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As a well-known Bayesian network structure learning algorithm in equivalence class space (E-space), 
Greedy equivalence search (GES) is used in many fields. However, it encounters high complexity 
when searching for information from an empty graph. If the initial graph of GES is an equivalence 
class containing the strongest dependencies instead of an empty graph, its performance will be 
significantly improved. In this study, we propose a three-phase algorithm to establish the initial graph. 
First, we design a measure based on relative entropy to evaluate the relation between variables. 
Then, the variables are connected based on the previously designed metrics and the resulting graph 
is transformed into E-space. Finally, the resulting graph is used as the initial graph of GES for E-space 
optimization. We compare the proposed algorithm with GES in efficiency and accuracy, and the 
results show that our algorithm improves the efficiency and accuracy of GES. Furthermore, extensive 
comparisons are designed to compare our method with other state-of-the-art methods on benchmarks 
and real data about COVID-19 pandemic in the UK.
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Discovering the causal mechanisms behind data is a fundamental challenge in the field of artificial intelligence. 
Bayesian networks (BNs)1, as a type of probabilistic graphical model, provide an intuitive representation of the 
causal relationships among random variables. Hence, BNs have been applied in a wide variety of domains in the 
past decades, such as prediction of protein-protein2, explainability of chemical sciences3, time series forecasting4, 
Earth systems5, and telecom-fraud risk warnings6.

BNs encode the variables and independent relationships between variables as nodes and edges between 
nodes, respectively, which forms a directed acyclic graph (DAG) that becomes the graphical structure of a BN. 
The process of recovering the DAG corresponding to a BN is called BN structure learning (BNSL). Existing 
BNSL methods can be divided into function-based, constraint-based (CB), score-and-search (S&S), and hybrid 
algorithms. The function-based methods describe the relationship between variables using the given function, 
such as the linear non-Gaussian acyclic model (LiNGAM)7, post-nonlinear (PNL)8, or additive noise models9, 
among others. These methods usually perform well in the case of continuous variables that satisfy their given 
assumptions. However, when the precise function does not apply in the case of discrete variables, identifying 
the direction of causality becomes intractable10. CB approaches generally use a series of hypothesis tests to 
determine the conditional independence relationships between variables. The most popular CB methods 
include PC11, IAMB12, and their improved versions or variants13–15. S&S approaches rely on well-defined scoring 
functions such as BIC/MDL16,17, BDeu18, and so on, to transform the BNSL problem into a task of searching for 
the DAG with the highest score. S&S methods can be further divided into two classes of algorithms, according 
to their different search strategies: exact search algorithms and local search algorithms. Although the former 
can find globally optimal solutions, such as GOBNILP19,20, A*21, and their variants22,23, they hardly scale beyond 
60 nodes; thus, local search algorithms are becoming increasingly popular. BNSL methods using local search 
typically search for optimal structures in three spaces: DAG space (D-space), equivalent class (EC, introduced 
in “Equivalence class” section) space (E-space), and ordering space (O-space). D-space methods operate on 
individual edges in the DAG until a locally optimal score is reached, such as Hill-climbing (HC)24 and its more 
complex version25,26. However, the number of candidate structures in D-space grows super-exponentially as the 
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number of variables increases. The number of ECs is generally less than the number of DAGs, and some of the 
inefficient operations of D-space can be avoided in E-space, so E-space is much simpler than D-space (For more 
details, refer to Section 2.3 in27.)27,28. The most representative algorithm in E-space is greedy equivalence search 
(GES)29, which updates the current EC to another EC with a higher score. Order-based search (OBS)30 provides 
the third search space for BNSL, and it uses a topological order to denote a DAG. Although some excellent 
O-space methods have been proposed31,32, O-space is rooted in consistency rules for node order, which provides 
easier optimization but also limits its performance31,32. Naturally, there are approaches to combine CB and S&S 
algorithms, and the most representative form is Max-min HC (MMHC)33. However, these algorithms do not 
perform better than CB and S&S methods34. Therefore, this study focuses on E-space.

Since GES was proposed, researchers have studied how to improve its performance in the past two decades. 
Chickering designed two clever operators and refined the structure of GES to make it a baseline algorithm for 
E-space27,35, upon which subsequent E-space algorithms have been proposed. Nielsen et al. slightly improved the 
performance of GES by making a tradeoff between randomness and greediness36. Chen et al. combined ordering 
and EC to apply the genetic algorithm to E-space37. Zhang et al. used the maximal information coefficient to 
determine the draft and modified the draft to obtain a higher score38. Alonso et al. restricted the search space 
of the first phase of GES to improve efficiency39. Ramsey et al. refined the score cache and parallelized the 
search phases, significantly speeding up GES40. Alonso et al. modified the changes in scoring at each step to 
incorporate some excellent metaheuristic algorithms, improving accuracy41. Nandy et al. proposed a hybrid 
E-space algorithm by combining GES and CB methods for high-dimensional continuous data42. Liu et al. recently 
designed two frameworks to transfer the local optimum of E-space to other spaces, which improves the accuracy 
of GES43. Liu et al. proposed a hybrid algorithm based on mutual information for discrete data44. Laborda et al. 
used GES as a local solver for distributed parallel optimization45. Chen et al. developed an algorithm to find the 
k-best EC using dynamic programming and model averaging46. Chen et al. used A* to search for the globally 
optimal EC on networks with fewer than 30 variables47.

Zheng et al. recently transformed the BNSL problem into a continuous optimization process48, which 
serves as a novel way to discover the DAG. Many works have used different deep learning methods to improve 
performance from Zheng’s perspective49–52. However, some comparison results show that these methods 
generally perform poorly on discrete data25,49.

In this study, we focus on improving the performance of GES in terms of both efficiency and accuracy on 
discrete data. When GES starts searching from an empty graph, the search space is very complex. Naturally, a 
high-level intuition is that the efficiency will be improved significantly if GES searches for the optimal EC from 
an excellent initial graph. Therefore, we first design a metric to measure the degree of dependence between 
variables based on relative entropy. Then, a framework containing connection rules according to the quantified 
dependency strengths is proposed. Finally, following these linking rules, the variables are connected and 
converted into EC as the initial graph of GES for optimization. Our framework can also simultaneously improve 
the local optimum of the forward phase of GES. We conduct extensive comparisons using the proposed method, 
GES, and other state-of-the-art algorithms to reveal the performance of the proposed method.

The remainder of this paper is organized as follows: “Preliminaries” section provides the information about 
graph theory, BN, and EC. “Methods” section describes how GES works, and proposes our novel algorithm with 
a new metric and introduces it in detail. “Results” section compares the proposed method with GES and other 
state-of-the-art algorithms on well-known benchmarks and a real dataset. “Discussion” section summarizes the 
paper and gives future directions for our research.

Preliminaries
Graph theory
A graph G = (V, E) is composed of sets of edges E and nodes V. If two arbitrary nodes X, Y ∈ V are connected 
by an undirected edge X − Y , they are neighbors, and the set of the neighbors of X is NeX . We say that Y is 
a parent of X if there is a directed edge pointing from Y to X, such as Y → X . All parents of X form a parent 
set, expressed as PaX , and the maximum value of |PaX | in G is called the maximum in-degree dG. Regardless 
of whether the edges between X and Y are directed or undirected, we consider X and Y to be adjacent, and all 
nodes adjacent to X are denoted as AdX . If some nodes are pairwise adjacent, they form a clique. A V-structure 
is a subgraph formed by three nodes, where two non-adjacent nodes are parents of the third node, that is, three 
nodes are connected as Y → X ← Z .

X �→ Y  is a path from X along some directed or undirected edges that end up at Y. If the edges of the path are 
all undirected edges, then X �→ Y  is an undirected path. Similarly, X �→ Y  is a directed path if these edges are 
directed from the previous node to the next node in the path. Otherwise, X �→ Y  is considered a semi-directed 
path if there is at least one directed edge and one undirected edge in the path. In a directed path X �→ Y , all 
nodes following X are descendants of X. A graph G containing a cycle means that there is a path X �→ Y  in G and 
X that is adjacent to Y. G is a DAG if there is no cycle in G and every edge in G is directed. Similarly, if there is at 
least one semi-directed path in G that does not contain any cycle, G is a partially DAG (PDAG).

Bayesian networks
A BN is a probabilistic graphical model that can be expressed as BN = (G,P), where G is a DAG and P is its 
joint probability distribution. Let NdX  denote all descendants of X. G encodes the conditional independence 
assumptions as follows:

	 ∀X ∈ V, X⊥NdX |PaX .� (1)
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Based on the conditional independences and chain rule of probability, the joint probability P over V can be 
factorized as:

	
P(V) =

|V|∏
X∈V

P (X|PaX),� (2)

where |V| is the number of nodes, and Eq. (2) obviously simplifies the complexity of computing joint probability.
S&S methods allow the BNSL problem to be represented as follows:

	
G∗ = arg max

G∈G
score(G, D)� (3)

where G is all candidate structures, G∗ is the optimal structure, and D is the data to be studied. In this paper, 
we use BIC, one of the most used scores, to estimate the learned structure. BIC has a fundamental property: it 
is decomposable, which means the BIC of a BN can be decomposed into the sum of the scores of each node with 
its parents, that is,

	
BIC(G, D) =

|V|∑
X∈V

BIC(X, PaX , D),� (4)

where

	 BIC(X, PaX , D) = LL(X|PaX) − P en(X|PaX).� (5)

For discrete observational data:

	

LL(X|PaX) =
∑

pa∈ΩPaX

∑
x∈ΩX

Nx,pa log θ̃x|pa, � (6)

	
P en(X|PaX) = log |D|

2 |ΩPaX | (|ΩX | − 1). � (7)

In this equation, ΩX  and ΩPaX  represent the state spaces of X and PaX , respectively; Nx,pa denotes is the 
number of instances with X = x ∧ PaX = pa in D, so we omit D in the expansion of the equation; log θ̃x|pa is 
the log-likelihood estimation of the conditional probability P (X = x|PaX = pa).

Then, we introduce the relationship between the graph G and distribution P. Let I(G) and I(P) denote the 
sets of conditional independence assertions entailed by G and P, respectively. We say that G is a perfect map 
(p-map) of P if and only if I(G) = I(P). Let ε(G) denote the equivalence class (CPDAG) of a DAG G.

Equivalence class
If the independence relationships and distributions of G and G′ from two DAGs are identical, they are equivalent 
to each other. The skeleton of a DAG is an undirected graph that transforms the directed edges of the DAG into 
undirected edges. Based on skeleton and v-structures, Verma and Pearl prove the following theorem:

Theorem 1  53 Two DAGs are equivalent iff they share the same skeleton and v-structures.

If a PDAG GP  has the same skeleton and v-structures as a DAG G, and all directed edges in GP  also exist in G, 
we say that the PDAG admits a consistent extension and the DAG is a consistent extension of the PDAG.

All equivalent DAGs form their equivalent classes (EC), denoted by ε. Obviously, PDAG is not a precise 
representation of EC because we cannot ensure that every DAG in ε is a consistent extension of the PDAG 
corresponding to one DAG in ε. To get a suitable representation of ε shown in Definition 2, we distinguish the 
edges of the DAGs in ε as in Definition 1.

Definition 1  If a directed edge exists in every DAG in ε, the edge is compelled. Otherwise, the edge is reversible, 
that is, this edge exists in at least two of the DAGs of ε in the opposite direction.

Definition 2  A PDAG is a completed PDAG (CPDAG) if every directed edge of the PDAG is compelled and all 
undirected edges are reversible.

Based on Definition 2, any DAG in ε is a consistent extension of the CPDAG corresponding to ε, so we also use 
ε to denote the CPDAG corresponding to ε in the rest of this paper. Figure 1 shows a simple DAG, its skeleton, 
the CPDAG corresponding to the EC to which it belongs, and another consistent extension of the CPDAG.

With these definitions, we introduce the notion of a consistent score function. Let G∗ denote a p-map of P, 
and let G be an arbitrary DAG that is not a p-map. A score function is consistent if, in the limit as |D| → ∞, the 
following hold:

•	 G∗ attains the highest score;
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•	 The score of any non-p-map DAG G is strictly less than that of any DAG in ε(G∗), i.e., 

	 score(G, D) < score(H, D), ∀H ∈ ε(G∗).

Theorem 2  35 BIC is a consistent score function.

Methods
The original greedy equivalent search
GES searches for the EC with the highest score in two phases (The consistency of GES relates to the nature of the 
perfect map and the consistency of the score (see54 for a detailed introduction), for detailed proof, see Sections 
4.2 and 4.3 of35.) In the first phase, called forward equivalent search (FES), iterative updates to the current 
MEC occur by adding one edge using a well-designed operator Insert(X, Y, T). The second phase is called 
Backward Equivalent Search (BES), and it deletes one edge in one operation via the operator Delete(X, Y, H). 
The operations Insert(X, Y, T) and Delete(X, Y, H) are shown in Definition 3 and Definition 4.

Definition 3  For any non-adjacent variables X and Y, and any subset T of the set 
NnAY,X  (NnAY,X = NeY

∩
{V\AdX}), Insert(X, Y, T) updates the current ε in the following ways:

•	 Adding the edge X → Y ;
•	 Changing the undirected edges between Y and any T ∈ T into directed edges T → Y .

Definition 4  For any adjacent variables X and Y, and any subset H of the set NAY,X  (NAY,X = NeY

∩
AdX ), 

Delete(X, Y, H) operates the current ε in the following ways:

•	 Deleting the edge X → Y  or X − Y ;
•	 Changing the original undirected edges Y − H  and X − H  for any H ∈ H into the directed edges Y → H  

and X → H .

Algorithm 1 shows the outline of FES. Since the results of Insert(X, Y, T) are not necessarily CPDAG, 
the function P DAG_T o_CP DAG in Line 7 transforms the PDAG into the corresponding CPDAG. It is 
combined by two functions, P DAG_T o_DAG55 and DAG_T o_CP DAG56. The former extracts a con-
sistent extension from the PDAG, and the latter transforms a DAG into the CPDAG to which it belongs. The 
operation of BES is similar to FES. We can obtain BES by replacing the validity tests (in Line 15), local score 
calculation criterion (in Line 16), and the operation (in Line 18) of Insert(X, Y, T) in Algorithm 1 with those 
of Delete(X, Y, H). The validity tests of Insert(X, Y, T) and Delete(X, Y, H) test how to determine wheth-
er or not an Insert(X, Y, T) or Delete(X, Y, H) operator is valid (more details and proof refer to Theorems 
15 and 17 in35.) The local score changes of two operators are introduced in Theorems 3 and 4. 

Fig. 1.  Examples of (a) A DAG. (b) The CPDAG corresponds to the EC to which (a) belongs. (c) The skeleton 
of (a). (d) another consistent extension of (c).
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Algorithm 1.  FES.

Theorem 3  The changes in BIC that result from applying a valid operator Insert(X, Y, T) to a CPDAG ε is

	
∆BIC = BIC(Y, NAY,X

∪
T

∪
{PaY

+X}, D) − BIC(Y, NAY,X

∪
T

∪
PaY , D).� (8)

Theorem 4  The increments in BIC that result from applying a valid operator Delete(X, Y, H) to a CPDAG ε is

	
∆BIC = BIC(Y, {NAY,X\H}

∪
{PaY

−X}, D) − BIC(Y, {NAY,X\H}
∪

PaY , D).� (9)

Based on the above, GES can be simply expressed as GES : ε∗ ← BES(F ES(D, εempty)), where εempty  is 
an empty graph because the CPDAG of the EC to which the empty graph belongs is still an empty graph based 
on Definition 2.

Theorem 5  35 If the distribution P admits a p-map and ε∗ denotes the CPDAG found by GES with a consistent 
score function, then in the limit of large |D|, ε∗ is a p-map of P.

The proposed greedy equivalent search
When GES starts from an empty graph, it is inefficient as the search space is very complex. Naturally, if GES 
searches for the optimal EC from an excellent seed EC with some strong dependency edges, the search space 
will be restricted, and the efficiency will be improved. Therefore, for the proposed method, a metric to evaluate 
the relationships between variables is first designed. Then, we connect the most correlated variables to form a 
preliminary undirected graph. After determining the v-structure, we obtain an excellent seed graph of GES.

Considering the prior probability P(X) of a variable X and the posterior probability P(X|Y) of that variable 
given another variable Y, we can use P(X) and P(X|Y) to measure the relationship between variables X and Y. 
Recall the meaning of relative entropy (RE): the difference between two probability distributions R and Q, which 
is formulated as follows:

	
RE(R||Q) =

∑
R log R

Q
.� (10)

Based on RE, we design a metric, prior-posterior relative entropy (PPRE), to quantify the strength of dependencies 
between X and Y, as follows:
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P P RE(X, Y ) = 1
2 (RE(P (X)||P (X|Y )) + RE(P (X||Y )||P (X)))

= 1
2

(∑
X,Y

P (X) log P (X)
P (X|Y ) +

∑
X,Y

P (X|Y ) log P (X|Y )
P (X)

)
.
� (11)

We analyze why PPRE can determine variable dependencies in terms of both meaning and formula. On one 
hand, PPRE reflects the difference between P(X) and P(X|Y). That is, the greater the PPRE, the greater the effect 
of Y on X, indicating a stronger relationship between the variables Y and X. On the other hand, the posterior 
probability is substituted into Eq. (11) in the form of joint and marginal distribution, that is,

	

P P RE(X, Y ) = 1
2

(∑
X,Y

P (X) log P (X)P (Y )
P (X, Y ) +

∑
X,Y

P (X, Y )
P (Y ) log P (X, Y )

P (X)P (Y )

)

= 1
2

∑
X,Y

1
P (Y )

(
P (X)P (Y ) log P (X)P (Y )

P (X, Y ) + P (X, Y ) log P (X, Y )
P (X)P (Y )

)

= 1
2

∑
X,Y

1
P (Y ) ((P (X)P (Y ) − P (X, Y )) log (P (X)P (Y ) − P (X, Y ))) .

� (12)

Equation (12) represents that PPRE(X, Y) is mainly affected by the product of the marginal distributions P(X)P(Y) 
and their joint distribution P(X, Y), which indicates the extent to which the uncertainty about X is reduced given 
that Y is known. To clarify, the proposed PPRE metric is defined as RE between the prior distribution P(X) and 
the posterior distribution P(X|Y). This direct comparison of prior and posterior distributions naturally captures 
the effect of Y on X, reflecting the conditional dependency between variables. Unlike general-purpose divergence 
measures that compare arbitrary distributions, PPRE is specifically designed to quantify variable dependencies 
in Bayesian network structure learning. PPRE is derived from RE, so it has three properties similar to RE.

Property 1  If X and Y are independent, then P P RE(X, Y ) = 0.

Proof  If X and Y are independent, then P (X|Y ) = P (X). Therefore, P P RE(X, Y ) = 0 based on Eq. (11). 
� □

Let IdX  denote the set of variables independent of X, and then we get Property 2.

Property 2  For ∀Y ∈ IdX , iff the distributions of X and Y are identical, P P RE(X, Y ) = P P RE(Y, X).

Proof  According to Eq. (12),

	
P P RE(X, Y ) − P P RE(Y, X) = 1

2
∑
X,Y

(
1

P (Y ) − 1
P (X)

)
� Q(X, Y ),� (13)

where Q(X, Y ) = (P (X)P (Y ) − P (X, Y )) log (P (X)P (Y ) − P (X, Y )). Since Y is independent of X, 
Q(X,  Y) must be nonzero. Therefore, iff the distributions of X and Y are identical, Eq. (13) is zero, and the 
property is proven. � □

Property 3  P P RE(X, Y ) ≥ 0

Proof  The property naturally follows from the nonnegativity of the RE. � □

PPRE compares P(X) and P (X | Y ) via a symmetrized RE for a fixed target X. Hence P P RE(X, Y ) ≥ 0 
and P P RE(X, Y ) = 0 if P (X | Y ) = P (X) (e.g., when X ⊥ Y ). Note that PPRE(X,  Y) and PPRE(Y,  X) 
are generally different, since they quantify how Y affects X and how X affects Y, respectively. This directional 
asymmetry is used in the proposed algorithm through the strongest dependent sets to determine edge orientation.

For the evaluation criteria for dependencies, we designed a PPRE-based GES algorithm, called PPGES, the 
pseudo-code of which is given in Algorithm 2. The PPGES will be introduced in detail in stages. Before 
describing the pseudo-code, we clarify several notations used in Algorithm 2. ε∗ denotes the current partially 
directed acyclic graph (PDAG) constructed during the algorithm. It is initialized as the empty graph on the 
variable set V, and will be updated iteratively until it becomes a local optimal CPDAG. SDX  denotes the 
strongest dependent set of variable X, which is a subset of candidate parent variables for X. It is obtained by 
ranking all variables Y ̸= X  according to PPRE(X, Y). cache is a temporary data structure storing the pairwise 
PPRE(X, Y) values between variable X and the remaining variables. For each X, cache is sorted in descending 
order of PPRE values to facilitate the selection of SDX . 
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Algorithm 2.  PPGES.

Obviously, PPGES is a three-phase algorithm. The inputs of PPGES include the observation data D, maximum 
in-degree of G dG, and the threshold t. In the first phase (Lines 2-10), we compute the PPRE to determine the 
strongest dependent sets (expressed as SDX ) for each variable. Since subsequent operations may query the 
PPRE multiple times, the PPRE of each variable and the remaining variables is calculated and stored in the cache 
for efficiency, which has a complexity of O (|D| · (|V| − 1)). In order to facilitate subsequent operation, PPGES 
sorts P P RE(X, V\X), X ∈ V in the cache, the worst complexity of which is O ((|V| − 1) · log (|V| − 1)). 
After sorting, we select the first dG variables from the cache as the SDX  of the variable X. Finally, the variables 
with a PPRE greater than the threshold t were filtered out as the final SDX . As for the threshold t, we will 
obtain it statistically based on the PPRE of the standard network, and the determination of it will be discussed 
in “Results” section. The complexity of sorting and filtering is O (2dG). Therefore, for each variable X ∈ V, the 
worst-case complexity is O (|D| · |V| + |V| · log (|V| − 1) − log (|V| − 1)). Naturally, the worst complexity of 
the first phase is O

(
|V|2

)
.

In the second phase (Lines 11-23), PPGES obtains a CPDAG with the strongest dependencies. Based on the 
set SDX , we conduct connect rules for the variables:

•	 Rule 1. If X ∈ SDY ∧ Y /∈ SDX , the algorithm applies AddEdge(X → Y );
•	 Rule 2. If X /∈ SDY ∧ Y ∈ SDX , the algorithm applies AddEdge(X ← Y );
•	 Rule 3. If X ∈ SDY ∧ Y ∈ SDX , the algorithm applies AddEdge(X − Y ).

These connection rules are based on the conditional dependence information captured by PPRE. For Rules 1 
and 2, if X strongly depends on Y but not vice versa, we direct the edge as X ← Y , reflecting that knowing Y 
reduces the uncertainty of X more than the reverse. Rule 3 handles the case where both variables are strongly 
dependent on each other; since the direction cannot be reliably determined from PPRE alone, we add an 
undirected edge X − Y , consistent with the PDAG representation in Bayesian networks. Overall, these rules 
ensure the resulting PDAG respects acyclicity and can serve as a sound seed graph for the subsequent GES 
optimization. While heuristic in implementation, they are theoretically motivated by conditional dependence 
and BN structure constraints. In order to prevent the repeated addition of edges, X is removed from SDY  after 
connecting them. Since the operation of the first phase, for ∀X ∈ V, |SDX | ≤ dG, the worst case of the above 
operations’ complexity is O

(
d2

G · |V|
)

. The function AddEdge(·) in Lines 15 and 18 denotes the operation 
of adding an edge into the current graph. In our implementation, it is realized by functions such as set.edge() 
and set.arc() in the bnlearn package. After connecting their strongest dependent variables for each variable, the 
resulting graph is a PDAG. However, the required input for GES is CPDAG. Thus, the final step of the second 
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phase transforms the resulting graph into a CPDAG using P DAG_to_CP DAG, whose worst complexity is 
O

(
d2

G · |V| + d2
G · |E| + d2

G

)
, where |E| represents the number of edges in G. Therefore, the upper bound of 

the second phase’s complexity is O (|V|).
The final phase (Line 24) of PPGES uses the CPDAG obtained in the second phase as input to optimize the 

final CPDAG further using GES. Figure 2 shows an example of PPGES.

Results
In this section, we first introduce the backgrounds of method comparisons in “Backgrounds of comparisons” 
section, such as benchmarks, comparison algorithms, and hardware and software conditions. Then, “Comparisons 
on GES and PPGES” section compares the performance differences between GES and PPGES with different 
parameters. “Comparisons on PPGES and other algorithms” section shows the accuracy of the results of PPGES 
and other competitive algorithms. Finally, “Comparisons on real data” section applies the proposed algorithm 
and the state-of-the-art solver to a real dataset.

Backgrounds of comparisons
All benchmarks in “Comparisons on GES and PPGES” and “Comparisons on PPGES and other algorithms” 
sections are sampled from the ground-truth models, which can be downloaded from the Bayesian Network 
Repository (https://www.bnlearn.com/bnrepository/). We select two small networks (Asia, Sachs), four medium 
networks (Alarm, Child, Insurance, Water), and three large networks (Hailfinder, Hepar2, Win95pts), as well 
as the classification criteria are also from the Bayesian Network Repository. The characteristics of these real 
networks are given in Table 1.

All the state-of-the-art or well-established algorithms used for the comparison are briefly described as follows:

•	 PC.stable13: The competitive CB baseline algorithm;
•	 GOBNILP20: The state-of-the-art exact search solver;
•	 GES35: The most representative E-space local search algorithm;

Networks Nodes Edges Parameters Maximum indegree

Asia 8 8 18 2

Sachs 11 17 178 3

Alarm 37 46 509 4

Child 20 25 230 2

Insurance 27 52 1008 3

Water 32 66 10,083 5

Hailfinder 56 66 2656 4

Hepar2 70 123 1453 6

Win95pts 76 112 574 7

Table 1.  The characteristics of benchmarks.

 

Fig. 2.  Examples of PPGES. (a) An empty graph. (b) The resulting graph after the first phase of PPGES. (c) The 
resulting graph after the second phase of PPGES. (d) The resulting graph after the third phase of PPGES, that 
is, the final CPDAG.
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•	 ILGES41: The state-of-the-art E-space local search algorithm;
•	 ARGES42: The hybrid algorithm in E-space;
•	 MMHC: The hybrid baseline algorithm in D-space;
•	 MMPC+GES: The initial graph for GES is provided by MMPC;
•	 MAHC26: A D-space local search algorithm using model averaging;
•	 DAG-GNN49: The competitive continuous optimization baseline algorithm.
•	 GOLEM51: A continuous optimization baseline algorithm.
•	 DAGMA52: The competitive continuous optimization baseline algorithm.

PC.stable and MMHC are programmed using the R package bnlearn57 (https://www.bnlearn.com/). GOBNILP 
runs in C based on the source code (https://www.cs.york.ac.uk/aig/sw/gobnilp/). GES, ILGES, and the proposed 
PPGES are implemented in R based on bnlearn and pcalg. ARGES runs based on the R package pcalg58. 
MAHC runs in Java using the source code (https://bayesian-ai.eecs.qmul.ac.uk/bayesys/). ESTOBS runs in 
C++, leveraging the source code from its authors. DAG-GNN (https://github.comfi/shmoon1234/DAG-GNN), 
and DAGMA (https://github.com/kevinsbello/dagma) run in Python based on their source code. GOLEM is 
provided by the Python toolbox gCastle59. It is noted that GOBNILP plays a role in searching for the global 
optimum in the comparisons, which provides a reference for other algorithms. MMPC+GES combines the 
MMPC phase of MMHC with GES according to the operations of the authors of ARGES. The parameters of all 
the above algorithms use the default values from their papers. All comparisons are made on a computer with an 
Intel Core i7-10700f (2.9GHz) processor and 32GB of RAM.

In  “Comparisons on GES and PPGES” section, the criteria of comparisons are BIC and run time. In 
“Comparisons on PPGES and other algorithms” section, the criteria are BIC and structural hamming distances 
(SHD). SHD is defined by the authors of MMHC to compare the differences between the learned CPDAG 
εlearned and the true CPDAG of BN εtrue, which can be computed as follows:

	 SHD(εlearned, εtrue) = #missing edges + #extra edges + #reversal edges.� (14)

That is, SHD is the sum of the number of missing edges, extra edges, and edges with the opposite direction in the 
learned CPDAG compared to the true CPDAG.

Sensitivity analysis of PPGES parameters: comparisons with GES
To investigate how the parameters of PPGES affect its performance, we conduct a sensitivity analysis by 
comparing PPGES with GES under different parameter settings. Specifically, for the maximum in-degree, we 
consider three alternatives dG = {1, 3, 6}. For the threshold parameter, we select the mean, median, and upper-
hinge (the latter two are values in Tukey’s five-number summary60) of PPRE, which corresponds to the strongest 
variable dependence among all ground-truth models. Note that these threshold values are computed globally 
across all variables rather than individually. This yields nine combinations of parameters for PPGES, which are 
evaluated in this section.

We sample 10,000 instances for each benchmark network as this section’s data sets. On the one hand, the 
differences between GES and PPGES run time, ∆time = TP P GES − TGES , are used to show that PPGES 
improves the efficiency of GES with different parameters. On the other hand, ∆BIC = BICP P GES − BICGES  
shows the effect of PPGES on the scores of GES under different parameters. The results are given in Figs. 3 and 
4. The combination of parameters is represented as “in-degree=X,threshold=X”. For example, “d=3,t=upper” 
indicates the result when the maximum degree is set to 3, and the threshold is set to upper-hinge. The lighter bars 
in Figs. 3 and 4 indicate that PPGES improves the performance of GES, while the darker bars imply that PPGES 
does not perform as well as GES.

In each graph of Fig. 3, the results of PPGES with different parameters are lighter bars, which means that PPGES 
with different parameters achieve better efficiency. To the contrary, some combinations of parameters obtain 
worse scores than GES. In summary, the parameters we choose for PPGES are dG = 3 and t = upper - hinge. 
PPGES with the combination outperformed GES in 7/9 networks, and of those seven networks, four were the 
most accurate results. Meanwhile, PPGES with the combination performs well in terms of efficiency as shown 
in Fig. 3.

With the parameters, we compared the ratio in which PPGES improved efficiency with different amounts of 
data. Meanwhile, in this subsection, we compare the efficiency of MMPC+GES and PPGES, and their accuracy 
will be compared in “Comparisons on PPGES and other algorithms” section. In Fig. 5, the x-axis represents the 
amount of data, and the y-axis represents 

TGES−Talgorithm

TGES .
Obviously, both MMPC+GES and PPGES can significantly improve the efficiency of GES. As a well-

established CB method, MMPC is more efficient than the proposed algorithm. MMPC+GES runs faster than 
PPGES in 29/36 cases, and the differences between their results are less than 0.25 in 16/29 cases.

Comparisons on PPGES and other algorithms
In this section, we sample 1000, 5000, 10,000, and 100,000 instances for each ground-truth model. The BIC 
scores obtained by all the comparison algorithms are listed separately in Tables 2, 3, 4, and 5. The results of 
SHD are shown in Tables 6, 7, 8, and 9. The best score for each of the benchmarks in the table is written in bold, 
and two decimal places are reserved for BIC. If the algorithm goes wrong for some reason, the results will be 
represented as “–”.

In Table 2, although GOBNILP finds a global optimum on Asia, Sachs, and Child, it fails when the number 
of nodes increases. MAHC, DAG-GNN, GOLEM and DAGMA can stably output results, but their scores are 
far from those of other algorithms, especially in the Hailfinder model. PC.stable wins 1 of 9 models, but its 
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performance is limited by the conditional independence tests. PPGES and ILGES obtain higher scores than GES 
in most models. In detail, ILGES outputs the Hepar2 model with the highest score, whereas PPGES outperforms 
other competitive solvers in 6/9 models. Moreover, although PPGES is not the best method for the Sachs and 
Hepar2 models, it also gets excellent scores that are very close to the highest score.

The results of 5000 instances are similar to those of 1000 instances, as shown in Table 3. ARGES successfully 
outputs a CPDAG in the Insurance model, but it fails in Table 2. It also maintains excellent performance in 
the Asia model but still obtains a poor result on the Alarm model. Obviously, PPGES still outperforms other 
algorithms on 6/9 models. Although PPGES is not the best algorithm on models Asia, Sachs, and Child models, 
its score is only 1.37%, 2.53%, and 0.43% away from the optimal score, respectively.

As the amount of data increases, algorithms perform better in all models, such as DAG-GNN, which scored 
only 0.47% worse than the highest score in the Water model. Obviously, PPGES stably outputs better CPDAG 
for 7/9 models with 10,000 instances. In these seven networks, PPGES improves from 0.30% to 2.11% over the 
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Fig. 4.  Comparisons of PPGES and GES in terms of BIC.

 

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−0.3 −0.2 −0.1 0.0 0.1
changes of time (secs)

Asia

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−0.75 −0.50 −0.25 0.00
changes of time (secs)

Sachs

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−60 −40 −20 0
changes of time (secs)

alarm

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−5.0 −2.5 0.0
changes of time (secs)

Child

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−4 −2 0
changes of time (secs)

Insurance

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−20 −10 0
changes of time (secs)

Water

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−150 −100 −50 0 50
changes of time (secs)

Hailfinder

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−300 −200 −100 0
changes of time (secs)

Hepar2

d=1,t=median
d=1,t=upper

d=1,t=mean

d=3,t=median
d=3,t=upper

d=3,t=mean

d=6,t=median
d=6,t=upper

d=6,t=mean

−400 −200 0
changes of time (secs)

Win95pts

Fig. 3.  Comparisons of PPGES and GES in terms of running time.
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suboptimal algorithm. For the Asia and Child models, PPGES is only 1.05% and 0.11% less than the global 
optimal, respectively.

In the comparison results of 100,000 instances, seven comparative algorithms search for the global optimal in 
the Sachs model, as shown in Table 5. PPGES performs better than the results in Tables 2, 3, and 4. In the results 
of the Child model, the proposed method outputs the same score as GOBNILP. Although MMPC+GES obtains 
the same result as GES for the Asia and Sachs models, it performs worse than GES for 6/9 models.

As for SHD, PPGES does not perform as well as in comparisons of BIC, especially in Table 6. That is because 
GES is an S&S algorithm, and the search for the best results is based on the score function. Similarly, the 
structures with global optimal scores found by GONBNILP do not necessarily have the lowest SHD. As the 
amount of data increased, the trend of BIC and SHD gradually matched, and PPGES performed better and 
better. In the results of Table 9, PPGES found the CPDAG on 6/9 models that were closest to the real structure. 
In contrast to the BIC comparison results, MAHC performed better in the SHD comparison, possibly because 
the method used the strategy of model averaging. Similar to BIC, MMPC+GES is still not better than GES in 
terms of any amount of data.

As for the comparisons between PPGES and MMPC+GES, the proposed algorithm can improve GES in 
terms of both efficiency and accuracy, while MMPC+GES only enhances efficiency and even worsens accuracy 
in many cases.

It is also worth noting that a better BIC score does not necessarily imply a lower SHD, because BIC and 
SHD evaluate different aspects of model quality. As a score-equivalent and consistent scoring function, BIC is 
guaranteed to asymptotically identify the p-map of the underlying distribution. In contrast, SHD is a purely 
combinatorial metric that counts edge-level differences between graphs, which makes SHD more sensitive to 
local structural variations, sample fluctuations, and characteristic of benchmark networks. Consequently, it is 
possible for BIC to show clear improvement while SHD appears unstable in certain cases. Nevertheless, in line 
with the asymptotic property of BIC (see Theorem 2), our experiments show that the SHD of PPGES improves 
with increasing sample size across most benchmark networks (see Tables 6–9).

Comparisons on real data
Since it is much more difficult to obtain the true causal structure from real datasets, in this section we only 
select PPGES and MAHC, which performed best in SHD in the previous comparisons, and apply them to a real 
dataset. This dataset is derived from a research61 that recorded the development of the 2019 coronavirus disease 
(COVID-19) in the UK over 866 days from January 2020 to June 2022, forming raw data with 866 rows and 18 
columns. The raw data, processed data, processing methods, ground-truth graph, and data set descriptions are 
available from the literature61.

The scoring performances of PPGES and MAHC are listed in Table 10. Undoubtedly, PPGES has more 
advantages compared with MAHC on this real dataset, whether in terms of structure score or graphical 
evaluation. Then, to observe the causal structures obtained by the two methods more intuitively, the subgraphs 
of the causal structures they output are shown in Fig. 6. In Fig. 6a and b, the correct edges, the extra edges (the 
edges that do not exist in the ground-truth graph but are output by the algorithm), and the incorrect edges (the 
missing edges compared to the ground-truth graph and the edges in the opposite direction) are marked in black, 
blue dash lines, and red, respectively.

In detail, MAHC recovers five correct edges, all of which are also correctly discovered by PPGES. 
PPGES correctly determine the causal relationships, New_infections → P ositive_tests and 
Hospital_admissions → P atients_in_hospital, while MAHC fails in these causality. Moreover, 

Fig. 5.  The ratio of which PPGES and MMPC+GES improved efficiency with different amounts of data.
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PC.stable GOBNILP MAHC MMHC DAG-GNN GOLEM DAGMA GES MMPC+GES ILGES ARGES PPGES

Asia 3 0 2 3 8 13 8 5 5 7 2 3

Sachs 0 0 1 0 16 21 11 0 0 0 22 0

Alarm 10 OM 29 27 50 86 35 46 43 18 90 5

Child 1 0 0 18 22 44 24 15 18 0 60 0

Insurance 46 OM 33 38 52 69 52 26 45 45 105 25

Water 50 OM 48 50 64 97 60 52 61 57 – 44

Hailfinder 45 OM 26 42 74 117 85 44 61 56 – 34

Hepar2 91 OM 23 66 122 168 119 116 121 75 58 53

Win95pts 108 OM 79 46 110 156 107 44 102 98 – 22

Table 9.  The SHD of all algorithms for benchmarks with 100,000 instances.

 

PC.stable GOBNILP MAHC MMHC DAG-GNN GOLEM DAGMA GES MMPC+GES ILGES ARGES PPGES

Asia 4 0 3 4 8 10 8 6 6 3 1 4

Sachs 14 0 2 2 15 16 11 10 2 2 29 0

Alarm 14 OM 23 23 44 73 35 30 42 7 63 8

Child 7 0 7 14 22 44 24 15 16 0 40 4

Insurance 28 OM 38 41 52 68 51 36 47 43 64 28

Water 60 OM 48 58 63 97 60 58 60 46 – 56

Hailfinder 49 OM 27 41 70 109 84 56 65 51 – 46

Hepar2 101 OM 68 87 123 177 119 86 127 79 55 52

Win95pts 59 OM 68 65 112 146 109 60 105 85 – 42

Table 8.  The SHD of all algorithms for benchmarks with 10,000 instances.

 

PC.stable GOBNILP MAHC MMHC DAG-GNN GOLEM DAGMA GES MMPC+GES ILGES ARGES PPGES

Asia 4 1 3 4 8 12 8 6 6 3 1 4

Sachs 8 0 2 3 16 21 12 10 2 1 24 8

Alarm 22 OM 23 22 41 82 35 46 43 23 56 16

Child 9 0 8 16 22 48 24 15 19 0 39 6

Insurance 40 OM 40 41 55 84 53 45 45 44 75 39

Water 63 OM 54 58 65 93 60 53 61 47 – 51

Hailfinder 48 OM 32 44 70 119 93 57 66 39 – 47

Hepar2 109 OM 73 93 123 176 119 102 122 72 65 60

Win95pts 61 OM 71 68 112 162 104 83 108 90 – 38

Table 7.  The SHD of all algorithms for benchmarks with 5000 instances.

 

PC.stable GOBNILP MAHC MMHC DAG-GNN GOLEM DAGMA GES MMPC+GES ILGES ARGES PPGES

Asia 6 1 1 4 11 11 8 6 6 6 1 1

Sachs 8 1 7 8 16 18 11 10 5 0 22 8

Alarm 32 OM 26 28 41 68 34 46 45 16 53 27

Child 13 12 16 18 23 45 23 16 17 10 26 8

Insurance 44 OM 45 43 59 62 51 52 49 46 – 44

Water 60 OM 58 60 66 99 60 60 60 58 – 60

Hailfinder 43 OM 42 49 70 120 88 58 63 53 – 34

Hepar2 125 OM 116 114 122 172 120 119 135 114 115 114

Win95pts 91 OM 76 92 112 184 103 90 110 110 – 64

Table 6.  The SHD of all algorithms for benchmarks with 1000 instances.
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PPGES discovers the causal relationships between the policy node Lockdown and the mobility node 
T ransportation_activity, and between the two mobility nodes W ork_and_school_activity and 
T ransportation_activity. However, MAHC do not correctly search the edges Lockdown → T ransportation_activity 
and W ork_and_school_activity → T ransportation_activity. PPGES incorrectly finds an undirected 
edge P ositive_tests − Majority_COV ID_19_variant, while MAHC does not make the same mistake.

Discussion
In this study, we proposed an improved E-space algorithm called PPGES to improve the performance of GES. 
First, the strongest dependence relations were determined. In order to find the relations behind the data, we 
designed a metric called PPRE based on the relative entropy of the prior and posterior distributions. Then, for the 
proposed metric, we constructed a framework containing well-designed connection rules to obtain an excellent 
initial graph of GES. The connected graph is converted into E-space and further optimized using GES to obtain 
the final CPDAG. The experimental results reveal that the proposed algorithm improves the performance of 
GES in terms of time and scores. Moreover, PPGES outperformed other solvers in most models with different 
instances. Finally, PPGES also output a more accurate structure for a real dataset about COVID-19.

Our future works will focus on parallelizing the algorithm to further improve its efficiency and studying how 
to achieve the same excellent results under weak faithfulness conditions.

Data availability
All data generated or analysed during this study are included in this paper (including, but not limited to, repos-
itory name, author, and URL).
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