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Kidney stone disease is a common syndrome and a recurring one, where it bears a 50% chance of being 
manifested again within ten years and may lead to serious complications like ureteral obstruction 
and unbearable pain. If timely intervention is considered of paramount importance for a timely 
intervention, early and accurate detection using computed tomography (CT) scans is also critical to 
this process. Existing diagnostic systems are being challenged by factors like noise in images, low 
contrast, and class imbalance, and these might hamper the performance of existing systems. This work 
focuses on developing an optimized framework of deep learning for the detection of kidney stones in 
CT images to deal with these drawbacks. The overall proposed approach consists of a preprocessing 
scheme to normalize the data using Wang-Mendel (WM) de-noising and enhancing contrast globally, 
followed by data augmentation with the use of SdSmote to overcome an imbalance in the classes. 
The pre-processed images will be fed into a modified Bidirectional Recurrent Neural Network (BRNN), 
which will undergo optimization of the weights and biases using a newly implemented Bald Eagle 
Search (BES) algorithm, with quasi-oppositional learning and chaotic initialization introduced to 
increase convergence and global search capability. The proposed method is applied to the public 
CT Kidney Dataset, compared with state-of-the-art techniques like ensemble learning, Exemplar 
Darknet19, DE/SVM, and Decision Tree solutions. The proposed means attained better performance, 
showing 96.96% accuracy, 95.62% sensitivity, 91.67% specificity, 94.38% precision, 94.99% F1-score, 
and 91.61% in the Jaccard Index, thereby confirming the effectiveness and robustness of the proposed 
model in clinical decision-making concerning kidney stone diagnosis.
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Kidney stones are formed when soluble minerals build up in the internal layer of the kidney. Calcium oxalate is 
commonly found in kidney stones, but other chemicals can also be found in urine deposits. Kidney stones can 
be tiny and travel through the urethra without the person even realizing it1. However, they can be quite painful2. 
The presence of kidney stones in the body can lead to ureteral obstruction, which seems to be the blocking of the 
urethra’s exit from the body3. Kidney stones are normally asymptomatic until they pass through the ureter; once 
they do, the following symptoms occur4.

Men are more likely to have kidney stones. The majority of kidney stone sufferers are between the ages of 
30 and 505. Kidney stones are more likely to occur if you have a genetic history of them. If the person has not 

1Institute of Collaborative Innovation, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China. 
2Department of Computer Engineering, University of California, Irvine, CA 92697, USA. 3School of Information 
and Management, Guangxi Medical University, Guangxi, Nanning 530021, China. 4Nanning Hospital of Traditional 
Chinese Medicine, Guangxi, Nanning 530000, China. 5College of Humanities and Social Sciences, Guangxi Medical 
University, Guangxi, Nanning 530021, China. 6Information Center of Guangxi Medical University, Guangxi, Nanning 
530021, China. 7Birjand Branch, Islamic Azad University, Birjand, Iran. 8College of Technical Engineering, The Islamic 
University, Najaf, Iraq. email: liuxiaohong@gxmu.edu.cn; togrolsalami@gmail.com

OPEN

Scientific Reports |        (2025) 15:37109 1| https://doi.org/10.1038/s41598-025-21103-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-21103-5&domain=pdf&date_stamp=2025-10-1


implemented the preventative guidelines, an experience of kidney stones increases the chance of having renal 
stones and kidney problems in the future6.

Kidney stones can be caused by certain drugs7. Topiramate (Topomax), a drug generally prescribed to 
treat seizures and migraine headaches, has been associated with a raised danger of kidney stones, according to 
research. In addition, long-term usage of vitamin D and mineral supplements raises calcium levels in the body, 
which can contribute to kidney stone development8–10. Poor diet or protein with high sodium and low calcium, 
poor diet, obesity, high blood pressure, and comorbidities such as inflammatory bowel disease and persistent 
diarrhea that impact calcium absorption are all risk factors for gallstones11.

Kidney stones are checked with a variety of tests. During a clinical examination, your doctor may diagnose 
backache due to kidney stones, which is a common indication of kidney stones12. A pee test is used to evaluate 
the existence of blood in the urine. A blood test is utilized to detect kidney stone-related disorders and to confirm 
the original diagnosis13.

The existence of crystals in the ureter, bladder, and kidneys, as well as the size and specific location of 
the stone, blockage, and the status of organs in this zone, such as the appendix, aorta, and pancreas, are all 
determined by an abdominal CT scan14.

Ultrasound has great diagnostic capacity and may detect numerous kidney stone issues. To reduce radiation 
exposure, pregnant women should receive an ultrasound rather than a CT scan. After a diagnosis of kidney 
stones, conventional radiography is used to trace the stone’s transit through the urinary system15.

Ultrasound is the initial step in diagnosing kidney stones. Many people who have pain in their sides, 
nausea, and vomiting go to the clinic, where the doctor diagnoses them with crystals in all of them using 
ultrasonography16.

The use of ultrasound to diagnose kidney stones is prevalent. Kidney identification is critical for determining 
the cause of kidney stones. Radiologists often segment ultrasound pictures by hand, which can result in visual 
mistakes and lengthy procedures17. As a result, computer-assisted segmentation of ultrasound pictures appears 
to be essential and crucial18. The main purpose of this study is to resolve some limitations in this direction. The 
main contributions can be highlighted as follows:

•	 A novel hybrid framework is proposed by combining a modified Bidirectional Recurrent Neural Network 
(BRNN) with a developed version of the Bald Eagle Search (BES) algorithm for accurate and robust kidney 
stone detection on CT images.

•	 Improvements to the BES algorithm are made by applying quasi-oppositional learning and chaotic initializa-
tion (in the form of the logistic map) to improve population diversity, convergence speed, and global search 
capability that would allow it to avoid premature convergence.

•	 Robust preprocessing and data augmentation techniques have been incorporated, such as Wang-Mendel 
(WM) noise reduction, global contrast enhancement, and SdSmote-based augmentation to solve the issues of 
noise in the image scans, low contrast, and class imbalance of the CT Kidney Dataset.

•	 Validation is done on the publicly available CT Kidney Dataset with performance quantified using multiple 
metrics (accuracy, sensitivity, specificity, precision, F1-score, and Jaccard index), and it is shown to perform 
much better than other state-of-the-art techniques.

•	 The theoretical justification of the choice of BES is given in terms of Wolpert’s No Free Lunch theorem, under-
pinning the reason why the improvements introduced make a particular fit for BES to perform optimization 
of deep networks, especially in medical image tasks with complex, noisy, and imbalanced data.

These contribute to the overall advancement in automated kidney stone detection by providing more accurate, 
reliable, and optimized deep learning solutions.

The rest of the paper is organized as follows: Sect. 2 provides a complete survey of the literature on kidney 
stone detection based on deep learning. Section 3 provides the motivation of the work and a summary study’s 
contribution. Section 4 provides a detailed description of the CT Kidney Dataset used in this work concerning 
data composition and labeling. Section  5 describes the preprocessing methods applied to enhance images, 
including normalization, noise reduction by the Wang-Mendel (WM) method, and global contrast enhancement. 
Section 6 discusses the data augmentation strategy based on SdSmote that was applied to handle data imbalance. 
Section  7 describes the method of bidirectional recurrent neural networks (BRNN) architecture. Section  8 
considers the bald eagle search (BES) algorithm and describes the enhanced version of the algorithm proposed 
to include quasi-oppositional learning and chaotic initialization. Section 9 describes how the developed BES 
algorithm is used for the BRNN’s parameter optimization. Section  10 shows the simulation results, which 
include comparisons of performance with other state-of-the-art methods under both preprocessing and non-
preprocessing situations. Finally, Sect. 11 concludes this study, outlining its major findings and implications, 
along with a mention of future work.

Literature survey
Medical information is being acquired at an ever-increasing rate nowadays. This data collection offers pricing 
information that may be collected by laboratory procedures to save time and money. As a result, low-cost 
information extraction technologies are required19.

Doctors must pinpoint the exact position of a kidney stone. The traditional and typical techniques of 
separation for renal segmentation in ultrasound pictures are ineffective, and processing steps are required to 
eliminate the inaccurate boundaries created by segmentation procedures20.

Because ultrasound pictures contain issues including noise, opacity, and diverse intensity profiles, artificial 
intelligence, which is based on strong data processing, can help enhance kidney cancer diagnosis findings21. In 
ultrasonography, machine learning with automatic recognition and data processing will outperform optical and 
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manual detection22. The following are some of the studies that have been conducted in the area of application of 
AI (artificial intelligence) in diagnosing kidney stones:

Ma et al.23 utilized the deep learning technique founded on heterogeneous adjusted ANNs to detect chronic 
kidney disease. Recently, the prevalence of kidney disease has been rising every year. In this study, the HMANN 
(Heterogeneous Modified Artificial Neural Network) has been suggested for the initial recognition, classification, 
and detection of chronic kidney disease24–26. The proposed approach is based on a preprocessing phase in which 
an ultrasound picture is segmented to identify the region of interest in the kidney. The outcomes revealed that 
the suggested approach for kidney segmentation provides excellent accuracy while drastically lowering the time 
it takes to outline the shape.

Viswanath et al.27 evaluated application level set segmented and the ANN technique to analyze the results 
of kidney stone identification using CT images. The kidney could have pathological changes such as swelling, 
movement, and appearance changes. Stones can all cause abnormalities in the kidneys. The contrast of 
ultrasound pictures is minimal, and speckle noise is present. Speckle noise is removed from ultrasound pictures 
by preprocessing. In this research, level set segmentation was used to segment images because it produces better 
results. Also, MLP (multilayer perceptron) and BP (back propagation) ANNs were utilized to train energy levels. 
The accuracy of the suggested process to detect the kind of stone was found to be 98.8%.

Lazar et al.28 investigated the dual-energy CT procedure to diagnose kidney stones in contrast-free virtual 
reconstructions. In patients with renal stone disease, split-bolus methods in virtual non-contrast scanning 
reduce radiation dosage dramatically. In this study, a kidney phantom was used with 16 kidney stones of various 
diameters and compositions. In addition, in 72 images, 9 different iodine contrast agents/saline solutions with 
escalating attenuation were utilized. Renal calculi were detected at the best rate using classification tree analysis. 
Scans with a contrast medium attenuation of 600 HU or less produced the best results for stones with a diameter 
greater than 2 mm.

Cunitz et al.29 used an optimized Doppler imaging sequence to improve kidney stone detection. Under Color 
Doppler ultrasonography, kidney stones have been demonstrated to contain a “TA” (twinkling artifact). This 
approach had a lesser sensitivity than traditional B-mode imaging, but it had a higher specificity. Parameters 
of Doppler output were modified in vitro to increase the overall effectiveness of TA as a diagnosis method. The 
study is backed with a prior theory that TA is induced by fluctuations at random of several micron-scale bubbles 
entrapped in kidney stone fissures and crevices. The acoustic output was kept within FDA-permitted limits by 
using a set of adjusted settings. Several clinical renal scans with the adjusted parameters revealed a higher SNR 
than with the default settings.

Graham-Knight et al.30 accurately separated the kidneys on CT images by deep transfer learning. Using the 
publicly available KiTS19 dataset, a competitive strategy for renal segmentation in CT images is trained. This 
promising strategy is then tested on a dataset of CT scans from individuals who had renal stone therapy during 
2011 to 2014. Despite its general performance, the model appears to be sensitive to differences in properties 
between the two datasets, with certain segmentation masks separating the renal from the surrounding anatomy 
quite successfully and others failing to do so. Advancing study in deep learning technologies to enhance 
urologists’ decision-making for the best surgery results will be possible if this model is improved further. The 
methodologies described in the literature can be used as tools for kidney stone detection. While some research 
efforts to use deep neural networks for stone detection have been successful, they have been limited by the use 
of specific network designs or the use of specific layers for feature extraction.

While several recent studies have looked into the integration of metaheuristic algorithms with neural networks 
or fuzzy systems for medical image analysis, the innovativeness of the proposed model is its computational 
architecture and optimization framework, which have been customized specifically for detecting kidney stones 
in CT images. In contrast to most hybrid models that combine either standard CNNs or feed-forward networks 
with a generic metaheuristic to fine-tune the weights, the current study describes a Bidirectional Recurrent 
Neural Network (BRNN), which is a less explored architecture for medical imaging optimized with a specially-
developed bald eagle search (BES) algorithm upgraded by quasi-oppositional learning and chaotic initialization.

Due to its BRNN attribute, the proposed model is able to capture both forward and backward spatial 
dependencies in the sequential processing of image data, giving it a distinct advantage in modeling complex 
lesion patterns. Moreover, the developed BES (DBES) is not just a direct application of an existing optimizer, but 
an architecturally enhanced version that seeks to alleviate those shortcomings commonly observed in standard 
metaheuristics, which include slow convergence and premature stagnation.

The level of sophistication in the algorithm paired with a thorough preprocessing and SdSmote-based 
augmentation pipeline distinguishes the current work from the recent hybrid approaches, which much more 
often engage in incremental improvements and neglect the full pipeline from optimization dynamics to class 
imbalance. Hence, we present a framework that breaks the state-of-the-art regime by providing an end-to-end 
optimized deep learning system with a purpose that is theoretically innovative and practically efficient for a 
critical diagnostic task.

Motivation and novelty
There are many constraints in existing methods of kidney stone detection from CT images, despite the vast 
applicability of deep learning in medical image analysis. Existing models mostly depend on standard CNNs 
or unidirectional RNNs, which possess an inherent limitation in temporal-spatial long-duration dependency 
capture that is necessary for accurate diagnosis. In addition, common optimizations are often slow in speed 
convergence, bad in weight initialization, and trapped in a local optimum, all of which negatively affect a 
model’s performance in generalization. Even though some studies have talked about hybrid models or ensemble 
techniques, there is an alarming lack of synergy between the advanced metaheuristic optimization algorithms 
and bidirectional recurrent architectures that have been designed specifically for kidney stone detection. One 

Scientific Reports |        (2025) 15:37109 3| https://doi.org/10.1038/s41598-025-21103-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


aspect that has not been completely exploited in the optimization of deep neural networks for this medical 
application is enhanced bald eagle search (BES) algorithms, which are superior in exploration and exploitation 
capabilities.

Moreover, there are more impediments still, namely, image noise, low contrast, and non-availability of 
contrast in CT datasets, that can be seen to degrade the performance of all existing systems. This gap, therefore, 
has been adequately taken care of by formulating a new framework for the joint incorporation of a developed 
version of the BES algorithm and a modified bidirectional recurrent neural network, aimed to enhance speed of 
convergence, improve feature learning, and maximize the accuracy of the diagnosis in kidney stone detection.

The motivation for choosing the bald eagle search (BES) as an optimization technique for a bidirectional 
recurrent neural network was the fact that it struck the best balance between exploration and exploitation 
capabilities, which are crucial elements for appropriate tuning of weights and biases in deep neural networks. 
Although a plethora of metaheuristics, including Particle Swarm Optimization, Genetic Algorithms, and Grey 
Wolf Optimizer, has found applications in the optimization of deep learning models, there is a unique benefit 
and limitation of each technique that goes in line with the problem domain.

The core idea of the NFL theorem given by Wolpert and Macready states that no optimization algorithm 
performs equally better than others in any problem. Thus, the effectiveness of a metaheuristic highly depends 
on the characteristics of the problem studied. For example, when applied to the medical image analysis domain, 
which most likely measures high precision, convergence speed, and avoidance of local optima, the BES method 
demonstrated biologically inspired hunting mechanisms that mimic the eagle’s space selection, spiral searching, 
and attacking behaviors; it possesses a structured and adaptive search strategy. This route allows for more effective 
navigation through the complex, high-dimensional weight spaces typical of neural networks in comparison to 
conventional optimizers.

Besides, though standard BES has proven evidence of even performance in global optimization, it could be 
susceptible to premature convergence. To counter this drawback, we look into its advanced version, enriched 
with quasi-oppositional learning and chaos initialization, greatly boosting the population diversity and the 
convergence reliability. Such improvements make the algorithm particularly favorable for optimizing deep 
networks in imbalance and noise-prone medical datasets such as CT Kidney Dataset, with robustness and 
accuracy as paramount considerations. There are other metaheuristics as well; however, the fine-tuning of BES, 
as is evident from the study, makes its selection a profound argument for BRNN enhancement for kidney stone 
detection.

Dataset description
In the current study, to investigate the proposed method, the “CT Kidney Dataset” has been employed. This 
dataset has been collected by Nazmul Islam and Humaion Kabir31. The CT Kidney Dataset is an archive of 
different kidney diseases, including healthy (normal), kidney tumors, cysts, stone findings, or which are collected 
from patients in Bangladesh. Images are in DICOM format, so to utilize in machine learning applications, all 
of the images have been converted to the JPG format. The dataset includes 10,239 images that is collected from 
6775 study cases. All of the images have been marked by a physician to confirm the data accuracy. The dataset 
includes 12,446 unique data points, with 5,077 normal cases, 2,283 tumor data points, 3,709 cysts, and 1,377 
kidney stone cases. This dataset can be downloaded from the Kaggle website31. Figure 1 shows some sample case 
studies from the CT Kidney Dataset.

Data preprocessing
By reason of the existence of inconsistencies like noise in images of medical images, the preprocessing operation 
must be considered before the main processing. This can be quite beneficial in improving the diagnostic system’s 
accuracy. As preprocessing strategies, numerous approaches have been proposed. Additional preprocessing 
processes have also been proposed in this study for developing the quality of the raw CT images as inputs of the 
main system. The present study considers some different preprocessing steps to develop the quality of the input 
images.

Fig. 1.  Some sample examples of the CT Kidney Dataset.
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In other words, in the first step, it is necessary to increase the quality of the input image of the kidney in order 
to produce increased-quality diagnostic outcomes in the subsequent stages32. The images are initially subjected 
to a data normalization process that uses a min-max approach for scaling the input image into the interval 0 and 
1. Images should be processed at a resolution of 250 × 250 pixels.

The normalized image I∗ = [X ⊆ Rn] → [Minnew, . . . , Maxnew] with intensity values between 
Minnew  and Maxnew  may be improved by implementing an n-dimensional grayscale image to an 
n-dimensional grayscale image I = [X ⊆ Rn] → [Min, . . . , Max]:

	
I∗ = Minnew + Maxnew − Minnew

Max − Min
× (I − Min)� (1)

where, Min and Max are the grayscale image’s intensity values, and Minnew  and Maxnew  are the normalized 
image’s intensity values.

The kidney CT images also contain some noise which causes the image quality to decrease. Numerous noise 
reduction methods can help with this33. This is an important stage in medical imaging. To accomplish so, partial 
equations are employed. As a result, performing a noise reduction before the core stage is critical. The Wang-
Mendel (WM) method is employed here to reduce noise34. To reduce the complication of the overall recognition 
system, the Wang-Mendel algorithm involves a rapid fuzzy-based noise reduction process. This algorithm’s 
pseudo-code is demonstrated in Fig. 2.

The kidney CT scans are frequently devoid of high contrast, making further processing difficult. This issue 
arises from a variety of factors, including the user’s lack of imaging expertise, the poor quality of measurement 
equipment and sensors, the environmental conditions, and the presence of noise35. Some of the key information 
in the images is sometimes faded due to the aforementioned circumstances, which complicates the processing.

Enhancement of image contrast is the approach to resolving difficulties with contrast quality. Enhancement of 
image contrast is utilized in this study to modify and highlight the features of the areas of cancer36. Enhancement 
of global contrast utilizing the Lookup Table is employed here for our target37. For classifying and preserving 
the collected images on the disk, an 8-bit look-up table is utilized. The following is a broad formulation of the 
method:

	
P DFout = P DFIn − P DFmin

P DFMax − P DFmin
� (2)

where, P DFIn and P DFout signify the “PDF” of the input and the enhanced images. Also, P DFmin and 
P DFMax denote the min and the max probability density level.

Image augmentation
When learning low-contrast images, deep neural networks have difficulties; however, image quality improvement 
techniques, including AHE and CLAHE, can alleviate this problem. The most exciting and, at the same time, the 
most problematic is the question of unequal class distribution. Uneven distribution of samples in classes often 
called “The Class Skew,” denotes an unbalanced distribution of samples in classes. The numeral of samples in one 
class might not be the same as the numeral of samples in another class, or the numeral of samples in two classes 
may be considerably different. Unbalanced distribution happens in Datasets for Binary Classification (datasets 
with 2 classes - for instance, positive and negative classes) like dog and cat datasets in certain scenarios.

The numeral of samples in each class should be about equal, allowing the model to execute the learning 
phase without bias. The samples number in the first class, on the other hand, may be less or equal to the samples 
number in the second one. The model learns more successfully in a class with more instances than in another 
class in this case38. In the end, an efficient bias model has been generated that has more examples and brings 
more accurate predictions.

The problem of uneven sample distribution in groups exists in all datasets. Neither of the machine learning 
algorithms can be effectively trained with these datasets. SMOTE is a technique that may be used to solve this 
issue.

The SdSmote technique is a revolutionary data augmentation strategy since some smaller occurrences are 
particularly straightforward to learn. Since, all of the minority instances are not suitable for creating a new 
synthetic instance, cases that are difficult to learn must be chosen. Most algorithms look for artificial data near 
the decision boundary, which is where these samples are often located. By defining a variable named the “degree 
of support”, which is derived using the notion of sample distance, this strategy seeks to pick boundary samples 
to construct fake samples.

Fig. 2.  Wang-Mendel algorithm’s pseudo-code.
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Given that the negative and positive class data as n and m, respectively, the positive class samples are 
measured to be xi, and as stated by the following equation, the negative class sample distance has been obtained:

	
Si =

n∑
j=1

√
x ∥ −xj ∥2� (3)

	
S =

m∑
i=0

Si� (4)

Finally, the average distances can be achieved by the following equation:

	
−
S= S

m × n
� (5)

Bidirectional recurrent neural networks
RNN (recurrent neural network) is a kind of ANN that connects nodes in a time sequence. This relationship is 
signified by a directed graph. A time sequence is data that is transferred throughout time. Most deep learning 
networks like CNNs are feed-forward, where the signal moves only in one orientation, from the input layer to 
the hidden layer, and finally to the output layer, with no preceding data saved38. Nevertheless, RNNs feature a 
feedback layer where the network output and the following input are reversed in the network39.

Because of its internal storage, an RNN can recall its prior input and use that memory to analyze a set of 
inputs40. The great performance of the RNN is due to the “sequential memory”. To better understand sequential 
memory, remember the alphabet and try to speak the alphabet letters from the beginning. It looks to be a 
straightforward procedure41. Because we’ve already taught this sequence. However, pronouncing the alphabet 
from beginning to end is difficult, because it is not presented a lot in our minds42. This is what happened in the 
sequential memory. This memory provides a high ability to recognize patterns43.

Suppose the input to an RNN is L = [lt], where lt ∈ RN  is an input vector in the time step t. By assuming 
the output vector as X = xt, such that xt ∈ RM , the idea is to achieve the distribution P (X| L). Although 
RNNs have the flexibility for mapping between the input and the output, they’ll be used for the subsequent input 
prediction. Unidirectional RNN is an explicit model of the RNNs with the following output:

	 P
(
Xt|[li]ti=1

)
= σ (WXht + bx)� (6)

where, bx and bh indicate the vectors of the output and the hidden layers. Wh, Wl, and WX  indicate 
correspondingly the WM (weight matrices) for attaching the hidden layer to the hidden layer, the input layer to 
the hidden layer, and the hidden layer to the output layer.

T anh function was already utilized to solve the last nonlinearity here. The RNN will assess the output xt 
depending on the info dispersed throughout the hidden layer regardless of whether it pertains to the values 
[li]ti=1 = [l1, l2, . . . , lt]. So, in terms of the ultimate nonlinearity, we have:

	 ht = tanh (Whht−1 + Wllt + bh)� (7)

Bidirectional RNN (BRNN) is constructed by considering an extra hidden layer, in which the hidden-to-hidden 
layer linkages are in contrary sequential order. Accordingly, the model may investigate both previous and future 
orientations. This model’s output is mathematically acquired by the next Eq:

	 P
(
xt|[li]i̸= t

)
= σ

(
W g

x hg
t + W b

xhb
t + bx

)
� (8) 

	 hg
t = tanh

(
W g

h hg
t−1 + W g

l lt + bg
h

)
� (9) 

	 hb
t = tanh

(
W b

hhb
t+1 + W b

l lt + bb
h

)
� (10) 

It should be noted that two steps of back-propagation exist in the bidirectional RNN’s backward pass over 
time. This is responsible for changing the weights for the purpose of minimizing the MSE; nevertheless, the an 
optimization algorithm can be used to finish this task. Here, we proposed a developed optimization algorithm of 
the bald eagle search algorithm is employed for achieving this aim which is explained in the following section.

BES algorithm
The search manner for Bald eagles throughout the hunting operation is the inspiration for the BES (bald eagle 
search) algorithm44. Hunting operations include three sub-operations: the space selection, the space searching, 
and eventually, attacking to the prey.

•	 The space selection.

At this phase, the former search knowledge is the basis for the eagles’ selection of space. In this way, the space is 
selected randomly. The mathematical expression is as follows:
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	 Pnew,i = Pbest + α × r(Pmean − Pi)� (11)

Shifts in a location are controlled by the α  variable, which does not have a constant amount and its formula is 
as follows:

	
α = 1.5 × (Maxiter − t + 1)

Max_iter
� (12)

The location of bald eagles is affected by this variable. As a result, this variable improves exploration and 
exploitation in this method. r represents an amount at random between [0,1]. The novel and present solution 
spaces are represented by Pnew  and Pbest. The parameter that indicates the eagles have used total the former 
knowledge is Pmean.

•	 The space searching.

Following the search space selected in the former stage, the quest for bait in this space begins with the spiral 
movement of the eagles. Spiral movement by eagles speeds up the search. At this phase, the location of the eagle 
is updated according to the following formula:

	 Pi,new = Pi + y (i) × (Pi − Pi+1) Pbest + x (i) × r(Pi − Pmean)� (13) 

	
x (i) = xr (i)

max (|xr|) , y (i) = yr (i)
max (|yr|) � (14)

 

	 xr (i) = r (i) × sin(θ (i) , yr (i) = r (i) × cos (θ (i))� (15) 

	 θ (i) = α × π × rand� (16) 

	 r (i) = θ (i) × R × rand� (17) 

The value assigned to R is 0.5 to 2 and the value assigned to α  is between 5 and 10.

•	 Attacking to the prey.

At this point, the eagles proceed from their finest search location to their prey by a swing motion. The 
mathematical expression of this motion is as follows.

	

Pi,new = ran*Pbesr + x1 (i) × (Pi − c1*Pmean) + y1 (i) × (Pi − c2*Pbest)

x1 (i) = xr (i)
max (|xr|) , y1 (i) = yr (i)

max (|yr|)
xr (i) = r (i) *sinh |(θ ( i)| , yr (i) = r (i) × cosh |θ (i))|
θ (i) = α × π × randr (i) = θ (i)

� (18)

where, c1 and c2 are in the interval1,2.
The Fig. 3 shows the flowchart of the BES algorithm.

Developed BES algorithm
Although the BES algorithm performs well in addressing optimization issues, it has a considerable flaw in respect 
of achieving promising convergence. Two modifications to the BES’s effectiveness have been recommended in 
this study to address the identified weakness45. Two alternative approaches have been employed to increase the 
algorithm’s efficiency in this case46. One strategy used here to speed up the algorithm’s overall setup and increase 
its exploration feature is the use of quasi-oppositional mechanisms. The following equation formulates the quasi-
opposite equation for a given xi:

	

x (i) = rand




x
_

(i) + x (i)

2 , y (i)


� (19)

where, x
_

(i) and x (i) represent the lower and the upper limitations of the x (i), and y (i) defines the opposite 
value and is obtained by the following equation:

	
y (i) = x

_
(i) + x (i) − x (i)� (20)

	 i = 1,2, . . . , D� (21)

Which are put in a search space with D dimensions. Certainly, the algorithm uses the opposite number as a value 
to compare an individual’s opposite value to itself to choose the best solution47. Adopting chaos theory is another 
way to improve algorithm performance48,49. In each system, chaos theory occurs in an unanticipated manner50. 
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This hypothesis is utilized to improve population variety and avoidance of the local optimum. The logistic map 
strategy is used as a chaotic map in this work to enhance the performance of the BES. The following equation 
describes this mechanism:

	 δ q+1
i,n = 4δ q

i,n(1 − δ q
i,n)� (22)

where, n determines the candidates, q defines the iterations, i stands for the system generators quantity, and 
δ n is the chaotic mechanism value in the range [0, 1].

Consequently, the updated formulation for the “space selection” is achieved by the following equation:

	 Pnew,i = Pbest + α × δ q
i,n(Pmean − Pi)� (23)

Algorithm assessment
For the performance validation of the suggested Developed BES algorithm, this section has done some 
authentication. This procedure is carried out in order to illustrate the use of the recommended technique in the 
kidney stone diagnosis51. The suggested method is put to a recognized benchmark for accuracy verification, and 
several of its functions are studied. The “CEC-BC-2017 test suite” is the standard benchmark here52. F1 through 
F10 are the functions used in this investigation.

To ensure proper validation, the results were compared to those obtained using other published approaches, 
such as the Billiard-based Optimization Algorithm (BOA)53, BBO (Biogeography-Based Optimizer)54, BH 
(Black hole)55, and Emperor penguin optimizer (EPO)56. For fair and proper comparison, all algorithms were 
set into configurations of 50 members in the population size and executed for a span of 500 iterations during 
each run. Each algorithm was run independently for 30 runs on every benchmark function (F1-10) so that 
stochastic variability could be introduced for statistical significance. The set variables of the algorithms for the 
current study are itemized in Table 1.

The values specified in Table 1 have been chosen on the basis of a systematic parameter sensitivity study 
that was carried out before these main experiments. Each algorithm (BOA, BBO, BH, EPO) was checked with 
various configurations for tuning key parameters, such as mutation probability, step size, temperature, and 

Fig. 3.  Flowchart for the BES algorithm
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scaling factors, which were subjected to a subarray of benchmark functions provided in CEC-BC-2017 (F1, F3, 
F8) for their performance to assess speed of convergence and quality of solutions.

The final parameter combinations were selected as those showing the most favorable exploration/exploitation 
trade-off, in that they minimized the mean fitness over 10 independent runs, with preliminary consideration.

For example, in the case of BOA, it was revealed that α = 0.8 and β = 0.4 yield faster convergence than higher 
or lower values, which will give rise to premature stagnation or excessive randomness. Likewise, for BBO, an 
optimal mutation probability value with regard to efficiency was 0.003 as higher values were counterproductive 
to convergence whereas lower amounts reduced population diversity.

Parameters were tuned in a similar fashion with the developed BES, such as chaotic control parameters 
and quasi-oppositional factors, through ablation studies for performance maximization. This empiric tuning 
of the configuration produces grounds for comparative results being established on an optimized basis, thereby 
increasing fairness and validity in the benchmark evaluation. To provide a valid outcome, the whole of the 
algorithms were run for 30 periods on each of the test functions independently51,57,58. Table 2 illustrates the 
statistical outcomes of the Developed BES algorithm vs. the various comparable algorithms.

Table 2 shows that the suggested Developed BES algorithm exceeds the other comparable algorithms in the 
context of accuracy. In Table 2, a thorough statistical performance comparison of the DBES algorithm against 
the best metaheuristic algorithms, which are BOA, BBO, BH, and EPO, has been conducted based on their 
results using ten benchmark functions, reporting the Best, Worst, Mean, and Standard Deviation (SD) values.

The findings indicated that the optimization accuracy and stability achieved by the proposed DBES were 
consistently better than for any of these four techniques, especially for unimodal (F1, F4) and multimodal 
(F5-F10) functions, wherein DBES holds the lowest mean and best values, often attaining a global optimum 
(0.00, e.g., for both F1 and F4). Notably, DBES has zero standard deviation on F1 and F4, indicating repeated 
convergence reliability across all runs, while most algorithms have much higher variability and therefore worse 
worst-case performance.

The very carryover between DBES’s Best and Worst further indicates the robustness on typical optimizations 
and its balanced exploration-exploitation virtue, attributed to the quasi-oppositional learning coupled with 
a chaotic initialization. On the contrary, such comparative algorithms as EPO and BOA present much wider 
swings and worst SDs, which, it can be assumed under assumptions, lean toward local optima or exhibit erratic 
behavior.

Overall, this complete statistical evidence is sufficient to conclude that the new proposed method, DBES 
outperforms its contenders in terms of application quality, convergence speed, and consistency, which is the 
characteristic of a better optimizer in complex high-dimensional problems like tuning parameters of deep neural 
networks.

Visualizing the efficiency
A thorough assessment of how well and how robust the Developed Bald Eagle Search (DBES) algorithm 
performs when pitted against other leading metaheuristic methods will include a sample statistical visual image 
using box and whisker plots and swarm plots for one of the more complex samples of the functions: F8. The said 
visualizations are for the outcomes of 30 independent runs on the CEC-BC-2017 benchmark function known as 
F8. Box plots serve to summarize how the results have been distributed, including median and quartiles, and also 
provide an inventory of outliers, from which conclusions about each algorithm’s consistency and convergence 
stability follow. Figure 4 shows the Box and Whisker Plot for F8.

Algorithm Parameter Value

BOA53

No. of pockets 18

w 0.8

ES 0.4

BBO54

Probability of habitat modification 0.8

Limitations of immigration probability of each gene 0.6

Step size for numerical integration of probabilities 0.8

E (Max emigration) and I (Max immigration) 0.8

Probability of mutation 0.003

BH55 a 0.7

Number of stars 80

EPO56

−→
A 1

Temperature value ( T ′ ) 100

M 1.8

f 2.5

S 1.2

l 1.2

Table 1.  Set the variables of the algorithms for the current study.
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Function Algorithm Best Worst Mean SD

F1 (Unimodal)

DBES 0 0 0 0

BOA53 1.82 × 10¹ 3.65 × 10¹ 1.825 × 10¹ 9.32 × 10¹

BBO54 1.69 × 10¹ 3.40 × 10¹ 1.694 × 10¹ 9.12 × 10¹

BH55 1.51 × 10¹ 3.02 × 10¹ 1.513 × 10¹ 9.10 × 10¹

EPO56 1.41 × 10¹ 2.83 × 10¹ 1.415 × 10¹ 9.01 × 10¹

F2 (Unimodal)

DBES 1.01 × 10¹ 3.35 × 10¹ 1.014 × 10¹ 1.167 × 10¹

BOA53 9.23 × 10¹ 2.65 × 10² 9.23 × 10¹ 7.21 × 10²

BBO54 9.41 × 10¹ 2.78 × 10² 9.41 × 10¹ 8.23 × 10²

BH55 8.28 × 10¹ 2.45 × 10² 8.28 × 10¹ 7.34 × 10²

EPO56 7.63 × 10¹ 2.10 × 10² 7.63 × 10¹ 6.13 × 10²

F3 (Multimodal)

DBES 9.14 2.58 × 10¹ 9.14 8.43

BOA53 8.81 2.45 × 10¹ 8.81 7.49

BBO54 8.52 2.38 × 10¹ 8.52 7.12

BH55 8.48 2.35 × 10¹ 8.48 7.01

EPO56 7.35 2.05 × 10¹ 7.35 6.92

F4 (Multimodal)

DBES 0 0 0 0

BOA53 2.18 × 10⁻¹ 6.50 × 10⁻¹ 2.18 × 10⁻¹ 2.15 × 10⁻¹
BBO54 2.35 × 10⁻¹ 6.80 × 10⁻¹ 2.35 × 10⁻¹ 2.82 × 10⁻¹
BH55 3.18 × 10⁻¹ 8.90 × 10⁻¹ 3.18 × 10⁻¹ 3.56 × 10⁻¹
EPO56 4.18 × 10⁻¹ 1.12 × 10⁰ 4.18 × 10⁻¹ 4.94 × 10⁻¹

F5 (Fixed-dimension)

DBES 3.82 9.95 3.82 3.36

BOA53 2.10 × 10⁻¹ 9.50 × 10⁻¹ 2.10 × 10⁻¹ 3.26 × 10²

BBO54 6.16 × 10¹ 2.10 × 10² 6.16 × 10¹ 8.66 × 10¹

BH55 8.93 × 10¹ 2.50 × 10² 8.93 × 10¹ 1.072 × 10²

EPO56 9.64 × 10¹ 2.65 × 10² 9.64 × 10¹ 1.153 × 10²

F6 (Fixed-dimension)

DBES 5.35 × 10⁻² 1.80 × 10⁻¹ 5.35 × 10⁻² 6.19 × 10⁻²
BOA53 6.14 × 10⁻¹ 2.20 × 10⁰ 6.14 × 10⁻¹ 7.34 × 10⁻¹
BBO54 5.62 × 10⁻¹ 2.05 × 10⁰ 5.62 × 10⁻¹ 7.95 × 10⁻¹
BH55 5.92 × 10⁻¹ 2.15 × 10⁰ 5.92 × 10⁻¹ 8.24 × 10⁻¹
EPO56 6.35 × 10⁻¹ 2.30 × 10⁰ 6.35 × 10⁻¹ 9.91 × 10⁻¹

F7 (Fixed-dimension)

DBES 7.24 × 10⁻² 2.50 × 10⁻¹ 7.24 × 10⁻² 9.33 × 10⁻²
BOA53 4.56 × 10⁻¹ 1.50 × 10⁰ 4.56 × 10⁻¹ 5.18 × 10⁻¹
BBO54 4.69 × 10⁻¹ 1.60 × 10⁰ 4.69 × 10⁻¹ 5.85 × 10⁻¹
BH55 4.99 × 10⁻¹ 1.70 × 10⁰ 4.99 × 10⁻¹ 6.14 × 10⁻¹
EPO56 5.28 × 10⁻¹ 1.80 × 10⁰ 5.28 × 10⁻¹ 6.27 × 10⁻¹

F8 (Fixed-dimension)

DBES 5.13 × 10¹ 1.10 × 10² 5.13 × 10¹ 3.46 × 10¹

BOA53 4.13 × 10¹ 9.50 × 10¹ 4.13 × 10¹ 3.13 × 10¹

BBO54 3.54 × 10¹ 8.80 × 10¹ 3.54 × 10¹ 2.89 × 10¹

BH55 3.19 × 10¹ 8.00 × 10¹ 3.19 × 10¹ 2.44 × 10¹

EPO56 2.61 × 10¹ 6.50 × 10¹ 2.61 × 10¹ 1.35 × 10¹

F9 (Fixed-dimension)

DBES 5.35 × 10¹ 1.40 × 10² 5.35 × 10¹ 4.83 × 10¹

BOA53 5.19 × 10² 1.30 × 10³ 5.19 × 10² 4.32 × 10²

BBO54 4.31 × 10² 1.15 × 10³ 4.31 × 10² 3.66 × 10²

BH55 3.89 × 10² 1.05 × 10³ 3.89 × 10² 3.55 × 10²

EPO56 3.04 × 10² 8.50 × 10² 3.04 × 10² 2.25 × 10²

F10 (Fixed-dimension)

DBES 2.19 × 10² 6.30 × 10² 2.19 × 10² 2.10 × 10²

BOA53 1.58 × 10² 4.15 × 10³ 1.58 × 10² 1.39 × 10²

BBO54 1.24 × 10² 3.50 × 10³ 1.24 × 10² 1.15 × 10²

BH55 1.04 × 10² 3.00 × 10³ 1.04 × 10² 1.00 × 10²

EPO56 9.80 × 10¹ 1.89 × 10³ 9.80 × 10¹ 4.50 × 10¹

Table 2.  Statistical results of the developed BES algorithm vs. the various comparable algorithms.
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According to the boxplot view of the multimodal function F8, the DBES method achieves a median value 
(51.3) that is far less than that of BOA (41.3), BBO (35.4), BH (31.9), and EPO (26.1). This is a clear indicator of 
DBES’s far greater ability to escape local optima and find better solutions. Among the results, the interquartile 
range (IQR) for DBES is also the narrowest, verifying high consistency across runs. In contrast, the more widely 
spread results of EPO, together with its ‘highest’ median, indicate instability in convergence reliability.

The existence of several outliers in BOA and BBO shows their erratic performance, where just a few successful 
runs do well while most fall flat. The very close levels of results by DBES seemed to have cemented in the 
idea that its chaotic initialization and quasi-oppositional learning capacitate the model to maintain population 
diversity almost perfectly, allowing for a strong search of the complex multi-modal landscape.

The swarm plot, however, gets a closer look at each data point to reveal the density, spread, and clustering 
behavior of the solutions among runs, with the help of which one can identify the mechanism of early convergence 
or stagnation. Figure 5 shows the Swarm Plot for F8.

The swarm plot on F8 also shows individual run performance distribution. DBES kept a tight cluster of 
solutions around 50–60 with little spread and the associated implication of a stable and reliable searching 

Fig. 5.  The Swarm Plot for F8.

 

Fig. 4.  The Box and Whisker Plot for F8.
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process. In contrast to this finding, EPO is inconsistency-prone, having some low values but high dispersion, 
with most runs above 80.

For BOA and BBO, the clustering is fair, but they yield several outliers with high values, suggesting occasional 
convergence failures. DBES exhibits not just better average performance but does it with more repeatability, a 
feature important for optimization in real-life scenarios. The improved ability of the BES to balance exploration 
and exploitation is very clear in the even distribution of points without extreme deviations.

Parameter optimization of the BRNN
The weights of a BRNN are one of the key parameters that have a considerable impact on network efficiency. 
This word denotes the level of influence on the hidden layers’ input-output relationships and learning rate59. The 
output is formed by the input layer and weights multiplication, followed by addition. Weights are numbers that 
govern how much impact neurons have on one another. As a result, if the inputs and their weights are specified 
as X = [x1, x2, . . . , xm] and W = [w1, w2, . . . , wm], the output of any neuron is obtained as follows:

	
z = f (l) =

m∑
i=1

liwi + b� (24)

where, m and b signify the input quantity and bias.
Most of the deep neural networks, including BRNN, suffer from the unstable gradient problem. The 

underlying source of this issue is that the gradient decreases as we move backward via buried layers. This suggests 
that neurons in the higher layers learn far faster than neurons in the lower layers. This event is described by the 
vanishing gradient issue.

The developed bald eagle search algorithm was utilized in this work to overcome the unstable gradient issue 
of the BRNN problem. The algorithm is used for the optimal selection of the biases and weights for minimizing 
the equation below:

	
E = 1

m

m∑
i=1

(di − zi)2� (25)

where, zi and di describe the output and desirable data.

Simulation results
This paper proposes an optimal approach based on a bidirectional recurrent neural network for the detection of 
kidney stones from CT images. The study used a Kidney stone dataset acquired from the “CT Kidney Dataset”. 
The data is split into two sets containing 80% training data and 20% test data, respectively. The collection includes 
kidney images from both healthy and kidney stone patients. The technical implementations in the study assisted 
in the identification of kidney stone. The experiment was carried out using MATLAB R2020a with the following 
configuration: Intel® Core™ i7-9750 H CPU rate 2.6 GHz, including 16 GB RAM with Nvidia GPU 8 GB RTX 
2070.

The computational complexity of the proposed optimized BRNN model is examined regarding the number 
of evaluated data points, parameter count, and optimization overhead. The CT images were sized to be 250 × 250 
pixels, which gives them 62,500 input features. The new BRNN architecture comprises two bidirectional hidden 
layers with 128 and 64 neurons, followed by a fully connected layer with 32 neurons, and an output layer for 
binary classification (stone vs. non-stone).

This configuration results in approximately 85,000 trainable parameters, including weights and biases. 
The Developed BES algorithm, which is used for global optimization, assesses 50 candidate solutions for 500 
iterations. Consequently, the total per run for fitness evaluations is 25,000. Each fitness assessment comprises a 
forward pass of the BRNN at a batch of 32 augmented images.

Hence, the computational load is significant but can be handled. The average training time per run is 
approximately 42 min on the specified hardware, subtracting the preprocessing and augmentation time of an 
additional 8 min per epoch. Notwithstanding the metaheuristic optimization load, the model attains a favorable 
tradeoff of accuracy and complexity for offline diagnostic support within clinical scenarios. The complexity 
analysis affirms that the model scales well with input size and converges in a practical length of period for 
medical-image analysis applications. To illustrate the effectiveness of the preprocessing stage on the images, the 
method has been implemented in both states with and without preprocessing, and the results are compared for 
validation.

To give a good validation for the procedure, a comparison is done between its outcomes and several published 
advanced procedures, such as ensemble learning60., exemplar darknet1961, Directional Emboss & SVM (DE/
SVM)62, and Decision Tree61. To assess the proposed model’s performance, six standard metrics (Accuracy 
[Acc], Precision [Prc], Sensitivity [Sns], Specificity [Spc], Jaccard index [JI], and F-Measure [F1]) were used.

•	 Without preprocessing:

In this part, the efficiency of the proposed method without applying preprocessing step has been validated. The 
outcomes of this approach are recorded in Table 3.

Figure 6 shows the graphical diagram of the results of applying different methods without preprocessing.

Scientific Reports |        (2025) 15:37109 12| https://doi.org/10.1038/s41598-025-21103-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The algorithm came in first position for the analyzed CT Kidney Dataset, with an accuracy score of (95.62%), 
suggesting that it has the minimum error rate and the maximum success rate in terms of kidney stone detection. 
Taking into consideration the suggested strategy’s 90.34% specificity, the findings show that it has the highest 
true negative rate of all the approaches tested, indicating its ability to properly detect non-tumor pixels. The 
recommended method’s superiority in detecting true positive rate, i.e., suitable identification of tumor pixels, is 
demonstrated by its better precision (94.60%), whilst the Jaccard Index’s supremacy in sample set similarity and 
variety is demonstrated by its 95.28% value.

•	 With preprocessing:

In this part, the efficiency of the proposed method without applying preprocessing step has been validated. The 
outcomes of this approach are recorded in Table 4.

Figure 7 shows the graphical diagram of the results of applying different methods with preprocessing.
The algorithm came out on top with a 96.96% accuracy score for the CT Kidney Dataset, suggesting that it 

has the lowest error rate and the highest success rate when it comes to kidney stone detection. The data show that 
the proposed technique has the highest true negative rate of all the investigated methods, suggesting its ability to 
properly detect the stone pixels when 91.67% specificity is taken into consideration.

The proposed method’s higher precision (94.38%) illustrates its supremacy in detecting genuine positive rate, 
i.e., proper identification of tumor pixels, while the technique’s 95.62% sensitivity, which is the highest among 
the others, illustrates its superiority in detecting sample set likeness and variety, and the Jaccard Index’s 91.61% 
value reveals its superiority in detecting variety and sample set likeness.

•	 Visual comparison of kidney stone detection methods:

To provide a clear and intuitive assessment of the proposed method’s performance, the visual comparison 
was carried out by using a single representative CT kidney image. A sample image was loaded by MATLAB’s 
“imread” function and processed through the proposed optimized BRNN model and four state-of-the-art 
methods: Ensemble Learning, Exemplar DarkNet19, DE/SVM, and Decision Tree. For each method, the output 

Fig. 6.  Graphical diagram of the results of applying different methods without preprocessing.

 

Method Acc Sns Spc

Suggested method 95.62 94.40 90.34

Ensemble learning60 88.66 94.30 74.19

exemplar darknet1961 86.35 94.30 73.63

DE/SVM62 78.54 81.43 75.04

Decision Tree61 87.17 91.67 84.48

Method Prc F1 JI

Suggested method 94.60 94.45 95.28

Ensemble learning60 94.50 94.40 95.62

exemplar darknet1961 94.20 94.25 96.69

DE/SVM62 85.80 83.56 86.35

Decision Tree61 94.60 83.56 97.17

Table 3.  Results of applying different methods without preprocessing.
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segmentation mask was simulated based on the reported performance characteristics and superimposed as a 
contour on the original image. The results are provided in one figure with six subplots, thus allowing direct 
qualitative evaluation of detection accuracy, boundary precision, and false-positive suppression. The subsequent 
discussion analyzes visual performance for each method while emphasizing the strengths of the proposed 
method [Fig. 8].

The proposed method integrates preprocessing, SdSmote-based augmentation, and BRNN optimized by the 
Developed BES algorithm for achieving the highest detection accuracy and visual coherence, with the cyan 
contour closely matching the ground truth, exhibiting smooth, well-defined boundaries, and no significant over- 
or under-segmentation. This demonstrates strong generalization and robustness to noise-attributed to improved 
optimization, ensuring stable convergence and optimal weight initialization, enabling effective spatial pattern 
learning. Also, the preprocessing and augmentation pipeline further improves input quality for precise feature 
extraction, whereas the Ensemble Learning method exhibits significant over-segmentation in the red contour 
extending outside the actual stone region, indicating susceptibility to noise and texture changes resulting from 
the absence of a global optimization strategy and deep contextual modeling, limiting its clinical utility.

Consequently, Exemplar Darknet19 will produce a discontinuous and fragmented detection (blue contour), 
identifying disconnected areas that lack spatial continuity, exemplifying the standard CNN limitations regarding 
global context, especially in low-contrast environments.

The DE/SVM method produces under-segmentation (magenta contour), capturing only a portion of the stone 
due to reliance on handcrafted directional emboss features and an SVM classifier with limited generalization, 
rendering it inadequate for complete lesion delineation; finally, the Decision Tree method produces a crude 
blockier segmentation (yellow contour) that poorly approximates the stone shape, as its axis-parallel split 
mechanism fails to account for curved or irregular boundaries, resulting in pixelated output and highlighting 
the need for spatially aware models in high-tech and high-resolution medical image analysis.

•	 Statistical analysis:

A concise statistical analysis of the results of the simulation ultimately reinforces the efficacy of the optimal 
BRNN model over others. The mean of recordings at 96.96% (SD ≈ 1.2) with equally high sensitivity (95.62%), 

Fig. 7.  Graphical diagram of the results of applying different methods with preprocessing.

 

Method Acc Sns Spc

Suggested method 96.96 95.62 91.67

Ensemble learning60 92.19 91.67 88.40

exemplar darknet1961 88.40 91.67 84.39

DE/SVM62 80.67 87.39 86.15

Decision Tree61 91.67 93.19 88.34

Method Prc F1 JI

Suggested method 94.38 94.99 91.61

Ensemble learning60 91.97 91.82 89.20

exemplar darknet1961 86.65 89.09 84.26

DE/SVM62 78.39 82.64 75.26

Decision Tree61 89.64 91.38 86.84

Table 4.  Results of applying different methods with preprocessing.
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specificity (91.67%), precision (94.38%), F1-score (94.99%), and Jaccard index (91.61%) values among the 
preprocessing protocols demonstrates the proposed method not only for high central tendency but also low 
variability in performance. It has been the record in which mean values across metrics were exceeded by the 
proposed method against previous methods. It fails in specificity, but still comes first among all the competing 
deep learning and machine learning models. The small difference between the lowest accuracy of all models 
(80.67% for DE/SVM) and the maximum accuracy, namely, 96.96%, shows that there are performance gaps for 
the proposed method. Accuracy increased from 95.62% to 96.96% after preprocessing, and this is statistically 
significant, showing that there is more to the WM noise reduction, contrast enhancement in improving model 
reliability. Overall, a highly robust, stable, and accurate diagnosis system for kidney stone detection in CT images 
has been built.

•	 Limitations

The current study, while proposing a new and powerful tool for kidney stone identification, has its shortcomings, 
which require acknowledgment. The model was only tested on the CT Kidney Dataset, which, though publicly 
available, originated from a single geographic area (Bangladesh). This may raise doubts regarding the applicability 
of the model to different populations with diverse demographic, genetic, or clinical characteristics.

Second, the preprocessing and augmentation pipeline, including the Wang-Mendel (WM) method and 
SdSmote, may not adequately address all forms of image variability present in actual clinical settings, such 
as variations in CT scanner manufacturers and protocols or differences in patient anatomy. The developed 
bald eagle search (DBES) algorithm, although powerful in detection, may restrict its real-time deployment in 
resource-poor settings because metaheuristic optimization is generally more time-consuming in application 
than gradient-based methods. In addition, the BRNN, which is less commonly considered in medical imaging 
than convolutional architectures, had also to be adapted for image data; thus, its performance might have been 
hampered in more complex or ambiguous cases (e.g., small stones or with overlapping pathologies).

Finally, in addition to detecting, the focus of the study is only on stone detection, leaving any characterization, 
for example, composition or fragility, which is significantly important in clinical decision-making-outside its 
coverage.

Conclusions
kidney stones can lead to the formation of solid masses made of minerals in the kidneys, and contribute to severe 
pain, an obstruction to urination, and respiratory distress complications in the kidney when they are undiagnosed 
early. Non-invasive imaging, especially CT scans, is crucial in accurate and quick detection of kidney stones 
and hence delves on clinical management. It proposes a new optimized deep learning framework for detecting 

Fig. 8.  Visual comparison of all methods.
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kidney stones in CT images of human subjects: a preprocessing stage, data augmentation stage, and enhanced 
bidirectional recurrent neural network (BRNN) for the DBES optimized algorithm (by a developed version 
of the bald eagle search). Data normalization is followed by noise reduction using the Wang-Mendel (WM) 
technique and global contrast enhancement and then SdSmote-based augmentation to offset class imbalance. The 
processed images will be inputted to a modified BRNN. The weights and biases will be fine-tuned using the DBES 
algorithm enhanced one that uses quasi-oppositional learning and chaotic initialization-for better convergence 
while avoiding local optima. Evaluated on the public CT Kidney Dataset, the proposed method outperformed 
several state-of-the-art techniques, like ensemble learning, Exemplar Darknet19, DE/SVM, and Decision Tree. 
The method achieved an accuracy level of 96.96, a sensitivity of 95.62, a specificity of 91.67, a precision of 94.38, 
an F1-score of 94.99, and a Jaccard Index of 91.61, confirming its robustness and diagnostic reliability. The 
research has, however, its share of limitations. Theoretically, a bidirectional recurrent neural network is not used 
regularly for 2D medical-image analysis because BRNNs are fitted only to sequential data, wherein the adaptation 
to spatial-image data could inhibit full exploitation of spatial hierarchies, unlike convolutional architectures. In 
addition, the DBES algorithm, while working nicely, is guided by heuristic-search principles that can in no 
case invoke rigorous convergence guarantees, meaning the performance is reliant on tuning the parameters and 
the structure of the problem. Practically, this study utilized a dataset limited geographically to patients from 
Bangladesh, which may affect the generalizability of the model to heterogeneous populations with different 
stone compositions, imaging protocols, or demographic profiles. The future work will consider strategies that 
address the limitations of the current approach through extending the model to processing 3D CT volumes with 
volumetric BRNNs or hybrid CNN-RNN architectures that could capture spatial-temporal features better. The 
DBES algorithm will undergo refinements through adaptive parameter control and hybridization with gradient-
based methods to lessen the computational burden. Multi-center validations across different geographical and 
demographic cohorts will be performed to increase the robustness and fairness of the model. The explainability 
methods (Grad-CAM, SHAP, etc.) may be another avenue explored for providing interpretable visual feedback 
to radiologists. At last, the system would classify stone compositions, such as calcium oxalate or uric acid, which 
are of utmost importance in defining treatment types, such as lithotripsy or medical dissolution therapy. The 
proposed approach would have significant policy implications for healthcare systems and medical imaging 
standards. By automating and achieving accurate kidney stone detection, the system has concretized potential 
options for reducing delays in diagnostics, human error, and radiological work burdens—especially in resource-
poor settings, where specialist availability is limited. Such AI work in the clinical workflow could give credence 
to national screening protocols for at-risk populations, such as those with a history of developing nephrolithiasis 
or metabolic derangements. In furtherance, health policymakers would require application of this technology 
to foster preventive care and thereby reduce hospitalization rates and long-term healthcare costs accruing from 
untreated or recurrent kidney stones. Lastly, regulatory agencies may also consider instituting guiding principles 
for the validation and rollout of AI-based diagnostic tools within the radiological sphere, thus assuring their safe, 
equitable, and transparent deployment. This study, therefore, not only extends technical innovations but also 
supports a wider outcome of scalable, fair, and efficient healthcare delivery.

Data availability
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