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U-Net has gained traction in biomedical signal processing, particularly for segmenting 1D waveforms. 
Building on this success, we propose a U-Net-inspired architecture that integrates both 2D and 1D 
CNNs to effectively learn and segment gastroesophageal reflux (GER) events from Multichannel 
Intraluminal Impedance (MII) signals—specifically, a 6-channel 1D impedance signal. Current methods 
for GER detection are limited by the absence of efficient software, leading to time-consuming manual 
interpretation that is prone to errors. As a key contribution, we are also releasing the dataset of MII 
signals and GER annotations publicly to facilitate further research and algorithm development. In our 
architecture, the 2D CNN serves as the first encoder in a semi-U-Net structure to capture features 
across all channels. Subsequently, all other encoders and decoders utilize 1D CNNs to preserve 
the 1D nature of the signal while minimizing the number of parameters. After network training, 
the model segments GER areas in the 6th channel, utilizing a post-processing unit that accurately 
segments GER areas across all six channels. This unit ensures that selected GER events align with 
clinically defined criteria. The proposed architecture is compact and efficiently utilizes parameters, 
demonstrating strong generalizability across diverse GER events, with average durations of 
17.52 ± 6.39 s. Outperforming existing methods, our approach achieves a sensitivity of 95.24% and a 
positive predictive value of 100%, indicating superior segmentation quality. We evaluated the model’s 
robustness using data from 202 episodes containing 208 GER events collected from 26 patients who 
underwent 24-h MII pH monitoring. This semi-U-Net architecture, with its low parameter count, 
offers robust generalizability and adaptability to varying input durations. By improving GER event 
segmentation, our approach enhances the utility of 24-h MII-pH monitoring, enabling clinicians to 
make better-informed decisions for patient selection in invasive surgical procedures.

Keywords  1D biomedical signal, Artificial intelligence, Elementwise classification, Gastroesophageal reflux 
disease, Semi-U-Net

Gastroesophageal Reflux Disease (GERD) is a prevalent gastrointestinal disorder characterized by the backflow 
of stomach acid into the esophagus, leading to symptoms such as heartburn, regurgitation, and chest pain. It 
affects a significant portion of the global population and can have a considerable impact on an individual’s 
quality of life if left untreated1.

The initial step in managing GERD typically involves initiating Proton Pump Inhibitor (PPI) therapies. For 
those patients with atypical symptoms who do not respond adequately to antisecretory treatments, Classical 
diagnostic methods such as endoscopy and pH monitoring are used2. Both methods have been mainstays in 
the field for many years, providing valuable assistance in therapeutic and diagnostic guidance. However, there 
are still many patients who have normal endoscopic findings and pH monitoring results despite ongoing GERD 
symptoms and unresponsiveness to PPI therapy3,4.

In the realm of GERD diagnosis and management, Multichannel Intraluminal Impedance pH (MII-pH) 
monitoring has emerged as a valuable tool for assessing reflux events and their association with symptoms. The 
integration of MII with pH monitoring, significantly enhances the detection of refluxate presence, proximal 
extent, and clearance. By combining MII with pH analysis, it becomes possible to accurately differentiate 
between acid and non-acid GER events3.

MII monitoring measures electrical resistance within the esophagus, offering detailed insights into the 
movement and properties of refluxate5. It allows for the differentiation between liquid, gas, and mixed reflux 
events while identifying the direction of bolus movement, differentiating swallows from refluxate. This robust 
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diagnostic tool enables clinicians to correlate symptoms with reflux events accurately. Currently, MII-pH 
monitoring is the gold standard for diagnosing GERD, offering superior diagnostic capabilities compared to 
conventional methods6.

While MII-pH monitoring represents a significant advancement in GERD diagnostics, the accurate 
interpretation of impedance data is paramount to its effectiveness in clinical practice7. Proper analysis of 
impedance measurements is essential for maximizing the utility of MII-pH monitoring and ensuring optimal 
patient outcomes in the management of GERD5.

Several clinical studies have highlighted the importance of thorough analysis and interpretation of impedance 
data5,7–9. However, the automatic detection of GER events using MII data has been explored in only a limited 
number of studies10–13.

In12 a cascade Multivariate Long Short-Term Memory with Fully Convolutional Network (MLSTM-FCN) 
system was introduced for GER detection and diagnosis using MII-pH signals. In12, the authors classified 84 acid 
reflux events versus 141 swallows or artifacts. Their detected events are characterized as either 6, 11, or 21 s long. 
This study primarily relied on pH sensor data, limiting its scope to identifying acid GER events. Their method 
relies on an initial preprocessing step based on pH threshold comparison to identify potential acid reflux events, 
followed by MLSTM-FCN classification to distinguish acid reflux from artifacts or swallows.

A limitation of their approach is that it only provides an approximate duration of a reflux event, categorized 
as 6, 11, or 21 s, without localizing the precise onset and offset times across the six channels. Another limitation 
is that they consider only acid reflux events, whereas GERs include both acid and non-acid refluxes. Non-acid 
refluxes are prevalent in clinical practice14 and should not be excluded.

Additionally, artifacts such as pH readings outside the 0–14 range are omitted in their method, which could 
lead to missing genuine reflux events, because many reflux events (acid and non-acid) can still be characterized 
via MII data. This ability to characterize diverse reflux events is precisely why MII-pH monitoring remains the 
gold standard for diagnosing GERD15.

In contrast13, introduced S4, a state-space sequence model that serves as a versatile building block for 
modeling signal data. The S4 model is treated as a “black box” with limited details provided. Initially developed 
for multidimensional signals such as images and videos, the S4 model was adapted into a multiscale architecture 
capable of handling extremely long audio sequences, including MII data. This innovative approach provided a 
universal framework for modeling diverse, multidimensional signals. However, the method achieved only 68.7% 
sensitivity and 80.8% specificity in identifying GER events within a dataset of 45 patients.

A limitation of this study is that in this study, MII data are segmented into 60-second clips labeled as 
containing reflux or not, but the exact start time of reflux within each segment is not specified. Moreover13, does 
not specify how they distinguish GER events from swallows or artifacts. Since swallows and peristaltic waves are 
highly prevalent, it is essential to address the need for their accurate differentiation.

Notably, both the MLSTM-FCN and S4 approaches were limited to event detection and did not address the 
segmentation of GER events across all six channels.

The method described in11 was an initial exploration aimed at understanding the structure of unfamiliar MII-
pH data. In11, a time-domain analysis of MII tracings was conducted to characterize liquid events, deliberately 
excluding the common occurrence of mixed GERs. A limitation of this approach is that it focuses solely on liquid 
reflux events, neglecting the more common mixed refluxes.

Additionally10, successfully automated the characterization of both mixed and liquid GER events through 
sparse representation. This study posited that MII represents a sparse signal comprised of GER and swallow events 
and extended periods of inactivity, corresponding to isoelectric intervals, as well as noise and interferences. It 
demonstrated the effectiveness of sparse representations for modeling MII, given that GER or swallow events are 
infrequent in comparison to isoelectric intervals. However, we believe that the success of deep learning methods 
in10 has been hampered by the limited availability of a large dataset of MII tracings.

Artificial Intelligence has recently expanded its applications to biomedical signal processing16–25. Attempts 
have been made to leverage U-Net26, for waveform segmentation tasks in various biomedical signals, including 
ECG27,28, plethysmography29, and heart sound signals30. In this study, we aim to investigate the feasibility 
of employing a semi-U-Net deep learning architecture to MII data. As detailed in10, GER is associated with 
several variables of clinical importance. Our method accounts for both acid and non-acid, as well as liquid and 
mixed physical states. It accurately delineates the onset and offset times of each GER event, enabling detailed 
segmentation rather than simple classification. Furthermore, our approach effectively differentiates GER events 
from artifacts and swallows through model training, and employs a dedicated post-processing step to separate 
GERs from swallows. We leverage onset times across multiple channels and exploit the characteristic retrograde 
propagation pattern of GERs, with specific criteria discussed in31.

To our knowledge, most existing studies only identify the peak or approximate start of events in 1-D signals, 
often with significant error margins. In contrast, our method uses deep learning to simultaneously localize both 
the onset and offset of GERs with high precision. We introduce a semi-U-Net architecture combining 2D and 
1D CNNs that exploit the relationships between channels for effective segmentation of GERs from MII signals. 
This compact design efficiently utilizes parameters, enhancing its ability to generalize across diverse GER events.

In the following sections, we will first review the characteristics of our dataset. Next, we will provide an 
overview of our neural network architecture, inspired by the U-Net. We will then present the statistical analyses 
and results obtained from our study. Finally, we will conclude with a summary of our findings.

Methods
In our study, we focused on learning GER patterns without directly addressing the extended duration of MII 
data, which covers 24 h. This challenge can be managed through a preprocessing approach that analyzes the MII 
signal in non-overlapping 2-minute segments. Candidate intervals can be efficiently identified by calculating the 
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entropy of the 24-hour signal32. Segments with entropy values exceeding a predefined threshold are then selected 
for further analysis using our proposed models. However, in our dataset, these 2-minute episodes were manually 
chosen to ensure a diverse representation of GER patterns.

MII dataset
Our dataset is comprised of 202 episodes, including a total of 208 GER events, which is an extended version of 
the dataset that was initially presented in10. All setups for acquiring this extended dataset mirrors the procedures 
outlined in the previous study10. The dataset can be accessed at33.

A typical 24-h MII–pH study recording often includes prolonged durations of isoelectric intervals, which 
may not be optimal for effective learning5. To address this issue, we extracted 2-min episodes from the MII data 
that are both informative and well-balanced. Each of these episodes spans a duration of 2 min and includes at 
least one GER event, with the potential inclusion of swallows, as detailed in10.

A thorough review process was conducted with three expert gastroenterologists to ensure accurate and 
consistent labeling of GER events across six channels. Their insights helped define event characteristics, leading 
to a standardized labeling system that improved data reliability and coherence.

The dataset overview in Table 1 provides a structural summary. Each episode spans a 2-min interval sampled 
at 50 Hz across six channels, with GER events labeling approximately 30.77% of the total data.

Figure 1 depicts plots of two samples from the dataset, showcasing two distinct episodes of MII data across 
the six channels plotted against the time axis, along with their corresponding labels.

Signal normalization
Normalization of the amplitude of MII data was done before inputting it into the semi-U-Net structure. Studies 
have highlighted the importance of considering impedance levels in the interpretation of MII data, with variations 
in impedance values observed between proximal and distal channels within an empty lumen34. Normalization of 
the amplitude helps mitigate the impact of these differences, particularly given the differential presence of air and 
potential variations in cross-sectional areas between electrodes. Moreover, research has shown that esophageal 
impedance levels can vary among individuals, underscoring the need for standardized normalization procedures 
to reduce bias in the learning process34.

Amplitude normalization is intended to adjust signal amplitudes to a consistent range. This process helps 
reduce the impact of differing magnitudes on the convergence speed of the model and promotes the stability of 
numerical calculations35. The normalization step was implemented using (1):

Fig. 1.  Sample MII data, all non-zero labelled signal points are emphasized as red, dashed lines are 
representative of Baseline Impedance (BI) which is extracted using a moving average filter with a 30 s window 
size. a An episode including two GER events, b another episode that includes one GER event.

 

MII dataset

# Episodes # GERs GER duration (s)

Initial10 Extended Initial10 Extended Initial10 Extended

Train (train- validation) 141 (140–1) 182 (161 − 21) 142 187 2466 3345

Test 33 20 33 21 532 384

Total 174 202 175 208 2998 3729

Table 1.  Dataset description.
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xn = x

∥x∥2
= (x1, x2, . . . , xn)√

xT x
� (1)

In (1),  x represents the impedance data of a specific channel. The normalization process was carried out 
individually for each channel.

Proposed approach
In this work we propose a two-stage scheme for the GER segmentation task which includes (1) elementwise 
classification at the 6th channel and (2) event segmentation across all of the channels. Our approach leverages the 
concept of making an initial estimation of potential GER events using MII data from all channels. Subsequently, 
we refine this initial estimation to determine the authenticity of the GER event, as well as to characterize its onset 
and offset times across all channels. Our proposed scheme, illustrated in Fig. 2 comprises two main components: 
the element-wise classification, detailed in section C1, and the GER event segmentation, described in section C2.

The neural network architecture A semi-U-Net architecture is Introduced that integrates both 2D and 1D 
CNNs for effective segmentation of GER events from MII signals. The network takes as input normalized 
impedance data from all six channels, along with the ground-truth label of the 6th channel. A number of 182 
episodes were used for training of the network with holdout cross validation method.

Processing impedance data was based on the utilization of a U-Net like structure and CNN layers to extract 
feature maps. We proposed to keep the number of network parameters low, in order to be able to effectively 
learn from the limited input dataset36. The design of the neural network architecture is based on the following 
principles.

Convolutional layers play a crucial role in extracting meaningful features from raw MII data. By utilizing 
stacked convolutional layers and multiple feature maps, the model can effectively extract rich and valuable 
features37. Studies have shown a correlation between input length and segmentation accuracy in models38. 
Consequently, our proposed architecture featured an initial two-dimensional convolutional layer. This two-
dimensional convolution enables the network to monitor changes in impedance throughout the esophagus 
effectively.

The pooling layer reduced the input length by half and captured relevant MII features. The temporal 
location of a GER in an episode was not considered a crucial feature to preserve. Pooling layers helped create 
representations that were almost invariant to translation39.

A sigmoid function was employed to scale output values within the range of 0 to 140. We evaluated with the 
DICE score, a well-established metric for segmentation accuracy evaluation in the field of computer vision41. 
The proposed algorithm employs an encoding-decoding architecture, with detailed specifications provided in 
Table 2 and a corresponding block diagram illustrated in Fig. 3.

The input of the network was a matrix of size 6×l, where l represented the length of the two-minute MII 
episode, each episode contains l = 2 × 60 × fs samples for each channel. Despite other frameworks that 
suggest independent channel analysis42, we proposed simultaneous analysis of all 6 channels. In section III we 
will compare result of our proposed framework to the case in which each channel is analyzed individually.

The initial convolutional layer is two-dimensional with a kernel size of (211 × 6) to expand the receptive view 
of the network. During the annotation process, gastroenterologist experts considered all impedance channels 
together ensuring a thorough understanding of the dynamics and propagation of GER events within the 
esophageal lumen. This idea was inspired in choosing a 2D convolution at the first layer to gain a comprehensive 
understanding of GER event dynamics.

Reflux events typically initiate and terminate at the most distal site, making the 6th channel crucial for reflux 
duration detection. Based on this information, the network was trained to classify each sample point at the 
distal site as GER or Non-GER. The output was a vector of size 1 × l, compared to the target vector representing 
the label of the 6th channel. The output of the network is an intermediate result that presents elementwise 
classification of the 6th channel. To localize a GER event, additional process steps are needed. Post processing 
generates final segmentation result in terms of GER event onsets and offsets across all 6 impedance sites.

Post-Processing To finalize GER segmentation the post processing step was conducted. The output of the 
previous step is the primary flag of the 6th channel. As described earlier, our final goal is to segment a GER 
event across all channels, meaning that we should find a final flag, the same size as input MII data that provides 
element wise classification for each sample at each channel. The post processing step can be considered as three 
blocks that are described below.

Fig. 2.  Block diagram of the proposed method.
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Cross sections with BI According to clinical literature a GER event typically initiates right after the impedance 
data reaches 50% of its baseline value11. In order to investigate this criterion, Baseline Impedance (BI) is 
determined by applying a 30-second moving average to each channel individually43. Next, BI is used to identify 
cross sections, where the impedance value reaches 50% of the BI. Subsequently the output is divided into a vector 
zl, specific to channel 6 and a matrix Zl5 for the remaining channels. The intersection between zl and output of 
the semi-U-Net model, yl is computed to ensure the selection of GER events that align with the defined criteria, 
potentially enhancing the specificity of the detected GERs.

In addition to this, the definition of a GER event has other criteria, which are further investigated in the third 
block of our post-processing step.

Morphological editing In the second block, a morphological editing process is applied to the outcomes of 
the preceding step. This stage consists of four morphological sub-blocks that function similarly to their two-
dimensional counterparts, known as opening and closing operations44. Each sub-block involves the application 
of a moving average filter followed by thresholding. The specifics of kernel size and threshold values (θ) for each 
sub-block are summarized in Table 3. All kernels are rectangular in shape and normalized to have an L2-norm 
of 1. The result of this block is the determination of the onset and offset points for each GER event at the 6th 
channel.

GER definition criteria The last block of the post-processing procedure is dedicated to channels 5 through 
1. This block takes as input Zl5 together with the predicted labels from the 6th channel. Its objective is to 
determine onset and offset points for each assigned GER across channels 5 to 1.

Fig. 3.  The architecture of the network. The first layer, C1, is special as it uses a 2D CNN to capture features 
across all channels of MII data, the rest of the encoders and decoders use 1D CNNs to preserve the 1D nature 
of the signal.

 

Layer Layer type #Channels Unit type Kernel size Stride Padding Output

Encoder

Input* 1 (1, 6000, 6)

C1** Conv 2-d 8 Relu (211, 6) (105, 0) (8, 6000)

P Pooling Max (2, 1) (8, 3000)

C2 Conv 1-d 16 Relu 21 10 (16, 3000)

P Pooling Max 2 (16,1500)

Decoder

D1 Transpose
Conv 1-d 8 Relu 2 2 (8, 3000)

D2 Transpose
Conv 1-d 1 2 2 (1, 6000)

Output Softmax Sigmoid (1, 6000)

Table 2.  The proposed NN architecture for elementwise classification of input MII data. *, **: Attribute 
functions unsqueeze(1) and squeeze(3) were used before input and after C1 layers, respectively.
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The ground truth labels of channels 5 to 1 from the training dataset were used to regularize parameters of this 
block with the objective to best adapt with the definition criteria of GER events11,31. Then the optimized block 
was employed to predict labels for a query MII episode. The output of this block, known as Rn12 is the final 
result of the post-processing procedure which is a matrix with n rows and 12 columns. With n representing the 
number of detected GER events, and the number of columns corresponds to 6 couple of onset and offset points 
belonging to the channels. In reporting values of Rn12, Any empty values were denoted by a “-” mark.

Figure 4 shows details of the post-processing step. Line and bold arrows symbolize the flow of single (vector) 
and multi-channel (matrix) data among different blocks, respectively. Each matrix is displayed in capitalized 
bold format, while each vector is in non-capital bold format. The subscript of each matrix or vector denotes its 
size. The vector gtl represents the ground truth annotations of the 6th channel which was used to train the semi-
U-Net network. The output of the network is denoted by yl which is the predicted label flag of GER at semantic 
segmentation level.

Figure 5 further elaborates on Fig.  4 and illustrates the roles of each component in the post-processing 
pipeline and how they collaboratively contribute to the final GER detection for a query MII episode.

In summary, Fig. 6 provides an overview of our proposed model’s entire architecture, illustrating the process 
from MII episode input to GER event detection output. This figure integrates Figs. 2 and 4, highlighting the 
input, processing steps, and final detection results of our approach.

Results
The proposed semi-U-Net neural network was trained and experiments were conducted using the extended 
MII dataset. To assess the performance of the method the dataset was randomly divided into train and test sets, 
comprising 182 and 20 episodes, respectively, as described in Table 1. Within the training episodes, 21 were set 
aside for validation during the neural network training and later combined for the final fine-tuning step.

To provide more insight on the regularization of the proposed method, Fig. 7 shows the accuracy and loss 
plots against iteration for both the train and test folds. Based on the analysis of accuracy and loss plots, our 
proposed method demonstrates effective regularization, indicating a good balance between model complexity 
and generalization ability. The consistent performance across both training and testing folds suggests that the 
model is not overfitting to the training data and can reliably segment GER events in unseen data.

The Adam optimization method was employed to minimize loss by adjusting the network weight. During 
the initial training, the learning rate was set to 0.001, the mini-batch size was 32, and the training was limited to 
150 epochs. To prevent overfitting, the maximum epoch was set to 55 and model parameters at epoch 55 were 
saved for subsequent fine-tuning. The best network weights, determined by the maximum F1-score, were saved 
at this stage.

To further enhance the network’s performance and capitalize on the knowledge gained during the initial 
training, a fine-tuning stage was also implemented. During fine-tuning, the training and validation data were 
combined to create a larger training dataset. The network’s weights with the best F1-score were loaded, and 
training with the expanded dataset took place for the specified number of epochs for fine-tuning (which was set 
to 10).

Fig. 4.  Block diagram of the proposed post-processing procedure.

 

Sub-block name Kernel size

Thresholding

Type θ

Opening 80 Relu 0.95

Closing 200 Anti-Relu 0.01

Opening 100 Relu 0.85

Closing 200 logical 0.01

Table 3.  Details of morphological editing block.
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The performance of the proposed method was evaluated with accuracy (Acc), sensitivity (Sen), positive 
predictive value (PPV), F1 score and Temporal Error (TE) determined as follows45:

	
Acc (%) = 100 T P + T N

T P + T N + F P + F N
� (2)

	
F 1_Score (%) = 100 2 × T P

2 × T P + F P + F N
� (3)

	
Sen (%) = 100 T P

T P + F N
� (4)

	
P P V (%) = 100 T P

T P + F P
� (5)

	 T E = |actual GER duration − detected GER duration|� (6)

The TP, TN, FP and FN are calculated using output of the network and label annotations of the 6th channel and 
is described by the confusion matrix of Table 4.

Building upon the evaluation metrics outlined above, Table 5 reports performance of our proposed semi-U-
Net architecture at elementwise classification level for the 20 test episodes, that contain 21 GER events. Notably, 
prior research in12, indicated that using a single classifier yields unsatisfactory results across GER events of 

Fig. 5.  a The 133th MII episode, Xl6, along with its baseline impedance, b the 6th channel Impedance data. 
c The ground truth annotation for the 6th channel, gtl. d The output of the model, yl, e the output of the 
cross sections with BI block, zl, f the output of the dot product of d and e, g output of the morphological Edit 
block. h the same episode from a with ground truth annotation highlighted in blue, and detected GER event, 
Rn12, marked with green crosses indicating the onset points and red crosses indicating the offset points. The 
horizontal axis in all panels indicates time.
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Output of network 0 1

Ground truth annotations

0 TN FP

1 FN TP

Table 4.  Confusion matrix for elementwise classification.

 

Fig. 7.  Performance of the network versus epochs, for the train and test phases: a MSE loss and b accuracy.

 

Fig. 6.  The proposed two-stage scheme for the GER segmentation task which includes elementwise 
classification at the 6th channel and event segmentation across all of the channels. It makes an initial estimation 
of potential GER events then refines it to determine the authenticity of the GER event, as well as to characterize 
its onset and offset times across all channels.
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varying durations. Our analysis, as illustrated in Table 5, reveals that the mean duration of GER events is 17.52 s, 
accompanied by a standard deviation of 6.39 s. This significant variation underscores the challenges associated 
with analyzing MII data, highlighting the diverse nature of GER events.

In our investigation, we also evaluated a method that analyzes each channel of the MII data independently, 
called as 1D semi-U-Net model. The results obtained from this approach are comparable to those of our proposed 
method. However, the semi-U-Net model, which integrates data from all channels, demonstrates slightly 
superior performance. Specifically, Table 5 indicates that the total TE for the proposed method is 2.99 ± 3.09, 
compared to 3.25 ± 3.09 for 1D model, which underscores the effectiveness of our approach in accounting for 
the complete set of MII channels.

The results presented in the Table 5 correspond to the output of the trained network before applying the 
dedicated post-processing steps. In the following, we aim to systematically assess the impact of each post-

Episode # Semi-U-Net model Acc (%) Sen (%) PPV (%) F1 Duration* (s) TE* (s)

197 2D-1D 90.8167 91.4538 66.7383 0.7717 20.36 1.82

1D 89.7000 93.6149 63.2802 0.7552 1.84

80 2D-1D 93.7667 85.5225 74.5547 0.7966 13.90 0.24

1D 93.0750 86.5733 71.1612 0.7811 1.44

4 2D-1D 91.7778 64.8620 78.3456 0.7097 20.36 10.50

1D 91.5278 66.8698 75.6285 0.7098 10.36

93 2D-1D 92.4125 64.6980 82.8826 0.7267 19.06 2.02

1D 92.2417 68.3057 79.0842 0.7330 0.70

133 2D-1D 92.7083 60.0715 86.3599 0.7086 26.46 4.58

1D 92.3806 63.7801 80.5324 0.7118 3.70

172 2D-1D 93.4762 61.9015 87.8173 0.7262 11.14 2.70

1D 93.2691 65.7863 82.5000 0.7320 3.32

52 2D-1D 93.8625 63.9344 89.5717 0.7461 18.04 0.58

1D 93.7562 67.8334 84.8670 0.7540 1.08

142 2D-1D 94.2019 65.9539 90.9887 0.7647 18.90 0.08

1D 94.1500 69.6734 86.7797 0.7729 0.40

102 2D-1D 94.4750 66.2464 91.6293 0.7690 12.24 0.40

1D 94.4183 70.0648 87.2067 0.7770 0.58

191 2D-1D 94.6606 67.5999 91.1111 0.7761 14.18 1.50

1D 94.6545 71.5946 87.0677 0.7858 1.80

97 2D-1D 94.5944 67.7558 92.0766 0.7807 23.70 3.74

1D 94.6972 72.0505 88.4578 0.7942 3.70

24 2D-1D 94.1141 69.2521 88.4040 0.7766 26.08 0.04

1D 94.1923 73.4166 85.2337 0.7889 0.52

157 2D-1D 94.1893 71.7924 87.0909 0.7871 20.76 3.92

1D 94.3643 75.6129 85.0492 0.8005 4.24

120 2D-1D 94.3956 71.7088 87.5431 0.7884 10.78 1.58

1D 94.5944 75.6163 85.5761 0.8029 2.38

148 2D-1D 93.9896 72.1398 82.6488 0.7704 6.28 4.30

1D 94.1573 76.1422 80.9252 0.7846 4.74

2 2D-1D 93.8951 70.9266 83.4339 0.7667 20.24 10.14

1D 94.1265 75.1750 81.8271 0.7836 7.52

32 2D-1D 93.5500 70.6131 82.3407 0.7603 24.28 7

1D 93.7472 74.9409 80.5372 0.7764 10.88, 4

108 2D-1D 93.6561 72.2506 83.1230 0.7731 28.12 2.72

1D 93.8605 76.3329 81.4495 0.7881 2.52

181 2D-1D 93.4933 71.6150 83.5766 0.7713 10.42, 7 0.02, –

1D 93.7675 76.3513 81.7716 0.7897 0.36, –

144 2D-1D 93.4683 71.8502 82.9500 0.7700 15.72 1.96

1D 93.5063 76.2255 80.1371 0.7813 3.00

Total 2D-1D 93.5743 69.8250 84.6066 0.7603 17.52 ± 6.39 2.99 ± 3.09

1D 93.5027 73.5129 81.3523 0.7683 3.25 ± 3.09

Table 5.  Performance of the proposed GER detection method for the 6th channel at elementwise classification 
level. *Amounts are reported as mean ± std. For the total case (averaged results across all 20 test episodes), the 
bold values highlight the highest scores achieved when comparing the two methods, 2D-1D and 1D.

 

Scientific Reports |        (2025) 15:37152 9| https://doi.org/10.1038/s41598-025-21031-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


processing component by analyzing different configurations of the proposed method. Table  6 summarizes 
the quantitative effects of each component within the framework. To evaluate the contribution of individual 
blocks, we tested various configurations, each omitting a specific processing step. Excluding the “GER Definition 
Criteria,” “Morphological Edit,” or “Cross Sections with BI” blocks, or bypassing post-processing entirely—
using only the raw network output—allows us to understand how each component influences overall detection 
performance and robustness. Table 6 reports the results of each configuration on the test set at the element-wise 
classification level.

As shown in Table 6, the elimination of the two blocks ‘GER Definition Criteria’’ and ‘Cross sections with BI’ 
does not have a significant effect on the final results. This can be justified by the fact that these two blocks are 
dedicated to other objectives more than just to enhance the performance metrics. The ‘GER Definition Criteria’ 
and ‘Cross sections with BI’ blocks were added to provide GER segmentation across all channels and to ensure 
that each detected GER fulfills clinical literature criteria. They might be essential in a real-world setting for 
ensuring clinical validity but could be optional for purely performance-focused tasks.

The C4 and C2 configurations results in degraded performance, as indicated in Table 6. In C2, the removal of 
the ‘morphological edit’ block slightly degrades overall performance, indicating its role in improving the quality 
of results. Interestingly, metrics such as accuracy, sensitivity, and F1 score are slightly higher in C4 (raw network 
output) than in C2. This may be because, in C4, the raw output isn’t truncated via intersection operations, 
whereas in C2, some GER areas might be truncated during those intersection procedures with the BI block. 
Meaning that if we use the output of the model solely we get a higher sensitivity but the PPV in C2 -after some 
operations of the post processing step, except for the morphological edit-, is higher meaning that each candidate 
GER has a higher probability of being a true positive, possibly reducing false positives.

The proposed method, C5, outperforms all ablation configurations, confirming that each component 
contributes positively to the system’s robustness and accuracy. The superior performance of C5 over C1 may be 
attributed to its ability to effectively distinguish true GER events from swallows and artifacts, thereby reducing 
false positives and ensuring more precise detections.

At event segmentation level, Table  7 presents the performance metrics for GER localization, comparing 
the results of our proposed method with those obtained from our previous approaches that utilized sparse 
coding and discriminative dictionary learning methods10. Additionally, we include a comparison with the 1D 
convolutional semi-U-Net model. Our algorithm achieved an F1-score of 97.56% for localizing GER events, 
outperforming the other methods.

Examples of GER event segmentation using our proposed method are illustrated in Figs. 8 and 9. Figure 8 
specifically presents the segmentation results for the 197th episode, which was excluded from the database in10 
due to excessive noise. As evident in the figure, this episode exhibits significant noise. Remarkably, our proposed 
method effectively handles both mixed GER types and challenging noisy episodes. As indicated in Table 5, the 
proposed method segmented this GER event with a TE of just 1.82 s. This error is relatively minimal compared 
to the overall duration of the GER, which is 20.36 s, making it negligible for practical purposes.

Figure 9 shows segmentation results for the 4th episode which has a considerable amount of TE. We believe 
that the insufficiency of the segmented area is initiated from the post-processing which require refinement to 
optimize the output results effectively.

Processing of the algorithm takes 26 ms per 2 min of the MII signal on a system equipped with an Intel(R) 
Xeon(R) E-2176 M CPU, 32 GB of RAM, and an Intel(R) UHD Graphics P630 GPU with 16 GB of VRAM, 
which makes it suitable for online implementations as well.

Method

# GERs

TP FP FN F1-score (%)Train Test

Sparse representation 141 33 32 2 1 95.52

1D Conv semi-U-Net 187 21 20 1 1 95.24

2D-1D Conv semi-U-net 187 21 20 0 1 97.56

Table 7.  Comparative analysis of GER event localization between proposed and other Methods. The bold 
value corresponds to the highest F1-score, achieved by the 2D-1D Conv Semi-U-Net method.

 

Configurations

Acc (%) Sen (%) PPV (%) F1Name Description

C1 Without GER definition criteria 93.12 ± 3.82 88.60 ± 4.85 73.62 ± 9.33 0.79 ± 0.06

C2 Without morphological edit 93.48 ± 1.18 66.41 ± 6.38 87.08 ± 6.90 0.74 ± 0.03

C3 Without cross sections with BI 92.37 ± 3.88 89.99 ± 4.78 70.15 ± 8.50 0.78 ± 0.05

C4 No post-process 93.57 ± 0.92 69.82 ± 7.08 84.60 ± 5.91 0.76 ± 0.02

C5 Proposed method 96.72 ± 0.88 84.90 ± 6.16 92.05 ± 1.71 0.88 ± 0.03

Table 6.  Quantitative evaluation of component contributions in the proposed framework via ablation study. 
The bold values in the Proposed Method row denote the best performance scores for the metrics presented.
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Discussion
In this work, we presented a novel semi-U-Net architecture that combines 2D and 1D convolutional neural 
networks to effectively learn and identify GER events. The model was evaluated using a robust dataset of 202 
episodes containing 208 GER events, collected from 26 patients undergoing 24-h MII pH monitoring. After 
training of the network, a post-processing unit was implemented that accurately segmented GER areas across all 
6 channels, ensuring alignment with clinically defined criteria.

Our proposed architecture is characterized by its compact size, low weight, and efficient utilization of a 
small number of parameters, enhancing its generalizability. Our method demonstrates adaptability to varying 
durations of input data, making it versatile for application in scenarios with diverse data collection settings.

Our method achieved a sensitivity of 95.24% and a positive predictive value of 100%, demonstrating superior 
segmentation quality compared to existing methods. Notably, our method outperforms existing approaches in 
terms of segmentation quality, boasting an F1-score of 97.56%. Its robust generalizability is underscored by its 
ability to effectively handle challenging episodes that posed difficulties for previous methods.

The potential application of our approach in segmenting GER events holds promise for enhancing the 
utility of 24-hour MII-pH monitoring devices. The algorithm processes MII signals at a speed of 26 ms per 
2 min, making it suitable for online implementations in clinical settings. Healthcare providers can leverage the 
segmentation results generated by our network to potentially improve decision-making processes, particularly 
in selecting patients for invasive surgical procedures.

While our method has yielded improvements in GER characterization, several limitations warrant further 
investigation. Currently, our pipeline relies on a post-processing step to refine initial detections, verify the 
authenticity of GER events, and determine their onset and offset times across all channels. This adds complexity 

Fig. 9.  An example of GER event localization with a high TE. The blue highlighted areas represent the ground 
truth, while the green cross marks indicate the onset and red cross marks denote the offset of the localized 
GER event.

 

Fig. 8.  Example of GER event localization demonstrating a low TE. The blue highlighted areas represent the 
ground truth, while the green cross marks indicate the onset and red cross marks denote the offset of the 
localized GER event.
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to the workflow and may introduce additional sources of error. Additionally, there is a need for models that more 
accurately extract the proximal extents and capture the dynamics of GER across all channels.

To address these challenges, future research could focus on developing end-to-end models that inherently 
capture the dynamics and spatial correlations of GER events, eliminating the need for post-processing. Recent 
advances, such as Dense Associative Networks46 or Dense Attention Mechanisms47,48, offer promising solutions 
for this purpose.

Additionally, our analysis revealed that the statistical distributions of GER and non-GER regions resemble 
Laplace and normal distributions, respectively. Leveraging this insight, future directions could include the 
development of novel knowledge distillation techniques49, to transfer knowledge from complex, high-capacity 
models to smaller, more efficient models suitable for clinical deployment.

Data availability
The datasets generated and analyzed is available at ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​​b​.​​c​o​m​/​a​z​​​r​a​r​a​s​o​​u​l​i​/​​2​4​H​r​-​M​u​l​t​i​c​h​a​n​n​e​l​-​I​n​t​r​a​l​u​m​
i​n​a​l​-​I​m​p​e​d​a​n​c​e​-​D​a​t​a​s​e​t​. The dataset is also provided in33.
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