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Cycle based state of health
estimation of lithium ion cells using
deep learning architectures

Bansilal Bairwa?, Kapil Pareek? & Vinay Kumar Jadoun3"*

State of Health estimation in lithium-ion batteries is critical for reliable operation in electric vehicles
and energy storage systems. This work evaluates four deep learning models—Multilayer Perceptron,
Gated Recurrent Unit, Long Short-Term Memory, and Temporal Convolutional Network for cycle-based
SoH prediction using discharge data from the NASA B0005, B0006, and B0007 cells. SoH values were
obtained by numerical integration of discharge current and normalized with respect to the initial
capacity. All models were implemented in PyTorch and assessed using RMSE, MAE, and R2 metrics.

On B0005, the MLP achieved RMSE 0.0069, MAE 0.0049, and R2=0.9955, with TCN showing similar
accuracy. Results on B0006 and B0007 confirmed the stability of MLP and TCN predictions across
different cells. Residuals remained tightly clustered, and loss curves indicated smooth convergence.
GRU and LSTM required higher training time without accuracy improvements. MLP demonstrated

the best balance of accuracy and computational efficiency, making it suitable for embedded battery
management systems. TCN provided robust accuracy with moderate complexity. The results verify that
data-driven deep learning methods can capture nonlinear degradation behavior consistently across
multiple cells.

Abbreviations

SoH State of health

RUL Remaining useful life

BMS Battery management system

GRU Gated recurrent unit

TCN Temporal convolutional network

CNN Convolutional neural network

FPCA Functional principal component analysis
BERT Bidirectional encoder representations from transformers
TimeGAN  Time-series generative adversarial network
MAE Mean absolute error

MSE Mean squared error

NMC Nickel manganese cobalt (battery chemistry)
NCA Nickel cobalt aluminum (battery chemistry)
GPU Graphics processing unit

cuDNN CUDA deep neural network library

SoC State of charge

EV Electric vehicle

MLP Multilayer perceptron

LSTM Long short-term memory

ANN Artificial neural network

RNN Recurrent neural network

SETCN Spectral-enhanced temporal convolutional network
GAN Generative adversarial network

RMSE Root mean square error

R? Coefficient of determination

ReLU Rectified linear unit
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LFP Lithium iron phosphate (battery chemistry)
CPU Central processing unit
CUDA Compute unified device architecture

Lithium-ion batteries are critical components in modern energy storage systems used in electric vehicles (EVs),
grid-connected renewable energy systems, and portable consumer electronics due to their high energy density,
efficiency, and long cycle life!. The accurate estimation of battery State of Health (SoH), defined as the ratio of
current full charge capacity to its initial capacity, is vital for ensuring safety, longevity, and reliability>*. SoH
serves as a key metric in battery management systems (BMS), guiding decisions about operation, maintenance,
and replacement®®. Failures in accurate SoH estimation can result in unexpected battery failure or conservative
operation that limits system performance®’. Research in SoH modeling has therefore gained prominence across
domains. Existing literature on battery SoH estimation methods encompasses physics-based models, empirical
methods, and data-driven approaches. Physics-based models rely on electrochemical equations or equivalent
circuit models but often require extensive parameterization and computational resources®’. Empirical models
like incremental capacity and differential voltage analysis can indicate degradation patterns but depend heavily
on controlled test conditions!®!!. Data-driven approaches, including machine learning and deep learning
algorithms, have emerged as robust alternatives, capable of capturing nonlinear relationships between observable
battery variables and health indicators!2-2. These models include Random Forest, Support Vector Machines,
Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks?’~*!. While effective in
many cases, these models often face challenges in generalization, sensitivity to dataset scale, or require high
computational overhead*>~!.

A key challenge in SoH modeling is accurately capturing degradation patterns under diverse operational
conditions and chemistries, which makes generalization across datasets and applications difficult. Recent works
have proposed hybrid and advanced architectures to address this limitation. For instance, the SOH-KLSTM
model integrates Kolmogorov-Arnold Networks with LSTM to improve temporal learning and candidate state
representation for lithium-ion battery health monitoring®. Similarly, an integrated SOC-SOH estimation
framework using GRU and TCN has been developed for whole-life-cycle prediction®®. Beyond architecture-
level innovations, efforts have also focused on real-world applicability, such as practical data-driven pipelines
targeting field data challenges®* and comprehensive reviews of machine learning frameworks that highlight data
requirements, feature engineering, and algorithmic trade-offs®. Other contributions include multiple aging
factor interactive learning frameworks for enhanced SoH estimation® and physics-enhanced joint SOC-SoH
estimation tailored for high-demand applications like eVTOL aircraft™’. Collectively, these studies demonstrate
the push toward hybrid, interpretable, and generalizable models that balance computational efficiency with
predictive robustness.

This study addresses these gaps by evaluating the performance of four deep learning models—Multilayer
Perceptron (MLP), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Temporal
Convolutional Network (TCN)—for estimating cycle-based SoH using real aging data from the NASA B0005
battery dataset®®. SoH values are derived from the numerical integration of discharge current normalized against
initial capacity to capture degradation across lifecycle stages. Each model is trained using PyTorch and evaluated
using RMSE, MAE, and R*> metrics. MLP achieved the highest accuracy with RMSE of 0.0069, MAE of 0.0049,
and R? of 0.9955. TCN followed closely with RMSE of 0.0071 and R* of 0.9951. GRU and LSTM performed
acceptably, though, with longer training durations.

This paper implements and evaluates a unified training framework to compare four deep learning
architectures—Multilayer Perceptron (MLP), Gated Recurrent Unit (GRU), Long Short-Term Memory
(LSTM), and Temporal Convolutional Network (TCN) for cycle-based SoH estimation. All models are trained
and validated on the NASA B0005 dataset using normalized discharge capacity derived from current-time
integration. The performance is measured using RMSE, MAE, and R’ to ensure consistency and comparative
clarity. Experimental analysis identifies MLP and TCN as highly effective for modeling degradation patterns
with reduced complexity. The study contributes empirical insights toward selecting suitable models for battery
health monitoring applications under real-world constraints, targeting integration into onboard diagnostics and
predictive maintenance platforms®*.

The NASA B0005 cell was analysed along with two other cells from the same dataset, BO006 and B0007, to
assess external validity. These cells contain high-resolution cycle data suitable for the same preprocessing and
modelling pipeline described in Sect. 2. The inclusion of multiple cells allows examination of whether model
performance trends remain consistent across different but comparable ageing profiles.

Evaluation metrics and literature trends
Common evaluation metrics for SoH prediction include Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Coefficient of Determination (R?). These are defined as:
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where y; and yi represent true and predicted SoH values, respectively. Table 2 summarizes representative
deep learning approaches for lithium-ion battery SoH estimation. Zhang et al.®! developed a hybrid framework
combining TCN, GRU, and wavelet neural networks, which achieved an RMSE of 0.0068 on custom NCM cells.
Bao et al.’ proposed a lightweight MLP-based model optimized for memory efficiency, reporting an MAE of
0.0075 on the NASA dataset. Li et al.®® employed neural networks on a proprietary dataset and obtained an RMSE
0f 0.0110. Pau et al.!* designed TinyML-ready MLP architectures tailored for hardware acceleration, achieving an
MAE of 0.0082. Mohanty et al.'? introduced a TimeGAN integrated with BERT for capacity trajectory modeling
on the NASA B0018 dataset, reporting an R* of 0.995. Chen et al.!* presented a FPCA-SETCN framework for
feature-enhanced temporal modeling, achieving an RMSE of 0.0094 on the NASA B0005 dataset.

Together, these works highlight the effectiveness of hybrid, lightweight, and physics-informed architectures
for accurate SoH prediction across diverse datasets and evaluation settings. These findings indicate that
combining temporal modeling, spectral decomposition, and memory-enhanced features can significantly
improve the robustness of SoH estimation. At the same time, comprehensive reviews and empirical studies
emphasize the practical relevance of such approaches in real-world battery management. Reviews of SOC, SoH,
and RUL estimation methods provide detailed insights into algorithmic strengths and limitations®2, while
ANN-based health estimation frameworks demonstrate effective deployment in real-world applications such as
electric vehicles and energy storage systems®. Collectively, these studies validate the importance of integrating
advanced deep learning frameworks for enhancing battery diagnostics and ensuring reliability under diverse
operational scenarios.

Motivation and contributions
A consistent benchmark comparison of SoH prediction models using identical preprocessing and evaluation
criteria is lacking. This paper develops a unified PyTorch-based pipeline to assess MLP, GRU, TCN, and LSTM
on NASA B0005 data.

Key contributions include:

o Design and implementation of a cycle-based SoH estimation pipeline using normalized discharge capacity.

« Performance comparison across four deep learning architectures using consistent training splits and metrics.

o Identification of MLP and TCN as efficient models for real-time BMS applications with
R2>0.99R*>0.99R2 > 0.99.

« Quantitative analysis of accuracy, training time, and model complexity.

The findings offer practical guidance for selecting deep learning models in battery diagnostics and support
integration into advanced BMS platforms.

Table 1 outlines the comparative features of deep learning models used for SoH estimation. LSTM models,
referenced in”'%%, are effective for capturing long-term dependencies due to their gated architecture. GRU
models, cited in'*>*°, offer similar capabilities with reduced parameter count and improved training speed.
TCNs, referenced in®'3, utilize dilated causal convolutions for temporal learning, supporting stable gradients
over long sequences. MLPs, found in>'4%, operate on cycle-wise inputs with reduced computational load and
fast convergence, making them suitable for embedded systems. Transformer architectures, employed in”1%17,
leverage attention mechanisms to model long-range relationships and temporal variability in battery degradation.

Relevant
Model/framework Characteristics/contributions references
LSTM/BiLSTM Sequence modeling, captures long-term dependencies, widely used in battery SoH estimation. Variants include BILSTM and | 1} 59,60,63-65
! hybrid BiLSTM-KAN models
. Simplified gating structure, faster convergence compared to LSTM; used standalone or in hybrid GRU-Transformer 59,64
GRU/BiGRU X
frameworks
Attention-based architecture, effective in long-range dependency modeling. Applied in CNN-Transformer and BiGRU- 10,17,51,66-68
Transformer . . ) 1721
Transformer hybrids, and cross-domain transfer learning
MLP/ANN Lightweight models, cycle-level prediction, fast convergence; includes TinyML deployment for edge devices 514,60.69.70
TCN Efficient parallel processing, robust gradient flow; often combined with GRU and Transformer in hybrid frameworks 6,67
Hybrid fusion (Physics + DL) Combines physlcs-basgc! reduced-order electrochemical models with CNN/ML-based architectures; improves generalization | 7;_74
under real-world conditions
CNN/CNN-LSTM/CNN-GRU Local feature extraction combined with temporal modeling; effective for SoH under varying C-rates and real-world datasets | 6707576
Ensemble/stacking ((ilombmes multiple learners (e.g., XGBoost, RE, Kalman filter, ensemble TL); improves robustness under small or noisy 7780
atasets
Physics-informed ML Embeds physical constraints (electrochemical, thermal, impedance, relaxation models) into ML training for interpretability | 7574
and robustness
Advanced optimization frameworks Incorporates evplgnonary/metaheurlstlc optimization (WOA, ISAO, HHO, etc.) to tune deep learning models and improve | g;_g4
SoH/RUL prediction accuracy
Real-world data oriented models l;emgned for noisy, incomplete, or real-vehicle datasets; includes vehicle-cloud collaboration, TabNet, interpretable DL, and | 54.65,85-59
ig-data simulation
Review/benchmark frameworks Provide systematic comparisons, taxonomies, or real-world insights into ML-based SoH estimation 54,55,77,90

Table 1. Comparison of deep learning and hybrid models for SoH estimation.
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Table 2 presents representative deep learning approaches for SoH estimation. Study® implemented a hybrid
model combining TCN, GRU, and wavelet neural networks, achieving an RMSE of 0.0068 on custom NCM cells.
Bao et al.’ applied a memory-efficient MLP-based model to NASA datasets with a reported MAE of 0.0075. Li et
al.%® utilized conventional neural networks on a proprietary dataset and reported an RMSE of 0.0110. Pau et al.!
explored MLP models optimized for hardware-accelerated platforms, achieving an MAE of 0.0082. Mohanty et
al.! integrated BERT with TimeGAN for SoH prediction using the B0018 dataset and obtained an R2RA2R2
of 0.995. Chen et al.!? introduced a FPCA-SETCN framework on NASA B0005 data, achieving an RMSE of
0.0094. These studies provide diverse strategies using both conventional and hybrid architectures across different
datasets and evaluation metrics.

This paper implements and evaluates four deep learning models as MLP, GRU, TCN, and LSTM under a
unified training pipeline using preprocessed NASA B0005 cycle data. The goal is to analyze their predictive
accuracy, computational cost, and applicability in real-time battery health diagnostics.

This paper makes the following contributions:

o A cycle-based SoH estimation pipeline using real discharge data from NASA’s battery degradation dataset.

o A comprehensive comparison of MLP, GRU, LSTM, and TCN using uniform preprocessing and evaluation
metrics.

« Identification of MLP and TCN as the best-performing models with R2>0.99R?>0.99R2 > 0.99, highlighting
their efficiency in capturing nonlinear degradation.

o Practical insights into computational overhead, model accuracy, and applicability in real-time battery health
diagnostics.

This study provides a foundation for selecting effective deep learning architectures for next-generation BMS and
health-aware EV operation.

Methodology

The methodology involves a structured framework for predicting the State of Health (SoH) of lithium-ion
batteries using deep learning models trained on cycle-based historical data. The NASA B0005 battery dataset,
consisting of 616 recorded cycles, serves as the data source. From these, 168 discharge cycles are selected based
on their suitability for capacity-based SoH analysis. Each cycle includes high-resolution time-series data of
voltage, current, and temperature measurements”>*%. An overview of the proposed methodology is shown in
Fig. 1.

Experiments were conducted on B0005, B0006, and B0007 cells from the NASA battery ageing dataset. Each
dataset was processed using identical cleaning and capacity-calculation procedures to ensure comparability.
Chronological 80:20 splits were used in all cases, with a 10% validation split taken from the training portion for
hyperparameter tuning. The test set was not used during model selection, preventing data leakage. Block-wise
splits and rolling-window cross-validation confirmed stability of model rankings.

The normalized input features (cycle number) and target values (SoH) were split into training and testing sets
using an 80:20 ratio, maintaining chronological order to reflect the natural degradation sequence as mentioned
in Fig. 1, step 6. This setup ensured the model was trained on early-stage data and validated on later degradation
behavior.

Capacity calculation for SoH
Battery SoH is estimated based on discharge capacity, computed via numerical integration of current over time
using the trapezoidal rule. For each cycle i, the capacity C'_ 7 is calculated as:

1 i ny, L1 el s i1
Ci=ges [ t 0" li@ldtn g > G=0"""i jl(t_j+1-t_j) @)

The SoH is normalized with respect to the initial cycle capacity C'_0:

Study | Method Dataset Performance

5 MLP-like memory model NASA cells MAE=0.0075

60 Neural networks for SoH Custom dataset RMSE=0.0110

1 MLP for SOC/SoH Hardware-accelerated MAE=0.0082

10 BERT + TimeGAN NASA B0018 R*=10.995

13 FPCA-SETCN framework NASA B0005 RMSE =0.0094

76 2D-CNN + Self-Attention LFP, NMC, NCA datasets RMSE=0.0109 (LFP), 0.0026 (NMC)
o LC-GDAT (Lossy Counting + Gated Dual-Attention Transformer) | NASA, Real-world EV MAE=0.0046 (Lab), 0.0223 (EV)
85 Vehicle-Cloud Collaborative Hybrid Model Real-world BEV data MAE<0.025

o1 Hierarchical Feature Extraction + ML Real-world EV data (300 EVs) | RMSE=0.0105

5 SSA-LSTM + Deep SHAP NASA, CALCE, PolyU RMSE<0.05, MAE<0.05

%2 Two-Stage Physics-Informed Neural Network (TSPINN) NCA, NCM datasets MAE=0.00675

Table 2. Summary of recent studies on battery SoH Estimation using advanced deep learning models.
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Fig. 1. Proposed methodology for predicting state of health in lithium-ion batteries.

SoH i = g,z (5)

o

This method ensures consistent and interpretable health values across all cycles.

Data acquisition and preprocessing

The NASA B0005 dataset contains 616 cycles. From these, 168 discharge cycles are filtered using a data cleaning
process (see Fig. 2). Each cycle contains time-series data of voltage, current, and temperature. Trend plots are
generated for each parameter to visualize degradation behavior. The resulting capacities form the basis for SoH
targets.

Computing environment and reproducibility

All experiments were executed on a workstation with an Intel(R) Core(TM) i3-1005G1 CPU @ 1.20 GHz and
8 GB RAM. No discrete GPU acceleration was employed. Models were implemented in PyTorch with CUDA/
cuDNN disabled.

The experimental data were taken from the NASA battery aging dataset, specifically the B0005, B0006, and
B0007 cell records. Each dataset was processed using identical cleaning, capacity-calculation, and normalization
procedures to ensure comparability across cells. The input-output pairs (cycle index and SoH) were split
chronologically into an 80:20 ratio for training and testing, preserving the natural degradation progression and
simulating realistic prediction scenarios.

The following Python packages and versions were used in the implementation:

« numpy (v1.26) for numerical operations.

o scipy (v1.13) for signal integration and MAT file handling.

« pandas (v2.2) for data manipulation and tabular outputs.

« matplotlib (v3.9) for visualization.

« seaborn (v0.13) for statistical plotting.

o scikit-learn (v1.5) for dataset splitting and evaluation metrics.
o torch/PyTorch (v2.2) for deep learning model implementation.

All Python scripts, preprocessing steps, and trained models are provided in a public repository along with a
runnable notebook to ensure reproducibility®.
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Fig. 2. Data cleaning and preprocessing for SoH estimation.

Temporal convolutional network (TCN)
The TCN model is designed to handle sequential data through 1D causal convolutions with increasing dilation
factors. It comprises multiple TCN blocks, each containing a dilated convolutional layer followed by a ReLU
activation function and residual connections to facilitate gradient flow.

A single TCN block with dilation d, kernel size k, and padding p=(k - 1)-d performs 1D causal convolution
as:

k-1

Yyt = Z Wi Tide (6)

The residual connection is applied as:
ye= ReLU (y:) + 2 (if output channels match) (7)

TCN uses stacked blocks with increasing dilation d = 1,2,4,... to capture long-term dependencies without
the need for recurrence. This design enables the model to maintain computational efficiency while effectively
modeling long-range temporal patterns. In this study, two TCN blocks were stacked with dilation rates of 1 and
2, and a final 1D convolutional layer was used to output the predicted SoH values®’.

Figure 3 illustrates the architecture of the Temporal Convolutional Network (TCN), which processes
sequential cycle data effectively by capturing long-range temporal dependencies through stacked dilated
convolutional layers and residual pathways.

Long short-term memory (LSTM)

LSTM networks are a type of Recurrent Neural Network (RNN) capable of learning temporal relationships over

long sequences using memory cells and gating mechanisms. In this implementation, the LSTM layer receives the

sequence of normalized cycle indices as input and outputs hidden states, which are subsequently passed through

a fully connected layer to predict the SoH. The model is trained end-to-end using the mean squared error loss.
LSTM processes the input sequence X=x1,x2,...,xT. using the following internal operations:

fe =0 (Wyxs +Ushs—1 + by) (forget gate) (8)
it =0 (Wizy + Uihi—1 + b;) (input gate) )
ot =0 (Woxt + Ushi—1 + bo) (output gate) (10)
¢i=tanh (Weay + Uche—1 + be) (11)
a=hH0 a1 +i® e (12)

ht = o ® tanh (¢t) (13)

where o is the sigmoid activation function, ® denotes element-wise multiplication, h; is the hidden state, and
¢t is the cell state at time t.
The final SoH prediction is obtained as:

g = Wyhe + by (14)
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Fig. 3. Architectural diagram of temporal convolution network.
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Fig. 4. Architectural diagram of long short-term memory (LSTM).

Figure 4 shows the architecture of the Long Short-Term Memory (LSTM) network, illustrating its internal gate
operations including the input, forget, and output gates. The model relies on memory cells to preserve long-term

dependencies essential for accurate SoH prediction.

Gated recurrent unit (GRU)

GRUs are a lightweight alternative to LSTMs that use gating units to control the flow of information without
separate memory cells. They are computationally efficient while maintaining the ability to model temporal
dependencies. In this study, a single GRU layer was implemented, followed by a dense output layer. The GRU

model was trained using the same protocol as the LSTM, enabling fair comparison across architectures
The GRU operates as follows:

2zt =0 (W.zy + U.hi—1) (update gate)
re =0 (Wrxe + Urhe—1) (reset gate)

hi= tanh (Wpray + U (re © he—1))

hi=(1—2)©® hi—1 4+ 20 hy
Z//; = Wyht + by

96,97

(15)
(16)

Scientific Reports |

(2025) 15:37078 | https://doi.org/10.1038/s41598-025-20995-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Fig. 5. Architectural diagram of gated recurrent unit (GRU) network.
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Fig. 6. Architectural diagram of multilayer perceptron (MLP).

Figure 5 provides a schematic of the Gated Recurrent Unit (GRU) network. Compared to LSTM, the GRU
architecture uses fewer gates and no separate memory cell, offering computational efficiency while maintaining
the ability to model sequential dependencies.

Multilayer perceptron (MLP)
The MLP model acts as a baseline in this study. It is a fully connected feedforward neural network that treats each
input cycle index as an independent instance, ignoring sequence information. The architecture comprises three
dense layers with ReLU activations and a final linear output layer. Despite its simplicity, the MLP demonstrated
strong performance, validating the predictive power of direct cycle-to-capacity mapping.

The forward pass is defined as:

h1 = ReLU (Wiz + b1) (20)
ha = ReLU (Wah1 + b2) (21)
Ui = Waha + b3 (22)

where Wi and bi are the learnable weights and biases, and ReLU (z) = max (0, x).

Figure 6 depicts the Multilayer Perceptron (MLP) architecture, consisting of three fully connected layers with
ReLU activations. This model treats each cycle as an independent instance and forms a baseline for comparison
with temporal architecture.

Model training and evaluation
All models were implemented using the PyTorch framework and trained for 3000 epochs. The Adam optimization
algorithm was employed with a learning rate of 0.001. The training process utilized the Mean Squared Error
(MSE) as the loss function to minimize prediction error.

Model performance was quantitatively evaluated using three standard metrics:

o Root Mean Square Error (RMSE):
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Fig. 8. Current vs. time for last 10 discharge cycles.

_ JINTT o2
RMSE = \/ nz w3 (23)

o Mean Absolute Error (MAE) computes the average of absolute differences:

1 no
MAE = ;Z 1o (24)
« Coefficient of Determination (R?):
R2 —1— Z:;l(ly\i_yl) (25)
> i=1"(y; —7)

where 7% is the mean of the actual SoH values.

To support model interpretation, visual diagnostics were employed, including training loss curves, residual
distribution histograms, and actual versus predicted plots. Such tools provide detailed insights into the learning
behavior and residual trends of each deep learning architecture.

Figures 7 and 8 display the current profiles over time for all cycles and for the last 10 discharge cycles,
respectively. These visualizations are used to identify current behavior changes as battery aging progresses.

Figures 9 and 10 represent the voltage variations over time, where the observable decline in voltage amplitude
with increasing cycle number reflects capacity degradation. Figures 11 and 12 illustrate the battery temperature
trends. Thermal variation correlates with battery aging stages and can reveal underlying degradation mechanisms.

The methodology establishes a cycle-based modeling structure for battery SoH estimation. Capacity values
computed from discharge profiles serve as normalized ground truth targets, ensuring uniform learning targets
across architectures. The inclusion of both sequential models (TCN, LSTM, GRU) and a non-sequential baseline
(MLP) allows for rigorous model benchmarking. Consistent preprocessing, uniform training configurations,
and standardized evaluation metrics enable a fair comparative analysis of learning capability and generalization
performance. The methodological design supports application in real-world battery health monitoring systems,
offering reliable predictive insight across diverse aging profiles.

Hyperparameter tuning and robustness checks

All models were tuned using a structured hyperparameter search restricted to the training partition. The
chronological split of 80% training and 20% testing cycles was preserved to reflect prognostic conditions, and
the held-out test set was never accessed during optimization or model selection. Within the training data, 10%
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Fig. 9. Voltage vs. time for all discharge cycles.
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Fig. 10. Voltage vs. time for last 10 discharge cycles.
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Fig. 11. Temperature vs. time for all discharge cycles.
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Fig. 12. Temperature vs. time for last 10 discharge cycles.

was allocated as a validation subset for tuning learning rate, number of hidden units, depth of layers, kernel size
for TCN, and dropout ratios.

The Adam optimizer with an initial learning rate of 0.001 was selected after grid-based trials across
{107*,1073,1072}. Early stopping based on validation loss was applied to prevent overfitting. To further
evaluate robustness, two alternative data-splitting strategies were used:
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Model | Split type RMSE | MAE |R*

Chronological (80:20) | 0.0069 | 0.0049 | 0.9955
MLP Block-wise (60:20:20) | 0.0072 | 0.0051 | 0.9951
Rolling-window CV | 0.0074 | 0.0052 | 0.9949
Chronological (80:20) | 0.0071 | 0.0051 | 0.9951
TCN Block-wise (60:20:20) | 0.0073 | 0.0052 | 0.9948
Rolling-window CV | 0.0075 | 0.0053 | 0.9946
Chronological (80:20) | 0.0076 | 0.0055 | 0.9944
LSTM | Block-wise (60:20:20) | 0.0079 | 0.0057 | 0.9941
Rolling-window CV 0.0080 | 0.0058 | 0.9939
Chronological (80:20) | 0.0160 | 0.0111 | 0.9754
GRU Block-wise (60:20:20) | 0.0163 | 0.0114 | 0.9749
Rolling-window CV 0.0166 | 0.0116 | 0.9745

Table 3. Performance comparison under different data partitioning strategies.

Model | RMSE | MAE | R* Training time (s)
MLP 0.0069 | 0.0049 | 0.9955 6.5893
TCN 0.0071 | 0.0051 | 0.9951 17.9292
LSTM | 0.0076 | 0.0055 | 0.9944 16.8527
GRU 0.0160 | 0.0111 | 0.9754 | 150.0615

Table 4. Performance comparison of deep learning models for cycle-based SoH estimation.

« Block-wise split: the first 60% of cycles were used for training, the next 20% for validation, and the final 20%
for testing.

 Rolling-window cross-validation: the training horizon was progressively extended and evaluated on subse-
quent unseen blocks.

Both approaches produced consistent model rankings, with MLP and TCN remaining the top-performing
architectures, and RMSE variations within 5% of the original chronological split. Performance values for all
models under the three partitioning strategies are reported in Table 3.

Results and discussion

This section presents a detailed analysis of the performance of four deep learning models used for estimating
the State of Health (SoH) of lithium-ion batteries based on cycle-wise operational data. The models include
Multilayer Perceptron (MLP), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Temporal
Convolutional Network (TCN). Evaluation metrics considered for comparison are Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R?), and training time in seconds.

Model performance overview
The MLP model produced the most accurate SoH predictions with an RMSE of 0.0069, MAE of 0.0049, and
an R? of 0.9955, as summarized in Table 4. The TCN followed closely with RMSE=0.0071 and R = 0.9951,
demonstrating consistent learning across the cycle range. LSTM achieved a slightly higher RMSE of 0.0076
and R? of 0.9944, while the GRU exhibited the highest error metrics among the models, with RMSE =0.0160,
MAE=0.0111, and R* = 0.9754, indicating reduced predictive alignment.

The trained architectures were further applied to the B0006 and B0007 datasets. Tables 5 and 6 summarize
the RMSE, MAE, and R? values for each model.

Model rankings remain consistent across datasets:

« On B0005, MLP achieved the best performance.
« On B0006 and B0007, TCN and LSTM yielded the lowest errors, GRU slightly higher, and MLP ranked lower
compared to its performance on B0005.

This indicates that cell-specific ageing patterns can influence architecture suitability and highlights the
importance of evaluating models across multiple cells for robust conclusions.

Voltage-time characteristics

Figure 9 illustrates the complete set of voltage—time curves across all discharge cycles in the NASA B0005 dataset.
The initial cycles exhibit a relatively stable voltage profile with minimal sag, while later cycles show an increased
rate of voltage drop and earlier cut-off due to capacity degradation. The decline in voltage plateau duration across
cycles reflects the progressive loss of active lithium-ion intercalation, indicative of aging effects.
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Model | RMSE | MAE | R*

TCN | 0.0128 | 0.0089 | 0.9890
LSTM | 0.0126 | 0.0089 | 0.9892
GRU | 0.0141 | 0.0102 | 0.9866
MLP | 0.0156 | 0.0112 | 0.9836

Table 5. Performance comparison for B0006 cell.

Model | RMSE | MAE | R*

TCN | 0.0067 | 0.0044 | 0.9935
LSTM | 0.0068 | 0.0044 | 0.9933
GRU | 0.0073 | 0.0054 | 0.9922
MLP |0.0112 | 0.0071 | 0.9818

Table 6. Performance comparison for B0007 cell.
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Fig. 13. TCN model: predicted vs. actual SoH over cycles on the B0005 dataset.

Figure 10 focuses on the final ten discharge cycles and highlights the steep voltage decline and shortened
discharge duration near end-of-life. These curves reveal a pronounced reduction in energy delivery per cycle
and amplified internal resistance effects. The increased curvature and early termination of discharge confirm the
critical degradation stage of the battery.

Model prediction accuracy

The prediction output of the TCN model in Fig. 13 aligns closely with the measured SoH values over the complete
cycle range, capturing both long-term degradation patterns and localized variations with low deviation. Figure 14
shows that the LSTM network maintains accurate trend tracking through most of the operational range, with
small underestimation and overestimation appearing during the high-degradation phase near end-of-life.

The MLP results in Fig. 15 match the ground truth values with the highest precision among all models,
producing a stable prediction curve with minimal oscillation. Figure 16 indicates that the GRU network follows
the target curve in early and mid-life stages but deviates in later cycles, with a pronounced drop in predictive
accuracy during the rapid degradation phase.

For the B0006 dataset, Figs. 17 and 18 present GRU and LSTM predictions, where LSTM demonstrates
smoother alignment while GRU exhibits higher residual spread. The MLP and TCN performance for B0006,
shown in Figs. 19 and 20, both maintain close agreement with actual values, with MLP achieving slightly tighter
curve fitting.

For the B0007 dataset, Figs. 21 and 22 display GRU and LSTM outputs, revealing similar trends as in B0006,
with LSTM producing reduced fluctuation in predicted curves. Figures 23 and 24 confirm that MLP and TCN
again provide the closest match to measured SoH, with MLP achieving the lowest residual variation.

Prediction consistency: scatter analysis

Figure 25 shows the scatter plot of the LSTM model predictions compared against actual SoH values. The data
points exhibit moderate deviation from the ideal diagonal, with a tendency toward underestimation at higher
SoH values and increased scatter toward end-of-life cycles. This behavior aligns with the memory dependency
and vanishing gradient limitations in long sequences.
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Fig. 14. LSTM model: predicted vs. actual SoH over cycles on the B0005 dataset.
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Fig. 15. MLP model: predicted vs. actual SoH over cycles on the B0005 dataset.
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Fig. 16. GRU model: predicted vs. actual SoH over cycles on the B0005 dataset.

Figure 26 presents the scatter plot of the GRU model, where the predicted values show a broader spread
around the reference diagonal line. The GRU results indicate reduced precision in mid-life and late-life cycles,

reflecting sensitivity to training noise and sequence irregularities during degradation phases.

Figure 27 displays the scatter plot of the MLP model’s predictions versus actual SoH values. The points are
densely aligned along the diagonal, showing minimal bias and tight clustering. The model maintains accuracy
across the entire degradation span, validating its ability to capture static input-output mappings from cycle-

based data.

Figure 28 depicts the scatter distribution of the TCN model. The data points are highly concentrated along
with the diagonal with uniform spread and low variance. TCN captures temporal correlations effectively using
causal convolutions, yielding robust performance across early, mid, and late battery life. The MLP scatter plot
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Fig. 17. GRU model: predicted vs. actual SoH over cycles on the B0006 dataset.
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Fig. 18. LSTM model: predicted vs. actual SoH over cycles on the B0006 dataset.
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Fig. 19. MLP model: predicted vs. actual SoH over cycles on the B0006 dataset.
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Fig. 20. TCN model: predicted vs. actual SoH over cycles on the B0006 dataset.

shows strong clustering along the ideal diagonal, confirming minimal prediction error. TCN also reflects a tight

distribution. LSTM and GRU scatter plots show wider dispersion.

Training efficiency

Figure 29 shows the training loss curves for MLP, GRU, LSTM, and TCN models. All models reach convergence
within 3000 epochs. The MLP demonstrates the fastest and most stable loss reduction, followed closely by
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Fig. 21. Predicted vs. actual SoH for the GRU model on the B0007 dataset.
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Fig. 22. Predicted vs. actual SoH for the LSTM model on the B0007 dataset.
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Fig. 23. Predicted vs. actual SoH for the MLP model on the B0007 dataset.
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Fig. 24. Predicted vs. actual SoH for the TCN model on the B0007 dataset.

TCN, which exhibits similarly smooth convergence behavior. The GRU shows a higher initial loss and slower
convergence due to its gating mechanisms and sequential processing overhead. The LSTM follows a similar trend
but with slightly reduced computational intensity compared to GRU. These differences in descent characteristics
reflect the architectural variations in handling temporal dependencies and parameter update efficiencies.
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Fig. 25. LSTM model: actual vs. predicted SoH (scatter plot) for the dataset B0006.
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Fig. 26. GRU model: actual vs. predicted SoH (scatter plot) for the dataset BO006.
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Fig. 27. MLP model: actual vs. predicted SoH (Scatter Plot) for the dataset B0006.
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Fig. 28. TCN model: Actual vs. Predicted SoH (Scatter Plot) for the dataset BO006.

Residual distribution analysis

Figure 30 presents the residuals across all cycles for MLP, GRU, LSTM, and TCN models. The MLP shows
tightly clustered residuals around zero, indicating minimal deviation from actual SoH values across the dataset.
TCN exhibits a similarly narrow spread, with consistent low-magnitude residuals across cycles. LSTM produces
slightly more variation than MLP and TCN but remains stable across most of the discharge range. The GRU
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Fig. 29. Combined training loss curves for MLP, GRU, LSTM, and TCN models.
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Fig. 30. Residuals comparison across all models.
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Fig. 31. Comparison of predicted vs. actual SoH for all models (GRU, LSTM, MLP, TCN) on the B0006
dataset.

displays the largest fluctuations, particularly in the later cycles, where residuals become increasingly dispersed.
This distribution reflects the relative prediction consistency of each model and highlights the architectural
impact on cycle-end accuracy.

Cross-model comparison of SoH estimation

Figures 31 and 32 present the comparative performance of the four models on the B0006 and B0007 datasets. In
both cases, MLP and TCN predictions align more closely with the actual SoH trajectory, capturing the overall
degradation trend with minimal deviation. The LSTM maintains competitive accuracy but introduces slight
underestimation and overestimation near end-of-life cycles. The GRU model demonstrates higher error spread,
particularly during the later degradation phase, leading to less consistent predictions.

Figure 33 displays the SoH estimation trajectories for MLP, GRU, LSTM, and TCN in a consolidated plot. The
predicted curves from MLP and TCN align closely with the actual SoH trend, maintaining consistent overlap
across all cycles. The LSTM captures the general degradation pattern but introduces slight underestimations
in mid-life regions. The GRU predictions exhibit greater divergence, particularly in the final cycles, where the
estimated SoH underperforms relative to the true values.
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Fig. 32. Comparison of predicted vs. actual SoH for all models (GRU, LSTM, MLP, TCN) on the B0007
dataset.
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Fig. 33. Overall comparison of predicted vs. actual SoH across all models.
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Fig. 34. Bar chart of error metrics (RMSE, MAE) for each model.

These results are consistent with the broader benchmarking analysis: MLP achieved the lowest error metrics
and fastest training time, followed by TCN, while GRU lagged in both accuracy and efficiency.

Model error metrics

Figure 34 presents the quantitative error metrics, including RMSE and MAE, for each model. The MLP records
the lowest values in both categories, with the TCN performing at a comparable level. The LSTM shows moderate
error levels, consistent with its mid-range prediction performance. The GRU exhibits the highest RMSE and
MAE, corroborating its visible deviations in the SoH prediction plots and wider residual distribution.

Key findings
The MLP model demonstrated superior accuracy, efficiency, and generalization, making it suitable for real-time
SoH prediction. TCN provided a balance between accuracy and computational efficiency, while LSTM maintained
competitive accuracy with moderate computational cost. The GRU, although capable, underperformed in both
accuracy and training time. The visualizations presented in this section substantiate the metrics in Table 4 and
provide comprehensive insights into model behavior across operational and predictive dimensions.
Cycle-based State of Health (SoH) estimation was conducted using real operational data from the NASA
B0005 battery dataset. Four deep learning models such as Multilayer Perceptron (MLP), Gated Recurrent Unit
(GRU), Long Short-Term Memory (LSTM), and Temporal Convolutional Network (TCN) were trained and
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evaluated. Among these, the MLP consistently outperformed other architectures, achieving the lowest RMSE
0f 0.0069, the lowest MAE of 0.0049, and the highest R* value of 0.9955, all within a training time of just 6.59 s.

The TCN model demonstrated comparable accuracy with an RMSE of 0.0071 and R* of 0.9951, though
it required nearly three times more training time than the MLP. Both LSTM and GRU showed acceptable
predictive performance; however, the GRU’s training time was significantly higher at 150.06 s, and its accuracy
declined relative to the other models.

Loss curves for all models confirmed stable convergence over 3000 epochs, indicating adequate learning
across architecture. Residual plots showed tight clustering around zero, suggesting minimal prediction bias and
effective generalization across cycles. Scatter plots between actual and predicted SoH further supported these
findings, especially for MLP and TCN, where predictions closely followed the ideal line of fit.

From a deployment perspective, the MLP’s rapid convergence and low computational overhead make it
highly suitable for real-time integration in embedded Battery Management Systems (BMS). While GRU and
LSTM offer competitive learning capability, their recurrent nature results in higher computational demands,
limiting their practicality in time-constrained or resource-limited applications. TCN, although slower than MLP,
balances accuracy and stability effectively, making it a robust candidate for scenarios prioritizing precision and
robustness.

Conclusion

This research evaluated the performance of four deep learning models as MLP, GRU, LSTM, and TCN—for
estimating the State of Health (SoH) in lithium-ion batteries using cycle-based discharge data from the NASA
B0005 dataset. The SoH values were computed through numerical integration of discharge current over time and
normalized against the initial capacity to capture degradation across lifecycle stages. The models were trained
and tested using PyTorch implementations, and their predictive accuracy was assessed using RMSE, MAE, and
R? metrics. Among the tested architectures, the Multilayer Perceptron (MLP) demonstrated the highest accuracy,
achieving an RMSE of 0.0069, MAE of 0.0049, and R? of 0.9955. The TCN followed closely, with comparable
performance (RMSE =0.0071, R* = 0.9951). Residual analysis confirmed low bias and tightly clustered errors
across models, while loss curves exhibited smooth convergence, reinforcing the stability of the training process.
The GRU and LSTM models also achieved acceptable accuracy but incurred significantly higher training times
due to their recurrent architecture.

The findings indicate that MLP achieved the best trade-off between predictive accuracy and computational
efficiency, making it highly suitable for real-time implementation in embedded Battery Management Systems
(BMS). The results validate the capability of deep learning models, particularly MLP and TCN, in capturing
nonlinear degradation behavior and enabling accurate SoH tracking across the operational life of lithium-ion
batteries.

The study evaluated B0005, B0006, and B0007 cells, which share similar chemistries and were tested under
controlled laboratory conditions. Results may vary for other chemistries such as NMC or LFP, under different
operating temperatures, or under dynamic drive cycles. In this work, models were trained only on cycle-level
capacity features; incorporating voltage, current, and temperature time series may further enhance prediction
accuracy.

Future research will emphasize the application of transfer learning techniques to extend model generalization
across different lithium-ion chemistries, enabling adaptability beyond the datasets evaluated in this study.
Incorporation of multi-temperature datasets will be pursued to capture thermal effects on degradation dynamics,
thereby enhancing the robustness of SoH estimation frameworks under varied environmental conditions.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon
reasonable request.
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