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As global climate change intensifies and urbanisation continues to advance, cities are facing 
increasingly severe threats from extreme rainfall and flooding. As the critical infrastructure that 
supports urban functions, urban infrastructure (UI) is both a target of disasters and a conduit for 
disaster propagation. This amplifies the impact of disasters on cities. This study is based on flood 
disasters and combines the PSR model and the mutation series model to construct a comprehensive 
evaluation index system for the resilience of urban infrastructure under flood disasters. In practical 
application, the Pearl River Delta was selected as a case study to assess the resilience of its urban 
infrastructure and explore its temporal evolution and spatial distribution between 2018 and 2023. The 
research findings indicate that: The following conclusions may be deduced from the data: (1) From 
2018 to 2023, the overall resilience of urban infrastructure in the Pearl River Delta region showed an 
upward trend; (2) Guangzhou and Shenzhen had significantly higher infrastructure resilience levels 
than other cities in the region; (3) The resilience levels of regions such as Zhaoqing and Jiangmen 
were relatively low. Drawing upon the United Nations Sustainable Development Goals, this study 
proffers bespoke recommendations for augmenting the resilience of urban infrastructure in the Pearl 
River Delta region, thereby providing a theoretical underpinning for the formulation of infrastructure 
development policies in the region.
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As global warming causes temperatures to rise, extreme disasters are on the rise, and floods are occurring 
frequently around the world1. According to statistics from the 2023 Global Natural Disaster Assessment Report, 
flood disasters rank as the most frequent natural disasters, affecting the largest number of people2. Floods have 
a greater impact on urban areas, mainly because flooding disrupts the normal operation of roads, bridges, and 
other transportation facilities3,4. This will affect residents’ normal lives, slow down the availability of emergency 
services, and impact post-disaster reconstruction capabilities5. Therefore, it is of vital importance to systematically 
assess the impact of floods on urban infrastructure. Engineering infrastructure is generally divided into six 
major systems: transportation, water supply and drainage, communications, energy supply, urban environment, 
and disaster prevention6. These six systems not only serve residents’ daily lives but also support the operation 
of other infrastructure, collectively forming an open, complex, and dynamic system. Based on this, the urban 
infrastructure studied in this paper specifically refers to engineering infrastructure.

As an important material foundation for the realization of urban functions and healthy development, the 
UI plays a crucial role in improving citizens’ living conditions, enhancing the city’s overall carrying capacity, 
and increasing the efficiency of urban operations7. Once infrastructure systems are unable to withstand adverse 
shocks, they will trigger a chain reaction, causing immeasurable and serious damage to cities8,9. Recent disasters 
have demonstrated the importance of UI during urban flooding. For example, in July 2023, persistent heavy 
rainfall in northern India triggered severe flooding, submerging urban roads and homes and bringing daily 
life to a standstill. The extreme precipitation overwhelmed city drainage systems, causing rainwater to pool 
in low-lying areas and create urban flooding. Water inundation damaged electrical infrastructure, triggering 
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short circuits that led to power outages and subsequently hampered rescue operations10,11. During extreme 
rainfall events, urban drainage systems become overwhelmed. Rainwater can no longer enter the pipes and 
begins accumulating in low-lying areas, causing urban flooding. This accumulated water gradually encroaches 
upon critical city infrastructure, with power systems being particularly vulnerable. When floodwater infiltrates 
electrical facilities, it causes short circuits, ultimately leading to power outages that hinder rescue operations10,11. 
Given that enhancing the disaster resilience of urban infrastructure (UI) is fundamental to sustaining normal 
urban operations12,13, the concept of resilience has become a central focus globally, particularly among global 
organizations and numerous developed nations. These countries have launched initiatives to promote and 
implement resilient infrastructure, intending to enhance cities’ ability to adapt to disasters14.

Resilience originated from the concept of elasticity in physics, which refers to a material’s capacity to absorb 
deformation forces when subjected to external forces. It was first applied to academic research by Holloing15. The 
adoption of the concept of resilience in multiple fields has led to the expansion of its meaning. The subsystems of 
the UI are interdependent and collectively support urban operations16, playing their respective roles at different 
stages of a disaster and collectively forming the overall resilience of urban infrastructure. Piratla et al.17 define 
infrastructure resilience as the ability of a system to withstand pressure and respond to failures. Li18 defines 
urban infrastructure resilience as the ability of an infrastructure system to withstand shocks, absorb losses, and 
quickly return to normal operation during a disaster. In this paper, UI resilience is defined as the ability of UI to 
resume normal operations after natural disasters.

More scholars are now considering the impact of extreme weather on UI alongside their UI research. Saiful 
Arif Khan19 proposed an integrated framework combining the Dempster-Shafer method and the best-worst 
method to analyze the resilience of bridge infrastructure under earthquake disasters. Sun20 introduced the 
comprehensive concept of resilience in flood disaster research, considering both natural environmental and 
socio-economic factors, and implemented integrated management across pre-disaster, during-disaster, and 
post-disaster stages to achieve an accurate assessment of flood disaster resilience. Ambily21 measures the flood 
resilience of urban blue-green infrastructure using the ecological flood index, conducting a comprehensive 
analysis of urban flood resilience in areas ranging from “very low” to “extremely low,” thereby facilitating a 
transition from risk management to resilience management for urban floods. Seyed22 studied how well road 
networks perform when there are different disaster scenarios. This was done by using a system that looks at 
how well different things work. The study also looked at how strong road networks are against floods. Therefore, 
exploring how to apply flood resistance capabilities can effectively strengthen flood management and reduce 
the impact of floods on cities. However, most scholars currently focus on studying individual UI systems, with 
limited attention to the overall UI system; additionally, few studies integrate urban flood disasters with the 
overall resilience of UI systems.

Resilience theory is still in its early stages of development in the field of urban infrastructure, with relatively 
vague concepts, unclear data processing standards, and numerous theoretical frameworks that are difficult to unify. 
Additionally, existing disaster resilience assessment methods generally suffer from limitations in applicability and 
strong subjectivity23, while non-model assessment methods are constrained by poor generalization capabilities20. 
The aforementioned factors serve to compound the complexity inherent in resilience assessment. It is evident 
that, should these issues remain unresolved, they will have a significantly detrimental effect on the development 
and promotion of resilience theory for infrastructure in the context of flood disasters. Catastrophe theory is a 
general theoretical method that has been specifically designed to represent changes in system states24. It reflects 
the system’s state, with different model positions representing significantly distinct meanings25. Catastrophe 
theory has the potential to function as an unbiased, widely applicable approach for formulating and advocating 
for the development and promotion of UI resilience theory.

In resilience assessment analysis, the most significant difference lies in whether a model is used. Semi-Markov 
models have advantages in quantifying system state transitions and residence times26, but they are less capable 
of analyzing the overall performance of system resilience. The judgment matrices in AHP and the training sets 
in supervised learning models rely on expert knowledge or subjective judgments27, which introduces subjective 
factors into the assessment and affects the accuracy of model judgments. Given that UI resilience encompasses 
multifaceted and wide-ranging dimensions, its evaluation framework should align with the interconnected 
structure of systems and the adaptive characteristics of risk management. The Pressure-State-Response model 
comprehensively considers various factors influencing the environment28,29 and integrates these factors 
organically for analysis, thereby providing decision-makers with a systemic perspective30,31.

The innovations of this paper are as follows: Firstly, the present study focuses on the theoretical construction 
and methodological innovation of urban infrastructure resilience under flood disasters. The present study 
addresses the current weaknesses in systematic response mechanisms within disaster prevention and mitigation 
systems, as well as the lack of in-depth theoretical elaboration on urban infrastructure resilience in existing 
research. To address these issues, a resilience assessment framework integrating multidimensional indicators 
is constructed. This development serves to broaden the methodological approach for integrating disaster 
research with resilience theory. Secondly, in order to address the bias arising from subjective weighting in 
extant evaluation methods (e.g., AHP, TOPSIS), the disaster progression method is introduced. This approach 
is predicated on the premise that weights are determined based on intrinsic mathematical relationships among 
indicators, thereby enhancing the objectivity and robustness of the assessment. Thirdly, the study goes beyond 
the evaluation of urban infrastructure resilience during flood disasters. It further analyzes the spatio-temporal 
evolution of resilience using the Moran index. The text explores comprehensive development strategies for cities 
in the Pearl River Delta from multiple perspectives, providing policy recommendations for integrated regional 
urban development. The following essay will provide a comprehensive overview of the relevant literature on the 
subject.
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Overview of the research area
The Pearl River Delta is located in southern China, comprising the country’s largest river system and most 
developed region. The area is characterized by low-lying terrain and high population density, making it highly 
susceptible to flood disasters32,33. Since the twenty-first century, the Pearl River Delta has primarily exhibited 
riverine alluvial and sedimentary processes, accompanied by frequent flood events. River water levels fluctuate 
significantly, annual precipitation is high, and the region is strongly influenced by monsoon climate patterns. 
Changes in water levels and flood frequencies along the Pearl River mainstem and its tributaries have a 
particularly significant impact on surrounding areas.

The present study has focused on the Pearl River Delta region, with specific reference to the cities of 
Guangzhou, Shenzhen, Zhuhai, Foshan, Dongguan, Zhongshan, Jiangmen, Zhaoqing, and Huizhou. These cities 
have all suffered severe flood disasters and are representative in terms of geographical distribution and disaster 
intensity. This research aims to analyse the causal mechanisms, spatial distribution characteristics, and socio-
economic impacts of flood disasters in the Pearl River Delta region in depth, thereby providing a scientific basis 
for regional disaster prevention and mitigation efforts. The specific geographical locations of the study areas are 
illustrated in Fig. 1.

Indicator system construction and research methods
In consideration of the fact that the Pearl River Delta is a region of China that is subject to frequent flooding, it is 
imperative to undertake a comprehensive study of the UI in the Pearl River Delta region that has been impacted 
by floods. Firstly, the PSR model proposed by Canadian statisticians David J. Rapport and Tony Friend34 was 
employed to construct an indicator system, with three aspects being taken into consideration: pressure, state, 
and response. Secondly, the entropy weight method is employed to objectively and scientifically determine the 
weights of each indicator. Based on catastrophe theory, the catastrophe series method is used to calculate the 
resilience of urban infrastructure. Subsequently, ArcGIS software is utilized to spatially map the resilience of UI 
across cities in the Pearl River Delta; furthermore, layers are imported into GeoDa software to analyse the spatial 
global and local correlations of the case study.

Construction of indicator systems and data sources
In consideration of the fact that the present study is concerned with flood disasters, the disaster data primarily 
encompasses flood-related events. However, it is important to note that the scope of the resilience survey can be 

Fig. 1.  Spatial distribution of the Pearl River Delta in the study area. The base map was obtained from DataV 
Data Visualization Platform. (​h​t​t​p​s​:​​/​/​d​a​t​a​​v​.​a​l​i​y​​u​n​.​c​o​m​​/​p​o​r​t​​a​l​/​s​c​h​​o​o​l​/​a​t​​l​a​s​/​a​r​​e​a​_​s​e​l​e​c​t​o​r), and the maps were 
generated using ArcGIS 10.8.1 (https://enterprise.arcgis.com/zh-cn/).
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expanded to encompass any disaster category. The data utilised in this study encompasses a range of dimensions, 
including natural disasters, population distribution, environmental issues, and social security. With regard to the 
selection of indicators, a systematic review of the relevant literature was conducted, field research was carried 
out, and the characteristics of flood disasters in urban areas were analysed in depth. The construction of a 
comprehensive evaluation indicator system was finally achieved, comprising three dimensions: pressure, state, 
and response. The term “pressure” is used to denote the threats and disruptions caused by natural disasters to 
urban infrastructure, while “state” refers to the resilience of UI to flood disasters under pressure conditions. 
The term “response” is employed to denote the recovery capacity of UI in the context of flood disasters. The 
data utilised in this study is predominantly comprised of vector data and panel data. The missing data were 
supplemented using linear interpolation methods. The primary data sources comprise the National Population 
Census, municipal statistical yearbooks, and government official websites. Table 1 provides specific indicator 
information and the rationale behind their selection.

Determination of indicator weights
The entropy weight method constitutes an objective weighing method insofar as its weights are determined 
exclusively based on the intrinsic information of the data. By virtue of this, human subjective preferences and 

General 
objectives Dimension

Primary 
indicator Secondary indicators Description

Urban 
infrastructure 
resilience

A Stress 
resilience

A1 Rainfall and 
human activity 
conditions

A11 Annual average daily rainfall Higher rainfall increases stress on urban infrastructure(−)

A12 Population density Higher population density increases pressure on urban resources (−)

A2 Topography 
and rivers

A21 Elevation Higher elevation favors higher urban flooding capacity (+)

A22 Slope orientation Reasonable slope setting can utilize gravity to enhance urban drainage capacity (+)

A23 Slope The greater the slope, the greater the urban drainage capacity (+)

A24 River density A high-density river network means that more of the city’s infrastructure is directly 
exposed to the river and its floodplain reach (−)

B state 
resilience

B1 Energy supply

B11 Natural gas supply capacity Natural gas supply is able to secure basic livelihood needs and improve the overall 
resilience of the city in the event of flooding (+)

B12 Power supply capacity In the face of flood disasters, enhanced power supply capabilities can improve energy 
access and living standards (+)

B13 Electricity consumption per 
capita

Higher per capita electricity consumption leads to greater challenges for urban 
infrastructure (−)

B2 Water supply 
and drainage 
treatment

B21 Integrated water supply 
generation capacity

The stronger the comprehensive water supply generation capacity, the stronger the 
city’s water supply capability, and the faster the recovery from flood disasters (+)

B22 Urban sewage treatment rate The higher the sewage treatment rate, the stronger the city’s resilience against urban 
flooding and backflow (+)

B23 Density of drainage pipe network The greater the density of the drainage network, the greater the city’s flood relief 
capacity (+)

B3 
Transportation 
operational 
capacity

B31 Highway density High highway density ensures that accessible routes remain between points within the 
city, accelerating the recovery process after disasters (+)

B32 Density of public transportation 
coverage

A high-density public transit network can help cities absorb the impact of flood 
disasters and maintain essential mobility at the minimum level (+)

B33 Cargo turnover capacity High cargo turnover capacity ensures that vital supplies can continue flowing to where 
they are needed during flood disasters (+)

B4 
Communication 
capacity

B41 Number of cell phone subscribers Cell phones can provide disaster alerts and related information (+)

B42 Number of Internet broadband 
access The internet can help residents access information about flood disasters (+)

C Response 
Resilience

C1 Funding and 
staffing

C11 Level of local fiscal tax revenues Local fiscal revenues can affect response capacity and the speed of disaster recovery (+)

C12 Economic density Economic density affects the speed of a city’s recovery after a disaster (+)

C13 Employment level in the 
electricity, heat, gas, water production 
and supply industry When cities face flood disasters, personnel at the operational level make real-time 

decisions and perform emergency maintenance on urban infrastructure to mitigate the 
impact of floods on the city (+)C14 Level of employed persons in the 

water conservancy, environment and 
public facilities management industry

C2 Capacity 
of medical 
institutions

C21 Number of health technicians 
per 10,000 people The more health technicians, the stronger the rescue capacity (+)

C22 Number of beds in health 
institutions per 10,000 people in 
the city

Health institutions can provide medical services to urban disaster victims (+)

C3 Research 
investment

C31 Full-time equivalent level of 
R&D personnel

The higher the full-time equivalent level of R&D personnel, the stronger a city’s 
technological innovation and R&D capabilities become, and the greater its resilience, 
absorption capacity, and recovery capability in the face of flood disasters (+)

C32 R&D Funding Input Level
The higher the level of R&D funding, the greater the impetus for technological 
innovation, systematically enhancing a city’s capacity to respond to floods and 
waterlogging (+)

Table 1.  UI resilience indicator system.
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experiential judgments are avoided35. Consequently, this renders the results more persuasive. The present paper 
employs the entropy weight method to calculate the weights of UI resilience indicators under flood disasters. The 
following specific steps are to be taken:

	(1)	  Establishing the evaluation matrix.

To mitigate the influence of inconsistent measurement units across the dataset, this study applies formula (1) 
to standardize the data, thereby converting all indicator values to the range [0,1]. The specific normalization 
formula is shown below:

	

Zij = rij − min (rij)
max (rij) − min (rij) , for positive indicators

Zij = max (rij) − rij

max (rij) − min (rij) , for negative indicators
� (1)

 where Zij  represents the original matrix, and Z  represents the normalization matrix.
Initially, the weight of each indicator must be calculated based on standardized data, employing formula 

(2). Subsequently, the application of information entropy theory should be undertaken in order to calculate the 
information entropy of each indicator, with formula (3) being utilized for this purpose. Thereafter, formula (4) 
should be employed to determine the weight of the indicator based on the entropy value. Finally, the calculated 
weight must be applied to the normalization matrix using formula (5).

	
Pij = zij∑

n
i=1zij

, (j = 1,2, . . . , m)� (2)

	
Ej = −

∑ n

i=1Pij lnPij

lnn
, (j = 1,2, . . . , m)� (3)

	
wj = 1 − Ej∑ m

j=1 ( 1 − Ej ) � (4)

	 xij = wj × zij � (5)

In this formula, Pij  denotes the proportion of the standardized values of each city under the indicator, Ej  
represents information entropy, and xij  represents the weighted standardized matrix. The weighting results 
calculated by employing the entropy-based weighting method are presented in Table 2.

The research investment indicator data in the entropy weighting method is sourced from the Guangdong 
Statistical Yearbook (2018–2023). The disproportionately high weight assigned to research investment stems 
from Shenzhen’s significantly greater R&D expenditure compared to most cities in the Pearl River Delta region. 
This disparity arises because Shenzhen ranks among China’s three major financial centres36, and stands as one of 
the most critical hubs for scientific and technological innovation in the country and globally37. Scientific research 
can significantly enhance the quality and efficiency of urban infrastructure38, promote the digital transformation 
of urban infrastructure39, and consequently improve a city’s resilience to disasters40.

Mutation series method
The selection of evaluation methods requires discernment of their core characteristics and applicable scenarios. 
The present study focuses on the assessment of the resilience of urban infrastructure during flood disasters, 
to select analytical tools that best align with research objectives and data characteristics. Table  3 provides a 
comparative overview of six evaluation methods.

The selection of catastrophe theory for this study is also justified by the following reasons: (1) The framework 
of catastrophe theory is systematic41, and can be integrated with the PSR model to comprehensively cover all 
aspects of urban infrastructure resilience assessment under flood disasters. (2) The analytical approach grounded 
in catastrophe theory is methodical42, enabling clear evaluation of complex urban infrastructure resilience 
indicator systems. (3) Catastrophe models exhibit “lagging” characteristics43, allowing more precise assessment 
of trends in urban infrastructure resilience under flood disasters.

The core of catastrophe theory lies in revealing how minute changes in environmental conditions trigger 
abrupt transitions from continuous quantitative changes to discontinuous qualitative changes in systems44. 
Common catastrophe models include the collapse, sharp-head, swallowtail, and butterfly models. These are 
respectively applicable to different numbers of control variables and varying levels of system complexity45.

	(1)	 Classification of mutation models.

 
Following the completion of the dimensionless calculation of the original indicator data, various objects 

and factors are conceptualised as state and control variables. State variables are typically comprised of multiple 
control variables46. It is assumed that the target of the framework is the state variable. In this case, the control 
variable is representative of the sub-indicators it contains. The model with two sub-indicators is known as 
the spike mutation model. The models and normalization formulas are shown in Table 4 below: Calculate the 
mutation level values of different needle grades using the corresponding matching mutation models based on 
the normalization formulas.
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State variables Control variables Potential function Normalization formula

Pointed type 1 2 f (x) = x4 + ax2 + bx xa = a
1
2 , xb = b

1
3

Swallowtail type 1 3 f (x) = x5 + ax3 + bx2 + cx xa = a
1
2 , xb = b

1
3 , xc = c

1
4

Butterfly type 1 4 f (x) = x6 + ax4 + bx3 + cx2 + dx xa = a
1
2 , xb = b

1
3 , xc = c

1
4 , xd = c

1
5

Table 4.  Mutation system model and normalization formula.

 

Evaluation 
method Advantages Limitations Scope of Application

Analytic 
hierarchy 
process (AHP)

Clear structure and strong 
systematic approach; Capable 
of integrating quantitative and 
qualitative indicators

Highly subjective; consistency testing 
becomes cumbersome with numerous 
indicators

Suitable for constructing evaluation indicator systems for infrastructure resilience 
and determining the relative importance of each dimension. Suitable for pre-
disaster resilience capability assessment and planning

ANP network 
analysis

Capable of handling complex 
feedback and dependency 
relationships, making it more 
practical

Highly complex to operate, 
computationally intensive, and heavily 
reliant on software and expert judgment

ANP is an ideal choice if this study aims to analyze the complex interactions and 
feedback mechanisms among flood resilience evaluation indicators (e.g., exposure, 
vulnerability, adaptive capacity). However, its application incurs high costs (time 
and manpower)

TOPSIS Fully data-driven with strong 
objectivity

Weights represent information 
content rather than actual importance, 
potentially leading to distortion

Suitable for this study to precisely rank and categorize the infrastructure resilience 
levels of multiple cities in the Pearl River Delta after determining indicator weights. 
This method clearly illustrates each city’s gap relative to the ideal resilience level

Grey relational 
analysis (GRA)

Low data requirements; 
analyzable with small samples; 
simple underlying principle

Highly subjective (sensitive to the 
selection of correlation coefficient ρ); 
limited theoretical depth

If evaluation data is limited or partially missing in this study, GRA can serve as an 
effective supplementary analytical tool for preliminary identification of key factors 
affecting infrastructure resilience or for trend analysis

Table 3.  Analysis of advantages, disadvantages, and applicability of primary evaluation methods in this study.

 

General 
objectives Dimension Weighting

Primary 
indicator Weighting Secondary indicators Weighting Sort

Urban 
infrastructure 
resilience

A Stress 
resilience 0.143

A1 Rainfall and 
human activity 
conditions

0.018
A11 Annual average daily rainfall 0.007 24

A12 Population density 0.011 15

A2 Topography 
and rivers 0.124

A21 Elevation 0.05 4

A22 Slope orientation 0.02 16

A23Slope 0.031 9

A24 River density 0.023 15

B state 
resilience 0.343

B1 Energy 
supply 0.067

B11 Natural gas supply capacity 0.024 13

B12 Power supply capacity 0.031 8

B13 Electricity consumption per capita 0.012 22

B2 Treatment of 
water supply and 
drainage

0.067

B21 Integrated water supply generation capacity 0.026 10

B22 Urban sewage treatment rate 0.006 25

B23 Density of drainage pipe network 0.035 7

B3 
Transportation 
operational 
capacity

0.156

B31 Highway density 0.017 18

B32 Density of public transportation coverage 0.017 19

B33 Cargo turnover capacity 0.122 3

B4 
Communication 
capacity

0.052
B41 Number of cell phone subscribers 0.015 21

B42 Number of Internet broadband access 0.038 5

C Response 
resilience 0.514

C1 Funding and 
staffing 0.096

C11 Level of local fiscal tax revenues 0.036 6

C12 Economic density 0.016 20

C13 Employment level in the electricity, heat, gas, water production and supply 
industry 0.02 17

C14 Number of employees in the water conservancy, environmental protection, 
and public facilities management industry 0.025 12

C2 Capacity 
of medical 
institutions

0.048
C21 Number of health technicians per 10,000 people 0.025 11

C22 Number of beds in health institutions per 10,000 people in the city 0.024 14

C3 Research 
investment 0.37

C31 Full-time equivalent level of R&D personnel 0.195 1

C32 R&D Funding Input Level 0.175 2

Table 2.  The weights were calculated by means of the entropy weight method.
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In the potential function of the aforementioned mutation model, the independent variable x represents the 
state variable. The function f (x) is referred to as the potential function of the independent variable x. The 
coefficients a, b, c, and d serve as control parameters that govern the independent variable x.

	(2)	 Evaluation using the normalization formula.

 
When evaluating using normalization formulas, the values of state variables should be calculated for each 

control variable, adhering to two key principles. The “non-complementarity” principle governs calculations where 
control variables lack clear interrelationships (non-complementary indicators), employing the “minimizing the 
larger value” approach for calculating sudden change levels47. Conversely, when significant correlations exist 
among control variables47, the “complementarity” principle mandates using the average value of state variables. 
Through multiple rounds of consultation and workshops with domain experts, this paper establishes the internal 
logical relationships and overall structural integrity of the urban infrastructure resilience indicator evaluation 
system under flood disasters. The relationships among secondary indicators are shown in Table 5.

Based on the normalization formula, indicator weighting, and indicator relationship principles, the final 
mutation level value is derived. The formula is shown in Table 6.

Interval partitioning
After obtaining preliminary evaluation results based on catastrophe models, interval partitioning methods are 
often employed to refine and categorize these outcomes. Unlike traditional evaluation methods that struggle to 
effectively process large-scale, high-dimensional data, the K-means clustering algorithm—a classic unsupervised 
learning algorithm—automatically aggregates similar samples into clusters based on intrinsic data characteristics 
without requiring predefined category labels. This approach reduces the interference of subjective judgments in 
the evaluation process, enhancing the objectivity and scientific rigor of resilience level classification48.

The steps of the K-means clustering algorithm are as follows: (1) Randomly select k cluster centers, (2) Assign 
each data point to its nearest cluster center, (3) Recalculate the mean of each cluster as the new center, (4) Iterate 
this process until the cluster centers remain unchanged49.

Applying the K-means clustering algorithm enables the division of urban infrastructure resilience evaluation 
results under flood disasters into multiple intervals, allowing for sequential analysis of each independent interval.

Spatial correlation evolution analysis method
Spatial weighting
This study employs the spatial analysis software GeoDa to investigate the spatial correlation among urban 
infrastructure resilience levels during flood disasters. GeoDa primarily provides four types of spatial weight 

Mutation model

Control the relationship between variables

Non-complementary Complementary

Pointed type min(xa, xb) (xa, xb)/2

Swallowtail type min(xa, xb, xc) (xa, xb, xc)/3

Butterfly type min(xa, xb, xc, xd) (xa, xb, xc, xd)/4

Table 6.  Determination of mutation rate values.

 

Indicator hierarchy Indicators within hierarchy Internal relationships

Dimension A, B, C Complementary

Primary indicators

A1, A2 Complementary

B1, B2, B3, B4 Complementary

C1, C2, C3 Complementary

Second-level indicators

A11, A12 Complementary

A21, A22, A23, A24 Complementary

B11, B12, B13 Complementary

B21, B22, B23 Complementary

B31, B32, B33 Non-complementary

B41, B42 Non-complementary

C11, C12, C13, C14 Non-complementary

C21, C22 Complementary

C31, C32 Complementary

Table 5.  Relationships among secondary indicators.
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matrices: Queen adjacency, Rook adjacency, Threshold distance, and K-Nearest neighbors. The definitions, 
advantages, and disadvantages of various spatial weight matrices are shown in Table 7.

The Pearl River Delta was selected as the study area. When examining the resilience of its urban infrastructure, 
Queen Contiguity more effectively captures the proximity of areas separated only by a river. It treats areas 
sharing a vertex—such as bridge junctions or road intersections—as neighbors, aligning more closely with the 
reality of “seamless connections” among cities in the Pearl River Delta. This approach better reflects the macro-
level spatio-temporal distribution relationships. Therefore, constructing a spatial weight matrix of the Queen 
Contiguity type is more appropriate for exploring the spatial correlations of urban infrastructure resilience in 
the Pearl River Delta.

Moran’s I index
The present study employs Moran’s I global spatial econometric model to reflect the global autocorrelation 
spatial relationship of urban flood disaster resilience. The calculation formula is as follows:

	
Global Moran′ sI =

∑
n
i=1

∑
n
j=1 Wi,jZiZj

S2
∑

n
i=1

∑
n
j=1 Wi,j

� (6)

	
S2 = 1

n

∑ n

i=1
Z2

i � (7)

Among these, Zi represents the difference between the urban infrastructure flood resilience index and the 
average flood resilience index of all urban infrastructure in the study area, while Wi,j  denotes the spatial weight 
of urban infrastructure flood resilience in the study area, with a value of 1 for spatially adjacent areas and 0 for 
non-adjacent areas. The ZI  score is calculated as follows:

	
ZI = 1 − E (I)√

V (I)
� (8)

	
Among them E (I) = − 1

n − 1 ; V (I) = E
(
I2)

− E (I)2

.
Due to the unique characteristics of the study area, the constructed Queen Contiguity spatial weight matrix 

may exhibit “neighbor shortage” in peripheral regions, while central areas demonstrate better representativeness. 
Therefore, Local Moran’s I was employed to supplement these limitations, thereby preventing global indicators 
from obscuring peripheral regions.

The Local Index of Spatial Association (LISA) is a tool that can be utilized to reflect the spatial correlation 
between a given geographic unit and its neighboring regions. A frequently employed local index of spatial 
association is the local Moran’s I:

	
LocalMoran′ sI = Zi

S2

∑
n
j ̸= i Wi,jZj � (9)

The Local Moran’s I index has been utilized to categorize the spatial association patterns within the study region 
into four specific categories: (1) areas with high values surrounded by high values (HH clusters), (2) areas 
with high values adjacent to low values (HL outliers), (3) areas with low values neighbouring high values (LH 
outliers), and (4) areas with low values surrounded by low values (LL clusters). The visualization of these spatial 
autocorrelation patterns can be most effectively achieved through the use of LISA cluster maps.

Matrix type Definition Advantages Disadvantages

Queen 
adjacency

Two spatial units are considered neighbors if they share 
any length of common boundary (edge) or vertex

Simple and intuitive, suitable for most polygonal 
data

May result in many cells having numerous 
neighbors (e.g., large polygons) or some cells 
having no neighbors (island problem)

Rook adjacency Two spatial units are considered neighbors if they share a 
common edge (not just a vertex)

This is stricter than the Queen definition, excluding 
cases connected solely by vertices

Uneven neighbor counts and island problems 
may still occur

Threshold 
distance

Set a threshold distance (d). If the distance between the 
centers of mass of two units is less than or equal to this 
distance, they are considered neighbors

Highly flexible, suitable for irregular units; ensures 
all units have at least some neighbors

The choice of threshold distance d is subjective; 
it may result in global connectivity (all cells are 
neighbors) or local connectivity imbalance

K-Nearest 
neighbors

Identifies the K nearest neighboring cells for each spatial 
cell

Effectively addresses uneven neighbor counts by 
guaranteeing each cell has the same number of 
neighbors; particularly suitable for datasets with 
highly variable cell sizes

May result in asymmetric neighbor 
relationships (i is a neighbor of j, but j is not 
necessarily a neighbor of i), though GeoDa 
typically symmetrizes these relationships

Table 7.  Definition, advantages and disadvantages of the spatial weight matrix.
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Results and analysis
UI resilience analysis
The entropy weight method is utilised in this study to ascertain the weights of each indicator. Following 
standardisation and weighting of the initial resilience assessment matrix, the mutation series method is employed 
to calculate the resilience values of each city in the Pearl River Delta for the pressure-state-response dimension 
on an annual basis. The specific values are illustrated in the accompanying figure.

This study utilized SPSS Statistics 27 software for K-means clustering analysis, with the infrastructure 
resilience values of cities in the Pearl River Delta from 2018 to 2023 as clustering factors, to determine the 
evaluation results and resilience levels of UI resilience. Following the requisite iteration, the cluster centres were 
obtained, as illustrated in Tables 8 and 9.

The results show that the overall resilience of UI in the Pearl River Delta under flood disasters has been on an 
upward trend. During the period from 2018 to 2023, although Guangzhou’s resilience has been slowly declining, 
its lowest resilience score remained above 0.91, making it a highly resilient city. Zhaoqing, Foshan, Zhongshan, 
and Huizhou exhibited fluctuating resilience trends; Dongguan and Shenzhen saw continuous growth in 
resilience. Overall, the gap in resilience capabilities between regions is gradually narrowing, primarily because 
Guangzhou and Shenzhen, as core cities of the Pearl River Delta, are driving the development of surrounding 
cities, particularly in terms of UI construction.

Spatial evolution analysis of UI resilience
In terms of spatial analysis, the present research employed ArcGIS 10.6 and GeoDa 1.2 software platforms 
to perform the analytical tasks. Specifically, the investigation incorporated the authorised 2024 reference 
cartographic materials issued by China’s national land and resources regulatory body, along with regional 
topographic maps of the Pearl River Delta and urban safety capacity evaluation metrics, to establish a geospatial 
analysis framework assessing the infrastructural adaptive capacity of the nine metropolitan areas within the 
Pearl River Delta urban agglomeration.

Spatial distribution analysis

	(1)	 Spatial distribution characteristics of urban infrastructure resilience assessment results under flood disas-
ters.

 

2018 2019 2020

Region Evaluation results Resilience level Region Evaluation results Resilience level Region Evaluation results Resilience level

Guangzhou 0.9161 Higher Guangzhou 0.9179 Higher Guangzhou 0.9207 Higher

Foshan 0.8734 Lower Foshan 0.8766 Medium Foshan 0.8625 Lower

Zhaoqing 0.8834 Medium Zhaoqing 0.8818 Medium Zhaoqing 0.8717 Lower

Dongguan 0.8458 Lower Dongguan 0.8681 Lower Dongguan 0.8881 Medium

Huizhou 0.9053 Higher Huizhou 0.8968 Medium Huizhou 0.9015 Higher

Zhuhai 0.9038 Higher Zhuhai 0.9079 Higher Zhuhai 0.9082 Higher

Zhongshan 0.8746 Lower Zhongshan 0.866 Lower Zhongshan 0.8722 Lower

Jiangmen 0.9017 Higher Jiangmen 0.9041 Higher Jiangmen 0.904 Higher

Shenzhen 0.9024 Higher Shenzhen 0.9288 Higher Shenzhen 0.9301 High

2021 2022 2023

Guangzhou 0.9238 Higher Guangzhou 0.9264 Higher Guangzhou 0.9263 Higher

Foshan 0.8737 Lower Foshan 0.8704 Lower Foshan 0.8713 Lower

Zhaoqing 0.8838 Medium Zhaoqing 0.8593 Lower Zhaoqing 0.8779 Medium

Dongguan 0.8925 Medium Dongguan 0.891 Medium Dongguan 0.8862 Medium

Huizhou 0.9005 Medium Huizhou 0.9025 Higher Huizhou 0.8964 Medium

Zhuhai 0.9075 Higher Zhuhai 0.9062 Higher Zhuhai 0.8943 Medium

Zhongshan 0.8727 Lower Zhongshan 0.8738 Lower Zhongshan 0.8785 Medium

Jiangmen 0.9039 Higher Jiangmen 0.9017 Higher Jiangmen 0.887 Medium

Shenzhen 0.9412 High Shenzhen 0.9416 High Shenzhen 0.9399 High

Table 9.  Infrastructure resilience assessment results for cities in the Pearl river delta from 2019 to 2023.

 

Interval (0, 0.8365) (0.8365, 0.8751) (0.8751, 0.9015) (0.9015, 0.9329) (0.9329, 1)

Rating grade Low Lower Medium Higher High

Table 8.  Urban infrastructure rating grade intervals.
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Based on the pressure-state-response GIS model of nine regions in the Pearl River Delta from 2018 to 2023, 
the pressure-state-response resilience-level-division interval was imported into ArcGIS software. As shown in 
Fig. 2.

As shown in Fig. 2, the highest values of UI resilience under flood disasters are concentrated in Guangzhou 
and Shenzhen. This disparity primarily stems from China’s significant fiscal investments in these cities and their 
national strategic status, enabling a four-dimensional synergy of economy, policy, technology, and governance. 
Overall, coastal cities exhibit generally higher infrastructure resilience, while prefecture-level cities within 
the region generally have lower resilience. Developed cities drive improvements in infrastructure resilience 
in surrounding areas, particularly through industrial radiation, infrastructure sharing, and administrative 
coordination. In terms of industrial radiation, Shenzhen’s high-tech industries have expanded eastward to 
Dongguan and Huizhou, driving industrial chain upgrades and enhancing the resilience of their infrastructure 
(such as power and transportation). In terms of infrastructure sharing, the extension of the Shenzhen Metro to 
Dongguan and the Guangzhou Metro to Huizhou directly enhances the resilience of transportation infrastructure 
in both regions. Additionally, Shenzhen’s emergency management system covers Dongguan and Huizhou, 
establishing a joint prevention and control mechanism. In terms of administrative coordination, Shenzhen, 
Dongguan, and Huizhou have established a cooperative mechanism within an economic circle to advance 
cross-city infrastructure projects, such as the Shenzhen-Shanwei High-Speed Railway and the Dongjiang Water 
Resource Allocation Project, thereby enhancing overall disaster resilience and strengthening the resilience of 
urban infrastructure. Meanwhile, the radiation effect of developed cities on surrounding cities follows a “core-
periphery” model, with the intensity of influence decreasing exponentially with increasing distance.

Spatial correlation analysis
Given that spatial analysis demands macro-scale and quantitative methodologies to unveil spatial spillover 
effects and agglomeration characteristics, it is imperative to integrate spatial correlation analysis into the 
research framework to achieve a comprehensive understanding of the spatial distribution patterns of urban 
infrastructure resilience in the Pearl River Delta region. This analysis should encompass both global and local 
spatial correlation, thereby facilitating a multifaceted examination of the subject.

	(1)	 Global correlation analysis.

As shown in Table 10, the P-values for all years are less than 0.1, corresponding to Z-scores greater than 1.65, 
indicating that Moran’s I is significant for all years. However, the significance shows an upward trend from 2018 
to 2019, begins to decline in 2019, and then increases annually from 2021 to 2023. The changes in Moran’s I 
reflect the spatial clustering pattern of flood resilience in Yangtze River Delta cities over the past six years. All 
years have positive Moran’s I values, indicating that the UI resilience indices of the nine regions in the Pearl River 
Delta exhibit spatial clustering phenomena. Specifically, regions with high resilience values tend to cluster with 
neighbouring high-value regions, while regions with low resilience values cluster with other low-value regions, 
forming a spatial positive correlation pattern.

Fig. 2.  Spatial distribution of UI resilience in the Pearl River Delta. The base map was obtained from DataV 
Data Visualization Platform (​h​t​t​p​s​:​​/​/​d​a​t​a​​v​.​a​l​i​y​​u​n​.​c​o​m​​/​p​o​r​t​​a​l​/​s​c​h​​o​o​l​/​a​t​​l​a​s​/​a​r​​e​a​_​s​e​l​e​c​t​o​r), and the maps were 
generated using ArcGIS 10.8.1 (https://enterprise.arcgis.com/zh-cn/).
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	(2)	 Local correlation.

 
In order to conduct a correlation analysis of the local relevance of urban infrastructure resilience under flood 

disasters, this paper will use GeoDa software to create a spatial weight matrix to analyse local spatial relevance. 
The results of the univariate spatial analysis, including the cluster map and significance table, are shown in Fig. 3; 
Table 11 below.

Region

Year

2018 2019 2020 2021 2022 2023

Guangzhou Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant

Foshan Relatively significant Relatively significant Insignificant Insignificant Insignificant Insignificant

Zhaoqing Insignificant Relatively significant Relatively significant Relatively significant Relatively significant Relatively significant

Dongguan Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant

Huizhou Relatively significant Insignificant Insignificant Insignificant Insignificant Insignificant

Zhuhai Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant

Zhongshan Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant

Jiangmen Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant

Shenzhen Insignificant Insignificant Relatively significant Relatively significant Relatively significant

Table 11.  Analysis of the LISA significance map of the Pearl river Delta.

 

Fig. 3.  LISA clustering map of UI resilience in the Pearl River Delta Region Under Flooding Disasters. The 
base map was obtained from DataV Data Visualization Platform (​h​t​t​p​s​:​​​/​​/​d​a​t​a​​v​.​a​l​i​y​u​​n​.​c​​​o​m​/​p​o​r​​t​​a​l​/​s​​c​h​​o​o​l​/​​a​t​​l​a​s​​/​​
a​r​e​a​_​s​e​l​e​c​t​o​r), and the maps were generated using ArcGIS 10.8.1 (https://enterprise.arcgis.com/zh-cn/).

 

Year 2018 2019 2020 2021 2022 2023

Moran’s I Index 0.477 0.5311 0.6327 0.556 0.4605 0.2316

Z score 2.8992 2.7642 2.96 2.9358 2.5196 2.0049

P value 0.007 0.021 0.012 0.01 0.016 0.04

Table 10.  Global moran’s I values for the resilience levels of UI in the Pearl river delta region.
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As shown in Fig.  3; Table  7, the distribution characteristics of the LISA clustering map for UI resilience 
indices in the Pearl River Delta region from 2018 to 2023 exhibit little variation and demonstrate significant 
spatial similarity. The “low-low” type zone dominates, concentrated in Zhaoqing City and Foshan City, indicating 
that these two regions exhibit relatively weak spatial clustering of UI resilience. The “high-high” type zones are 
primarily distributed in Huizhou City and Shenzhen City, indicating that their spatial clustering is relatively 
significant. Due to various factors, the UI resilience of other regions has not formed significant clustering. 
However, from the overall distribution, it can be seen that under flood disasters, Shenzhen City and Guangzhou 
City are at relatively high levels of UI resilience, while Zhaoqing City is at a relatively low level of UI resilience.

Discussion
Under flood disasters, the overall resilience of UI in the Pearl River Delta has shown an upward trend, with 
variations among cities. Guangzhou and Shenzhen exhibit higher levels of UI resilience compared to other 
cities. This aligns with previous studies on the resilience of most Chinese cities over the past 20 years50,51. This 
growth primarily stems from provincial policy support, particularly those policies promoting infrastructure 
development and coordinated governance52,53. The primary factors contributing to the higher resilience 
levels of Guangzhou and Shenzhen’s UI under flood disasters are as follows. First, as key economic engines 
and transportation hubs in southern China, Guangzhou and Shenzhen boast high economic standards. Their 
governments invest heavily in infrastructure construction, maintenance, and upgrades54, thereby enhancing 
their capacity to respond to disasters and emergencies. Second, confronting frequent flooding in the Pearl River 
Delta region, Guangzhou and Shenzhen were among China’s first pilot cities for “sponge city” construction, 
establishing relatively comprehensive flood prevention and drainage systems55, Finally, with the establishment 
of digital intelligent systems, the number of urban waterlogging hotspots has objectively decreased over the 
past six years, and the resulting disaster losses have gradually diminished. Throughout the study, Zhongshan 
and Zhaoqing exhibited significantly lower levels of urban infrastructure resilience compared to other cities, 
primarily due to the following reasons. First, Zhongshan and Zhaoqing have relatively monolithic industrial 
structures, with Zhongshan primarily relying on traditional manufacturing and Zhaoqing on traditional 
manufacturing and agriculture, both lacking support from high-end industries. As Qiong, et al.56 have pointed 
out, Zhongshan and Zhaoqing lag in digital economic development, which will impact their UI resilience 
levels. Second, Zhaoqing has an unfavourable geographical location with complex terrain and numerous hills; 
Zhongshan’s urban planning lacks foresight and systematic planning, leading to an unreasonable urban spatial 
layout. Therefore, these two regions exhibit lower resilience in their urban infrastructure during flood disasters.

From a temporal perspective, by 2019, there were no longer any low-resilience cities in the Pearl River Delta. 
This indicates that the overall infrastructure resilience of the Pearl River Delta was relatively strong. However, in 
2020, the pandemic swept across China. During the pandemic, to control the spread of the virus and mitigate flood 
disasters, the Pearl River Delta expanded its urban infrastructure, such as constructing/renovating hospitals57, 
establishing a flood control coordination system, and achieving regional coordination: inter-city emergency 
response collaboration, etc. As pandemic and flood control measures were implemented, the resilience level 
of UI in the Pearl River Delta gradually improved. However, between 2021 and 2022, the construction of the 
Shenzhen-Zhongshan Channel in Zhongshan City reached its peak phase. Large-scale construction activities 
caused short-term impacts on the flood control and drainage network. Combined with the 2021 “Dragon Boat 
Water” disaster58, the city’s urban infrastructure resilience declined sharply. This outcome resulted from the 
combined effects of major engineering activities and frequent extreme weather events, creating a synergistic 
resonance. As concluded by Yin, et al.59, the correlation between a city’s social security, economic stability, and 
infrastructure and its infrastructure resilience recovery is negative. That is to say, the weaker these factors are, the 
slower the recovery. These findings emphasise the necessity of enhancing the resilience of the UI.

According to the annual spatial correlation analysis, cities with high levels of UI resilience under flood 
disasters tend to cluster with neighbouring cities of high value, while cities with low levels of UI resilience cluster 
with cities of low value, exhibiting a positive spatial correlation pattern. For example, in 2018, Huizhou City 
exhibited a “high-high” clustering pattern. This is because Huizhou serves as a pilot city for the Pearl River Delta 
region’s comprehensive sponge city initiative, and by 2018, it had completed 40% of its urban area’s sponge city, 
exceeding the provincial average of 30%. As undefined and Fujun60 have demonstrated, sponge cities reduce 
the risks posed by floods to cities and enhance the resilience of urban infrastructure. In 2020–2022, Shenzhen 
exhibited a “high-high” clustering pattern due to the establishment of the world’s first “city-level disaster digital 
twin platform,” enabling 15-minute warnings for heavy rain flooding, and the allocation of 28.7 billion yuan for 
smart city investments in 2022. The digital twin platform61 and government support for smart city policies62,63 
have significantly enhanced the resilience of urban infrastructure. In contrast, the Zhaoqing region was in a 
“low–low” cluster from 2019 to 2023, indicating that Zhaoqing City’s resilience level, directly adjacent to other 
cities, is also at a relatively low level in terms of UI resilience.

According to the LISA map from 2018 to 2023, it is evident that the distribution characteristics of infrastructure 
resilience in cities within the Pearl River Delta region remain consistent, exhibiting minimal variation in terms of 
spatial clustering on an annual basis. The primary reason is that in the development of infrastructure resilience 
in cities within the Pearl River Delta region, the spatial planning of various cities exhibits a certain degree of 
homogeneity and inadaptability. This implies insufficient social coordination, resulting in less pronounced 
aggregation effects.

Development recommendations
In consideration of the particular findings of the research and the Sustainable Development Goals (SDGs), and 
with reference to the prevailing conditions of the Pearl River Delta, the ensuing recommendations are outlined:
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	(1)	 Improve the design and spatial planning of urban infrastructure. Strengthen the construction of flood-re-
lated infrastructure from the perspectives of overall planning and management. To address flood disasters, 
establish a dynamic risk assessment mechanism using technologies such as the Internet of Things (IoT), 
enhance the flood-resistant design of urban infrastructure, and build climate-resilient infrastructure (SDG 
9). For example, by integrating data from multiple departments in the Pearl River Delta—including water 
resources, meteorology, natural resources, transportation, and housing and urban-rural development—a 
“Pearl River Delta Flood Disaster Intelligence Platform” has been established. Furthermore, a methodical 
approach to planning and utilisation of extant spatial resources is imperative to establish an open space 
framework, thereby enhancing the flexibility and effectiveness of the integrated transportation system. Si-
multaneously, optimize the layout of emergency evacuation sites to ensure swift and efficient evacuation of 
populations during flood disasters, safeguarding residents’ safety (SDG 10). For example, in Foshan and 
Zhongshan, where rivers crisscross the landscape, develop diversified water transportation systems. Plan 
water-based emergency evacuation routes and bus ferry services to alleviate the paralysis of land transpor-
tation during flood disasters.

	(2)	 Optimize industrial structure and promote the development of high-tech industries. Some regions in the 
Pearl River Delta primarily rely on traditional manufacturing industries. It is necessary to diversify the 
industrial structure, with a focus on high-tech industries, to achieve higher levels of economic productivity 
and enhance the sustainability of economic development (SDG 8). Specifically, Zhongshan, Jiangmen, and 
Zhaoqing should establish specialised high-tech parks and create demonstration zones for the digital trans-
formation of traditional industries, thereby achieving a ground-up development of distinctive high-tech 
sectors. In the cities of Foshan and Dongguan, existing industries are to undergo a process of digital and 
intelligent upgrades, to transform traditional manufacturing into high-tech industries. Concurrently, voca-
tional skills training will be provided for the purpose of enhancing workers’ competitiveness and promoting 
employment equity. (SDG 4, SDG 10).

	(3)	 Increase government fiscal investment to enhance UI development. Establish a regional infrastructure fund 
to address regional development imbalances and build cities with high infrastructure resilience. For in-
stance, the strategic allocation of investment capital towards climate resilience initiatives in regions such 
as Zhaoqing and Jiangmen, to fortify critical infrastructure, including flood control and drought resistance 
systems, is poised to avert the occurrence of substantial economic losses and indirect economic disruptions 
triggered by future disasters. Furthermore, when advancing infrastructure development, priority should be 
given to promoting low-carbon, smart, and sustainable green building models. This approach minimizes 
human disturbance to ecosystems while enhancing protection for biodiversity and ecosystem services. Si-
multaneously, it effectively stimulates local industries such as green building materials, digital technologies, 
and new energy, creating new employment opportunities. (SDG 9 and SDG 15).

	(4)	 Regional collaborative governance. It is recommended that urban areas within the Pearl River Delta es-
tablish an inter-regional flood disaster coordination mechanism. Cities with lower levels of infrastructure 
resilience should strengthen regional cooperation with neighbouring cities to achieve resource sharing and 
complementary advantages. For example, they should collaborate with cities like Guangzhou and Shenzhen 
to jointly build transportation, energy, and water infrastructure, thereby enhancing the overall resilience 
of the region. Additionally, data sharing should be implemented to build a smart resilience network in the 
Pearl River Delta, enabling real-time monitoring, precise prediction, and coordinated response to promote 
cross-regional disaster prevention and mitigation cooperation. For example, real-time operational data 
from key transportation facilities such as the Guangzhou-Shenzhen Expressway and the Guangzhou-Fos-
han Metro should be integrated to simulate the risk of paralysis under extreme weather conditions. Based 
on the findings of this study, more targeted and differentiated post-disaster reconstruction strategies should 
be developed to facilitate the swift return of production and residents’ daily lives to normalcy (SDG 11).

In summary, while promoting economic development and the construction and development of urban 
infrastructure, priority should be given to SDG 8, SDG 9, and SDG 15 to ensure economic growth while 
minimizing ecological damage. In the context of ongoing industrial innovation, management should be 
conducted in accordance with SDG 4 and SDG 10 to ensure that the development of UI benefits all groups. 
Ultimately, these measures will drive the achievement of SDG 11, helping cities in the Pearl River Delta region 
move toward inclusive, safe, resilient, and sustainable development.

Conclusion
The present study takes the Pearl River Delta region of Guangdong Province as its research object and constructs 
a resilience assessment framework for urban infrastructure under flood disaster scenarios based on the pressure-
state-response (PSR) model. In terms of research methods, the entropy weight method and the sudden change 
series method are comprehensively utilised to quantitatively measure the resilience level of urban infrastructure 
under flood disaster conditions. ArcGIS was used to generate a spatial distribution map of UI resilience under 
flood disasters, which was then imported into GeoDa for an in-depth analysis of the spatiotemporal evolution 
characteristics of the Pearl River Delta between 2018 and 2023. Given the Pearl River Delta’s national strategic 
significance in China, targeted development recommendations are proposed to enhance the region’s flood 
disaster response capabilities and improve the resilience of its urban infrastructure. The main conclusions are 
as follows:

	(1)	  The results of the UI resilience evaluation indicate that the overall resilience of UI in the Pearl River Delta 
is increasing, albeit with fluctuations between 2018 and 2023. Cities in the Pearl River Delta continue to 
encounter difficulties in the management of flood disasters and the construction of UI, necessitating the 
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urgent enhancement of flood disaster response capabilities and the improvement of the operational stability 
of urban infrastructure.

	(2)	  The findings of the present study, based on an annual spatiotemporal evolution analysis, demonstrate that 
UI resilience in the Pearl River Delta exhibits a positive spatial correlation pattern, albeit with weak spatial 
clustering, which gives rise to local spatial differences. This phenomenon can be attributed to the significant 
influence of the more developed cities of Guangzhou and Shenzhen within the study area. Future efforts 
should focus on promoting regional cooperation and exchange, leveraging the leading role of cities with 
high UI resilience to drive the development of cities with lower resilience, thereby narrowing the develop-
ment gap between regions.

Despite these advantages, there are also certain limitations. Currently, the assessment of UI resilience primarily 
selects relevant factors from three aspects: pressure, state, and response. The evaluation indicators do not fully 
cover all aspects of urban infrastructure. As UI continues to develop, the evaluation indicators for UI resilience 
under flood disasters should be gradually updated in the future. Additionally, future research should consider 
the economic development disparities and the severity of flood disasters across different regions, reconfigure 
the UI resilience assessment indicator system, with a focus on the resilience characteristics of UI in such cities.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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