traffic management and enhance road safety. ITS encompasses a wide range of applications that collect and 
analyze real-time data from vehicles, infrastructure, and communication networks, with the goal of optimizing 
transportation efficiency and mitigating the impacts of accidents and congestion48.

To provide a clearer comparison of the various intelligent traffic management systems discussed, Table 4 
summarizes their key technologies, methodologies, outcomes, and limitations. These systems leverage advanced 
techniques such as AI, IoT, and reinforcement learning to enhance traffic efficiency, safety, and real-time 
decision-making.

Traffic management in V2X Networks
Traditional traffic management approaches
Conventional traffic management systems, such as static signage and fixed-time signals, remain limited by their 
inability to account for real-time traffic fluctuations or individual vehicle interactions. These shortcomings often 
lead to inefficient right-of-way allocation, congestion, and increased accident risks, particularly at intersections49. 
Recent studies highlight the need for more adaptive and intelligent approaches. For example, DRL methods leverage 
inter-vehicular communication to dynamically coordinate traffic flow, offering a significant improvement over 
rigid rule-based system49. Similarly, research on reversible lanes has underscored the inadequacy of traditional 
control methods in responding to growing travel demands. The Predictive Empowered Assignment scheme 
(PEARL) integrates predictive analytics with optimization models to enhance lane assignment, demonstrating 
the potential of data-driven strategies to outperform static lane control mechanisms in highly developed urban 
areas50.

Other approaches emphasize infrastructure-efficient solutions. Saxena and Adlin proposed a computer-
controlled model that uses infrared sensors and detection systems to adjust traffic signals in real time, aiming 
to reduce congestion and improve safety for both vehicles and vulnerable road users51. In a related direction, 
Tapkir et al. presented an adaptive signal system based on CCTV-enabled traffic density analysis, dynamically 

Fig. 2.  IoT and MARL approach for ATSC.
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adjusting green light durations to balance uneven traffic flows. This method highlights the scalability and cost-
effectiveness of reusing existing infrastructure for citywide deployments52.

Table 5 provides a comparative overview of these traffic management strategies, illustrating their varying levels 
of effectiveness in addressing congestion, environmental sustainability, and scalability challenges53. Collectively, 
these studies reveal a broader trend: while emerging technologies such as DRL and predictive analytics promise 
significant improvements, many proposals remain either domain-specific (e.g., reversible lanes) or limited to 
pilot-scale implementations (e.g., adaptive signals). A critical challenge remains in integrating these methods 
into large-scale, heterogeneous traffic networks where robustness, interoperability, and real-time adaptability 
are essential.

Role of V2X in enhancing traffic flow and safety
Expanding on advanced traffic management solutions, recent research emphasizes how CAVs and V2X 
communication technologies are transforming intersection control, traffic coordination, and road safety. 
Traditional traffic management methods remain in use, yet their effectiveness can be substantially enhanced 
through integration with V2I communication54. For instance, optimization-based signal controls and traffic-
load-responsive reservations supported by CAVs have demonstrated significant efficiency gains—improving 
throughput by up to 89.63% and reducing waiting times by 60.71% compared with conventional approaches55. 
Similarly, distributed traffic signal control systems leveraging V2X can decrease control delays by 21%, even 
with only 10% connected vehicle penetration56. These findings highlight the scalability of V2X-enabled systems, 
where even modest adoption rates can yield substantial benefits.

Beyond efficiency, V2X technologies play a critical role in enhancing safety. McNerny et al.57 investigated 
pedestrian safety at crosswalks by embedding V2X antennas in vehicles and mobile devices, showing that strong 
carrier signal power can be maintained within a 10-meter radius regardless of antenna placement. This ensures 
reliable vehicle–pedestrian communication, particularly at blind spots and complex intersections, offering a 
cost-effective pathway to integrating crash-avoidance features into smart city design. Complementing this, Oliva 
et al.58 demonstrated the practicality of IoT-based V2I applications in real-world intelligent intersections in Italy. 
Their work showed how neural-network-equipped sensors could alert drivers to pedestrians while also enabling 
rapid passage of emergency vehicles, effectively reducing response times and increasing awareness. Together, 
these studies underscore how V2X can extend safety benefits beyond vehicles to vulnerable road users (VRUs) 
and urban emergency systems.

Path planning and traffic flow stability also benefit substantially from V2X integration. Li et al.59 introduced 
a hierarchical co-design framework in which roadside units (RSUs) generate candidate trajectories during 
pre-planning, while online adjustments account for risk and real-time interactions. This approach improved 
computational efficiency by 23% and reduced collision rates by 13% compared with conventional methods, 
reinforcing the role of V2X in enabling scalable real-time planning. In a separate contribution, Li et al.60 proposed 

Traffic Control Method Advantages Disadvantages

Conventional Methods Decrease traffic congestion and air pollution, cost-effective. Limited effectiveness, low user satisfaction, increased travel time.

Smart Traffic Signal Systems Reduce delays and congestion, lower air pollution levels. High maintenance costs.

Restricted Traffic Zones Improve air quality, decrease congestion and travel time. Possible public dissatisfaction may require toll payments.

Advanced Technology Solutions Enhance traffic efficiency and environmental sustainability. Higher implementation and maintenance costs.

Table 5.  Comparison of traffic management methods, highlighting their advantages and associated challenges.

 

Study Proposed System Technology Used Key Outcomes Limitations

Lupi et al.37 LIST Port ITS System Traffic cameras, VMS, mobile app Reduced delays, improved efficiency Focused on port terminals only

Cheng et al.38 511 Traffic Information System Real-time travel updates $4.7B annual savings, reduced congestion Implementation varies by region

Smith et al.39 Adaptive Safety System TCTs, SUMO, Mathematica Increased safety margins, reduced 
collisions Requires high-quality traffic data

Zhao et al.40 User-Preference-Based Optimization CVs, Multi-layer control 38% delay reduction, lower fuel 
consumption Assumes single-user preferences

Surekha et al.41 Intelligent Traffic Management System 
(ITMS)

Computer vision, ML, AI (YOLO 
v7) Automated enforcement, improved safety Limited to specific traffic 

violations

Damadam et al.42 Adaptive Traffic Signal Control (ATSC) IoT, AI Reduced queues and wait times Effectiveness depends on IoT 
infrastructure

Jia et al.44 G-DESAC Adaptive Signal Control GNN, DESAC Algorithm Lower delays, shorter queues Computationally demanding

Wang et al.45 Offline RL-Based Traffic Control SD3-Light Model, RL Reduced travel time, lower operational 
costs

Requires high-quality historical 
data

Patil et al.46 AI-Powered Signal Timing Real-time vehicle density analysis Improved efficiency, lower emissions Focused on urban intersections

Agrahari47 Adaptive Traffic Signal Control Review FL, MH, DP, RL, DRL Identify gaps in multi-intersection ATSC Needs real-world implementation

Table 4.  Overview of intelligent traffic management systems – innovations, performance metrics, and 
challenges.
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a cooperative optimization model that integrates vehicle routing and traffic signal scheduling, demonstrating 
reductions in overall travel time and improved network-level coordination. Similarly, Li et al.61 advanced car-
following models that incorporate the influence of multiple leading vehicles, showing that field-based influence 
models can stabilize traffic and mitigate congestion more effectively than distance-based ones. By capturing 
multi-vehicle dynamics, these models pave the way for active safety technologies capable of reducing collision 
risks at scale.

Communication reliability remains a major concern for safety-critical V2X applications. Stellwagen et al.62 
addressed this by combining WLAN-based ITS-G5 with cellular-based LTE-V2X in a hybrid, non-hierarchical 
framework, achieving improvements in dissemination range, latency, and throughput without requiring 
additional infrastructure. Nguyen et al.63 tackled another limitation—signal shadowing by large vehicles in 
C-V2X Mode-4. By applying beamforming and relaying strategies, their approach enhanced packet delivery 
ratios by 117.6% at 500 meters, highlighting the importance of adaptive signal reception and lane-hierarchical 
strategies in overcoming real-world communication barriers.

Machine learning has further expanded the capabilities of V2X systems. Li et al.64 applied an end–edge–
cloud architecture to predict vehicle trajectories and selectively disseminate safety messages only to vehicles 
likely to encounter accident-prone areas. This reduced unnecessary network load while improving relevance. 
Ribeiro et al.65 extended ML applications to VRU safety, training stacked LSTMs to predict collisions involving 
motorcyclists up to 4.53 seconds in advance with 96% accuracy, though high false positive rates currently 
limit full automation. These studies illustrate how data-driven intelligence can improve both communication 
efficiency and predictive safety functions but also emphasize the need for better real-world validation.

Collectively, these contributions show that V2X technologies are not limited to isolated improvements but 
form a multi-layered ecosystem that transforms the way traffic systems operate. At the infrastructure level, 
optimization-based intersection management enhances throughput and minimizes delays, demonstrating how 
even partial deployment of connected vehicles can lead to system-wide benefits. For vulnerable road users, 
V2X enables applications that extend safety protections beyond drivers, integrating pedestrians, cyclists, and 
motorcyclists into the traffic management loop. Advanced path planning and traffic coordination frameworks 
further strengthen stability and efficiency by supporting real-time trajectory adjustments and congestion 
mitigation. Communication reliability, a persistent challenge in safety-critical environments, is addressed 
through hybrid and adaptive strategies that ensure robust information exchange under realistic road conditions. 
Finally, the integration of machine learning introduces predictive capabilities, enabling early detection of risks 
and proactive safety interventions.

Together, these advances highlight how V2X technologies are evolving into the backbone of safer, more 
efficient, and more resilient Intelligent Transportation Systems, with the potential to reshape urban mobility at 
scale. A conceptual overview of these interaction flows is illustrated in Fig. 3. and Fig. 4 Together, these advances 
highlight V2X’s pivotal role in enabling safer, more efficient, and more resilient ITS.

Accident-aware routing strategies
Existing accident detection and prediction techniques
Aboulola investigated the use of transfer learning techniques to predict traffic accident severity while addressing 
the interpretability challenges of deep learning models. The study employs various models, including Multilayer 
Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Residual 
Networks (ResNet), EfficientNetB4, InceptionV3, Extreme Inception (Xception), and MobileNet, with 
MobileNet achieving the highest accuracy of 98.17%. To enhance transparency and trust in predictive modeling, 
the study applies Shapley values to analyze the influence of different features on accident severity predictions. By 
improving both accuracy and interpretability, the research supports evidence-based decision-making for road 
safety interventions and accident prevention strategies. Future work can extend these findings by refining feature 
importance analysis and integrating real-time predictive models for proactive traffic management66.

Ardakani et al. explored the application of machine learning and big data analysis techniques to predict road 
traffic accidents and identify key contributing factors. The study proposes a predictive model that preprocesses 
raw accident data through missing data removal, attribute generalization, and outlier detection using the 
interquartile method. Four classification models—decision trees, random forest, multinomial logistic regression, 
and naïve Bayes—are evaluated for accident prediction, with naïve Bayes performing the weakest. The results 
indicate that accident severity and casualty prediction achieve over 80% accuracy, while vehicle number 
prediction lags at approximately 64%, possibly due to dataset imbalance. The study highlights the importance 
of big data frameworks like Apache Spark for handling large-scale accident datasets and suggests integrating 
advanced techniques, such as neural networks and neutrosophic statistics, to enhance accuracy. Future 
research directions include incorporating additional environmental factors, balancing dataset proportions, and 
developing a mobile-based accident prediction and warning system for real-time traffic safety applications67.

Alvi et al. presented a critical analysis of existing methodologies for automatic accident detection and 
prevention, emphasizing the importance of timely emergency response in reducing fatalities. The study 
reviews various accident detection techniques, including smartphone-based crash prediction, vehicular ad-hoc 
networks, GPS/GSM-based systems, and machine learning approaches such as neural networks and support 
vector machines. Additionally, it explores accident prevention strategies, including drowsy and drunk driving 
detection, speed regulation, and obstacle avoidance using accelerometers, shock sensors, and pressure sensors. 
While these systems improve road safety by enabling real-time accident detection and emergency service 
notification, the study highlights a key challenge: the reliance on hardware-based technologies that may fail or 
provide erroneous readings in severe collisions. Authors suggest the need for more resilient frameworks that 
minimize dependence on vulnerable sensors and software components. The paper underscores the necessity of 
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Fig. 4.  Communication flow between connected vehicles and infrastructure.

 

Fig. 3.  V2X safety message dissemination system.
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integrating robust, fault-tolerant accident detection systems within vehicles to enhance road safety and mitigate 
traffic hazards effectivel68.

Kim et al. proposed a proactive accident prevention framework by leveraging digital tachograph (DTG) data 
to analyze vehicle trajectory patterns on Korean highways. The study moves beyond passive accident response 
measures, focusing instead on predicting hazardous traffic flows using real-time driving behavior indicators. 
Through gradient boosting, the top 20 safety indicators influencing traffic flow classification were identified, 
revealing that dangerous driving events accounted for approximately 33% of studied highway accidents. A 
neural network-based traffic flow classifier, trained on these indicators, achieved a high accuracy of 94.59%. 
Furthermore, the study classified DTG data by accident severity, time of occurrence, and weather conditions, 
with over 90% accuracy in all models. The findings suggest that accident risks increase under adverse conditions, 
particularly at night and in poor weather. Despite data limitations, the research highlights the potential for 
real-time crash risk evaluation using tailored safety indicators for different roadway conditions. The study 
emphasizes the importance of expanding data sources, including passenger vehicle trajectory data, to enhance 
model reliability and address class imbalance issues in crash prediction. The overall conceptual framework, 
integrating such proactive prediction mechanisms within a V2X environment, is illustrated in Fig. 5, showcasing 
the multi-layered architecture for data collection, analysis, and dissemination69.

Khosravi et al. applied hierarchical clustering and machine learning techniques to identify accident-prone 
areas and predict accident severity on the Yazd-Kerman Road in Iran. Using Agglomerative Hierarchical 
and BIRCH clustering algorithms, the study successfully identified two overlapping accident hotspots, 
demonstrating high consistency in accident clustering. Field visits, police reports, and interviews with locals 
revealed key contributing factors: in one area, accidents were linked to a resting area near a mosque, inadequate 
lighting at curves, and poor road signage; in another, accidents were primarily caused by reduced visibility due 
to dust storms. Machine learning models—K-Nearest Neighbors (KNN) and Random Forest—were employed 
to predict accident severity based on environmental and road attributes. KNN outperformed Random Forest 
with an accuracy of 71% compared to 60%. The study underscores the importance of accurate accident location 
data and suggests future improvements by incorporating additional variables such as traffic density and road 
surface conditions. Expanding the dataset to include vehicle types and hospital injury reports is recommended 
to enhance prediction accuracy and support targeted road safety interventions70.

Several machine learning models have been employed for accident prediction, each with varying levels of 
accuracy and applicability. A comparative analysis of these models is presented in Table 6, detailing their key 
features, advantages, and limitations.

Impact of accidents on route optimization
The optimization of routing strategies for accident mitigation has been addressed from multiple perspectives. 
For hazardous materials (hazmat) transport, Song et al.71 proposed a bi-objective rail–truck routing model to 

Fig. 5.  Overall proposed framework.
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minimize risks and costs under real-world constraints such as traffic restrictions and train schedules. Using the 
Max-Min Ant Colony Algorithm (MMAS), their case study in the Beijing–Tianjin–Hebei region showed that 
traffic restrictions increase risks by 4.2%–9.13% and costs by 3.32%–5.25%, while alternative national highway 
routes reduce risks by 9.1%. Extending this direction, Liu et al.72 incorporated equity considerations among 
stakeholders by integrating emergency response times and compensation mechanisms into the risk assessment. 
Their genetic algorithm, tested on Shanghai data, demonstrated that accounting for fairness produces safer and 
more balanced hazmat routes.

While hazmat routing emphasizes long-term planning, emergency response routing requires real-time 
adaptability. Luan et Jiang73 developed a mixed-integer linear programming model with semi-soft time windows 
(MIPSSTW) to optimize ambulance dispatch under time-varying traffic conditions. Their modified cuckoo 
search (MCS) algorithm improved convergence and reduced EMS delays, as validated with real-world Chinese 
data. Complementarily, Wen et al.74 introduced a Timing Co-Evolutionary Path Optimization (TCEPO) method 
that dynamically adapts rescue routes based on predicted traffic states. Simulation results revealed travel time 
reductions of 17.65%–40.02% compared to CEPO and 26.34%–38.47% compared to OLRO, highlighting its 
potential for rapid and reliable emergency response.

Beyond route-level decisions, infrastructure-based strategies have also been explored. Zhang et al.75 addressed 
accident-prone intersections by proposing an accident-risk-based Roadside Unit (RSU) deployment framework. 
Using AHP and entropy weighting to assess risks across road, accident, and environmental dimensions, they 
applied an improved 0–1 knapsack algorithm to optimize RSU placement. SUMO and Veins simulations 
confirmed that their approach achieved 2.63%–2.86% higher vehicle coverage, 5.04% better accident coverage, 
and 5.72% higher accident-risk coverage than traditional RSU deployment methods.

Finally, structural characteristics of road networks themselves have been linked to accident risk. Li et 
al.76 applied a Segment Analysis (SA)-Apriori model to geospatial data from Chongqing’s Dadukou District, 
revealing that roads with high global integration and medium-to-high global choice are strongly correlated with 
major RTAs, while minor accidents showed no such correlation. This suggests that network topology should be 
explicitly integrated into route optimization to mitigate severe accident risks.

In summary, these studies illustrate a continuum of accident mitigation strategies: hazmat routing models 
(Song et al.71, Liu et al.72) address risk and fairness in dangerous goods transport, emergency vehicle routing 
methods (Luan et Jiang73, Wen et al.74) ensure fast and adaptive responses, infrastructure-based approaches 
(Zhang et al.75) enhance safety at intersections, and spatial analyses (Li et al.76) provide insights into how road 
network design affects accident likelihood. Together, they highlight the multi-layered nature of accident-aware 
route optimization.

To provide a clearer comparison, Table 7 summarizes the reviewed route optimization methods for accident 
mitigation, outlining their methodologies, features, performance metrics, advantages, and limitations.

Algorithms for route optimization
Within V2X systems, the A* algorithm enables vehicles to make informed decisions by processing real-time 
traffic data and identifying potential hazards. When combined with artificial intelligence (AI), A* supports 
predictive accident management and optimized route planning, enhancing both driver awareness and safety77. 
In autonomous vehicles, this integration has proven effective for real-time navigation, obstacle avoidance, and 
optimal route selection, thereby contributing to safer and more efficient road networks78.

Although A* was originally developed for static environments, significant improvements have extended its 
applicability to dynamic traffic conditions. One such enhancement is the Asymptotically Optimal A* (AOA*), 
designed for kinodynamic planning in continuous spaces. By integrating heuristic functions and advanced 
pruning techniques, AOA* improves motion planning under dynamic conditions79. Similarly, Liu et al. proposed 
the Multi-Search Strategy A* (MSSA*) to address inefficiencies in high-complexity 3D environments such as 
offshore pipe routing. Key innovations include a node directional discrimination rule to reduce redundancy, 
a double-layer domain extension for broader exploration, a multi-factor heuristic evaluation function, and 
dynamic adaptive weighting. These improvements achieved higher efficiency and accuracy than conventional 
A* while maintaining flexibility across diverse routing scenarios80.

Further refinements have been made by Sang et al., who introduced Directional Search A* to improve 
path planning by addressing sharp turns, weak directional guidance, and excessive node computations. By 
incorporating an angle constraint into the evaluation function, optimizing distance guidance, and adjusting step 
sizes, this method generated smoother and shorter paths while reducing planning time. As illustrated in Fig. 6, 

Study Model Accuracy (%) Key Features Strengths Limitations

Aboulola66 MobileNet 98.17 Deep learning, CNN-based High accuracy Computationally expensive

Decision Tree 85.4 Feature-based classification Interpretability Prone to overfitting

Ardakani et al.67 Random Forest 87.6 Ensemble learning approach Robust performance Slower inference time

Naïve Bayes 60.0 Probabilistic classification Fast computation Low prediction power

Kim et al.69 Neural Network 94.59 Gradient boosting, DTG data High predictive power Require large dataset

Khosravi et al.70
K-Nearest 
Neighbors (KNN) 71.0 Distance-based classification Simple to implement Lower accuracy

Random Forest 60.0 Road & environmental attributes Identifies accident hotspots Limited dataset size

Table 6.  Comparison of machine learning models for accident prediction.
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simulation results demonstrated improved smoothness and efficiency compared to traditional A*. Future work 
aims to further enhance adaptability by dynamically adjusting step sizes based on obstacle size in unknown 
environments81.

Sui et al. proposed a congestion-aware A* enhanced with a spatio-temporal graph convolutional network 
(ST-GCN), which models traffic congestion events and dynamically predicts travel times. The integration of 
A* with a path-aided neural network demonstrated superior performance on real-world datasets, improving 
accuracy and efficiency in dynamic routing82. Zhang et al. introduced a hybrid algorithm combining A* with 
bidirectional RRT, where A* provides a coarse global path and RRT refines it under vehicle chassis constraints. 
This hybrid approach significantly reduced path length and computation time, achieving up to an 1800% speed 
increase in complex environments83. Yan et al. improved A* for ITS applications by integrating minimum heap 
sorting and bidirectional hierarchical search strategies, which enhanced search speed and practical route design. 
Comparative results confirmed its superiority over classical algorithms such as Dijkstra and Bellman-Ford, 
particularly in large-scale urban navigation84. Sang et al. developed Directional Search A*, incorporating an 

Fig. 6.  Block diagram of algorithm optimization.

 

Study Optimization Method Key Features Performance Metrics Advantages Limitations

Song et 
al.71

Bi-objective 
Mathematical Model 
(MMAS Algorithm)

- Minimizes transportation risk & cost
- Considers traffic restrictions & 
alternative routes
- Time-varying risk factors included

- Risk increase: 4.2%–9.13%
- Cost increase: 3.32%–5.25%
- Risk reduction by 9.1% using 
alternative routes

- Accounts for real-world 
constraints
- Improves coordination 
between rail & road transport

- Does not incorporate dynamic 
real-time data
- Focuses mainly on hazardous 
freight transportation

Luan et 
Jiang73

Mixed-Integer 
Linear Programming 
(MIPSSTW) & 
Modified Cuckoo 
Search (MCS)

- Optimizes emergency vehicle routing
- Accounts for traffic flow & 
intersections
- Uses improved Bureau of Public 
Roads (BPR) model

- Reduces EMS response time
- Solves high-dimensional 
optimization problems

- Adaptable to dynamic traffic 
conditions
- Improved accuracy with Lévy 
flight strategy

- High computational 
complexity
- Limited applicability for large-
scale multi-depot problems

Zhang 
et al75.

0-1 Knapsack 
Algorithm for RSU 
Deployment

- Uses accident risk as key factor
- Integrates AHP & Entropy Weight 
Method (EWM) for risk assessment

- 2.63%–2.86% improvement in 
vehicle coverage
- 5.04% increase in accident 
coverage
- 5.72% improvement in risk 
coverage

- Effectively enhances 
intersection safety
- Accounts for environmental & 
traffic conditions

- Deployment may be cost-
intensive
- Requires accurate risk data for 
optimal placement

Liu et 
al.72

Multi-Objective 
Genetic Algorithm 
(Risk-Equity-Based 
Optimization)

- Balances transportation risk, cost & 
risk equity
- Considers emergency response time

- Equitable distribution of risk
- Enhanced safety in hazmat 
transportation

- Ensures fair risk allocation
- Incorporates government & 
carrier concerns

- Requires compensation 
mechanisms for implementation
- Needs real-time traffic 
integration

Wen et 
al.74

Timing Co-
Evolutionary Path 
Optimization (TCEPO)

- Dynamic path optimization
- Uses Ripple Spreading Algorithm 
(RSA) for real-time updates

- Reduces travel time by 
17.65%–40.02% vs. CEPO
- 26.34%–38.47% reduction 
vs. OLRO

- Continuously adapts to traffic 
changes
- Highly effective for emergency 
rescues

- Computationally intensive
- Needs continuous real-time 
traffic updates

Li et 
al.76

Segment Analysis 
(SA)-Apriori Model

- Examines spatial characteristics of 
road networks
- Correlates road features with accident 
rates

- High global integration roads 
linked to RTAs
- Major accidents occur on 
high-choice roads

- Helps in proactive route 
planning
- Can improve urban safety 
policies

- Limited to urban network 
analysis
- Does not incorporate real-
time traffic data

Table 7.  Comparison of route optimization methods for accident mitigation.
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angle constraint and adaptive step size optimization to produce smoother trajectories with reduced computation. 
While effective, future work must focus on adapting step sizes dynamically to varying obstacle environments81.

Beyond A* variants, Ru explored multimodal logistics optimization using a graph traversal algorithm 
combined with Tabu search. The approach minimized transportation costs and improved profitability, 
outperforming genetic algorithms and simulated annealing in terms of accuracy, though at the expense of longer 
computation time. These findings highlight the potential of metaheuristic algorithms such as Tabu search for 
complex vehicle routing and intermodal transport optimization85.

To evaluate the efficiency of various search algorithms in accident-aware route optimization, we compare 
their execution time and path length. As shown in Fig. 7 Algorithm performance comparison in terms of 
execution time and path length for different route optimization approaches in V2X-based traffic management., 
A* and Dijkstra’s algorithms produce the shortest paths, whereas RRT and Tabu Search exhibit higher path 
length variations. However, A* outperforms other methods in terms of execution time.

Recent works have demonstrated the strength of metaheuristic approaches in solving complex vehicle 
routing problems (VRPs). Liu et al. developed the SFSSA algorithm, combining chaotic mapping, sine cosine 
optimization, and firefly-based perturbation to improve solution diversity and convergence, achieving superior 
performance across Solomon benchmark cases86. Similarly, Korzeń et al. applied Ant Colony Optimization 
(ACO) to tram route planning, demonstrating practical gains in public transport efficiency but highlighting 
limitations in handling infrastructure and accessibility constraints87. For electric vehicle logistics, Bezzi et al. 
introduced a branch-and-price formulation for the EVRP with partial recharges, showing scalability to multiple 
charging technologies88, while Wang et al. proposed a two-phase evolutionary algorithm for electric location-
routing optimization, improving charging station placement89. Together, these studies illustrate the adaptability 
of metaheuristics for multimodal, electric, and public transport routing, though challenges remain in balancing 
solution quality with computational efficiency under real-time conditions.

Graph traversal methods remain central to accident-aware traffic optimization. Lu et al. proposed One-Way 
Search (OWS) for multi-request route planning in point-of-interest networks, outperforming greedy methods 
through advanced pruning and iterative refinement90. Ma et al. combined DFS with genetic algorithms for railway 
scheduling, reducing conflicts between train operations91, while Qi et al. and Liu et al. leveraged BFS variants 
for connectivity testing in ring networks and formation planning in multi-robot systems, respectively92,93. These 
approaches demonstrate the efficiency of graph-based search in constrained environments, though scalability to 
dynamic and stochastic traffic remains an open challenge.

Several studies propose hybrid or domain-specific approaches. Zhan et al. modeled route planning under 
severe weather as a Markov decision process, integrating BFS with Edmonds’ algorithm and Fibonacci heaps for 
improved reachability analysis94. Zheng et al. optimized BFS detection for large-scale MIMO systems, achieving 
significant complexity reduction95. Hongjie et al. integrated clustering, trajectory smoothing, and Dijkstra’s 
algorithm for ship routing, balancing safety and efficiency96. Zhang et al. explored corrugated box transport 
optimization under demand uncertainty using arc-flow formulations and branch-and-price97. While domain-
specific, these studies highlight the growing need for hybrid frameworks that incorporate environmental, 
infrastructural, and stochastic factors.

Fig. 7.  Algorithm performance comparison in terms of execution time and path length for different route 
optimization approaches in V2X-based traffic management.
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A growing trend in vehicle routing research is the integration of machine learning and reinforcement 
learning with classical optimization. Wang et al. combined self-supervised reinforcement learning with the 
LKH heuristic, improving generalization and solution quality across VRP variants98. Similarly, Hussain et al. 
introduced OptiE2ERL, an RL-based approach for energy-efficient routing in IoV, which dynamically balances 
residual energy, bandwidth, and mobility, outperforming classical algorithms such as LEACH and PEGASIS99. 
Wang et al. further applied DRL-enhanced Adaptive Large Neighborhood Search (ALNS) to the Capacitated 
EVRP, improving charging-aware route optimization100. Beyond RL, Jiang et al. demonstrated the potential 
of graph neural networks (GNNs) for routing, though challenges of scalability, interpretability, and security 
remain101. Together, these studies highlight the shift toward data-driven routing, though widespread deployment 
requires advances in explainability, online adaptability, and access to large-scale real-world datasets.

Metaheuristic innovations continue to enrich vehicle and VANET routing. Soundarayaa and Balasubramanian 
developed the Komodo Mlipir Algorithm-based KMAORDM to reduce latency and overhead in VANETs, 
achieving measurable improvements in throughput102. Alqahtani and Kumar applied hybrid metaheuristics to 
EnFV routing, demonstrating potential for multi-objective optimization in emerging mobility systems103. These 
approaches emphasize exploration–exploitation balance and multi-objective adaptability but share challenges of 
computational efficiency and parameter sensitivity.

Optimization-based frameworks provide additional perspectives. Scroccaro et al. introduced inverse 
optimization (IO) to learn human routing preferences, achieving competitive performance in the Amazon 
Last Mile Routing Challenge104. Yang et al. used MILP to compare time-based vs. quantity-based delivery 
consolidation, offering insights into when stability or flexibility is preferable in supply chains105. Wang et al. 
extended this to collaborative multi-depot VRPs with dynamic customer demands, underscoring the complexity 
of balancing cost, adaptability, and computational feasibility106. Song and Cheng advanced a mean–standard 
deviation routing model for congestion-prone environments but highlighted computational scalability as an 
enduring limitation107. These works illustrate how mathematical programming, and IO can capture realistic 
decision-making trade-offs but require hybridization with learning-based methods for real-time adaptability.

Graph-based methods continue to underpin routing research, particularly in specialized domains. Li et 
al. highlighted the challenges of alternative route generation across platforms such as Google Maps, where 
subjectivity and inconsistent data sources complicate evaluation108. Scheffler explored the structural complexity 
of BFS/DFS search trees, revealing computational challenges in determining feasible leaf nodes109. Although 
more theoretical, these contributions underline persistent gaps in bridging graph-theoretic insights with 
practical V2X routing systems.

A summary of recent routing algorithms and their performance metrics is presented in Table 8 Comparative 
analysis of routing algorithms.. The table compares methodologies such as A* variants (e.g., MSSA*, Directional 
Search A*), bio-inspired algorithms (e.g., ACO, SFSSA), and hybrid approaches (e.g., A* + RRT, Hybrid DFS + 
GA). Key observations include:

•	 Fast execution times  are achieved by heuristic-driven methods (e.g., Enhanced A*, Optimized BFSD), 
though some require higher computational resources (e.g., Congestion-aware A*).

•	 Path length optimization is a common strength, particularly in algorithms incorporating dynamic weighting 
(e.g., MSSA* or real-time traffic prediction (e.g., ST-GCN).

•	 Limitations include adaptability challenges (e.g., Tabu Search’s slow runtime) and dependency on structured 
environments (e.g., DFS ’s network constraints).

•	 This synthesis aids in selecting context-appropriate algorithms for applications like autonomous vehicles, 
logistics, and IoT networks.

Discussion
Over the past decade, several survey articles have been published on V2X communication and intelligent 
transportation systems. However, most of these studies adopt a broad scope, focusing on general V2X technologies, 
ITS architectures, or AI-based traffic management, without emphasizing the integration of accident detection, 
accident-aware routing, and real-time optimization within V2X-enabled networks. For instance, Yogarayan et 
al.110 compared DSRC and C-V2X technologies but did not examine accident-aware routing, while Hamdi et 
al.112 reviewed accident detection techniques without linking them to optimization strategies. Zulkarnain and 
Putri111 used NLP methods to map ITS research but did not highlight accident management, and Elassy et 
al.114 emphasized sustainability without proposing a research roadmap. Table 9 highlights these limitations, 
contrasting them with the more focused contribution of this review. While prior surveys address V2X and ITS at 
a high level, they are fragmented, confirming the need for a comprehensive synthesis explicitly linking accident 
detection, routing, and optimization within V2X networks.

The analysis of existing literature on accident-aware traffic management within V2X networks reveals both 
significant progress and persistent shortcomings. While numerous studies have explored communication 
protocols, accident detection methods, and optimization algorithms, the findings indicate that these efforts are 
often fragmented and evaluated in isolation. This section critically synthesizes the reviewed works, emphasizing 
overarching trends, persistent challenges, and directions for future research. Although strong advances exist in 
each subdomain, their integration into a unified accident-aware V2X ecosystem is still underdeveloped.

V2X communication technologies: strengths and gaps
Current V2X communication technologies, namely DSRC and C-V2X, have demonstrated significant potential 
in enabling low-latency, reliable message exchange, which is indispensable in accident-aware traffic management. 
DSRC provides latency as low as 10 ms in field tests27,28, making it effective for safety-critical messaging, 
while C-V2X over 5G supports throughputs up to 10 Gbps and long-range mobility31,32. These capabilities are 
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Reference Year Contribution Limitations

Yogarayan et al.110 2021 Comparative review of DSRC, C-V2X, and hybrid approaches; discussion of platforms, products, 
and deployment challenges

No coverage of accident 
management or routing optimization

Zulkarnain et Putri111 2021 Systematic review using NLP methods to map ITS research, trends, and knowledge growth
Broad ITS review, but no specific 
focus on accident management or 
V2X-based routing optimization

Hamdi et al.112 2021 Review of incident detection technologies and algorithms within VANET environments Narrow scope; lacks connection to 
routing and optimization

Zemmouchi-Ghomari113 2025 Comprehensive review of AI applications in ITS, covering architectures, benefits, challenges, and 
case studies

No discussion of V2X 
communication standards

Elassy et al.114 2024 Broad review of ITS components (VANETs, intelligent/virtual traffic lights, mobility prediction) 
and communication systems with sustainability focus

Limited discussion of accident-aware 
routing; lacks research roadmap

This Article 2025
Comprehensive synthesis of communication, ITS, detection, routing, and optimization for accident-aware systems; addresses gaps by 
linking fragmented domains into a unified framework, while highlighting open challenges and proposing a forward-looking research 
roadmap

Table 9.  Comparison of related survey articles and their limitations.

 

Study Algorithm Key Features
Execution 
Time

Path 
Length Advantages Limitations

79 AOA* Kinodynamic planning, heuristic 
functions Fast Short Suitable for dynamic traffic conditions Complex implementation

80 MSSA* Multi-search strategy, dynamic 
weighting Moderate Short Efficient in 3D routing scenarios Needs further adaptability research

81 Directional Search 
A*

Angle constraints, optimized distance 
function Fast Short Reduces sharp turns and redundant 

nodes Needs dynamic step-size adjustment

82 Congestion-aware 
A* ST-GCN for real-time traffic prediction Fast Short Accurate for dynamic traffic conditions High computational demand

83 A* + RRT Two-level mapping, Bezier curve 
smoothing Very Fast Shorter Significant speed improvement over RRT Map transitions need optimization

84 Enhanced A* Min-heap sorting, bidirectional search Very Fast Short Efficient for ITS applications Needs real-time adaptability 
refinement

85 Tabu Search Multimodal transport route 
optimization Slow Variable Low cost per km, high profit increase High running time

86 SFSSA Sine cosine + firefly perturbation Fast Short Optimal for VRPSPDTW problems Needs carbon emissions 
considerations

87 ACO Optimization of tram routes Moderate Short Effective for public transport planning Insensitive to local infrastructure

89
Multi-objective 
Evolutionary 
Algorithm

Interpolation + surrogate modeling Fast Short Optimized charging station placement Needs real-time data integration

90 OWS Branch-and-bound + greedy search Fast Short Outperforms state-of-the-art MRRP 
algorithms NP-hard problem complexity

91 Hybrid DFS + GA Railway station optimization Fast Short Improves punctuality and efficiency Needs real-time dynamic adjustments
92 DFS Efficient edge testing in ring networks Fast Short Optimized for connectivity detection Limited to structured networks
94 BFS Markov decision-based route planning Moderate Variable Handles stochastic conditions well High computational overhead

93 BFS for MMRS Motion planning with formation 
constraints Fast Short Effective in obstacle-rich environments Struggles in highly dynamic scenarios

95 Optimized BFSD Monte Carlo-based width optimization Very Fast Short Reduced complexity in large MIMO 
systems

Managing layer width remains a 
challenge

96 Dijkstra Polynomial Approximation for ship 
routing Fast Short Improves trajectory similarity and 

efficiency Computational cost of large datasets

88 Branch-and-Price EVRP with multi-recharge options Fast Short Efficient for depot-to-depot optimization Complex stabilization techniques 
needed

104 Inverse 
Optimization Learning decision-maker preferences Fast Short Real-world applicability Requires extensive historical data

98 SSRL RL + LKH heuristic Fast Short Superior accuracy and efficiency in VRP Needs broader combinatorial 
optimization testing

102 KMAORDM Komodo Mlipir Algorithm for VANETs Fast Short Reduces latency, improves QoS Needs adaptability for urban scenarios

99 OptiE2ERL RL-based energy-efficient routing Fast Short Extends network lifetime, reduces 
overhead

Needs further validation in large-scale 
IoV

105 Time-Based VRP Consolidation strategies for delivery Moderate Short Cost-efficient in stable markets Limited adaptability for volatile 
demand

Table 8.  Comparative analysis of routing algorithms.
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summarized in Table 2 and Table 3, while their operational modes are depicted in Figure 1. However, these 
technologies continue to evolve in parallel rather than converging, creating fragmentation and compatibility 
challenges across heterogeneous vehicular environments31.

A recurring limitation in the existing literature is the predominance of simulation-based performance 
analyses, which typically focus on latency, throughput, and packet delivery ratio. While valuable, they lack 
large-scale real-world validation. For example, most DSRC studies rely on small-scale testbeds, and C-V2X 
evaluations remain largely simulation-based, leaving open questions about performance under urban density, 
high mobility, multipath interference, and unpredictable communication failures.

Security and reliability are persistent concerns. V2X systems remain vulnerable to spoofing, denial-of-service, 
and data manipulation attacks. While cryptographic methods and intrusion detection frameworks have been 
proposed, their scalability under real-time vehicular conditions remains uncertain17,33. Moreover, imperfections 
such as packet loss and message delay significantly degrade the performance of autonomous intersection control 
and cooperative driving34.

Future research must therefore prioritize hybrid frameworks that integrate DSRC, C-V2X, and emerging 
5G/6G technologies into interoperable systems. Embedding adaptive AI-driven communication management 
can help balance latency, bandwidth, and security in real time, while sustainability considerations—such as 
energy efficiency in 6G-enabled vehicular networks—will ensure long-term feasibility. DSRC and C-V2X have 
laid the groundwork for accident-aware V2X, but widespread adoption depends on solving interoperability, 
cybersecurity, large-scale validation, and sustainability challenges.

ITS and V2X integration
The integration of ITS with V2X communication represents a paradigm shift from reactive traffic management 
to adaptive, predictive, and safety-oriented mobility. Studies confirm that even modest penetration rates 
of connected vehicles improve efficiency and safety. For example, distributed V2X-enabled traffic signals 
reduce control delays by 21% at just 10% penetratio56. Reinforcement learning–based Adaptive Traffic Signal 
Control (ATSC) reduces delays by 38% and fuel consumption by 4.5%40, while graph neural networks improve 
coordination across multiple intersections42. These innovations are compared in Table 4, with architectures 
shown in Fig. 2.

Hybrid and adaptive communication strategies also enhance performance. Integrating ITS-G5 with LTE-V2X 
improves dissemination range by 21% and mitigates shadowing by large vehicles62. Cooperative frameworks that 
link vehicle routing with adaptive signal control further reduce congestion and travel time.

Machine learning is central to ITS–V2X integration. Reinforcement learning supports adaptive multi-agent 
control, while end–edge–cloud frameworks reduce communication loads by selectively broadcasting safety-
critical data. Predictive models have also achieved high accuracy in collision forecasting, offering proactive 
protection for VRUs and motorcyclists65.

However, challenges remain computational cost, interoperability, and security vulnerabilities hinder 
deployment. Large-scale pilot testing under real urban conditions is still rare. ITS–V2X integration has 
demonstrated clear benefits in delay reduction, fuel efficiency, and accident prevention, but real-world scaling 
requires hybrid communication, interoperability, and city-scale pilots.

Accident detection and prediction: toward explainable AI
Machine learning and deep learning models show strong performance in accident detection and prediction. 
CNNs and LSTMs achieve accuracies exceeding 95% on benchmark datasets65, while MobileNet achieves 98.17% 
accuracy in accident severity classification66. Gradient boosting on digital tachograph data achieves 94.59% 
accuracy in crash risk prediction69. Clustering methods, such as BIRCH, identify accident hotspots based on 
historical crash records70. Comparative results are summarized in Table 6, with conceptual frameworks shown 
in Fig. 5.

Despite these successes, two major limitations constrain adoption. First, most models rely on limited, often 
imbalanced datasets, raising questions about generalizability across regions. Second, interpretability is lacking 
DL models operate as “black boxes,” limiting user trust in safety-critical settings.

Recent studies have explored Explainable AI (XAI) techniques, such as Shapley values, which clarify which 
factors most influence predictions66. Federated learning has also been proposed to enable collaborative model 
training across multiple regions without violating privacy.

Looking ahead, integrating heterogeneous data sources—including trajectories, weather, and infrastructure 
data—into multimodal frameworks could reduce bias and improve robustness. Lightweight, edge-compatible 
models will also be essential for real-time deployment in roadside or vehicular units. ML/DL-based accident 
prediction holds great promise, but progress depends on interpretability, multimodal data fusion, and 
deployment-ready lightweight models.

Accident-aware routing and optimization strategies
Accident-aware routing and optimization are essential for resilience and safety in V2X systems. Traditional 
algorithms like Dijkstra and A* remain foundational, with enhanced A* variants reducing computation times by 
up to 1800% compared with RRT in complex environments83. These results are presented in Table 8.

Metaheuristic methods, including Ant Colony Optimization (ACO), Tabu Search, and hybrid evolutionary 
approaches, extend adaptability to multimodal routing. For example, ACO has been applied to optimize tram 
scheduling87, while genetic algorithms improve fairness in hazardous material routing72.

Hybrid frameworks—such as combining A* with RRT—yield smoother trajectories, and congestion-aware 
methods enhanced with spatio-temporal graph convolutional networks (ST-GCN) anticipate future traffic 
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states for proactive routing82. Reinforcement learning–based frameworks, such as OptiE2ERL, optimize multi-
objective performance, balancing travel time, energy use, and collision risk.

Despite advances, many models assume perfect communication and overlook latency, packet loss, and 
cybersecurity risks. Most also prioritize travel time while neglecting sustainability or equity. Accident-aware 
routing is progressing toward multi-objective, AI-enhanced frameworks, but practical deployment requires 
addressing communication imperfections, computational scalability, and validation in realistic traffic 
environments.

Cross-cutting challenges and critical reflections
While accident-aware V2X systems have achieved notable progress across communication, detection, and 
routing, several overarching challenges continue to constrain their large-scale deployment and real-world 
applicability. These challenges are technical, societal, and regulatory in nature, underscoring the need for holistic 
solutions that go beyond algorithmic advances.

Lack of standardized datasets and benchmarks. A persistent limitation in the field is the scarcity of open-
access, accident-aware traffic datasets. Most existing studies depend on small-scale simulations or proprietary 
data, which restricts reproducibility and makes fair benchmarking difficult110,112. Without standardized datasets, 
it is challenging to evaluate generalizability across diverse traffic and environmental conditions. Initiatives such 
as the HighD and NGSim datasets have advanced trajectory analysis but remain limited in accident-related 
labeling. Establishing large-scale, open, and representative accident-aware datasets is a prerequisite for robust 
evaluation, as highlighted in Table 9.

Cybersecurity and privacy risks. Accident-aware V2X systems rely on continuous data exchange between 
vehicles, infrastructure, and cloud platforms, exposing them to threats such as spoofing, denial-of-service, and 
data manipulation. Studies have demonstrated that message injection attacks can increase collision probability by 
over 30% in simulated networks17. Blockchain and distributed ledger technologies have been proposed to secure 
V2X data integrity33, yet these methods introduce added latency (up to 20–30% overhead) and computation costs 
that limit scalability in real-time scenarios. Furthermore, privacy concerns remain acute given the sensitivity of 
location and driver behavior data.

Scalability and computational efficiency. Advanced optimization and learning frameworks often 
demonstrate strong results in controlled conditions but degrade in dense urban environments. For example, 
deep reinforcement learning approaches require billions of training iterations to converge and can experience a 
40–60% performance drop when scaled to high-density traffic82. Hybrid heuristics also suffer from exponential 
growth in computation time as network size increases. Edge computing and lightweight model compression 
have been suggested as solutions, but empirical validation in real-world vehicular testbeds is limited.

Ethical and societal considerations. Beyond technical concerns, accident-aware systems raise unresolved 
ethical dilemmas. Autonomous decision-making during unavoidable collisions often requires prioritizing 
between occupants, pedestrians, or vulnerable road users (VRUs). While some studies propose utilitarian 
frameworks for “least harm” decision-making, consensus on how to operationalize such values in practice 
remains absent. Moreover, equity concerns persist, as deployment tends to favor technologically advanced 
regions, potentially widening safety gaps between urban and rural areas. Addressing these issues will require 
not only engineering innovation but also regulatory alignment and multidisciplinary collaboration among 
engineers, ethicists, and policymakers.

The advancement of accident-aware V2X systems is contingent upon overcoming systemic challenges in 
dataset availability, cybersecurity, scalability, and ethical governance. Progress in these domains is as critical 
as algorithmic innovation, ensuring that V2X evolves into a safe, trustworthy, and socially equitable mobility 
ecosystem.

Conclusion and future directions
This review has examined advancements in V2X-enabled accident-aware traffic management, with a particular 
emphasis on routing and optimization strategies. The surveyed literature demonstrates how search algorithms, 
metaheuristics, and AI-driven approaches contribute to real-time navigation, congestion mitigation, and 
safety improvements. V2X communication has emerged as a transformative enabler, supporting cooperative 
decision-making among vehicles, infrastructure, and vulnerable road users. Despite these advances, significant 
challenges remain, including latency in communication, cybersecurity vulnerabilities, scalability in dense urban 
networks, and unresolved ethical questions in accident decision-making. Collectively, these findings underscore 
both the promise and the limitations of current research, highlighting the need for more integrated and robust 
frameworks.

Looking forward, future research should address these challenges by combining classical optimization with 
advanced machine learning to improve adaptability and predictive accuracy in dynamic traffic environments. 
Edge and fog computing architectures will be essential to minimize latency and computational bottlenecks, 
while blockchain-based security and AI-driven intrusion detection can strengthen data integrity and resilience 
against cyber threats. Standardized open datasets and real-world testing are also critical to evaluate scalability 
and ensure the practical deployment of proposed solutions. Finally, future work must engage more deeply with 
ethical and societal considerations, particularly in mixed traffic scenarios involving both human-driven and 
autonomous vehicles. By tackling these areas, accident-aware V2X systems can move closer to realizing their 
potential as the backbone of safer, more efficient, and more sustainable transportation networks.
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