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State of Health estimation in lithium-ion batteries is critical for reliable operation in electric vehicles 
and energy storage systems. This work evaluates four deep learning models—Multilayer Perceptron, 
Gated Recurrent Unit, Long Short-Term Memory, and Temporal Convolutional Network for cycle-based 
SoH prediction using discharge data from the NASA B0005, B0006, and B0007 cells. SoH values were 
obtained by numerical integration of discharge current and normalized with respect to the initial 
capacity. All models were implemented in PyTorch and assessed using RMSE, MAE, and R² metrics. 
On B0005, the MLP achieved RMSE 0.0069, MAE 0.0049, and R² = 0.9955, with TCN showing similar 
accuracy. Results on B0006 and B0007 confirmed the stability of MLP and TCN predictions across 
different cells. Residuals remained tightly clustered, and loss curves indicated smooth convergence. 
GRU and LSTM required higher training time without accuracy improvements. MLP demonstrated 
the best balance of accuracy and computational efficiency, making it suitable for embedded battery 
management systems. TCN provided robust accuracy with moderate complexity. The results verify that 
data-driven deep learning methods can capture nonlinear degradation behavior consistently across 
multiple cells.
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SoH	� State of health
RUL	� Remaining useful life
BMS	� Battery management system
GRU	� Gated recurrent unit
TCN	� Temporal convolutional network
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FPCA	� Functional principal component analysis
BERT	� Bidirectional encoder representations from transformers
TimeGAN	� Time-series generative adversarial network
MAE	� Mean absolute error
MSE	� Mean squared error
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GPU	� Graphics processing unit
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LSTM	� Long short-term memory
ANN	� Artificial neural network
RNN	� Recurrent neural network
SETCN	� Spectral-enhanced temporal convolutional network
GAN	� Generative adversarial network
RMSE	� Root mean square error
R²	� Coefficient of determination
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LFP	� Lithium iron phosphate (battery chemistry)
CPU	� Central processing unit
CUDA	� Compute unified device architecture

Lithium-ion batteries are critical components in modern energy storage systems used in electric vehicles (EVs), 
grid-connected renewable energy systems, and portable consumer electronics due to their high energy density, 
efficiency, and long cycle life1. The accurate estimation of battery State of Health (SoH), defined as the ratio of 
current full charge capacity to its initial capacity, is vital for ensuring safety, longevity, and reliability2,3. SoH 
serves as a key metric in battery management systems (BMS), guiding decisions about operation, maintenance, 
and replacement4,5. Failures in accurate SoH estimation can result in unexpected battery failure or conservative 
operation that limits system performance6,7. Research in SoH modeling has therefore gained prominence across 
domains. Existing literature on battery SoH estimation methods encompasses physics-based models, empirical 
methods, and data-driven approaches. Physics-based models rely on electrochemical equations or equivalent 
circuit models but often require extensive parameterization and computational resources8,9. Empirical models 
like incremental capacity and differential voltage analysis can indicate degradation patterns but depend heavily 
on controlled test conditions10,11. Data-driven approaches, including machine learning and deep learning 
algorithms, have emerged as robust alternatives, capable of capturing nonlinear relationships between observable 
battery variables and health indicators12–26. These models include Random Forest, Support Vector Machines, 
Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks27–41. While effective in 
many cases, these models often face challenges in generalization, sensitivity to dataset scale, or require high 
computational overhead42–51.

A key challenge in SoH modeling is accurately capturing degradation patterns under diverse operational 
conditions and chemistries, which makes generalization across datasets and applications difficult. Recent works 
have proposed hybrid and advanced architectures to address this limitation. For instance, the SOH-KLSTM 
model integrates Kolmogorov–Arnold Networks with LSTM to improve temporal learning and candidate state 
representation for lithium-ion battery health monitoring52. Similarly, an integrated SOC–SOH estimation 
framework using GRU and TCN has been developed for whole-life-cycle prediction53. Beyond architecture-
level innovations, efforts have also focused on real-world applicability, such as practical data-driven pipelines 
targeting field data challenges54 and comprehensive reviews of machine learning frameworks that highlight data 
requirements, feature engineering, and algorithmic trade-offs55. Other contributions include multiple aging 
factor interactive learning frameworks for enhanced SoH estimation56 and physics-enhanced joint SOC–SoH 
estimation tailored for high-demand applications like eVTOL aircraft57. Collectively, these studies demonstrate 
the push toward hybrid, interpretable, and generalizable models that balance computational efficiency with 
predictive robustness.

This study addresses these gaps by evaluating the performance of four deep learning models—Multilayer 
Perceptron (MLP), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Temporal 
Convolutional Network (TCN)—for estimating cycle-based SoH using real aging data from the NASA B0005 
battery dataset58. SoH values are derived from the numerical integration of discharge current normalized against 
initial capacity to capture degradation across lifecycle stages. Each model is trained using PyTorch and evaluated 
using RMSE, MAE, and R² metrics. MLP achieved the highest accuracy with RMSE of 0.0069, MAE of 0.0049, 
and R² of 0.9955. TCN followed closely with RMSE of 0.0071 and R² of 0.9951. GRU and LSTM performed 
acceptably, though, with longer training durations.

This paper implements and evaluates a unified training framework to compare four deep learning 
architectures—Multilayer Perceptron (MLP), Gated Recurrent Unit (GRU), Long Short-Term Memory 
(LSTM), and Temporal Convolutional Network (TCN) for cycle-based SoH estimation. All models are trained 
and validated on the NASA B0005 dataset using normalized discharge capacity derived from current-time 
integration. The performance is measured using RMSE, MAE, and R² to ensure consistency and comparative 
clarity. Experimental analysis identifies MLP and TCN as highly effective for modeling degradation patterns 
with reduced complexity. The study contributes empirical insights toward selecting suitable models for battery 
health monitoring applications under real-world constraints, targeting integration into onboard diagnostics and 
predictive maintenance platforms59,60.

The NASA B0005 cell was analysed along with two other cells from the same dataset, B0006 and B0007, to 
assess external validity. These cells contain high-resolution cycle data suitable for the same preprocessing and 
modelling pipeline described in Sect. 2. The inclusion of multiple cells allows examination of whether model 
performance trends remain consistent across different but comparable ageing profiles.

Evaluation metrics and literature trends
Common evaluation metrics for SoH prediction include Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and Coefficient of Determination (R²). These are defined as:

	
RMSE =

√
1
n

∑ n

i=1
(yi − ŷi)2

,� (1)

	
MAE = 1

n

∑
i = 1n |yi − ŷi| ,� (2)

	
R2 = 1 −

∑
i = 1n(yi − ŷi)2

∑
i = 1n(yi − y)2 ,� (3)
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where yi and ŷi represent true and predicted SoH values, respectively. Table  2 summarizes representative 
deep learning approaches for lithium-ion battery SoH estimation. Zhang et al.61 developed a hybrid framework 
combining TCN, GRU, and wavelet neural networks, which achieved an RMSE of 0.0068 on custom NCM cells. 
Bao et al.5 proposed a lightweight MLP-based model optimized for memory efficiency, reporting an MAE of 
0.0075 on the NASA dataset. Li et al.60 employed neural networks on a proprietary dataset and obtained an RMSE 
of 0.0110. Pau et al.14 designed TinyML-ready MLP architectures tailored for hardware acceleration, achieving an 
MAE of 0.0082. Mohanty et al.10 introduced a TimeGAN integrated with BERT for capacity trajectory modeling 
on the NASA B0018 dataset, reporting an R² of 0.995. Chen et al.13 presented a FPCA-SETCN framework for 
feature-enhanced temporal modeling, achieving an RMSE of 0.0094 on the NASA B0005 dataset.

Together, these works highlight the effectiveness of hybrid, lightweight, and physics-informed architectures 
for accurate SoH prediction across diverse datasets and evaluation settings. These findings indicate that 
combining temporal modeling, spectral decomposition, and memory-enhanced features can significantly 
improve the robustness of SoH estimation. At the same time, comprehensive reviews and empirical studies 
emphasize the practical relevance of such approaches in real-world battery management. Reviews of SOC, SoH, 
and RUL estimation methods provide detailed insights into algorithmic strengths and limitations3,62, while 
ANN-based health estimation frameworks demonstrate effective deployment in real-world applications such as 
electric vehicles and energy storage systems60. Collectively, these studies validate the importance of integrating 
advanced deep learning frameworks for enhancing battery diagnostics and ensuring reliability under diverse 
operational scenarios.

Motivation and contributions
A consistent benchmark comparison of SoH prediction models using identical preprocessing and evaluation 
criteria is lacking. This paper develops a unified PyTorch-based pipeline to assess MLP, GRU, TCN, and LSTM 
on NASA B0005 data.

Key contributions include:

•	 Design and implementation of a cycle-based SoH estimation pipeline using normalized discharge capacity.
•	 Performance comparison across four deep learning architectures using consistent training splits and metrics.
•	 Identification of MLP and TCN as efficient models for real-time BMS applications with 

R2 > 0.99R2 > 0.99R2 > 0.99.
•	 Quantitative analysis of accuracy, training time, and model complexity.

The findings offer practical guidance for selecting deep learning models in battery diagnostics and support 
integration into advanced BMS platforms.

Table 1 outlines the comparative features of deep learning models used for SoH estimation. LSTM models, 
referenced in7,18,59, are effective for capturing long-term dependencies due to their gated architecture. GRU 
models, cited in13,59, offer similar capabilities with reduced parameter count and improved training speed. 
TCNs, referenced in6,13, utilize dilated causal convolutions for temporal learning, supporting stable gradients 
over long sequences. MLPs, found in5,14,60, operate on cycle-wise inputs with reduced computational load and 
fast convergence, making them suitable for embedded systems. Transformer architectures, employed in7,10,17, 
leverage attention mechanisms to model long-range relationships and temporal variability in battery degradation.

Model/framework Characteristics/contributions
Relevant 
references

LSTM/BiLSTM Sequence modeling, captures long-term dependencies, widely used in battery SoH estimation. Variants include BiLSTM and 
hybrid BiLSTM–KAN models

11,59,60,63–65

GRU/BiGRU Simplified gating structure, faster convergence compared to LSTM; used standalone or in hybrid GRU–Transformer 
frameworks

59,64

Transformer Attention-based architecture, effective in long-range dependency modeling. Applied in CNN–Transformer and BiGRU–
Transformer hybrids, and cross-domain transfer learning

10,17,51,66–68

MLP/ANN Lightweight models, cycle-level prediction, fast convergence; includes TinyML deployment for edge devices 5,14,60,69,70

TCN Efficient parallel processing, robust gradient flow; often combined with GRU and Transformer in hybrid frameworks 6,67

Hybrid fusion (Physics + DL) Combines physics-based reduced-order electrochemical models with CNN/ML-based architectures; improves generalization 
under real-world conditions

71–74

CNN/CNN-LSTM/CNN-GRU Local feature extraction combined with temporal modeling; effective for SoH under varying C-rates and real-world datasets 69,70,75,76

Ensemble/stacking Combines multiple learners (e.g., XGBoost, RF, Kalman filter, ensemble TL); improves robustness under small or noisy 
datasets

77–80

Physics-informed ML Embeds physical constraints (electrochemical, thermal, impedance, relaxation models) into ML training for interpretability 
and robustness

72–74,81

Advanced optimization frameworks Incorporates evolutionary/metaheuristic optimization (WOA, ISAO, HHO, etc.) to tune deep learning models and improve 
SoH/RUL prediction accuracy

81–84

Real-world data oriented models Designed for noisy, incomplete, or real-vehicle datasets; includes vehicle-cloud collaboration, TabNet, interpretable DL, and 
big-data simulation

54,65,85–89

Review/benchmark frameworks Provide systematic comparisons, taxonomies, or real-world insights into ML-based SoH estimation 54,55,77,90

Table 1.  Comparison of deep learning and hybrid models for SoH estimation.
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Table 2 presents representative deep learning approaches for SoH estimation. Study9 implemented a hybrid 
model combining TCN, GRU, and wavelet neural networks, achieving an RMSE of 0.0068 on custom NCM cells. 
Bao et al.5 applied a memory-efficient MLP-based model to NASA datasets with a reported MAE of 0.0075. Li et 
al.60 utilized conventional neural networks on a proprietary dataset and reported an RMSE of 0.0110. Pau et al.14 
explored MLP models optimized for hardware-accelerated platforms, achieving an MAE of 0.0082. Mohanty et 
al.10 integrated BERT with TimeGAN for SoH prediction using the B0018 dataset and obtained an R2R^2R2 
of 0.995. Chen et al.13 introduced a FPCA-SETCN framework on NASA B0005 data, achieving an RMSE of 
0.0094. These studies provide diverse strategies using both conventional and hybrid architectures across different 
datasets and evaluation metrics.

This paper implements and evaluates four deep learning models as MLP, GRU, TCN, and LSTM under a 
unified training pipeline using preprocessed NASA B0005 cycle data. The goal is to analyze their predictive 
accuracy, computational cost, and applicability in real-time battery health diagnostics.

This paper makes the following contributions:

•	 A cycle-based SoH estimation pipeline using real discharge data from NASA’s battery degradation dataset.
•	 A comprehensive comparison of MLP, GRU, LSTM, and TCN using uniform preprocessing and evaluation 

metrics.
•	 Identification of MLP and TCN as the best-performing models with R2 > 0.99R2 > 0.99R2 > 0.99, highlighting 

their efficiency in capturing nonlinear degradation.
•	 Practical insights into computational overhead, model accuracy, and applicability in real-time battery health 

diagnostics.

This study provides a foundation for selecting effective deep learning architectures for next-generation BMS and 
health-aware EV operation.

Methodology
The methodology involves a structured framework for predicting the State of Health (SoH) of lithium-ion 
batteries using deep learning models trained on cycle-based historical data. The NASA B0005 battery dataset, 
consisting of 616 recorded cycles, serves as the data source. From these, 168 discharge cycles are selected based 
on their suitability for capacity-based SoH analysis. Each cycle includes high-resolution time-series data of 
voltage, current, and temperature measurements93,94. An overview of the proposed methodology is shown in 
Fig. 1.

Experiments were conducted on B0005, B0006, and B0007 cells from the NASA battery ageing dataset. Each 
dataset was processed using identical cleaning and capacity-calculation procedures to ensure comparability. 
Chronological 80:20 splits were used in all cases, with a 10% validation split taken from the training portion for 
hyperparameter tuning. The test set was not used during model selection, preventing data leakage. Block-wise 
splits and rolling-window cross-validation confirmed stability of model rankings.

The normalized input features (cycle number) and target values (SoH) were split into training and testing sets 
using an 80:20 ratio, maintaining chronological order to reflect the natural degradation sequence as mentioned 
in Fig. 1, step 6. This setup ensured the model was trained on early-stage data and validated on later degradation 
behavior.

Capacity calculation for SoH
Battery SoH is estimated based on discharge capacity, computed via numerical integration of current over time 
using the trapezoidal rule. For each cycle i, the capacity C_i is calculated as:

	
C_i = 1

3600

ˆ
_t_0t_n |i (t)| dt ≈ 1

3600
∑

_j = 0n−1 |i_j| (t_j + 1 − t_j)� (4)

The SoH is normalized with respect to the initial cycle capacity C_0:

Study Method Dataset Performance
5 MLP-like memory model NASA cells MAE = 0.0075
60 Neural networks for SoH Custom dataset RMSE = 0.0110
14 MLP for SOC/SoH Hardware-accelerated MAE = 0.0082
10 BERT + TimeGAN NASA B0018 R² = 0.995
13 FPCA-SETCN framework NASA B0005 RMSE = 0.0094
76 2D-CNN + Self-Attention LFP, NMC, NCA datasets RMSE = 0.0109 (LFP), 0.0026 (NMC)
91 LC-GDAT (Lossy Counting + Gated Dual-Attention Transformer) NASA, Real-world EV MAE = 0.0046 (Lab), 0.0223 (EV)
85 Vehicle-Cloud Collaborative Hybrid Model Real-world BEV data MAE < 0.025
61 Hierarchical Feature Extraction + ML Real-world EV data (300 EVs) RMSE = 0.0105
65 SSA-LSTM + Deep SHAP NASA, CALCE, PolyU RMSE < 0.05, MAE < 0.05
92 Two-Stage Physics-Informed Neural Network (TSPINN) NCA, NCM datasets MAE = 0.00675

Table 2.  Summary of recent studies on battery SoH Estimation using advanced deep learning models.
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SoH_i = C_i

C_0 � (5)

This method ensures consistent and interpretable health values across all cycles.

Data acquisition and preprocessing
The NASA B0005 dataset contains 616 cycles. From these, 168 discharge cycles are filtered using a data cleaning 
process (see Fig. 2). Each cycle contains time-series data of voltage, current, and temperature. Trend plots are 
generated for each parameter to visualize degradation behavior. The resulting capacities form the basis for SoH 
targets.

Computing environment and reproducibility
All experiments were executed on a workstation with an Intel(R) Core(TM) i3-1005G1 CPU @ 1.20 GHz and 
8 GB RAM. No discrete GPU acceleration was employed. Models were implemented in PyTorch with CUDA/
cuDNN disabled.

The experimental data were taken from the NASA battery aging dataset, specifically the B0005, B0006, and 
B0007 cell records. Each dataset was processed using identical cleaning, capacity-calculation, and normalization 
procedures to ensure comparability across cells. The input–output pairs (cycle index and SoH) were split 
chronologically into an 80:20 ratio for training and testing, preserving the natural degradation progression and 
simulating realistic prediction scenarios.

The following Python packages and versions were used in the implementation:

•	 numpy (v1.26) for numerical operations.
•	 scipy (v1.13) for signal integration and MAT file handling.
•	 pandas (v2.2) for data manipulation and tabular outputs.
•	 matplotlib (v3.9) for visualization.
•	 seaborn (v0.13) for statistical plotting.
•	 scikit-learn (v1.5) for dataset splitting and evaluation metrics.
•	 torch/PyTorch (v2.2) for deep learning model implementation.

All Python scripts, preprocessing steps, and trained models are provided in a public repository along with a 
runnable notebook to ensure reproducibility95.

Fig. 1.  Proposed methodology for predicting state of health in lithium-ion batteries.
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Temporal convolutional network (TCN)
The TCN model is designed to handle sequential data through 1D causal convolutions with increasing dilation 
factors. It comprises multiple TCN blocks, each containing a dilated convolutional layer followed by a ReLU 
activation function and residual connections to facilitate gradient flow.

A single TCN block with dilation d, kernel size k, and padding p=(k − 1)⋅d performs 1D causal convolution 
as:

	
yt =

∑ k−1

i=0
ω i · xt−d· i� (6)

The residual connection is applied as:

	
∼
yt= ReLU (yt) + xt (if output channels match)� (7)

TCN uses stacked blocks with increasing dilation d = 1,2,4,… to capture long-term dependencies without 
the need for recurrence. This design enables the model to maintain computational efficiency while effectively 
modeling long-range temporal patterns. In this study, two TCN blocks were stacked with dilation rates of 1 and 
2, and a final 1D convolutional layer was used to output the predicted SoH values67.

Figure 3 illustrates the architecture of the Temporal Convolutional Network (TCN), which processes 
sequential cycle data effectively by capturing long-range temporal dependencies through stacked dilated 
convolutional layers and residual pathways.

Long short-term memory (LSTM)
LSTM networks are a type of Recurrent Neural Network (RNN) capable of learning temporal relationships over 
long sequences using memory cells and gating mechanisms. In this implementation, the LSTM layer receives the 
sequence of normalized cycle indices as input and outputs hidden states, which are subsequently passed through 
a fully connected layer to predict the SoH. The model is trained end-to-end using the mean squared error loss.

LSTM processes the input sequence X=x1,x2,…,xT. using the following internal operations:

	 ft = σ (Wf xt + Uf ht−1 + bf ) (forget gate)� (8)

	 it = σ (Wixt + Uiht−1 + bi) (input gate)� (9)

	 ot = σ (Woxt + Uoht−1 + bo) (output gate)� (10)

	
∼
ct= tanh (Wcxt + Ucht−1 + bc)� (11)

	 ct = ft ⊙ ct−1 + it⊙
∼
ct� (12)

	 ht = ot ⊙ tanh (ct)� (13)

where σ is the sigmoid activation function, ⊙ denotes element-wise multiplication, ht is the hidden state, and 
ct is the cell state at time t.

The final SoH prediction is obtained as:

	 ŷt = Wyht + by � (14)

Fig. 2.  Data cleaning and preprocessing for SoH estimation.
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Figure 4 shows the architecture of the Long Short-Term Memory (LSTM) network, illustrating its internal gate 
operations including the input, forget, and output gates. The model relies on memory cells to preserve long-term 
dependencies essential for accurate SoH prediction.

Gated recurrent unit (GRU)
GRUs are a lightweight alternative to LSTMs that use gating units to control the flow of information without 
separate memory cells. They are computationally efficient while maintaining the ability to model temporal 
dependencies. In this study, a single GRU layer was implemented, followed by a dense output layer. The GRU 
model was trained using the same protocol as the LSTM, enabling fair comparison across architectures96,97.

The GRU operates as follows:

	 zt = σ (Wzxt + Uzht−1) (update gate)� (15)

	 rt = σ (Wrxt + Urht−1) (reset gate)� (16)

	
∼
ht= tanh (Whxt + Uh (rt ⊙ ht−1))� (17)

	 ht = (1 − zt) ⊙ ht−1 + zt⊙
∼
ht

� (18)

	 ŷt = Wyht + by � (19)

Fig. 4.  Architectural diagram of long short-term memory (LSTM).

 

Fig. 3.  Architectural diagram of temporal convolution network.

 

Scientific Reports |        (2025) 15:37078 7| https://doi.org/10.1038/s41598-025-20995-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 5 provides a schematic of the Gated Recurrent Unit (GRU) network. Compared to LSTM, the GRU 
architecture uses fewer gates and no separate memory cell, offering computational efficiency while maintaining 
the ability to model sequential dependencies.

Multilayer perceptron (MLP)
The MLP model acts as a baseline in this study. It is a fully connected feedforward neural network that treats each 
input cycle index as an independent instance, ignoring sequence information. The architecture comprises three 
dense layers with ReLU activations and a final linear output layer. Despite its simplicity, the MLP demonstrated 
strong performance, validating the predictive power of direct cycle-to-capacity mapping.

The forward pass is defined as:

	 h1 = ReLU (W1x + b1)� (20)

	 h2 = ReLU (W2h1 + b2)� (21)

	 ŷt = W3h2 + b3� (22)

where W1 and bi are the learnable weights and biases, and ReLU (x) = max (0, x).
Figure 6 depicts the Multilayer Perceptron (MLP) architecture, consisting of three fully connected layers with 

ReLU activations. This model treats each cycle as an independent instance and forms a baseline for comparison 
with temporal architecture.

Model training and evaluation
All models were implemented using the PyTorch framework and trained for 3000 epochs. The Adam optimization 
algorithm was employed with a learning rate of 0.001. The training process utilized the Mean Squared Error 
(MSE) as the loss function to minimize prediction error.

Model performance was quantitatively evaluated using three standard metrics:

•	 Root Mean Square Error (RMSE):

Fig. 6.  Architectural diagram of multilayer perceptron (MLP).

 

Fig. 5.  Architectural diagram of gated recurrent unit (GRU) network.
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RMSE =

√
1
n

∑ n

i=1
(yi − ŷi)2� (23)

•	 Mean Absolute Error (MAE) computes the average of absolute differences:

	
MAE = 1

n

∑ n

i=1
|ŷi − yi|� (24)

•	 Coefficient of Determination (R²):

	
R2 = 1 −

∑ n

i=1(ŷi − yi)2

∑
i = 1n(yi − y)2 � (25)

	 where y is the mean of the actual SoH values.

To support model interpretation, visual diagnostics were employed, including training loss curves, residual 
distribution histograms, and actual versus predicted plots. Such tools provide detailed insights into the learning 
behavior and residual trends of each deep learning architecture.

Figures 7 and 8 display the current profiles over time for all cycles and for the last 10 discharge cycles, 
respectively. These visualizations are used to identify current behavior changes as battery aging progresses.

Figures 9 and 10 represent the voltage variations over time, where the observable decline in voltage amplitude 
with increasing cycle number reflects capacity degradation. Figures 11 and 12 illustrate the battery temperature 
trends. Thermal variation correlates with battery aging stages and can reveal underlying degradation mechanisms.

The methodology establishes a cycle-based modeling structure for battery SoH estimation. Capacity values 
computed from discharge profiles serve as normalized ground truth targets, ensuring uniform learning targets 
across architectures. The inclusion of both sequential models (TCN, LSTM, GRU) and a non-sequential baseline 
(MLP) allows for rigorous model benchmarking. Consistent preprocessing, uniform training configurations, 
and standardized evaluation metrics enable a fair comparative analysis of learning capability and generalization 
performance. The methodological design supports application in real-world battery health monitoring systems, 
offering reliable predictive insight across diverse aging profiles.

Hyperparameter tuning and robustness checks
All models were tuned using a structured hyperparameter search restricted to the training partition. The 
chronological split of 80% training and 20% testing cycles was preserved to reflect prognostic conditions, and 
the held-out test set was never accessed during optimization or model selection. Within the training data, 10% 

Fig. 8.  Current vs. time for last 10 discharge cycles.

 

Fig. 7.  Current vs. time for all discharge cycles.
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was allocated as a validation subset for tuning learning rate, number of hidden units, depth of layers, kernel size 
for TCN, and dropout ratios.

The Adam optimizer with an initial learning rate of 0.001 was selected after grid-based trials across 
{10−4, 10−3, 10−2}. Early stopping based on validation loss was applied to prevent overfitting. To further 
evaluate robustness, two alternative data-splitting strategies were used:

Fig. 12.  Temperature vs. time for last 10 discharge cycles.

 

Fig. 11.  Temperature vs. time for all discharge cycles.

 

Fig. 10.  Voltage vs. time for last 10 discharge cycles.

 

Fig. 9.  Voltage vs. time for all discharge cycles.
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•	 Block-wise split: the first 60% of cycles were used for training, the next 20% for validation, and the final 20% 
for testing.

•	 Rolling-window cross-validation: the training horizon was progressively extended and evaluated on subse-
quent unseen blocks.

Both approaches produced consistent model rankings, with MLP and TCN remaining the top-performing 
architectures, and RMSE variations within 5% of the original chronological split. Performance values for all 
models under the three partitioning strategies are reported in Table 3.

Results and discussion
This section presents a detailed analysis of the performance of four deep learning models used for estimating 
the State of Health (SoH) of lithium-ion batteries based on cycle-wise operational data. The models include 
Multilayer Perceptron (MLP), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Temporal 
Convolutional Network (TCN). Evaluation metrics considered for comparison are Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R²), and training time in seconds.

Model performance overview
The MLP model produced the most accurate SoH predictions with an RMSE of 0.0069, MAE of 0.0049, and 
an R² of 0.9955, as summarized in Table 4. The TCN followed closely with RMSE = 0.0071 and R² = 0.9951, 
demonstrating consistent learning across the cycle range. LSTM achieved a slightly higher RMSE of 0.0076 
and R² of 0.9944, while the GRU exhibited the highest error metrics among the models, with RMSE = 0.0160, 
MAE = 0.0111, and R² = 0.9754, indicating reduced predictive alignment.

The trained architectures were further applied to the B0006 and B0007 datasets. Tables 5 and 6 summarize 
the RMSE, MAE, and R² values for each model.

Model rankings remain consistent across datasets:

•	 On B0005, MLP achieved the best performance.
•	 On B0006 and B0007, TCN and LSTM yielded the lowest errors, GRU slightly higher, and MLP ranked lower 

compared to its performance on B0005.

This indicates that cell-specific ageing patterns can influence architecture suitability and highlights the 
importance of evaluating models across multiple cells for robust conclusions.

Voltage–time characteristics
Figure 9 illustrates the complete set of voltage–time curves across all discharge cycles in the NASA B0005 dataset. 
The initial cycles exhibit a relatively stable voltage profile with minimal sag, while later cycles show an increased 
rate of voltage drop and earlier cut-off due to capacity degradation. The decline in voltage plateau duration across 
cycles reflects the progressive loss of active lithium-ion intercalation, indicative of aging effects.

Model RMSE MAE R² Training time (s)

MLP 0.0069 0.0049 0.9955 6.5893

TCN 0.0071 0.0051 0.9951 17.9292

LSTM 0.0076 0.0055 0.9944 16.8527

GRU 0.0160 0.0111 0.9754 150.0615

Table 4.  Performance comparison of deep learning models for cycle-based SoH estimation.

 

Model Split type RMSE MAE R²

MLP

Chronological (80:20) 0.0069 0.0049 0.9955

Block-wise (60:20:20) 0.0072 0.0051 0.9951

Rolling-window CV 0.0074 0.0052 0.9949

TCN

Chronological (80:20) 0.0071 0.0051 0.9951

Block-wise (60:20:20) 0.0073 0.0052 0.9948

Rolling-window CV 0.0075 0.0053 0.9946

LSTM

Chronological (80:20) 0.0076 0.0055 0.9944

Block-wise (60:20:20) 0.0079 0.0057 0.9941

Rolling-window CV 0.0080 0.0058 0.9939

GRU

Chronological (80:20) 0.0160 0.0111 0.9754

Block-wise (60:20:20) 0.0163 0.0114 0.9749

Rolling-window CV 0.0166 0.0116 0.9745

Table 3.  Performance comparison under different data partitioning strategies.
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Figure 10 focuses on the final ten discharge cycles and highlights the steep voltage decline and shortened 
discharge duration near end-of-life. These curves reveal a pronounced reduction in energy delivery per cycle 
and amplified internal resistance effects. The increased curvature and early termination of discharge confirm the 
critical degradation stage of the battery.

Model prediction accuracy
The prediction output of the TCN model in Fig. 13 aligns closely with the measured SoH values over the complete 
cycle range, capturing both long-term degradation patterns and localized variations with low deviation. Figure 14 
shows that the LSTM network maintains accurate trend tracking through most of the operational range, with 
small underestimation and overestimation appearing during the high-degradation phase near end-of-life.

The MLP results in Fig.  15 match the ground truth values with the highest precision among all models, 
producing a stable prediction curve with minimal oscillation. Figure 16 indicates that the GRU network follows 
the target curve in early and mid-life stages but deviates in later cycles, with a pronounced drop in predictive 
accuracy during the rapid degradation phase.

For the B0006 dataset, Figs.  17 and 18 present GRU and LSTM predictions, where LSTM demonstrates 
smoother alignment while GRU exhibits higher residual spread. The MLP and TCN performance for B0006, 
shown in Figs. 19 and 20, both maintain close agreement with actual values, with MLP achieving slightly tighter 
curve fitting.

For the B0007 dataset, Figs. 21 and 22 display GRU and LSTM outputs, revealing similar trends as in B0006, 
with LSTM producing reduced fluctuation in predicted curves. Figures 23 and 24 confirm that MLP and TCN 
again provide the closest match to measured SoH, with MLP achieving the lowest residual variation.

Prediction consistency: scatter analysis
Figure 25 shows the scatter plot of the LSTM model predictions compared against actual SoH values. The data 
points exhibit moderate deviation from the ideal diagonal, with a tendency toward underestimation at higher 
SoH values and increased scatter toward end-of-life cycles. This behavior aligns with the memory dependency 
and vanishing gradient limitations in long sequences.

Fig. 13.  TCN model: predicted vs. actual SoH over cycles on the B0005 dataset.

 

Model RMSE MAE R²

TCN 0.0067 0.0044 0.9935

LSTM 0.0068 0.0044 0.9933

GRU 0.0073 0.0054 0.9922

MLP 0.0112 0.0071 0.9818

Table 6.  Performance comparison for B0007 cell.

 

Model RMSE MAE R²

TCN 0.0128 0.0089 0.9890

LSTM 0.0126 0.0089 0.9892

GRU 0.0141 0.0102 0.9866

MLP 0.0156 0.0112 0.9836

Table 5.  Performance comparison for B0006 cell.
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Figure 26 presents the scatter plot of the GRU model, where the predicted values show a broader spread 
around the reference diagonal line. The GRU results indicate reduced precision in mid-life and late-life cycles, 
reflecting sensitivity to training noise and sequence irregularities during degradation phases.

Figure 27 displays the scatter plot of the MLP model’s predictions versus actual SoH values. The points are 
densely aligned along the diagonal, showing minimal bias and tight clustering. The model maintains accuracy 
across the entire degradation span, validating its ability to capture static input–output mappings from cycle-
based data.

Figure 28 depicts the scatter distribution of the TCN model. The data points are highly concentrated along 
with the diagonal with uniform spread and low variance. TCN captures temporal correlations effectively using 
causal convolutions, yielding robust performance across early, mid, and late battery life. The MLP scatter plot 

Fig. 16.  GRU model: predicted vs. actual SoH over cycles on the B0005 dataset.

 

Fig. 15.  MLP model: predicted vs. actual SoH over cycles on the B0005 dataset.

 

Fig. 14.  LSTM model: predicted vs. actual SoH over cycles on the B0005 dataset.
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shows strong clustering along the ideal diagonal, confirming minimal prediction error. TCN also reflects a tight 
distribution. LSTM and GRU scatter plots show wider dispersion.

Training efficiency
Figure 29 shows the training loss curves for MLP, GRU, LSTM, and TCN models. All models reach convergence 
within 3000 epochs. The MLP demonstrates the fastest and most stable loss reduction, followed closely by 

Fig. 20.  TCN model: predicted vs. actual SoH over cycles on the B0006 dataset.

 

Fig. 19.  MLP model: predicted vs. actual SoH over cycles on the B0006 dataset.

 

Fig. 18.  LSTM model: predicted vs. actual SoH over cycles on the B0006 dataset.

 

Fig. 17.  GRU model: predicted vs. actual SoH over cycles on the B0006 dataset.
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TCN, which exhibits similarly smooth convergence behavior. The GRU shows a higher initial loss and slower 
convergence due to its gating mechanisms and sequential processing overhead. The LSTM follows a similar trend 
but with slightly reduced computational intensity compared to GRU. These differences in descent characteristics 
reflect the architectural variations in handling temporal dependencies and parameter update efficiencies.

Fig. 24.  Predicted vs. actual SoH for the TCN model on the B0007 dataset.

 

Fig. 23.  Predicted vs. actual SoH for the MLP model on the B0007 dataset.

 

Fig. 22.  Predicted vs. actual SoH for the LSTM model on the B0007 dataset.

 

Fig. 21.  Predicted vs. actual SoH for the GRU model on the B0007 dataset.
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Residual distribution analysis
Figure 30 presents the residuals across all cycles for MLP, GRU, LSTM, and TCN models. The MLP shows 
tightly clustered residuals around zero, indicating minimal deviation from actual SoH values across the dataset. 
TCN exhibits a similarly narrow spread, with consistent low-magnitude residuals across cycles. LSTM produces 
slightly more variation than MLP and TCN but remains stable across most of the discharge range. The GRU 

Fig. 28.  TCN model: Actual vs. Predicted SoH (Scatter Plot) for the dataset B0006.

 

Fig. 27.  MLP model: actual vs. predicted SoH (Scatter Plot) for the dataset B0006.

 

Fig. 26.  GRU model: actual vs. predicted SoH (scatter plot) for the dataset B0006.

 

Fig. 25.  LSTM model: actual vs. predicted SoH (scatter plot) for the dataset B0006.
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displays the largest fluctuations, particularly in the later cycles, where residuals become increasingly dispersed. 
This distribution reflects the relative prediction consistency of each model and highlights the architectural 
impact on cycle-end accuracy.

Cross-model comparison of SoH estimation
Figures 31 and 32 present the comparative performance of the four models on the B0006 and B0007 datasets. In 
both cases, MLP and TCN predictions align more closely with the actual SoH trajectory, capturing the overall 
degradation trend with minimal deviation. The LSTM maintains competitive accuracy but introduces slight 
underestimation and overestimation near end-of-life cycles. The GRU model demonstrates higher error spread, 
particularly during the later degradation phase, leading to less consistent predictions.

Figure 33 displays the SoH estimation trajectories for MLP, GRU, LSTM, and TCN in a consolidated plot. The 
predicted curves from MLP and TCN align closely with the actual SoH trend, maintaining consistent overlap 
across all cycles. The LSTM captures the general degradation pattern but introduces slight underestimations 
in mid-life regions. The GRU predictions exhibit greater divergence, particularly in the final cycles, where the 
estimated SoH underperforms relative to the true values.

Fig. 31.  Comparison of predicted vs. actual SoH for all models (GRU, LSTM, MLP, TCN) on the B0006 
dataset.

 

Fig. 30.  Residuals comparison across all models.

 

Fig. 29.  Combined training loss curves for MLP, GRU, LSTM, and TCN models.
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These results are consistent with the broader benchmarking analysis: MLP achieved the lowest error metrics 
and fastest training time, followed by TCN, while GRU lagged in both accuracy and efficiency.

Model error metrics
Figure 34 presents the quantitative error metrics, including RMSE and MAE, for each model. The MLP records 
the lowest values in both categories, with the TCN performing at a comparable level. The LSTM shows moderate 
error levels, consistent with its mid-range prediction performance. The GRU exhibits the highest RMSE and 
MAE, corroborating its visible deviations in the SoH prediction plots and wider residual distribution.

Key findings
The MLP model demonstrated superior accuracy, efficiency, and generalization, making it suitable for real-time 
SoH prediction. TCN provided a balance between accuracy and computational efficiency, while LSTM maintained 
competitive accuracy with moderate computational cost. The GRU, although capable, underperformed in both 
accuracy and training time. The visualizations presented in this section substantiate the metrics in Table 4 and 
provide comprehensive insights into model behavior across operational and predictive dimensions.

Cycle-based State of Health (SoH) estimation was conducted using real operational data from the NASA 
B0005 battery dataset. Four deep learning models such as Multilayer Perceptron (MLP), Gated Recurrent Unit 
(GRU), Long Short-Term Memory (LSTM), and Temporal Convolutional Network (TCN) were trained and 

Fig. 34.  Bar chart of error metrics (RMSE, MAE) for each model.

 

Fig. 33.  Overall comparison of predicted vs. actual SoH across all models.

 

Fig. 32.  Comparison of predicted vs. actual SoH for all models (GRU, LSTM, MLP, TCN) on the B0007 
dataset.
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evaluated. Among these, the MLP consistently outperformed other architectures, achieving the lowest RMSE 
of 0.0069, the lowest MAE of 0.0049, and the highest R² value of 0.9955, all within a training time of just 6.59 s.

The TCN model demonstrated comparable accuracy with an RMSE of 0.0071 and R² of 0.9951, though 
it required nearly three times more training time than the MLP. Both LSTM and GRU showed acceptable 
predictive performance; however, the GRU’s training time was significantly higher at 150.06 s, and its accuracy 
declined relative to the other models.

Loss curves for all models confirmed stable convergence over 3000 epochs, indicating adequate learning 
across architecture. Residual plots showed tight clustering around zero, suggesting minimal prediction bias and 
effective generalization across cycles. Scatter plots between actual and predicted SoH further supported these 
findings, especially for MLP and TCN, where predictions closely followed the ideal line of fit.

From a deployment perspective, the MLP’s rapid convergence and low computational overhead make it 
highly suitable for real-time integration in embedded Battery Management Systems (BMS). While GRU and 
LSTM offer competitive learning capability, their recurrent nature results in higher computational demands, 
limiting their practicality in time-constrained or resource-limited applications. TCN, although slower than MLP, 
balances accuracy and stability effectively, making it a robust candidate for scenarios prioritizing precision and 
robustness.

Conclusion
This research evaluated the performance of four deep learning models as MLP, GRU, LSTM, and TCN—for 
estimating the State of Health (SoH) in lithium-ion batteries using cycle-based discharge data from the NASA 
B0005 dataset. The SoH values were computed through numerical integration of discharge current over time and 
normalized against the initial capacity to capture degradation across lifecycle stages. The models were trained 
and tested using PyTorch implementations, and their predictive accuracy was assessed using RMSE, MAE, and 
R² metrics. Among the tested architectures, the Multilayer Perceptron (MLP) demonstrated the highest accuracy, 
achieving an RMSE of 0.0069, MAE of 0.0049, and R² of 0.9955. The TCN followed closely, with comparable 
performance (RMSE = 0.0071, R² = 0.9951). Residual analysis confirmed low bias and tightly clustered errors 
across models, while loss curves exhibited smooth convergence, reinforcing the stability of the training process. 
The GRU and LSTM models also achieved acceptable accuracy but incurred significantly higher training times 
due to their recurrent architecture.

The findings indicate that MLP achieved the best trade-off between predictive accuracy and computational 
efficiency, making it highly suitable for real-time implementation in embedded Battery Management Systems 
(BMS). The results validate the capability of deep learning models, particularly MLP and TCN, in capturing 
nonlinear degradation behavior and enabling accurate SoH tracking across the operational life of lithium-ion 
batteries.

The study evaluated B0005, B0006, and B0007 cells, which share similar chemistries and were tested under 
controlled laboratory conditions. Results may vary for other chemistries such as NMC or LFP, under different 
operating temperatures, or under dynamic drive cycles. In this work, models were trained only on cycle-level 
capacity features; incorporating voltage, current, and temperature time series may further enhance prediction 
accuracy.

Future research will emphasize the application of transfer learning techniques to extend model generalization 
across different lithium-ion chemistries, enabling adaptability beyond the datasets evaluated in this study. 
Incorporation of multi-temperature datasets will be pursued to capture thermal effects on degradation dynamics, 
thereby enhancing the robustness of SoH estimation frameworks under varied environmental conditions.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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