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Segmentation of gastroesophageal
reflux events using a semi-U-Net
architecture with 1D/2D CNNs

Azra Rasouli Kenari® & Hossein Rabbani*’

U-Net has gained traction in biomedical signal processing, particularly for segmenting 1D waveforms.
Building on this success, we propose a U-Net-inspired architecture that integrates both 2D and 1D
CNNs to effectively learn and segment gastroesophageal reflux (GER) events from Multichannel
Intraluminal Impedance (MIl) signals—specifically, a 6-channel 1D impedance signal. Current methods
for GER detection are limited by the absence of efficient software, leading to time-consuming manval
interpretation that is prone to errors. As a key contribution, we are also releasing the dataset of Ml
signals and GER annotations publicly to facilitate further research and algorithm development. In our
architecture, the 2D CNN serves as the first encoder in a semi-U-Net structure to capture features
across all channels. Subsequently, all other encoders and decoders utilize 1D CNNs to preserve

the 1D nature of the signal while minimizing the number of parameters. After network training,

the model segments GER areas in the 6th channel, utilizing a post-processing unit that accurately
segments GER areas across all six channels. This unit ensures that selected GER events align with
clinically defined criteria. The proposed architecture is compact and efficiently utilizes parameters,
demonstrating strong generalizability across diverse GER events, with average durations of
17.52+6.39 s. Outperforming existing methods, our approach achieves a sensitivity of 95.24% and a
positive predictive value of 100%, indicating superior segmentation quality. We evaluated the model’s
robustness using data from 202 episodes containing 208 GER events collected from 26 patients who
underwent 24-h MIl pH monitoring. This semi-U-Net architecture, with its low parameter count,
offers robust generalizability and adaptability to varying input durations. By improving GER event
segmentation, our approach enhances the utility of 24-h MIl-pH monitoring, enabling clinicians to
make better-informed decisions for patient selection in invasive surgical procedures.

Keywords 1D biomedical signal, Artificial intelligence, Elementwise classification, Gastroesophageal reflux
disease, Semi-U-Net

Gastroesophageal Reflux Disease (GERD) is a prevalent gastrointestinal disorder characterized by the backflow
of stomach acid into the esophagus, leading to symptoms such as heartburn, regurgitation, and chest pain. It
affects a significant portion of the global population and can have a considerable impact on an individual’s
quality of life if left untreated!.

The initial step in managing GERD typically involves initiating Proton Pump Inhibitor (PPI) therapies. For
those patients with atypical symptoms who do not respond adequately to antisecretory treatments, Classical
diagnostic methods such as endoscopy and pH monitoring are used?. Both methods have been mainstays in
the field for many years, providing valuable assistance in therapeutic and diagnostic guidance. However, there
are still many patients who have normal endoscopic findings and pH monitoring results despite ongoing GERD
symptoms and unresponsiveness to PPI therapy™*.

In the realm of GERD diagnosis and management, Multichannel Intraluminal Impedance pH (MII-pH)
monitoring has emerged as a valuable tool for assessing reflux events and their association with symptoms. The
integration of MII with pH monitoring, significantly enhances the detection of refluxate presence, proximal
extent, and clearance. By combining MII with pH analysis, it becomes possible to accurately differentiate
between acid and non-acid GER events®.

MII monitoring measures electrical resistance within the esophagus, offering detailed insights into the
movement and properties of refluxate’. It allows for the differentiation between liquid, gas, and mixed reflux
events while identifying the direction of bolus movement, differentiating swallows from refluxate. This robust
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diagnostic tool enables clinicians to correlate symptoms with reflux events accurately. Currently, MII-pH
monitoring is the gold standard for diagnosing GERD, offering superior diagnostic capabilities compared to
conventional methods®.

While MII-pH monitoring represents a significant advancement in GERD diagnostics, the accurate
interpretation of impedance data is paramount to its effectiveness in clinical practice’. Proper analysis of
impedance measurements is essential for maximizing the utility of MII-pH monitoring and ensuring optimal
patient outcomes in the management of GERD".

Several clinical studies have highlighted the importance of thorough analysis and interpretation of impedance
data>’°. However, the automatic detection of GER events using MII data has been explored in only a limited
number of studies!®1,

In'2 a cascade Multivariate Long Short-Term Memory with Fully Convolutional Network (MLSTM-FCN)
system was introduced for GER detection and diagnosis using MII-pH signals. In'?, the authors classified 84 acid
reflux events versus 141 swallows or artifacts. Their detected events are characterized as either 6, 11, or 21 s long.
This study primarily relied on pH sensor data, limiting its scope to identifying acid GER events. Their method
relies on an initial preprocessing step based on pH threshold comparison to identify potential acid reflux events,
followed by MLSTM-FCN classification to distinguish acid reflux from artifacts or swallows.

A limitation of their approach is that it only provides an approximate duration of a reflux event, categorized
as 6, 11, or 21 s, without localizing the precise onset and offset times across the six channels. Another limitation
is that they consider only acid reflux events, whereas GERs include both acid and non-acid refluxes. Non-acid
refluxes are prevalent in clinical practice'® and should not be excluded.

Additionally, artifacts such as pH readings outside the 0-14 range are omitted in their method, which could
lead to missing genuine reflux events, because many reflux events (acid and non-acid) can still be characterized
via MII data. This ability to characterize diverse reflux events is precisely why MII-pH monitoring remains the
gold standard for diagnosing GERD'.

In contrast'®, introduced S4, a state-space sequence model that serves as a versatile building block for
modeling signal data. The S4 model is treated as a “black box” with limited details provided. Initially developed
for multidimensional signals such as images and videos, the S4 model was adapted into a multiscale architecture
capable of handling extremely long audio sequences, including MII data. This innovative approach provided a
universal framework for modeling diverse, multidimensional signals. However, the method achieved only 68.7%
sensitivity and 80.8% specificity in identifying GER events within a dataset of 45 patients.

A limitation of this study is that in this study, MII data are segmented into 60-second clips labeled as
containing reflux or not, but the exact start time of reflux within each segment is not specified. Moreover'?, does
not specify how they distinguish GER events from swallows or artifacts. Since swallows and peristaltic waves are
highly prevalent, it is essential to address the need for their accurate differentiation.

Notably, both the MLSTM-FCN and S4 approaches were limited to event detection and did not address the
segmentation of GER events across all six channels.

The method described in!! was an initial exploration aimed at understanding the structure of unfamiliar MII-
pH data. In'!, a time-domain analysis of MII tracings was conducted to characterize liquid events, deliberately
excluding the common occurrence of mixed GERs. A limitation of this approach is that it focuses solely on liquid
reflux events, neglecting the more common mixed refluxes.

Additionally™, successfully automated the characterization of both mixed and liquid GER events through
sparse representation. This study posited that MII represents a sparse signal comprised of GER and swallow events
and extended periods of inactivity, corresponding to isoelectric intervals, as well as noise and interferences. It
demonstrated the effectiveness of sparse representations for modeling MII, given that GER or swallow events are
infrequent in comparison to isoelectric intervals. However, we believe that the success of deep learning methods
in!® has been hampered by the limited availability of a large dataset of MII tracings.

Artificial Intelligence has recently expanded its applications to biomedical signal processing!®-?°. Attempts
have been made to leverage U-Net, for waveform segmentation tasks in various biomedical signals, including
ECG?”28, plethysmography?’, and heart sound signals®’. In this study, we aim to investigate the feasibility
of employing a semi-U-Net deep learning architecture to MII data. As detailed in!°, GER is associated with
several variables of clinical importance. Our method accounts for both acid and non-acid, as well as liquid and
mixed physical states. It accurately delineates the onset and offset times of each GER event, enabling detailed
segmentation rather than simple classification. Furthermore, our approach effectively differentiates GER events
from artifacts and swallows through model training, and employs a dedicated post-processing step to separate
GERs from swallows. We leverage onset times across multiple channels and exploit the characteristic retrograde
propagation pattern of GERs, with specific criteria discussed in’!.

To our knowledge, most existing studies only identify the peak or approximate start of events in 1-D signals,
often with significant error margins. In contrast, our method uses deep learning to simultaneously localize both
the onset and offset of GERs with high precision. We introduce a semi-U-Net architecture combining 2D and
1D CNNss that exploit the relationships between channels for effective segmentation of GERs from MII signals.
This compact design efficiently utilizes parameters, enhancing its ability to generalize across diverse GER events.

In the following sections, we will first review the characteristics of our dataset. Next, we will provide an
overview of our neural network architecture, inspired by the U-Net. We will then present the statistical analyses
and results obtained from our study. Finally, we will conclude with a summary of our findings.

Methods

In our study, we focused on learning GER patterns without directly addressing the extended duration of MII
data, which covers 24 h. This challenge can be managed through a preprocessing approach that analyzes the MII
signal in non-overlapping 2-minute segments. Candidate intervals can be efficiently identified by calculating the
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# Episodes # GERs GER duration (s)
MII dataset Initial'® Extended Initial'’® | Extended | Initial'® | Extended
Train (train- validation) | 141 (140-1) | 182 (161-21) | 142 187 2466 3345
Test 33 20 33 21 532 384
Total 174 202 175 208 2998 3729

Table 1. Dataset description.
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Fig. 1. Sample MII data, all non-zero labelled signal points are emphasized as red, dashed lines are
representative of Baseline Impedance (BI) which is extracted using a moving average filter with a 30 s window
size. a An episode including two GER events, b another episode that includes one GER event.

entropy of the 24-hour signal®>. Segments with entropy values exceeding a predefined threshold are then selected
for further analysis using our proposed models. However, in our dataset, these 2-minute episodes were manually
chosen to ensure a diverse representation of GER patterns.

Mil dataset

Our dataset is comprised of 202 episodes, including a total of 208 GER events, which is an extended version of
the dataset that was initially presented in'. All setups for acquiring this extended dataset mirrors the procedures
outlined in the previous study'’. The dataset can be accessed at*>.

A typical 24-h MII-pH study recording often includes prolonged durations of isoelectric intervals, which
may not be optimal for effective learning®. To address this issue, we extracted 2-min episodes from the MII data
that are both informative and well-balanced. Each of these episodes spans a duration of 2 min and includes at
least one GER event, with the potential inclusion of swallows, as detailed in!0,

A thorough review process was conducted with three expert gastroenterologists to ensure accurate and
consistent labeling of GER events across six channels. Their insights helped define event characteristics, leading
to a standardized labeling system that improved data reliability and coherence.

The dataset overview in Table 1 provides a structural summary. Each episode spans a 2-min interval sampled
at 50 Hz across six channels, with GER events labeling approximately 30.77% of the total data.

Figure 1 depicts plots of two samples from the dataset, showcasing two distinct episodes of MII data across
the six channels plotted against the time axis, along with their corresponding labels.

Signal normalization
Normalization of the amplitude of MII data was done before inputting it into the semi-U-Net structure. Studies
have highlighted the importance of considering impedance levels in the interpretation of MII data, with variations
in impedance values observed between proximal and distal channels within an empty lumen>*. Normalization of
the amplitude helps mitigate the impact of these differences, particularly given the differential presence of air and
potential variations in cross-sectional areas between electrodes. Moreover, research has shown that esophageal
impedance levels can vary among individuals, underscoring the need for standardized normalization procedures
to reduce bias in the learning process®.

Amplitude normalization is intended to adjust signal amplitudes to a consistent range. This process helps
reduce the impact of differing magnitudes on the convergence speed of the model and promotes the stability of
numerical calculations®. The normalization step was implemented using (1):
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In (1), x represents the impedance data of a specific channel. The normalization process was carried out
individually for each channel.

Proposed approach

In this work we propose a two-stage scheme for the GER segmentation task which includes (1) elementwise
classification at the 6th channel and (2) event segmentation across all of the channels. Our approach leverages the
concept of making an initial estimation of potential GER events using MII data from all channels. Subsequently,
we refine this initial estimation to determine the authenticity of the GER event, as well as to characterize its onset
and offset times across all channels. Our proposed scheme, illustrated in Fig. 2 comprises two main components:
the element-wise classification, detailed in section C1, and the GER event segmentation, described in section C2.

The neural network architecture A semi-U-Net architecture is Introduced that integrates both 2D and 1D
CNNss for effective segmentation of GER events from MII signals. The network takes as input normalized
impedance data from all six channels, along with the ground-truth label of the 6th channel. A number of 182
episodes were used for training of the network with holdout cross validation method.

Processing impedance data was based on the utilization of a U-Net like structure and CNN layers to extract
feature maps. We proposed to keep the number of network parameters low, in order to be able to effectively
learn from the limited input dataset®. The design of the neural network architecture is based on the following
principles.

Convolutional layers play a crucial role in extracting meaningful features from raw MII data. By utilizing
stacked convolutional layers and multiple feature maps, the model can effectively extract rich and valuable
features®”. Studies have shown a correlation between input length and segmentation accuracy in models®.
Consequently, our proposed architecture featured an initial two-dimensional convolutional layer. This two-
dimensional convolution enables the network to monitor changes in impedance throughout the esophagus
effectively.

The pooling layer reduced the input length by half and captured relevant MII features. The temporal
location of a GER in an episode was not considered a crucial feature to preserve. Pooling layers helped create
representations that were almost invariant to translation®.

A sigmoid function was employed to scale output values within the range of 0 to 1%°. We evaluated with the
DICE score, a well-established metric for segmentation accuracy evaluation in the field of computer vision*!.
The proposed algorithm employs an encoding-decoding architecture, with detailed specifications provided in
Table 2 and a corresponding block diagram illustrated in Fig. 3.

The input of the network was a matrix of size 6x/, where [ represented the length of the two-minute MII
episode, each episode contains [ =2 x 60 x fs samples for each channel. Despite other frameworks that
suggest independent channel analysis*?, we proposed simultaneous analysis of all 6 channels. In section III we
will compare result of our proposed framework to the case in which each channel is analyzed individually.

The initial convolutional layer is two-dimensional with a kernel size of (211 x 6) to expand the receptive view
of the network. During the annotation process, gastroenterologist experts considered all impedance channels
together ensuring a thorough understanding of the dynamics and propagation of GER events within the
esophageal lumen. This idea was inspired in choosing a 2D convolution at the first layer to gain a comprehensive
understanding of GER event dynamics.

Reflux events typically initiate and terminate at the most distal site, making the 6th channel crucial for reflux
duration detection. Based on this information, the network was trained to classify each sample point at the
distal site as GER or Non-GER. The output was a vector of size 1 x [, compared to the target vector representing
the label of the 6th channel. The output of the network is an intermediate result that presents elementwise
classification of the 6th channel. To localize a GER event, additional process steps are needed. Post processing
generates final segmentation result in terms of GER event onsets and offsets across all 6 impedance sites.

Post-Processing To finalize GER segmentation the post processing step was conducted. The output of the
previous step is the primary flag of the 6th channel. As described earlier, our final goal is to segment a GER
event across all channels, meaning that we should find a final flag, the same size as input MII data that provides
element wise classification for each sample at each channel. The post processing step can be considered as three
blocks that are described below.

Elementwise Classification

MII — Signal . The 6t Channel
Episode | | Normalization Semi-Unet Structure Primary Flag

-\ |
1

> GER Event Segmentation [> Ml Flag

Fig. 2. Block diagram of the proposed method.
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Layer | Layer type | #Channels | Unit type | Kernel size | Stride | Padding | Output
Encoder

Input* 1 (1, 6000, 6)
C1** Conv2-d |8 Relu (211, 6) (105,0) | (8, 6000)
P Pooling Max (2,1) (8, 3000)
C2 Conv 1-d 16 Relu 21 10 (16, 3000)
P Pooling Max 2 (16,1500)
Decoder

D1 g;‘[‘l‘vsq"ze 8 Relu 2 2 (8,3000)
D2 (T:r;:jf;"ff 1 2 2 (1, 6000)
Output | Softmax Sigmoid (1, 6000)

Table 2. The proposed NN architecture for elementwise classification of input MII data. *, **: Attribute
functions unsqueeze(1) and squeeze(3) were used before input and after C1 layers, respectively.

Output

Fig. 3. The architecture of the network. The first layer, Cl, is special as it uses a 2D CNN to capture features
across all channels of MII data, the rest of the encoders and decoders use 1D CNNs to preserve the 1D nature
of the signal.

Cross sections with BI According to clinical literature a GER event typically initiates right after the impedance
data reaches 50% of its baseline value'!. In order to investigate this criterion, Baseline Impedance (BI) is
determined by applying a 30-second moving average to each channel individually**. Next, BI is used to identify
cross sections, where the impedance value reaches 50% of the BI. Subsequently the output is divided into a vector
21, specific to channel 6 and a matrix Z;5 for the remaining channels. The intersection between z; and output of
the semi-U-Net model, y; is computed to ensure the selection of GER events that align with the defined criteria,
potentially enhancing the specificity of the detected GERs.

In addition to this, the definition of a GER event has other criteria, which are further investigated in the third
block of our post-processing step.

Morphological editing In the second block, a morphological editing process is applied to the outcomes of
the preceding step. This stage consists of four morphological sub-blocks that function similarly to their two-
dimensional counterparts, known as opening and closing operations*4. Each sub-block involves the application
of a moving average filter followed by thresholding. The specifics of kernel size and threshold values (6) for each
sub-block are summarized in Table 3. All kernels are rectangular in shape and normalized to have an L2-norm
of 1. The result of this block is the determination of the onset and offset points for each GER event at the 6th
channel.

GER definition criteria The last block of the post-processing procedure is dedicated to channels 5 through
1. This block takes as input Z;5 together with the predicted labels from the 6th channel. Its objective is to
determine onset and offset points for each assigned GER across channels 5 to 1.
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Thresholding
Sub-block name | Kernel size | Type 0
Opening 80 Relu 0.95
Closing 200 Anti-Relu | 0.01
Opening 100 Relu 0.85
Closing 200 logical 0.01

Table 3. Details of morphological editing block.

Training

«

Trained Auto- | Y:

encoder Model
- GER
t,
A Query MII 2y Morp}ggli?glcal - :> Delec;:d GERs
Episode Criteria ni2
X5

Cross-sections |z; ‘
With BI

Fig. 4. Block diagram of the proposed post-processing procedure.

The ground truth labels of channels 5 to 1 from the training dataset were used to regularize parameters of this
block with the objective to best adapt with the definition criteria of GER events'!*.. Then the optimized block
was employed to predict labels for a query MII episode. The output of this block, known as Ry12 is the final
result of the post-processing procedure which is a matrix with n rows and 12 columns. With » representing the
number of detected GER events, and the number of columns corresponds to 6 couple of onset and offset points
belonging to the channels. In reporting values of .12, Any empty values were denoted by a “-” mark.

Figure 4 shows details of the post-processing step. Line and bold arrows symbolize the flow of single (vector)
and multi-channel (matrix) data among different blocks, respectively. Each matrix is displayed in capitalized
bold format, while each vector is in non-capital bold format. The subscript of each matrix or vector denotes its
size. The vector gt; represents the ground truth annotations of the 6th channel which was used to train the semi-
U-Net network. The output of the network is denoted by %; which is the predicted label flag of GER at semantic
segmentation level.

Figure 5 further elaborates on Fig. 4 and illustrates the roles of each component in the post-processing
pipeline and how they collaboratively contribute to the final GER detection for a query MII episode.

In summary, Fig. 6 provides an overview of our proposed model’s entire architecture, illustrating the process
from MII episode input to GER event detection output. This figure integrates Figs. 2 and 4, highlighting the
input, processing steps, and final detection results of our approach.

Results

The proposed semi-U-Net neural network was trained and experiments were conducted using the extended
MII dataset. To assess the performance of the method the dataset was randomly divided into train and test sets,
comprising 182 and 20 episodes, respectively, as described in Table 1. Within the training episodes, 21 were set
aside for validation during the neural network training and later combined for the final fine-tuning step.

To provide more insight on the regularization of the proposed method, Fig. 7 shows the accuracy and loss
plots against iteration for both the train and test folds. Based on the analysis of accuracy and loss plots, our
proposed method demonstrates effective regularization, indicating a good balance between model complexity
and generalization ability. The consistent performance across both training and testing folds suggests that the
model is not overfitting to the training data and can reliably segment GER events in unseen data.

The Adam optimization method was employed to minimize loss by adjusting the network weight. During
the initial training, the learning rate was set to 0.001, the mini-batch size was 32, and the training was limited to
150 epochs. To prevent overfitting, the maximum epoch was set to 55 and model parameters at epoch 55 were
saved for subsequent fine-tuning. The best network weights, determined by the maximum F1-score, were saved
at this stage.

To further enhance the network’s performance and capitalize on the knowledge gained during the initial
training, a fine-tuning stage was also implemented. During fine-tuning, the training and validation data were
combined to create a larger training dataset. The network’s weights with the best F1-score were loaded, and
training with the expanded dataset took place for the specified number of epochs for fine-tuning (which was set
to 10).

Scientific Reports |

(2025) 15:37152

| https://doi.org/10.1038/s41598-025-21031-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

:
f

()

Ch2

Ch3

A ancanth Adtrime T ©

SM-- — = (CY) |‘
o[ 11
(i): |>~
® | ]

Ché

,;f

Cheé

??

(h)

Fig. 5. a The 133th MII episode, X, , along with its baseline impedance, b the 6th channel Impedance data.

¢ The ground truth annotation for the 6th channel, gt,. d The output of the model, y, e the output of the
cross sections with BI block, z, f the output of the dot product of d and e, g output of the morphological Edit
block. h the same episode from a with ground truth annotation highlighted in blue, and detected GER event,
R, ,,, marked with green crosses indicating the onset points and red crosses indicating the offset points. The
horizontal axis in all panels indicates time.

The performance of the proposed method was evaluated with accuracy (Acc), sensitivity (Sen), positive
predictive value (PPV), F1 score and Temporal Error (TE) determined as follows*:

Ace (%) =100 757 77:]1; 1 ?JI\J[ TFN @
F1_Score (%) =100 — T;: §£+ — (3)

Sen (%) = 100 7“1;];7]317]\] (4)

PPV (%) = 100 TPT+7PFP (5)

TE = |actual GER duration — detected GER duration)| (6)

The TP, TN, FP and FN are calculated using output of the network and label annotations of the 6th channel and
is described by the confusion matrix of Table 4.

Building upon the evaluation metrics outlined above, Table 5 reports performance of our proposed semi-U-
Net architecture at elementwise classification level for the 20 test episodes, that contain 21 GER events. Notably,
prior research in'?, indicated that using a single classifier yields unsatisfactory results across GER events of
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Fig. 6. The proposed two-stage scheme for the GER segmentation task which includes elementwise
classification at the 6th channel and event segmentation across all of the channels. It makes an initial estimation
of potential GER events then refines it to determine the authenticity of the GER event, as well as to characterize
its onset and offset times across all channels.
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Fig. 7. Performance of the network versus epochs, for the train and test phases: a MSE loss and b accuracy.

Output of network | 0 | 1

Ground truth annotations
0 TN | FP
1 FN | TP

Table 4. Confusion matrix for elementwise classification.
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Episode # | Semi-U-Net model | Acc (%) | Sen (%) | PPV (%) | F1 Duration* (s) | TE* (s)
197 2D-1D 90.8167 | 91.4538 | 66.7383 | 0.7717 | 20.36 1.82
1D 89.7000 | 93.6149 | 63.2802 | 0.7552 1.84
80 2D-1D 93.7667 | 85.5225 | 74.5547 | 0.7966 | 13.90 0.24
1D 93.0750 | 86.5733 | 71.1612 | 0.7811 1.44
4 2D-1D 91.7778 | 64.8620 | 78.3456 | 0.7097 | 20.36 10.50
1D 91.5278 | 66.8698 | 75.6285 | 0.7098 10.36
93 2D-1D 92.4125 | 64.6980 | 82.8826 | 0.7267 | 19.06 2.02
1D 92.2417 | 68.3057 | 79.0842 | 0.7330 0.70
133 2D-1D 92.7083 | 60.0715 | 86.3599 | 0.7086 | 26.46 4.58
1D 92.3806 | 63.7801 | 80.5324 | 0.7118 3.70
172 2D-1D 93.4762 | 61.9015 | 87.8173 | 0.7262 | 11.14 2.70
1D 93.2691 | 65.7863 | 82.5000 | 0.7320 3.32
52 2D-1D 93.8625 | 63.9344 | 89.5717 | 0.7461 | 18.04 0.58
1D 93.7562 | 67.8334 | 84.8670 | 0.7540 1.08
142 2D-1D 94.2019 | 65.9539 | 90.9887 | 0.7647 | 18.90 0.08
1D 94.1500 | 69.6734 | 86.7797 | 0.7729 0.40
102 2D-1D 94.4750 | 66.2464 | 91.6293 | 0.7690 | 12.24 0.40
1D 94.4183 | 70.0648 | 87.2067 | 0.7770 0.58
191 2D-1D 94.6606 | 67.5999 |91.1111 0.7761 | 14.18 1.50
1D 94.6545 | 71.5946 | 87.0677 | 0.7858 1.80
97 2D-1D 94.5944 | 67.7558 | 92.0766 | 0.7807 | 23.70 3.74
1D 94.6972 | 72.0505 | 88.4578 | 0.7942 3.70
24 2D-1D 94.1141 | 69.2521 | 88.4040 | 0.7766 | 26.08 0.04
1D 94.1923 | 73.4166 | 85.2337 | 0.7889 0.52
157 2D-1D 94.1893 | 71.7924 | 87.0909 | 0.7871 |20.76 3.92
1D 94.3643 | 75.6129 | 85.0492 | 0.8005 4.24
120 2D-1D 94.3956 | 71.7088 | 87.5431 | 0.7884 | 10.78 1.58
1D 94.5944 | 75.6163 | 85.5761 | 0.8029 2.38
148 2D-1D 93.9896 | 72.1398 | 82.6488 | 0.7704 | 6.28 4.30
1D 94.1573 | 76.1422 | 80.9252 | 0.7846 4.74
2 2D-1D 93.8951 | 70.9266 | 83.4339 | 0.7667 |20.24 10.14
1D 94.1265 | 75.1750 | 81.8271 0.7836 7.52
32 2D-1D 93.5500 | 70.6131 | 82.3407 | 0.7603 | 24.28 7
1D 93.7472 | 74.9409 | 80.5372 | 0.7764 10.88, 4
108 2D-1D 93.6561 | 72.2506 | 83.1230 | 0.7731 |28.12 2.72
1D 93.8605 | 76.3329 | 81.4495 | 0.7881 2.52
181 2D-1D 93.4933 | 71.6150 | 83.5766 | 0.7713 | 10.42,7 0.02, -
1D 93.7675 | 76.3513 | 81.7716 | 0.7897 0.36, -
144 2D-1D 93.4683 | 71.8502 | 82.9500 | 0.7700 | 15.72 1.96
1D 93.5063 | 76.2255 | 80.1371 | 0.7813 3.00
Total 2D-1D 93.5743 | 69.8250 | 84.6066 | 0.7603 | 17.52+6.39 2.99+3.09
1D 93.5027 | 73.5129 | 81.3523 | 0.7683 3.25+3.09

Table 5. Performance of the proposed GER detection method for the 6th channel at elementwise classification
level. *Amounts are reported as mean *std. For the total case (averaged results across all 20 test episodes), the
bold values highlight the highest scores achieved when comparing the two methods, 2D-1D and 1D.

varying durations. Our analysis, as illustrated in Table 5, reveals that the mean duration of GER events is 17.52 s,
accompanied by a standard deviation of 6.39 s. This significant variation underscores the challenges associated
with analyzing MII data, highlighting the diverse nature of GER events.

In our investigation, we also evaluated a method that analyzes each channel of the MII data independently,
called as 1D semi-U-Net model. The results obtained from this approach are comparable to those of our proposed
method. However, the semi-U-Net model, which integrates data from all channels, demonstrates slightly
superior performance. Specifically, Table 5 indicates that the total TE for the proposed method is 2.99 +3.09,
compared to 3.25+3.09 for 1D model, which underscores the effectiveness of our approach in accounting for
the complete set of MII channels.

The results presented in the Table 5 correspond to the output of the trained network before applying the
dedicated post-processing steps. In the following, we aim to systematically assess the impact of each post-
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Configurations
Name | Description Acc (%) Sen (%) PPV (%) F1

C1 Without GER definition criteria | 93.12+3.82 | 88.60+4.85 | 73.62+9.33 | 0.79+0.06
C2 Without morphological edit 93.48+1.18 | 66.41+6.38 |87.08+6.90 | 0.74+0.03

C3 Without cross sections with BI | 92.37+3.88 | 89.99+4.78 | 70.15+8.50 | 0.78+0.05
C4 No post-process 93.57+£0.92 | 69.82+7.08 | 84.60+£5.91 | 0.76+0.02
C5 Proposed method 96.72+0.88 | 84.90+6.16 | 92.05+1.71 | 0.88+0.03

Table 6. Quantitative evaluation of component contributions in the proposed framework via ablation study.
The bold values in the Proposed Method row denote the best performance scores for the metrics presented.

Method Train | Test | TP | FP | FN | F1-score (%)
Sparse representation 141 33 32 12 1 95.52
1D Conv semi-U-Net 187 21 20 |1 1 95.24
2D-1D Conv semi-U-net | 187 21 20 |0 1 97.56

Table 7. Comparative analysis of GER event localization between proposed and other Methods. The bold
value corresponds to the highest F1-score, achieved by the 2D-1D Conv Semi-U-Net method.

processing component by analyzing different configurations of the proposed method. Table 6 summarizes
the quantitative effects of each component within the framework. To evaluate the contribution of individual
blocks, we tested various configurations, each omitting a specific processing step. Excluding the “GER Definition
Criteria,” “Morphological Edit,” or “Cross Sections with BI” blocks, or bypassing post-processing entirely—
using only the raw network output—allows us to understand how each component influences overall detection
performance and robustness. Table 6 reports the results of each configuration on the test set at the element-wise
classification level.

As shown in Table 6, the elimination of the two blocks ‘GER Definition Criteria’ and ‘Cross sections with BI’
does not have a significant effect on the final results. This can be justified by the fact that these two blocks are
dedicated to other objectives more than just to enhance the performance metrics. The ‘GER Definition Criteria
and ‘Cross sections with BI’ blocks were added to provide GER segmentation across all channels and to ensure
that each detected GER fulfills clinical literature criteria. They might be essential in a real-world setting for
ensuring clinical validity but could be optional for purely performance-focused tasks.

The C4 and C2 configurations results in degraded performance, as indicated in Table 6. In C2, the removal of
the ‘morphological edit’ block slightly degrades overall performance, indicating its role in improving the quality
of results. Interestingly, metrics such as accuracy, sensitivity, and F1 score are slightly higher in C4 (raw network
output) than in C2. This may be because, in C4, the raw output isn't truncated via intersection operations,
whereas in C2, some GER areas might be truncated during those intersection procedures with the BI block.
Meaning that if we use the output of the model solely we get a higher sensitivity but the PPV in C2 -after some
operations of the post processing step, except for the morphological edit-, is higher meaning that each candidate
GER has a higher probability of being a true positive, possibly reducing false positives.

The proposed method, C5, outperforms all ablation configurations, confirming that each component
contributes positively to the system’s robustness and accuracy. The superior performance of C5 over C1 may be
attributed to its ability to effectively distinguish true GER events from swallows and artifacts, thereby reducing
false positives and ensuring more precise detections.

At event segmentation level, Table 7 presents the performance metrics for GER localization, comparing
the results of our proposed method with those obtained from our previous approaches that utilized sparse
coding and discriminative dictionary learning methods!?. Additionally, we include a comparison with the 1D
convolutional semi-U-Net model. Our algorithm achieved an F1-score of 97.56% for localizing GER events,
outperforming the other methods.

Examples of GER event segmentation using our proposed method are illustrated in Figs. 8 and 9. Figure 8
specifically presents the segmentation results for the 197th episode, which was excluded from the database in'®
due to excessive noise. As evident in the figure, this episode exhibits significant noise. Remarkably, our proposed
method effectively handles both mixed GER types and challenging noisy episodes. As indicated in Table 5, the
proposed method segmented this GER event with a TE of just 1.82 s. This error is relatively minimal compared
to the overall duration of the GER, which is 20.36 s, making it negligible for practical purposes.

Figure 9 shows segmentation results for the 4th episode which has a considerable amount of TE. We believe
that the insufficiency of the segmented area is initiated from the post-processing which require refinement to
optimize the output results effectively.

Processing of the algorithm takes 26 ms per 2 min of the MII signal on a system equipped with an Intel(R)
Xeon(R) E-2176 M CPU, 32 GB of RAM, and an Intel(R) UHD Graphics P630 GPU with 16 GB of VRAM,
which makes it suitable for online implementations as well.
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Fig. 8. Example of GER event localization demonstrating a low TE. The blue highlighted areas represent the
ground truth, while the green cross marks indicate the onset and red cross marks denote the offset of the
localized GER event.
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Fig. 9. An example of GER event localization with a high TE. The blue highlighted areas represent the ground
truth, while the green cross marks indicate the onset and red cross marks denote the offset of the localized
GER event.

Discussion

In this work, we presented a novel semi-U-Net architecture that combines 2D and 1D convolutional neural
networks to effectively learn and identify GER events. The model was evaluated using a robust dataset of 202
episodes containing 208 GER events, collected from 26 patients undergoing 24-h MII pH monitoring. After
training of the network, a post-processing unit was implemented that accurately segmented GER areas across all
6 channels, ensuring alignment with clinically defined criteria.

Our proposed architecture is characterized by its compact size, low weight, and efficient utilization of a
small number of parameters, enhancing its generalizability. Our method demonstrates adaptability to varying
durations of input data, making it versatile for application in scenarios with diverse data collection settings.

Our method achieved a sensitivity of 95.24% and a positive predictive value of 100%, demonstrating superior
segmentation quality compared to existing methods. Notably, our method outperforms existing approaches in
terms of segmentation quality, boasting an F1-score of 97.56%. Its robust generalizability is underscored by its
ability to effectively handle challenging episodes that posed difficulties for previous methods.

The potential application of our approach in segmenting GER events holds promise for enhancing the
utility of 24-hour MII-pH monitoring devices. The algorithm processes MII signals at a speed of 26 ms per
2 min, making it suitable for online implementations in clinical settings. Healthcare providers can leverage the
segmentation results generated by our network to potentially improve decision-making processes, particularly
in selecting patients for invasive surgical procedures.

While our method has yielded improvements in GER characterization, several limitations warrant further
investigation. Currently, our pipeline relies on a post-processing step to refine initial detections, verify the
authenticity of GER events, and determine their onset and offset times across all channels. This adds complexity
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to the workflow and may introduce additional sources of error. Additionally, there is a need for models that more
accurately extract the proximal extents and capture the dynamics of GER across all channels.

To address these challenges, future research could focus on developing end-to-end models that inherently
capture the dynamics and spatial correlations of GER events, eliminating the need for post-processing. Recent
advances, such as Dense Associative Networks*S or Dense Attention Mechanisms*”*, offer promising solutions
for this purpose.

Additionally, our analysis revealed that the statistical distributions of GER and non-GER regions resemble
Laplace and normal distributions, respectively. Leveraging this insight, future directions could include the
development of novel knowledge distillation techniques®, to transfer knowledge from complex, high-capacity
models to smaller, more efficient models suitable for clinical deployment.

Data availability
The datasets generated and analyzed is available at https://github.com/azrarasouli/24Hr-Multichannel-Intralum
inal-Impedance-Dataset. The dataset is also provided in*.
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