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Assessment and evolution analysis
of urban infrastructure resilience
under flood disaster scenarios
based on the PSR model and
extension catastrophe progression
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As global climate change intensifies and urbanisation continues to advance, cities are facing
increasingly severe threats from extreme rainfall and flooding. As the critical infrastructure that
supports urban functions, urban infrastructure (Ul) is both a target of disasters and a conduit for
disaster propagation. This amplifies the impact of disasters on cities. This study is based on flood
disasters and combines the PSR model and the mutation series model to construct a comprehensive
evaluation index system for the resilience of urban infrastructure under flood disasters. In practical
application, the Pearl River Delta was selected as a case study to assess the resilience of its urban
infrastructure and explore its temporal evolution and spatial distribution between 2018 and 2023. The
research findings indicate that: The following conclusions may be deduced from the data: (1) From
2018 to 2023, the overall resilience of urban infrastructure in the Pearl River Delta region showed an
upward trend; (2) Guangzhou and Shenzhen had significantly higher infrastructure resilience levels
than other cities in the region; (3) The resilience levels of regions such as Zhaoqing and Jiangmen
were relatively low. Drawing upon the United Nations Sustainable Development Goals, this study
proffers bespoke recommendations for augmenting the resilience of urban infrastructure in the Pearl
River Delta region, thereby providing a theoretical underpinning for the formulation of infrastructure
development policies in the region.

Keywords Flood, Urban infrastructure resilience, PSR model, Catastrophe model

As global warming causes temperatures to rise, extreme disasters are on the rise, and floods are occurring
frequently around the world!. According to statistics from the 2023 Global Natural Disaster Assessment Report,
flood disasters rank as the most frequent natural disasters, affecting the largest number of people®. Floods have
a greater impact on urban areas, mainly because flooding disrupts the normal operation of roads, bridges, and
other transportation facilities>. This will affect residents’ normal lives, slow down the availability of emergency
services, and impact post-disaster reconstruction capabilities®. Therefore, it is of vital importance to systematically
assess the impact of floods on urban infrastructure. Engineering infrastructure is generally divided into six
major systems: transportation, water supply and drainage, communications, energy supply, urban environment,
and disaster prevention®. These six systems not only serve residents’ daily lives but also support the operation
of other infrastructure, collectively forming an open, complex, and dynamic system. Based on this, the urban
infrastructure studied in this paper specifically refers to engineering infrastructure.

As an important material foundation for the realization of urban functions and healthy development, the
UI plays a crucial role in improving citizens’ living conditions, enhancing the city’s overall carrying capacity,
and increasing the efficiency of urban operations’. Once infrastructure systems are unable to withstand adverse
shocks, they will trigger a chain reaction, causing immeasurable and serious damage to cities®®. Recent disasters
have demonstrated the importance of UI during urban flooding. For example, in July 2023, persistent heavy
rainfall in northern India triggered severe flooding, submerging urban roads and homes and bringing daily
life to a standstill. The extreme precipitation overwhelmed city drainage systems, causing rainwater to pool
in low-lying areas and create urban flooding. Water inundation damaged electrical infrastructure, triggering
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short circuits that led to power outages and subsequently hampered rescue operations!®!l. During extreme
rainfall events, urban drainage systems become overwhelmed. Rainwater can no longer enter the pipes and
begins accumulating in low-lying areas, causing urban flooding. This accumulated water gradually encroaches
upon critical city infrastructure, with power systems being particularly vulnerable. When floodwater infiltrates
electrical facilities, it causes short circuits, ultimately leading to power outages that hinder rescue operations'®!!.
Given that enhancing the disaster resilience of urban infrastructure (UI) is fundamental to sustaining normal
urban operations'>'3, the concept of resilience has become a central focus globally, particularly among global
organizations and numerous developed nations. These countries have launched initiatives to promote and
implement resilient infrastructure, intending to enhance cities’ ability to adapt to disasters'*.

Resilience originated from the concept of elasticity in physics, which refers to a material’s capacity to absorb
deformation forces when subjected to external forces. It was first applied to academic research by Holloing!®. The
adoption of the concept of resilience in multiple fields has led to the expansion of its meaning. The subsystems of
the Ul are interdependent and collectively support urban operations'®, playing their respective roles at different
stages of a disaster and collectively forming the overall resilience of urban infrastructure. Piratla et al.'” define
infrastructure resilience as the ability of a system to withstand pressure and respond to failures. Li'® defines
urban infrastructure resilience as the ability of an infrastructure system to withstand shocks, absorb losses, and
quickly return to normal operation during a disaster. In this paper, Ul resilience is defined as the ability of UI to
resume normal operations after natural disasters.

More scholars are now considering the impact of extreme weather on UI alongside their Ul research. Saiful
Arif Khan' proposed an integrated framework combining the Dempster-Shafer method and the best-worst
method to analyze the resilience of bridge infrastructure under earthquake disasters. Sun®® introduced the
comprehensive concept of resilience in flood disaster research, considering both natural environmental and
socio-economic factors, and implemented integrated management across pre-disaster, during-disaster, and
post-disaster stages to achieve an accurate assessment of flood disaster resilience. Ambily*! measures the flood
resilience of urban blue-green infrastructure using the ecological flood index, conducting a comprehensive
analysis of urban flood resilience in areas ranging from “very low” to “extremely low;” thereby facilitating a
transition from risk management to resilience management for urban floods. Seyed*? studied how well road
networks perform when there are different disaster scenarios. This was done by using a system that looks at
how well different things work. The study also looked at how strong road networks are against floods. Therefore,
exploring how to apply flood resistance capabilities can effectively strengthen flood management and reduce
the impact of floods on cities. However, most scholars currently focus on studying individual UI systems, with
limited attention to the overall UI system; additionally, few studies integrate urban flood disasters with the
overall resilience of UI systems.

Resilience theory is still in its early stages of development in the field of urban infrastructure, with relatively
vague concepts, unclear data processing standards, and numerous theoretical frameworks that are difficult to unify.
Additionally, existing disaster resilience assessment methods generally suffer from limitations in applicability and
strong subjectivity?®, while non-model assessment methods are constrained by poor generalization capabilities?.
The aforementioned factors serve to compound the complexity inherent in resilience assessment. It is evident
that, should these issues remain unresolved, they will have a significantly detrimental effect on the development
and promotion of resilience theory for infrastructure in the context of flood disasters. Catastrophe theory is a
general theoretical method that has been specifically designed to represent changes in system states?*. It reflects
the system’s state, with different model positions representing significantly distinct meanings®. Catastrophe
theory has the potential to function as an unbiased, widely applicable approach for formulating and advocating
for the development and promotion of Ul resilience theory.

In resilience assessment analysis, the most significant difference lies in whether a model is used. Semi-Markov
models have advantages in quantifying system state transitions and residence times?, but they are less capable
of analyzing the overall performance of system resilience. The judgment matrices in AHP and the training sets
in supervised learning models rely on expert knowledge or subjective judgments?’, which introduces subjective
factors into the assessment and affects the accuracy of model judgments. Given that UI resilience encompasses
multifaceted and wide-ranging dimensions, its evaluation framework should align with the interconnected
structure of systems and the adaptive characteristics of risk management. The Pressure-State-Response model
comprehensively considers various factors influencing the environment?®? and integrates these factors
organically for analysis, thereby providing decision-makers with a systemic perspective®®3!.

The innovations of this paper are as follows: Firstly, the present study focuses on the theoretical construction
and methodological innovation of urban infrastructure resilience under flood disasters. The present study
addresses the current weaknesses in systematic response mechanisms within disaster prevention and mitigation
systems, as well as the lack of in-depth theoretical elaboration on urban infrastructure resilience in existing
research. To address these issues, a resilience assessment framework integrating multidimensional indicators
is constructed. This development serves to broaden the methodological approach for integrating disaster
research with resilience theory. Secondly, in order to address the bias arising from subjective weighting in
extant evaluation methods (e.g., AHP, TOPSIS), the disaster progression method is introduced. This approach
is predicated on the premise that weights are determined based on intrinsic mathematical relationships among
indicators, thereby enhancing the objectivity and robustness of the assessment. Thirdly, the study goes beyond
the evaluation of urban infrastructure resilience during flood disasters. It further analyzes the spatio-temporal
evolution of resilience using the Moran index. The text explores comprehensive development strategies for cities
in the Pearl River Delta from multiple perspectives, providing policy recommendations for integrated regional
urban development. The following essay will provide a comprehensive overview of the relevant literature on the
subject.
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Overview of the research area

The Pearl River Delta is located in southern China, comprising the country’s largest river system and most
developed region. The area is characterized by low-lying terrain and high population density, making it highly
susceptible to flood disasters*>**. Since the twenty-first century, the Pearl River Delta has primarily exhibited
riverine alluvial and sedimentary processes, accompanied by frequent flood events. River water levels fluctuate
significantly, annual precipitation is high, and the region is strongly influenced by monsoon climate patterns.
Changes in water levels and flood frequencies along the Pearl River mainstem and its tributaries have a
particularly significant impact on surrounding areas.

The present study has focused on the Pearl River Delta region, with specific reference to the cities of
Guangzhou, Shenzhen, Zhuhai, Foshan, Dongguan, Zhongshan, Jiangmen, Zhaoqing, and Huizhou. These cities
have all suffered severe flood disasters and are representative in terms of geographical distribution and disaster
intensity. This research aims to analyse the causal mechanisms, spatial distribution characteristics, and socio-
economic impacts of flood disasters in the Pear] River Delta region in depth, thereby providing a scientific basis
for regional disaster prevention and mitigation efforts. The specific geographical locations of the study areas are
illustrated in Fig. 1.

Indicator system construction and research methods

In consideration of the fact that the Pearl River Delta is a region of China that is subject to frequent flooding, it is
imperative to undertake a comprehensive study of the UI in the Pearl River Delta region that has been impacted
by floods. Firstly, the PSR model proposed by Canadian statisticians David J. Rapport and Tony Friend** was
employed to construct an indicator system, with three aspects being taken into consideration: pressure, state,
and response. Secondly, the entropy weight method is employed to objectively and scientifically determine the
weights of each indicator. Based on catastrophe theory, the catastrophe series method is used to calculate the
resilience of urban infrastructure. Subsequently, ArcGIS software is utilized to spatially map the resilience of UI
across cities in the Pearl River Delta; furthermore, layers are imported into GeoDa software to analyse the spatial
global and local correlations of the case study.

Construction of indicator systems and data sources
In consideration of the fact that the present study is concerned with flood disasters, the disaster data primarily
encompasses flood-related events. However, it is important to note that the scope of the resilience survey can be
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Fig. 1. Spatial distribution of the Pearl River Delta in the study area. The base map was obtained from DataV
Data Visualization Platform. (https://datav.aliyun.com/portal/school/atlas/area_selector), and the maps were
generated using ArcGIS 10.8.1 (https://enterprise.arcgis.com/zh-cn/).
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expanded to encompass any disaster category. The data utilised in this study encompasses a range of dimensions,
including natural disasters, population distribution, environmental issues, and social security. With regard to the
selection of indicators, a systematic review of the relevant literature was conducted, field research was carried
out, and the characteristics of flood disasters in urban areas were analysed in depth. The construction of a
comprehensive evaluation indicator system was finally achieved, comprising three dimensions: pressure, state,
and response. The term “pressure” is used to denote the threats and disruptions caused by natural disasters to
urban infrastructure, while “state” refers to the resilience of UI to flood disasters under pressure conditions.
The term “response” is employed to denote the recovery capacity of UI in the context of flood disasters. The
data utilised in this study is predominantly comprised of vector data and panel data. The missing data were
supplemented using linear interpolation methods. The primary data sources comprise the National Population
Census, municipal statistical yearbooks, and government official websites. Table 1 provides specific indicator
information and the rationale behind their selection.

Determination of indicator weights
The entropy weight method constitutes an objective weighing method insofar as its weights are determined
exclusively based on the intrinsic information of the data. By virtue of this, human subjective preferences and

institutions per 10,000 people in
the city

General Primary
objectives Dimension | indicator Secondary indicators Description
Al Rainfalland | A11 Annual average daily rainfall Higher rainfall increases stress on urban infrastructure(-)
human activity
conditions A12 Population density Higher population density increases pressure on urban resources (-)
A Stress A21 Elevation Higher elevation favors higher urban flooding capacity (+)
resilience A22 Slope orientation Reasonable slope setting can utilize gravity to enhance urban drainage capacity (+)
A2 Topography
and rivers A23 Slope The greater the slope, the greater the urban drainage capacity (+)
. . A high-density river network means that more of the city’s infrastructure is directly
A24 River density exposed to the river and its floodplain reach (-)
. Natural gas supply is able to secure basic livelihood needs and improve the overall
BI1 Natural gas supply capacity resilience of the city in the event of flooding (+)
. In the face of flood disasters, enhanced power supply capabilities can improve energy
B1 Energy supply | B12 Power supply capacity access and living standards (+)
B13 Electricity consumption per Higher per capita electricity consumption leads to greater challenges for urban
capita infrastructure (-)
B21 Integrated water supply The stronger the comprehensive water supply generation capacity, the stronger the
generation capacity city’s water supply capability, and the faster the recovery from flood disasters (+)
B2 Water supply . PRE -
and drainage B22 Urban sewage treatment rate The h}gher the sewage treatment rate, the stronger the city’s resilience against urban
flooding and backflow (+)
B state treatment . - s .
resilience B23 Density of drainage pipe network The greater the density of the drainage network, the greater the city’s flood relief
capacity (+)
B31 Highway density ngh hlghway density ensures that accesmble' routes remain between points within the
B3 city, accelerating the recovery process after disasters (+)
Urban Transportation B32 Density of public transportation | A high-density public transit network can help cities absorb the impact of flood
infrastructure operational coverage disasters and maintain essential mobility at the minimum level (+)
resilience capacity : - - : - -
. High cargo turnover capacity ensures that vital supplies can continue flowing to where
B33 Cargo turnover capacity they are needed during flood disasters (+)
B4 B41 Number of cell phone subscribers | Cell phones can provide disaster alerts and related information (+)
Communication
i B42 Number of Internet broadband The internet can help residents access information about flood disasters (+)
capacity access
C11 Level of local fiscal tax revenues | Local fiscal revenues can affect response capacity and the speed of disaster recovery (+)
C12 Economic density Economic density affects the speed of a city’s recovery after a disaster (+)
. C13 Employment level in the
Cl Funding and electricity, heat, gas, water production
staffing and supply industry When cities face flood disasters, personnel at the operational level make real-time
- decisions and perform emergency maintenance on urban infrastructure to mitigate the
C14 Level of employed persons in the | impact of floods on the city (+)
water conservancy, environment and
public facilities management industry
C Response €21 Number Oflh ealth technicians The more health technicians, the stronger the rescue capacity (+)
Resilience | C2 Capacity per 10,000 people
of medical C22 Number of beds in health
institutions

Health institutions can provide medical services to urban disaster victims (+)

C3 Research
investment

C31 Full-time equivalent level of
R&D personnel

The higher the full-time equivalent level of R&D personnel, the stronger a city’s
technological innovation and R&D capabilities become, and the greater its resilience,
absorption capacity, and recovery capability in the face of flood disasters (+)

C32 R&D Funding Input Level

The higher the level of R&D funding, the greater the impetus for technological
innovation, systematically enhancing a city’s capacity to respond to floods and
waterlogging (+)

Table 1. Ul resilience indicator system.
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experiential judgments are avoided. Consequently, this renders the results more persuasive. The present paper
employs the entropy weight method to calculate the weights of Ul resilience indicators under flood disasters. The
following specific steps are to be taken:

(1) Establishing the evaluation matrix.

To mitigate the influence of inconsistent measurement units across the dataset, this study applies formula (1)
to standardize the data, thereby converting all indicator values to the range [0,1]. The specific normalization
formula is shown below:
rii — min (T4 .
Zij = Y ( is) , for positive indicators
© max (ri;) — min (ri;)

Zij = maz (ri;) — Tig , for negative indicators
mazx (ri;) — min (ri;)

where Z;; represents the original matrix, and Z represents the normalization matrix.

Initially, the weight of each indicator must be calculated based on standardized data, employing formula
(2). Subsequently, the application of information entropy theory should be undertaken in order to calculate the
information entropy of each indicator, with formula (3) being utilized for this purpose. Thereafter, formula (4)
should be employed to determine the weight of the indicator based on the entropy value. Finally, the calculated
weight must be applied to the normalization matrix using formula (5).

Pij = T;J Z”,(] = 1,2, e 77TL) (2)
1=171)
ETL PijlnPij .
Eji=-==L - ~ (j=12,... ®3)
J Inn v(] 1<y vm)
b 1-E;
YT (- 8) ®)
Tij = wj X 2ij (5)

In this formula, P;; denotes the proportion of the standardized values of each city under the indicator, E;
represents information entropy, and w;; represents the weighted standardized matrix. The weighting results
calculated by employing the entropy-based weighting method are presented in Table 2.

The research investment indicator data in the entropy weighting method is sourced from the Guangdong
Statistical Yearbook (2018-2023). The disproportionately high weight assigned to research investment stems
from Shenzhen’s significantly greater R&D expenditure compared to most cities in the Pearl River Delta region.
This disparity arises because Shenzhen ranks among China’s three major financial centres, and stands as one of
the most critical hubs for scientific and technological innovation in the country and globally*’. Scientific research
can significantly enhance the quality and efficiency of urban infrastructure®®, promote the digital transformation

of urban infrastructure®, and consequently improve a city’s resilience to disasters*’.

Mutation series method

The selection of evaluation methods requires discernment of their core characteristics and applicable scenarios.
The present study focuses on the assessment of the resilience of urban infrastructure during flood disasters,
to select analytical tools that best align with research objectives and data characteristics. Table 3 provides a
comparative overview of six evaluation methods.

The selection of catastrophe theory for this study is also justified by the following reasons: (1) The framework
of catastrophe theory is systematic*!, and can be integrated with the PSR model to comprehensively cover all
aspects of urban infrastructure resilience assessment under flood disasters. (2) The analytical approach grounded
in catastrophe theory is methodical*?, enabling clear evaluation of complex urban infrastructure resilience
indicator systems. (3) Catastrophe models exhibit “lagging” characteristics®, allowing more precise assessment
of trends in urban infrastructure resilience under flood disasters.

The core of catastrophe theory lies in revealing how minute changes in environmental conditions trigger
abrupt transitions from continuous quantitative changes to discontinuous qualitative changes in systems**.
Common catastrophe models include the collapse, sharp-head, swallowtail, and butterfly models. These are
respectively applicable to different numbers of control variables and varying levels of system complexity*’.

(1) Classification of mutation models.

Following the completion of the dimensionless calculation of the original indicator data, various objects
and factors are conceptualised as state and control variables. State variables are typically comprised of multiple
control variables*. It is assumed that the target of the framework is the state variable. In this case, the control
variable is representative of the sub-indicators it contains. The model with two sub-indicators is known as
the spike mutation model. The models and normalization formulas are shown in Table 4 below: Calculate the
mutation level values of different needle grades using the corresponding matching mutation models based on
the normalization formulas.
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process (AHP)

of integrating quantitative and
qualitative indicators

indicators

General Primary
objectives Dimension | Weighting | indicator Weighting | Secondary indicators Weighting | Sort
Al Rainfall and A11 Annual average daily rainfall 0.007 24
human activity | 0.018
conditions A12 Population density 0.011 15
A21El i . 4
ﬁ\essiiir:rslsce 0.143 evation 0.05
A2 Topography 0124 A22 Slope orientation 0.02 16
and rivers ' A23Slope 0.031 9
A24 River density 0.023 15
B11 Natural gas supply capacity 0.024 13
B1 Energy -
supply 0.067 B12 Power supply capacity 0.031 8
B13 Electricity consumption per capita 0.012 22
B2 Treatment of B21 Integrated water supply generation capacity 0.026 10
water supply and | 0.067 B22 Urban sewage treatment rate 0.006 25
PPy g
B state 0.343 drainage B23 Density of drainage pipe network 0.035 7
resilience
Urban B3 B31 Highway density 0.017 18
inﬁ.rgstr ucture Transportation | |5 B32 Density of public transportation coverage 0.017 19
resilience operational
capacity B33 Cargo turnover capacity 0.122 3
B4 B41 Number of cell phone subscribers 0.015 21
Communication | 0.052
capacity B42 Number of Internet broadband access 0.038 5
C11 Level of local fiscal tax revenues 0.036 6
C12 Economic density 0.016 20
Cl Funding and 0.096 C13 Employment level in the electricity, heat, gas, water production and supply 0.02 17
staffing industry ’
C14 Number of employees in the water conservancy, environmental protection,
C Response 0.514 and public facilities management industry 0.025 12
resilience
C2 Capacity C21 Number of health technicians per 10,000 people 0.025 11
of medical 0.048
institutions C22 Number of beds in health institutions per 10,000 people in the city 0.024 14
C3 Research 037 C31 Full-time equivalent level of R&D personnel 0.195 1
investment €32 R&D Funding Input Level 0.175 2
Table 2. The weights were calculated by means of the entropy weight method.
Evaluation
method Advantages Limitations Scope of Application
Analytic scl:tzrnf;;lcc;urernghétgngable Highly subjective; consistency testing Suitable for constructing evaluation indicator systems for infrastructure resilience
hierarchy A PP ) ap; becomes cumbersome with numerous | and determining the relative importance of each dimension. Suitable for pre-

disaster resilience capability assessment and planning

Capable of handling complex

Highly complex to operate,

ANP is an ideal choice if this study aims to analyze the complex interactions and

objectivity

potentially leading to distortion

ANP network | feedback and dependency ; - ; . feedback mechanisms among flood resilience evaluation indicators (e.g., exposure,
. X X L computationally intensive, and heavily . X ; N S N X
analysis relationships, making it more . . vulnerability, adaptive capacity). However, its application incurs high costs (time
. reliant on software and expert judgment
practical and manpower)
. . Weights represent information Suitable for this study to precisely rank and categorize the infrastructure resilience

Fully data-driven with strong . . R . S -

TOPSIS content rather than actual importance, | levels of multiple cities in the Pearl River Delta after determining indicator weights.

This method clearly illustrates each city’s gap relative to the ideal resilience level

Grey relational
analysis (GRA)

Low data requirements;
analyzable with small samples;
simple underlying principle

Highly subjective (sensitive to the
selection of correlation coefficient p);
limited theoretical depth

If evaluation data is limited or partially missing in this study, GRA can serve as an
effective supplementary analytical tool for preliminary identification of key factors
affecting infrastructure resilience or for trend analysis

Table 3. Analysis of advantages, disadvantages, and applicability of primary evaluation methods in this study.

State variables | Control variables | Potential function Normalization formula
Pointed type 1 2 f(z) =z* + az? 4 bz To=aZ,z = b3
Swallowtail type | 1 3 f(z) = 2® + az® + ba® 4 co Tq = al STy = b%,xc — ot
Butterfly type 1 4 f(z)= 2% + az* + ba® + ca® + da Te = a%,g;b = b%7wc = C%,l‘d = c%
Table 4. Mutation system model and normalization formula.
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Indicator hierarchy Indicators within hierarchy | Internal relationships
Dimension A,B,C Complementary
Al, A2 Complementary
Primary indicators B1, B2, B3, B4 Complementary
C1,C2,C3 Complementary
All, A12 Complementary
A21, A22, A23, A24 Complementary
B11, B12, B13 Complementary
B21, B22, B23 Complementary
Second-level indicators | B31, B32, B33 Non-complementary
B41, B42 Non-complementary
Cl11, C12,C13,Cl14 Non-complementary
C21,C22 Complementary
C31,C32 Complementary

Table 5. Relationships among secondary indicators.

Control the relationship between variables

Mutation model | Non-compl y Compl

P

y

Pointed type

min(zq, Tp)

(Ta,zp)/2

Swallowtail type

min(Ta, Ty, Tc)

(Ta,Tp,2c)/3

Butterfly type

min(za, Ty, Te, Tdq)

(Ta,mp, Tc,24)/4

Table 6. Determination of mutation rate values.

In the potential function of the aforementioned mutation model, the independent variable x represents the
state variable. The function f (x) is referred to as the potential function of the independent variable x. The
coeflicients a, b, ¢, and d serve as control parameters that govern the independent variable x.

(2) Evaluation using the normalization formula.

When evaluating using normalization formulas, the values of state variables should be calculated for each
control variable, adhering to two key principles. The “non-complementarity” principle governs calculations where
control variables lack clear interrelationships (non-complementary indicators), employing the “minimizing the
larger value” approach for calculating sudden change levels?’. Conversely, when significant correlations exist
among control variables?’, the “complementarity” principle mandates using the average value of state variables.
Through multiple rounds of consultation and workshops with domain experts, this paper establishes the internal
logical relationships and overall structural integrity of the urban infrastructure resilience indicator evaluation
system under flood disasters. The relationships among secondary indicators are shown in Table 5.

Based on the normalization formula, indicator weighting, and indicator relationship principles, the final
mutation level value is derived. The formula is shown in Table 6.

Interval partitioning

After obtaining preliminary evaluation results based on catastrophe models, interval partitioning methods are
often employed to refine and categorize these outcomes. Unlike traditional evaluation methods that struggle to
effectively process large-scale, high-dimensional data, the K-means clustering algorithm—a classic unsupervised
learning algorithm—automatically aggregates similar samples into clusters based on intrinsic data characteristics
without requiring predefined category labels. This approach reduces the interference of subjective judgments in
the evaluation process, enhancing the objectivity and scientific rigor of resilience level classification®.

The steps of the K-means clustering algorithm are as follows: (1) Randomly select k cluster centers, (2) Assign
each data point to its nearest cluster center, (3) Recalculate the mean of each cluster as the new center, (4) Iterate
this process until the cluster centers remain unchanged?.

Applying the K-means clustering algorithm enables the division of urban infrastructure resilience evaluation
results under flood disasters into multiple intervals, allowing for sequential analysis of each independent interval.

Spatial correlation evolution analysis method

Spatial weighting

This study employs the spatial analysis software GeoDa to investigate the spatial correlation among urban
infrastructure resilience levels during flood disasters. GeoDa primarily provides four types of spatial weight
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matrices: Queen adjacency, Rook adjacency, Threshold distance, and K-Nearest neighbors. The definitions,
advantages, and disadvantages of various spatial weight matrices are shown in Table 7.

The Pearl River Delta was selected as the study area. When examining the resilience of its urban infrastructure,
Queen Contiguity more effectively captures the proximity of areas separated only by a river. It treats areas
sharing a vertex—such as bridge junctions or road intersections—as neighbors, aligning more closely with the
reality of “seamless connections” among cities in the Pearl River Delta. This approach better reflects the macro-
level spatio-temporal distribution relationships. Therefore, constructing a spatial weight matrix of the Queen
Contiguity type is more appropriate for exploring the spatial correlations of urban infrastructure resilience in
the Pearl] River Delta.

Moran’s I index
The present study employs Moran’s I global spatial econometric model to reflect the global autocorrelation
spatial relationship of urban flood disaster resilience. The calculation formula is as follows:

Z ?:1 Z ;'L:l WZ,JZ'LZ] (6)
52 Z ?:1 Z ?:1 Wm‘

2 1 n 2
= = Ve 7
S =2 A )

Among these, Z; represents the difference between the urban infrastructure flood resilience index and the
average flood resilience index of all urban infrastructure in the study area, while W; ; denotes the spatial weight
of urban infrastructure flood resilience in the study area, with a value of 1 for spatially adjacent areas and 0 for
non-adjacent areas. The Zr score is calculated as follows:

Global Moran' sI =

_1-EWU)

7, =
! 0 ®

Among them E (I) = —ﬁ; V(I)=E(I*) - E()?

Due to the unique characteristics of the study area, the constructed Queen Contiguity spatial weight matrix
may exhibit “neighbor shortage” in peripheral regions, while central areas demonstrate better representativeness.
Therefore, Local Moran’s I was employed to supplement these limitations, thereby preventing global indicators
from obscuring peripheral regions.

The Local Index of Spatial Association (LISA) is a tool that can be utilized to reflect the spatial correlation
between a given geographic unit and its neighboring regions. A frequently employed local index of spatial
association is the local Moran’s I:

LocalMoran’ sI = % Z ;'l;m' W, i Z; ©)

The Local Moran’s I index has been utilized to categorize the spatial association patterns within the study region
into four specific categories: (1) areas with high values surrounded by high values (HH clusters), (2) areas
with high values adjacent to low values (HL outliers), (3) areas with low values neighbouring high values (LH
outliers), and (4) areas with low values surrounded by low values (LL clusters). The visualization of these spatial
autocorrelation patterns can be most effectively achieved through the use of LISA cluster maps.

Matrix type Definition Advantages Disadvantages
Queen Two spatial units are considered neighbors if they share | Simple and intuitive, suitable for most polygonal nMe?y}fgf)lrlit(l: mT:rY Zel{)slha(\)f;rg :F;gzgliius
adjacency any length of common boundary (edge) or vertex data h 8 8- T8¢ PO
aving no neighbors (island problem)
Rook adiacency | TWO spatial units are considered neighbors if they share a | This is stricter than the Queen definition, excluding | Uneven neighbor counts and island problems
) Y | common edge (not just a vertex) cases connected solely by vertices may still occur
Threshold Set a threshold distance (d). If the distance between the Highly flexible. suitable for irregular units: ensures The choice of threshold distance d is subjective;
distance centers of mass of two units is less than or equal to this allgu niyts have at least some nei ibors > it may result in global connectivity (all cells are
distance, they are considered neighbors 8 neighbors) or local connectivity imbalance
Effectively addresses uneven neighbor counts by May result in asymmetric neighbor
K-Nearest Identifies the K nearest neighboring cells for each spatial | guaranteeing each cell has the same number of relationships (i is a neighbor of j, but j is not
neighbors cell neighbors; particularly suitable for datasets with necessarily a neighbor of i), though GeoDa
highly variable cell sizes typically symmetrizes these relationships

Table 7. Definition, advantages and disadvantages of the spatial weight matrix.
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Interval (0,0.8365) | (0.8365,0.8751) | (0.8751,0.9015) | (0.9015, 0.9329) | (0.9329, 1)
Rating grade | Low Lower Medium Higher High
Table 8. Urban infrastructure rating grade intervals.

2018 2019 2020
Region Evaluation results | Resilience level | Region Evaluation results | Resilience level | Region Evaluation results | Resilience level
Guangzhou | 0.9161 Higher Guangzhou | 0.9179 Higher Guangzhou | 0.9207 Higher
Foshan 0.8734 Lower Foshan 0.8766 Medium Foshan 0.8625 Lower
Zhaoging | 0.8834 Medium Zhaoging | 0.8818 Medium Zhaoging | 0.8717 Lower
Dongguan | 0.8458 Lower Dongguan | 0.8681 Lower Dongguan | 0.8881 Medium
Huizhou 0.9053 Higher Huizhou 0.8968 Medium Huizhou 0.9015 Higher
Zhuhai 0.9038 Higher Zhuhai 0.9079 Higher Zhuhai 0.9082 Higher
Zhongshan | 0.8746 Lower Zhongshan | 0.866 Lower Zhongshan | 0.8722 Lower
Jiangmen 0.9017 Higher Jiangmen | 0.9041 Higher Jiangmen 0.904 Higher
Shenzhen | 0.9024 Higher Shenzhen | 0.9288 Higher Shenzhen | 0.9301 High
2021 2022 2023
Guangzhou | 0.9238 Higher Guangzhou | 0.9264 Higher Guangzhou | 0.9263 Higher
Foshan 0.8737 Lower Foshan 0.8704 Lower Foshan 0.8713 Lower
Zhaoging | 0.8838 Medium Zhaoqing | 0.8593 Lower Zhaoqing | 0.8779 Medium
Dongguan | 0.8925 Medium Dongguan | 0.891 Medium Dongguan | 0.8862 Medium
Huizhou 0.9005 Medium Huizhou 0.9025 Higher Huizhou 0.8964 Medium
Zhuhai 0.9075 Higher Zhuhai 0.9062 Higher Zhuhai 0.8943 Medium
Zhongshan | 0.8727 Lower Zhongshan | 0.8738 Lower Zhongshan | 0.8785 Medium
Jiangmen 0.9039 Higher Jiangmen | 0.9017 Higher Jiangmen 0.887 Medium
Shenzhen | 0.9412 High Shenzhen | 0.9416 High Shenzhen | 0.9399 High

Table 9. Infrastructure resilience assessment results for cities in the Pearl river delta from 2019 to 2023.

Results and analysis

Ul resilience analysis

The entropy weight method is utilised in this study to ascertain the weights of each indicator. Following
standardisation and weighting of the initial resilience assessment matrix, the mutation series method is employed
to calculate the resilience values of each city in the Pearl River Delta for the pressure-state-response dimension
on an annual basis. The specific values are illustrated in the accompanying figure.

This study utilized SPSS Statistics 27 software for K-means clustering analysis, with the infrastructure
resilience values of cities in the Pearl River Delta from 2018 to 2023 as clustering factors, to determine the
evaluation results and resilience levels of Ul resilience. Following the requisite iteration, the cluster centres were
obtained, as illustrated in Tables 8 and 9.

The results show that the overall resilience of UI in the Pearl River Delta under flood disasters has been on an
upward trend. During the period from 2018 to 2023, although Guangzhou’s resilience has been slowly declining,
its lowest resilience score remained above 0.91, making it a highly resilient city. Zhaoqing, Foshan, Zhongshan,
and Huizhou exhibited fluctuating resilience trends; Dongguan and Shenzhen saw continuous growth in
resilience. Overall, the gap in resilience capabilities between regions is gradually narrowing, primarily because
Guangzhou and Shenzhen, as core cities of the Pearl River Delta, are driving the development of surrounding
cities, particularly in terms of UI construction.

Spatial evolution analysis of Ul resilience

In terms of spatial analysis, the present research employed ArcGIS 10.6 and GeoDa 1.2 software platforms
to perform the analytical tasks. Specifically, the investigation incorporated the authorised 2024 reference
cartographic materials issued by China’s national land and resources regulatory body, along with regional
topographic maps of the Pearl River Delta and urban safety capacity evaluation metrics, to establish a geospatial
analysis framework assessing the infrastructural adaptive capacity of the nine metropolitan areas within the
Pearl] River Delta urban agglomeration.

Spatial distribution analysis

(1) Spatial distribution characteristics of urban infrastructure resilience assessment results under flood disas-
ters.
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Based on the pressure-state-response GIS model of nine regions in the Pearl River Delta from 2018 to 2023,
the pressure-state-response resilience-level-division interval was imported into ArcGIS software. As shown in
Fig. 2.

As shown in Fig. 2, the highest values of UI resilience under flood disasters are concentrated in Guangzhou
and Shenzhen. This disparity primarily stems from China’s significant fiscal investments in these cities and their
national strategic status, enabling a four-dimensional synergy of economy, policy, technology, and governance.
Overall, coastal cities exhibit generally higher infrastructure resilience, while prefecture-level cities within
the region generally have lower resilience. Developed cities drive improvements in infrastructure resilience
in surrounding areas, particularly through industrial radiation, infrastructure sharing, and administrative
coordination. In terms of industrial radiation, Shenzhen’s high-tech industries have expanded eastward to
Dongguan and Huizhou, driving industrial chain upgrades and enhancing the resilience of their infrastructure
(such as power and transportation). In terms of infrastructure sharing, the extension of the Shenzhen Metro to
Dongguan and the Guangzhou Metro to Huizhou directly enhances the resilience of transportation infrastructure
in both regions. Additionally, Shenzhens emergency management system covers Dongguan and Huizhou,
establishing a joint prevention and control mechanism. In terms of administrative coordination, Shenzhen,
Dongguan, and Huizhou have established a cooperative mechanism within an economic circle to advance
cross-city infrastructure projects, such as the Shenzhen-Shanwei High-Speed Railway and the Dongjiang Water
Resource Allocation Project, thereby enhancing overall disaster resilience and strengthening the resilience of
urban infrastructure. Meanwhile, the radiation effect of developed cities on surrounding cities follows a “core-
periphery” model, with the intensity of influence decreasing exponentially with increasing distance.

Spatial correlation analysis

Given that spatial analysis demands macro-scale and quantitative methodologies to unveil spatial spillover
effects and agglomeration characteristics, it is imperative to integrate spatial correlation analysis into the
research framework to achieve a comprehensive understanding of the spatial distribution patterns of urban
infrastructure resilience in the Pearl River Delta region. This analysis should encompass both global and local
spatial correlation, thereby facilitating a multifaceted examination of the subject.

(1) Global correlation analysis.

As shown in Table 10, the P-values for all years are less than 0.1, corresponding to Z-scores greater than 1.65,
indicating that Moranss I is significant for all years. However, the significance shows an upward trend from 2018
to 2019, begins to decline in 2019, and then increases annually from 2021 to 2023. The changes in Moran’s I
reflect the spatial clustering pattern of flood resilience in Yangtze River Delta cities over the past six years. All
years have positive Moran’s I values, indicating that the UI resilience indices of the nine regions in the Pearl River
Delta exhibit spatial clustering phenomena. Specifically, regions with high resilience values tend to cluster with
neighbouring high-value regions, while regions with low resilience values cluster with other low-value regions,
forming a spatial positive correlation pattern.
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Fig. 2. Spatial distribution of Ul resilience in the Pearl River Delta. The base map was obtained from DataV
Data Visualization Platform (https://datav.aliyun.com/portal/school/atlas/area_selector), and the maps were
generated using ArcGIS 10.8.1 (https://enterprise.arcgis.com/zh-cn/).
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Year 2018 |2019 |2020 |2021 |2022 |2023
Moran’s I Index | 0.477 | 0.5311 | 0.6327 | 0.556 | 0.4605 | 0.2316
Z score 2.8992 | 2.7642 | 2.96 2.9358 | 2.5196 | 2.0049
P value 0.007 |0.021 |0.012 |0.01 0.016 | 0.04

Table 10. Global moran’s I values for the resilience levels of UI in the Pearl river delta region.
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Fig. 3. LISA clustering map of Ul resilience in the Pear] River Delta Region Under Flooding Disasters. The
base map was obtained from DataV Data Visualization Platform (https://datav.aliyun.com/portal/school/atlas/
area_selector), and the maps were generated using ArcGIS 10.8.1 (https://enterprise.arcgis.com/zh-cn/).

Year
Region 2018 2019 2020 2021 2022 2023
Guangzhou | Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant
Foshan Relatively significant | Relatively significant | Insignificant Insignificant Insignificant Insignificant
Zhaoqing | Insignificant Relatively significant | Relatively significant | Relatively significant | Relatively significant | Relatively significant
Dongguan | Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant
Huizhou Relatively significant | Insignificant Insignificant Insignificant Insignificant Insignificant
Zhuhai Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant
Zhongshan | Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant
Jiangmen Insignificant Insignificant Insignificant Insignificant Insignificant Insignificant
Shenzhen | Insignificant Insignificant Relatively significant | Relatively significant | Relatively significant
Table 11. Analysis of the LISA significance map of the Pearl river Delta.
(2) Local correlation.
In order to conduct a correlation analysis of the local relevance of urban infrastructure resilience under flood
disasters, this paper will use GeoDa software to create a spatial weight matrix to analyse local spatial relevance.
The results of the univariate spatial analysis, including the cluster map and significance table, are shown in Fig. 3;
Table 11 below.
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As shown in Fig. 3; Table 7, the distribution characteristics of the LISA clustering map for UT resilience
indices in the Pearl River Delta region from 2018 to 2023 exhibit little variation and demonstrate significant
spatial similarity. The “low-low” type zone dominates, concentrated in Zhaoqing City and Foshan City, indicating
that these two regions exhibit relatively weak spatial clustering of UI resilience. The “high-high” type zones are
primarily distributed in Huizhou City and Shenzhen City, indicating that their spatial clustering is relatively
significant. Due to various factors, the UI resilience of other regions has not formed significant clustering.
However, from the overall distribution, it can be seen that under flood disasters, Shenzhen City and Guangzhou
City are at relatively high levels of UT resilience, while Zhaoqing City is at a relatively low level of UI resilience.

Discussion

Under flood disasters, the overall resilience of Ul in the Pearl River Delta has shown an upward trend, with
variations among cities. Guangzhou and Shenzhen exhibit higher levels of UI resilience compared to other
cities. This aligns with previous studies on the resilience of most Chinese cities over the past 20 years®**!. This
growth primarily stems from provincial policy support, particularly those policies promoting infrastructure
development and coordinated governance®>*’. The primary factors contributing to the higher resilience
levels of Guangzhou and Shenzhen’s UI under flood disasters are as follows. First, as key economic engines
and transportation hubs in southern China, Guangzhou and Shenzhen boast high economic standards. Their
governments invest heavily in infrastructure construction, maintenance, and upgrades®, thereby enhancing
their capacity to respond to disasters and emergencies. Second, confronting frequent flooding in the Pearl River
Delta region, Guangzhou and Shenzhen were among China’s first pilot cities for “sponge city” construction,
establishing relatively comprehensive flood prevention and drainage systems®>, Finally, with the establishment
of digital intelligent systems, the number of urban waterlogging hotspots has objectively decreased over the
past six years, and the resulting disaster losses have gradually diminished. Throughout the study, Zhongshan
and Zhaoqing exhibited significantly lower levels of urban infrastructure resilience compared to other cities,
primarily due to the following reasons. First, Zhongshan and Zhaogqing have relatively monolithic industrial
structures, with Zhongshan primarily relying on traditional manufacturing and Zhaoqing on traditional
manufacturing and agriculture, both lacking support from high-end industries. As Qiong, et al.*® have pointed
out, Zhongshan and Zhaoqing lag in digital economic development, which will impact their UI resilience
levels. Second, Zhaoqing has an unfavourable geographical location with complex terrain and numerous hills;
Zhongshan’s urban planning lacks foresight and systematic planning, leading to an unreasonable urban spatial
layout. Therefore, these two regions exhibit lower resilience in their urban infrastructure during flood disasters.

From a temporal perspective, by 2019, there were no longer any low-resilience cities in the Pear] River Delta.
This indicates that the overall infrastructure resilience of the Pearl River Delta was relatively strong. However, in
2020, the pandemic swept across China. During the pandemic, to control the spread of the virus and mitigate flood
disasters, the Pearl River Delta expanded its urban infrastructure, such as constructing/renovating hospitals®’,
establishing a flood control coordination system, and achieving regional coordination: inter-city emergency
response collaboration, etc. As pandemic and flood control measures were implemented, the resilience level
of UI in the Pearl River Delta gradually improved. However, between 2021 and 2022, the construction of the
Shenzhen-Zhongshan Channel in Zhongshan City reached its peak phase. Large-scale construction activities
caused short-term impacts on the flood control and drainage network. Combined with the 2021 “Dragon Boat
Water” disaster®, the city’s urban infrastructure resilience declined sharply. This outcome resulted from the
combined effects of major engineering activities and frequent extreme weather events, creating a synergistic
resonance. As concluded by Yin, et al.*?, the correlation between a city’s social security, economic stability, and
infrastructure and its infrastructure resilience recovery is negative. That is to say, the weaker these factors are, the
slower the recovery. These findings emphasise the necessity of enhancing the resilience of the UI.

According to the annual spatial correlation analysis, cities with high levels of UI resilience under flood
disasters tend to cluster with neighbouring cities of high value, while cities with low levels of Ul resilience cluster
with cities of low value, exhibiting a positive spatial correlation pattern. For example, in 2018, Huizhou City
exhibited a “high-high” clustering pattern. This is because Huizhou serves as a pilot city for the Pearl River Delta
regions comprehensive sponge city initiative, and by 2018, it had completed 40% of its urban area’s sponge city,
exceeding the provincial average of 30%. As undefined and Fujun® have demonstrated, sponge cities reduce
the risks posed by floods to cities and enhance the resilience of urban infrastructure. In 2020-2022, Shenzhen
exhibited a “high-high” clustering pattern due to the establishment of the world’s first “city-level disaster digital
twin platform,” enabling 15-minute warnings for heavy rain flooding, and the allocation of 28.7 billion yuan for
smart city investments in 2022. The digital twin platform®! and government support for smart city policies®>**
have significantly enhanced the resilience of urban infrastructure. In contrast, the Zhaoqing region was in a
“low-low” cluster from 2019 to 2023, indicating that Zhaoqing City’s resilience level, directly adjacent to other
cities, is also at a relatively low level in terms of U resilience.

According to the LISA map from 2018 to 2023, it is evident that the distribution characteristics of infrastructure
resilience in cities within the Pearl River Delta region remain consistent, exhibiting minimal variation in terms of
spatial clustering on an annual basis. The primary reason is that in the development of infrastructure resilience
in cities within the Pearl River Delta region, the spatial planning of various cities exhibits a certain degree of
homogeneity and inadaptability. This implies insufficient social coordination, resulting in less pronounced
aggregation effects.

Development recommendations
In consideration of the particular findings of the research and the Sustainable Development Goals (SDGs), and
with reference to the prevailing conditions of the Pearl River Delta, the ensuing recommendations are outlined:
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(1) Improve the design and spatial planning of urban infrastructure. Strengthen the construction of flood-re-
lated infrastructure from the perspectives of overall planning and management. To address flood disasters,
establish a dynamic risk assessment mechanism using technologies such as the Internet of Things (IoT),
enhance the flood-resistant design of urban infrastructure, and build climate-resilient infrastructure (SDG
9). For example, by integrating data from multiple departments in the Pear] River Delta—including water
resources, meteorology, natural resources, transportation, and housing and urban-rural development—a
“Pear] River Delta Flood Disaster Intelligence Platform” has been established. Furthermore, a methodical
approach to planning and utilisation of extant spatial resources is imperative to establish an open space
framework, thereby enhancing the flexibility and effectiveness of the integrated transportation system. Si-
multaneously, optimize the layout of emergency evacuation sites to ensure swift and efficient evacuation of
populations during flood disasters, safeguarding residents’ safety (SDG 10). For example, in Foshan and
Zhongshan, where rivers crisscross the landscape, develop diversified water transportation systems. Plan
water-based emergency evacuation routes and bus ferry services to alleviate the paralysis of land transpor-
tation during flood disasters.

(2) Optimize industrial structure and promote the development of high-tech industries. Some regions in the
Pear] River Delta primarily rely on traditional manufacturing industries. It is necessary to diversify the
industrial structure, with a focus on high-tech industries, to achieve higher levels of economic productivity
and enhance the sustainability of economic development (SDG 8). Specifically, Zhongshan, Jiangmen, and
Zhaoqing should establish specialised high-tech parks and create demonstration zones for the digital trans-
formation of traditional industries, thereby achieving a ground-up development of distinctive high-tech
sectors. In the cities of Foshan and Dongguan, existing industries are to undergo a process of digital and
intelligent upgrades, to transform traditional manufacturing into high-tech industries. Concurrently, voca-
tional skills training will be provided for the purpose of enhancing workers’ competitiveness and promoting
employment equity. (SDG 4, SDG 10).

(3) Increase government fiscal investment to enhance UI development. Establish a regional infrastructure fund
to address regional development imbalances and build cities with high infrastructure resilience. For in-
stance, the strategic allocation of investment capital towards climate resilience initiatives in regions such
as Zhaoqing and Jiangmen, to fortify critical infrastructure, including flood control and drought resistance
systems, is poised to avert the occurrence of substantial economic losses and indirect economic disruptions
triggered by future disasters. Furthermore, when advancing infrastructure development, priority should be
given to promoting low-carbon, smart, and sustainable green building models. This approach minimizes
human disturbance to ecosystems while enhancing protection for biodiversity and ecosystem services. Si-
multaneously, it effectively stimulates local industries such as green building materials, digital technologies,
and new energy, creating new employment opportunities. (SDG 9 and SDG 15).

(4) Regional collaborative governance. It is recommended that urban areas within the Pearl River Delta es-
tablish an inter-regional flood disaster coordination mechanism. Cities with lower levels of infrastructure
resilience should strengthen regional cooperation with neighbouring cities to achieve resource sharing and
complementary advantages. For example, they should collaborate with cities like Guangzhou and Shenzhen
to jointly build transportation, energy, and water infrastructure, thereby enhancing the overall resilience
of the region. Additionally, data sharing should be implemented to build a smart resilience network in the
Pearl] River Delta, enabling real-time monitoring, precise prediction, and coordinated response to promote
cross-regional disaster prevention and mitigation cooperation. For example, real-time operational data
from key transportation facilities such as the Guangzhou-Shenzhen Expressway and the Guangzhou-Fos-
han Metro should be integrated to simulate the risk of paralysis under extreme weather conditions. Based
on the findings of this study, more targeted and differentiated post-disaster reconstruction strategies should
be developed to facilitate the swift return of production and residents’ daily lives to normalcy (SDG 11).

In summary, while promoting economic development and the construction and development of urban
infrastructure, priority should be given to SDG 8, SDG 9, and SDG 15 to ensure economic growth while
minimizing ecological damage. In the context of ongoing industrial innovation, management should be
conducted in accordance with SDG 4 and SDG 10 to ensure that the development of UT benefits all groups.
Ultimately, these measures will drive the achievement of SDG 11, helping cities in the Pear] River Delta region
move toward inclusive, safe, resilient, and sustainable development.

Conclusion

The present study takes the Pearl River Delta region of Guangdong Province as its research object and constructs
aresilience assessment framework for urban infrastructure under flood disaster scenarios based on the pressure-
state-response (PSR) model. In terms of research methods, the entropy weight method and the sudden change
series method are comprehensively utilised to quantitatively measure the resilience level of urban infrastructure
under flood disaster conditions. ArcGIS was used to generate a spatial distribution map of UI resilience under
flood disasters, which was then imported into GeoDa for an in-depth analysis of the spatiotemporal evolution
characteristics of the Pearl River Delta between 2018 and 2023. Given the Pearl River Delta’s national strategic
significance in China, targeted development recommendations are proposed to enhance the region’s flood
disaster response capabilities and improve the resilience of its urban infrastructure. The main conclusions are
as follows:

(1) The results of the UI resilience evaluation indicate that the overall resilience of UI in the Pearl River Delta
is increasing, albeit with fluctuations between 2018 and 2023. Cities in the Pearl River Delta continue to
encounter difficulties in the management of flood disasters and the construction of UL, necessitating the
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urgent enhancement of flood disaster response capabilities and the improvement of the operational stability
of urban infrastructure.

(2) The findings of the present study, based on an annual spatiotemporal evolution analysis, demonstrate that
Ul resilience in the Pearl River Delta exhibits a positive spatial correlation pattern, albeit with weak spatial
clustering, which gives rise to local spatial differences. This phenomenon can be attributed to the significant
influence of the more developed cities of Guangzhou and Shenzhen within the study area. Future efforts
should focus on promoting regional cooperation and exchange, leveraging the leading role of cities with
high UTI resilience to drive the development of cities with lower resilience, thereby narrowing the develop-
ment gap between regions.

Despite these advantages, there are also certain limitations. Currently, the assessment of Ul resilience primarily
selects relevant factors from three aspects: pressure, state, and response. The evaluation indicators do not fully
cover all aspects of urban infrastructure. As UI continues to develop, the evaluation indicators for U resilience
under flood disasters should be gradually updated in the future. Additionally, future research should consider
the economic development disparities and the severity of flood disasters across different regions, reconfigure
the UI resilience assessment indicator system, with a focus on the resilience characteristics of UI in such cities.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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