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As a well-known Bayesian network structure learning algorithm in equivalence class space (E-space),
Greedy equivalence search (GES) is used in many fields. However, it encounters high complexity

when searching for information from an empty graph. If the initial graph of GES is an equivalence

class containing the strongest dependencies instead of an empty graph, its performance will be
significantly improved. In this study, we propose a three-phase algorithm to establish the initial graph.
First, we design a measure based on relative entropy to evaluate the relation between variables.

Then, the variables are connected based on the previously designed metrics and the resulting graph

is transformed into E-space. Finally, the resulting graph is used as the initial graph of GES for E-space
optimization. We compare the proposed algorithm with GES in efficiency and accuracy, and the

results show that our algorithm improves the efficiency and accuracy of GES. Furthermore, extensive
comparisons are designed to compare our method with other state-of-the-art methods on benchmarks
and real data about COVID-19 pandemic in the UK.

Keywords Bayesian networks, Structure learning, Greedy equivalent search, Relative entropy

Discovering the causal mechanisms behind data is a fundamental challenge in the field of artificial intelligence.
Bayesian networks (BNs)!, as a type of probabilistic graphical model, provide an intuitive representation of the
causal relationships among random variables. Hence, BNs have been applied in a wide variety of domains in the
past decades, such as prediction of protein-protein?, explainability of chemical sciences?, time series forecasting?,
Earth systems®, and telecom-fraud risk warnings®.

BNs encode the variables and independent relationships between variables as nodes and edges between
nodes, respectively, which forms a directed acyclic graph (DAG) that becomes the graphical structure of a BN.
The process of recovering the DAG corresponding to a BN is called BN structure learning (BNSL). Existing
BNSL methods can be divided into function-based, constraint-based (CB), score-and-search (S&S), and hybrid
algorithms. The function-based methods describe the relationship between variables using the given function,
such as the linear non-Gaussian acyclic model (LINGAM)’, post-nonlinear (PNL)?, or additive noise models’,
among others. These methods usually perform well in the case of continuous variables that satisfy their given
assumptions. However, when the precise function does not apply in the case of discrete variables, identifying
the direction of causality becomes intractable!?. CB approaches generally use a series of hypothesis tests to
determine the conditional independence relationships between variables. The most popular CB methods
include PC!!, AMB!2, and their improved versions or variants'3~1°. S&S approaches rely on well-defined scoring
functions such as BIC/MDL!®!7, BDeu'?, and so on, to transform the BNSL problem into a task of searching for
the DAG with the highest score. S&S methods can be further divided into two classes of algorithms, according
to their different search strategies: exact search algorithms and local search algorithms. Although the former
can find globally optimal solutions, such as GOBNILP!*°, A*21 and their variants?>?3, they hardly scale beyond
60 nodes; thus, local search algorithms are becoming increasingly popular. BNSL methods using local search
typically search for optimal structures in three spaces: DAG space (D-space), equivalent class (EC, introduced
in “Equivalence class” section) space (E-space), and ordering space (O-space). D-space methods operate on
individual edges in the DAG until a locally optimal score is reached, such as Hill-climbing (HC)?* and its more
complex version?>26, However, the number of candidate structures in D-space grows super-exponentially as the
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number of variables increases. The number of ECs is generally less than the number of DAGs, and some of the
inefficient operations of D-space can be avoided in E-space, so E-space is much simpler than D-space (For more
details, refer to Section 2.3 in*”.)?”?8, The most representative algorithm in E-space is greedy equivalence search
(GES)%, which updates the current EC to another EC with a higher score. Order-based search (OBS)* provides
the third search space for BNSL, and it uses a topological order to denote a DAG. Although some excellent
O-space methods have been proposed®"*2, O-space is rooted in consistency rules for node order, which provides
easier optimization but also limits its performance®"*2. Naturally, there are approaches to combine CB and S&S
algorithms, and the most representative form is Max-min HC (MMHC)??. However, these algorithms do not
perform better than CB and S&S methods*. Therefore, this study focuses on E-space.

Since GES was proposed, researchers have studied how to improve its performance in the past two decades.
Chickering designed two clever operators and refined the structure of GES to make it a baseline algorithm for
E-space?”**, upon which subsequent E-space algorithms have been proposed. Nielsen et al. slightly improved the
performance of GES by making a tradeoff between randomness and greediness*. Chen et al. combined ordering
and EC to apply the genetic algorithm to E-space”. Zhang et al. used the maximal information coefficient to
determine the draft and modified the draft to obtain a higher score®. Alonso et al. restricted the search space
of the first phase of GES to improve efficiency®. Ramsey et al. refined the score cache and parallelized the
search phases, significantly speeding up GES*’. Alonso et al. modified the changes in scoring at each step to
incorporate some excellent metaheuristic algorithms, improving accuracy*'. Nandy et al. proposed a hybrid
E-space algorithm by combining GES and CB methods for high-dimensional continuous data*2. Liu et al. recently
designed two frameworks to transfer the local optimum of E-space to other spaces, which improves the accuracy
of GES®. Liu et al. proposed a hybrid algorithm based on mutual information for discrete data*. Laborda et al.
used GES as a local solver for distributed parallel optimization®>. Chen et al. developed an algorithm to find the
k-best EC using dynamic programming and model averaging®®. Chen et al. used A* to search for the globally
optimal EC on networks with fewer than 30 variables*’.

Zheng et al. recently transformed the BNSL problem into a continuous optimization process*®, which
serves as a novel way to discover the DAG. Many works have used different deep learning methods to improve
performance from Zheng’s perspective’®>2. However, some comparison results show that these methods
generally perform poorly on discrete data®>°.

In this study, we focus on improving the performance of GES in terms of both efficiency and accuracy on
discrete data. When GES starts searching from an empty graph, the search space is very complex. Naturally, a
high-level intuition is that the efficiency will be improved significantly if GES searches for the optimal EC from
an excellent initial graph. Therefore, we first design a metric to measure the degree of dependence between
variables based on relative entropy. Then, a framework containing connection rules according to the quantified
dependency strengths is proposed. Finally, following these linking rules, the variables are connected and
converted into EC as the initial graph of GES for optimization. Our framework can also simultaneously improve
the local optimum of the forward phase of GES. We conduct extensive comparisons using the proposed method,
GES, and other state-of-the-art algorithms to reveal the performance of the proposed method.

The remainder of this paper is organized as follows: “Preliminaries” section provides the information about
graph theory, BN, and EC. “Methods” section describes how GES works, and proposes our novel algorithm with
a new metric and introduces it in detail. “Results” section compares the proposed method with GES and other
state-of-the-art algorithms on well-known benchmarks and a real dataset. “Discussion” section summarizes the
paper and gives future directions for our research.

Preliminaries

Graph theory

A graph G = (V, E) is composed of sets of edges E and nodes V. If two arbitrary nodes X, Y € V are connected
by an undirected edge X — Y, they are neighbors, and the set of the neighbors of X is Nex. We say that Y is
a parent of X if there is a directed edge pointing from Y to X, such as Y — X. All parents of X form a parent
set, expressed as Pax, and the maximum value of |Pax | in G is called the maximum in-degree dc. Regardless
of whether the edges between X and Y are directed or undirected, we consider X and Y to be adjacent, and all
nodes adjacent to X are denoted as Ad x. If some nodes are pairwise adjacent, they form a clique. A V-structure
is a subgraph formed by three nodes, where two non-adjacent nodes are parents of the third node, that is, three
nodes are connected as Y — X + Z.

X — Y isapath from X along some directed or undirected edges that end up at Y. If the edges of the path are
all undirected edges, then X +— Y is an undirected path. Similarly, X — Y is a directed path if these edges are
directed from the previous node to the next node in the path. Otherwise, X +— Y is considered a semi-directed
path if there is at least one directed edge and one undirected edge in the path. In a directed path X — Y, all
nodes following X are descendants of X. A graph G containing a cycle means that there isa path X +— Y in G and
X that is adjacent to Y. G is a DAG if there is no cycle in G and every edge in G is directed. Similarly, if there is at
least one semi-directed path in G that does not contain any cycle, G is a partially DAG (PDAG).

Bayesian networks
A BN is a probabilistic graphical model that can be expressed as BN = (G, P), where G is a DAG and PP is its
joint probability distribution. Let Ndx denote all descendants of X. G encodes the conditional independence
assumptions as follows:

VX € V, X INdx|Pax. 1)
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Based on the conditional independences and chain rule of probability, the joint probability P over V can be
factorized as:

VI

P(V) = [ P(x|Pax), )

Xev

where | V| is the number of nodes, and Eq. (2) obviously simplifies the complexity of computing joint probability.
S&S methods allow the BNSL problem to be represented as follows:

G* = G,D
argglgéscore( ,D) 3)

where G is all candidate structures, G* is the optimal structure, and D is the data to be studied. In this paper,
we use BIC, one of the most used scores, to estimate the learned structure. BIC has a fundamental property: it
is decomposable, which means the BIC of a BN can be decomposed into the sum of the scores of each node with
its parents, that is,

v
BIC(G,D) = Z BIC(X,Pax,D), (4)
Xev
where
BIC(X,Pax,D) = LL(X|Pax) — Pen(X|Pax). (5)

For discrete observational data:

LL(X|P8,X) = Z Z Nz,pa IOg éz\paa (6)

paEQan TEQ X
log |D
Pen(X[Pax) =2 P! [0, | (10x] - 1). @)

In this equation, 2x and Qp., represent the state spaces of X and Pax, respectively; IV ;. denotes is the
number of instances with X = x A Pax = pa in D, so we omit D in the expansion of the equation; log 0|, is
the log-likelihood estimation of the conditional probability P(X = z|Pax = pa).

Then, we introduce the relationship between the graph G and distribution P. Let I(G) and I(IP) denote the
sets of conditional independence assertions entailed by G and P, respectively. We say that G is a perfect map
(p-map) of P if and only if I(G) = I(PP). Let £(G) denote the equivalence class (CPDAG) of a DAG G.

Equivalence class

If the independence relationships and distributions of G and G’ from two DAGs are identical, they are equivalent
to each other. The skeleton of a DAG is an undirected graph that transforms the directed edges of the DAG into
undirected edges. Based on skeleton and v-structures, Verma and Pearl prove the following theorem:

Theorem 1 33 Two DAGs are equivalent iff they share the same skeleton and v-structures.

If a PDAG G p has the same skeleton and v-structures as a DAG G, and all directed edges in G p also exist in G,
we say that the PDAG admits a consistent extension and the DAG is a consistent extension of the PDAG.

All equivalent DAGs form their equivalent classes (EC), denoted by e. Obviously, PDAG is not a precise
representation of EC because we cannot ensure that every DAG in ¢ is a consistent extension of the PDAG
corresponding to one DAG in €. To get a suitable representation of € shown in Definition 2, we distinguish the
edges of the DAGs in ¢ as in Definition 1.

Definition 1 Ifa directed edge exists in every DAG in ¢, the edge is compelled. Otherwise, the edge is reversible,
that is, this edge exists in at least two of the DAGs of ¢ in the opposite direction.

Definition 2 A PDAG is a completed PDAG (CPDAG) if every directed edge of the PDAG is compelled and all
undirected edges are reversible.

Based on Definition 2, any DAG in ¢ is a consistent extension of the CPDAG corresponding to ¢, so we also use
¢ to denote the CPDAG corresponding to ¢ in the rest of this paper. Figure 1 shows a simple DAG, its skeleton,
the CPDAG corresponding to the EC to which it belongs, and another consistent extension of the CPDAG.

With these definitions, we introduce the notion of a consistent score function. Let G* denote a p-map of I,
and let G be an arbitrary DAG that is not a p-map. A score function is consistent if, in the limit as |D| — oo, the
following hold:

o (™ attains the highest score;
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(2)

(b) (©) (d)

Fig. 1. Examples of (a) A DAG. (b) The CPDAG corresponds to the EC to which (a) belongs. (c) The skeleton
of (a). (d) another consistent extension of (c).

o The score of any non-p-map DAG G is strictly less than that of any DAG in e(G™), i.e.,
score(G,D) < score(H,D), VH € ¢e(G).

Theorem 2 3 BIC is a consistent score function.

Methods

The original greedy equivalent search

GES searches for the EC with the highest score in two phases (The consistency of GES relates to the nature of the
perfect map and the consistency of the score (see> for a detailed introduction), for detailed proof, see Sections
4.2 and 4.3 of®.) In the first phase, called forward equivalent search (FES), iterative updates to the current
MEC occur by adding one edge using a well-designed operator Insert(X,Y,T). The second phase is called
Backward Equivalent Search (BES), and it deletes one edge in one operation via the operator Delete(X,Y, H).
The operations Insert(X,Y, T) and Delete(X,Y, H) are shown in Definition 3 and Definition 4.

Definition 3 For any non-adjacent variables X and Y, and any subset T of the set
NnAy x (NnAy,x = Ney (\{V\Adx}), Insert(X,Y, T) updates the current ¢ in the following ways:

o Adding the edge X — Y;
« Changing the undirected edges between Y and any T" € T into directed edges 7" — Y.

Definition 4 For any adjacent variables X and Y, and any subset H of the set NAy, x (NAy,x = Ney ﬂ Adx),
Delete(X,Y, H) operates the current ¢ in the following ways:

o Deleting theedge X — Y or X —Y;
« Changing the original undirected edges Y — H and X — H for any H € H into the directed edges Y — H
and X — H.

Algorithm 1 shows the outline of FES. Since the results of Insert(X, Y, T) are not necessarily CPDAG,

the function PDAG_To CPDAG in Line 7 transforms the PDAG into the corresponding CPDAG. It is
combined by two functions, PDAG_To DAG* and DAG_To CPDAG?®. The former extracts a con-
sistent extension from the PDAG, and the latter transforms a DAG into the CPDAG to which it belongs. The
operation of BES is similar to FES. We can obtain BES by replacing the validity tests (in Line 15), local score
calculation criterion (in Line 16), and the operation (in Line 18) of Insert(X,Y, T) in Algorithm 1 with those
of Delete(X,Y, H). The validity tests of Insert(X,Y, T) and Delete(X,Y, H) test how to determine wheth-
er or not an Insert(X,Y,T) or Delete(X, Y, H) operator is valid (more details and proof refer to Theorems
15 and 17 in*.) The local score changes of two operators are introduced in Theorems 3 and 4.
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Require: Data D, the initial CPDAG €.
Ensure: A local optimal CPDAG é&x

1: done < True; €x + €

2: while done do

3: bestop < localop(€x)

4: if bestop # & then

5: Apply bestop to €x

6: else

7: done < False

8: ex < PDAG_To_CPDAG (&)
9: end if

10: end while
11: procedure [ocalop(ex)

12: bestop < J; bestdelta < 0

13: for each X € V do

14: for each T C NnAy x do

15: if Test(X — Y,T) == True then

16: Compute Agjc as shown in Theorem 3.
17: if Agjc > bestdelta then

18: bestdelta < Apic; bestop < Insert(X,Y,T)
19: end if

20: end if

21: end for

22 end forreturn bestop

23: end procedure

Algorithm 1. FES.

Theorem 3 The changes in BIC that result from applying a valid operator Insert(X,Y,T) to a CPDAG ¢ is

Aprc = BIC(Y,NAy.x U T U{Pay+x}, D) — BIC(Y,NAy x U T U Pay,D). (8)

Theorem 4 The increments in BIC that result from applying a valid operator Delete(X,Y, H) to a CPDAG ¢ is

Apre = BIC(Y,{NAy,x\H} | J{Pay ™}, D) — BIC(Y, {NAy,x\H}_JPay, D). (9)

Based on the above, GES can be simply expressed as GES : ex < BES(FES(D,€cmpty)), where €empty is
an empty graph because the CPDAG of the EC to which the empty graph belongs is still an empty graph based
on Definition 2.

Theorem 5 *° If the distribution P admits a p-map and £* denotes the CPDAG found by GES with a consistent
score function, then in the limit of large |D|, ¢* is a p-map of P.

The proposed greedy equivalent search
When GES starts from an empty graph, it is inefficient as the search space is very complex. Naturally, if GES
searches for the optimal EC from an excellent seed EC with some strong dependency edges, the search space
will be restricted, and the efficiency will be improved. Therefore, for the proposed method, a metric to evaluate
the relationships between variables is first designed. Then, we connect the most correlated variables to form a
preliminary undirected graph. After determining the v-structure, we obtain an excellent seed graph of GES.
Considering the prior probability P(X) of a variable X and the posterior probability P(X|Y) of that variable
given another variable Y, we can use P(X) and P(X|Y) to measure the relationship between variables X and Y.
Recall the meaning of relative entropy (RE): the difference between two probability distributions R and Q, which
is formulated as follows:

RE(R||Q) = ZRlogg. (10)

Based on RE, we design a metric, prior-posterior relative entropy (PPRE), to quantify the strength of dependencies
between X and Y, as follows:
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PPRE(X,Y) %(RE(P(X)IIP(XIY))+RE(P(X||Y)HP(X)))

P(X PX]Y)
<ZP logP(X|Y)+ZPX|Y (X)>

We analyze why PPRE can determine variable dependencies in terms of both meaning and formula. On one
hand, PPRE reflects the difference between P(X) and P(X]|Y). That is, the greater the PPRE, the greater the effect
of Y on X, indicating a stronger relationship between the variables Y and X. On the other hand, the posterior
probability is substituted into Eq. (11) in the form of joint and marginal distribution, that is,

(11)

1 (X)P(Y) P(X,Y) P(X,)Y)
PPRE(X7Y) =3 (Xyp(X)IOgM+XY P(Y) lOgP(X)P(Y))
1 % (P(X)P(Y)l E Ty PO ) log s ;3&)) (12

\_/

Equation (12) represents that PPRE(X, Y) is mainly affected by the product of the marginal distributions P(X)P(Y)
and their joint distribution P(X, Y), which indicates the extent to which the uncertainty about X is reduced given
that Y is known. To clarify, the proposed PPRE metric is defined as RE between the prior distribution P(X) and
the posterior distribution P(X|Y). This direct comparison of prior and posterior distributions naturally captures
the effect of Y on X, reflecting the conditional dependency between variables. Unlike general-purpose divergence
measures that compare arbitrary distributions, PPRE is specifically designed to quantify variable dependencies
in Bayesian network structure learning. PPRE is derived from RE, so it has three properties similar to RE.

Property 1 If X and Y are independent, then PPRE(X,Y) = 0.

Proof 1f X and Y are independent, then P(X|Y) = P(X). Therefore, PPRE(X,Y) = 0 based on Eq. (11).

(]
Let Id x denote the set of variables independent of X, and then we get Property 2.
Property 2 ForVY € Idx, iff the distributions of X and Y are identical, PPRE(X,Y) = PPRE(Y, X).
Proof According to Eq. (12),
1 1
PPRE(X,Y) — PPRE(Y,X) = 2;( X)> LQ(X,Y), (13)

where Q(X,Y) = (P(X)P(Y) — P(X,Y))log (P(X)P(Y) — P(X,Y)). Since Y is independent of X,
Q(X, Y) must be nonzero. Therefore, iff the distributions of X and Y are identical, Eq. (13) is zero, and the
property is proven. a

Property3 PPRE(X,Y) >0
Proof The property naturally follows from the nonnegativity of the RE. 0

PPRE compares P(X) and P(X | Y) via a symmetrized RE for a fixed target X. Hence PPRE(X,Y) >0
and PPRE(X,Y)=0if P(X |Y) = P(X) (e.g., when X 1 Y). Note that PPRE(X, Y) and PPRE(Y, X)
are generally different, since they quantify how Y affects X and how X affects Y, respectively. This directional
asymmetry is used in the proposed algorithm through the strongest dependent sets to determine edge orientation.

For the evaluation criteria for dependencies, we designed a PPRE-based GES algorithm, called PPGES, the
pseudo-code of which is given in Algorithm 2. The PPGES will be introduced in detail in stages. Before
describing the pseudo-code, we clarify several notations used in Algorithm 2. ex denotes the current partially
directed acyclic graph (PDAG) constructed during the algorithm. It is initialized as the empty graph on the
variable set V, and will be updated iteratively until it becomes a local optimal CPDAG. SD x denotes the
strongest dependent set of variable X, which is a subset of candidate parent variables for X. It is obtained by
ranking all variables Y # X according to PPRE(X, Y). cache is a temporary data structure storing the pairwise
PPRE(X, Y) values between variable X and the remaining variables. For each X, cache is sorted in descending
order of PPRE values to facilitate the selection of SD x.
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Require: Data D, the maximum in-degree dg, threshold ¢
Ensure: A local optimal CPDAG é&x
1: 'V < get the variables of D; €x <— emptygraph(V)
2: foreach X € Vdo
3 SDy «+— @
4 foreachY € V\{X} do
5 cache < compute PPRE(X,Y) inD
6: end for
7 cache «+ sort(cache)
8 SDy « select(cache,dg)
9: SDy < thresh(SDy,t)
10: end for
11: for each X € V do
12: if SDy! = & then

13: for each Y € SDy do

14: if X € SDy then

15: ex < AddEdge(ex,X —Y,check.cycles =T)
16: SDy = SDy\{X}

17: else

18: ex < AddEdge(ex,X < Y, check.cycles =T))
19: end if

20: end for

21: end if

22: end for

23: &% < PDAG_to_CPDAG (&%)
24: €x < GES(D, € = €x)

Algorithm 2. PPGES.

Obviously, PPGES is a three-phase algorithm. The inputs of PPGES include the observation data D, maximum
in-degree of G dg, and the threshold ¢. In the first phase (Lines 2-10), we compute the PPRE to determine the
strongest dependent sets (expressed as SDx) for each variable. Since subsequent operations may query the
PPRE multiple times, the PPRE of each variable and the remaining variables is calculated and stored in the cache
for efficiency, which has a complexity of O (|D| - (]V| — 1)). In order to facilitate subsequent operation, PPGES
sorts PPRE(X, WX), X € V in the cache, the worst complexity of which is O ((|V| —1) - log (]V| — 1)).
After sorting, we select the first dg variables from the cache as the SD x of the variable X. Finally, the variables
with a PPRE greater than the threshold ¢ were filtered out as the final SDx. As for the threshold ¢, we will
obtain it statistically based on the PPRE of the standard network, and the determination of it will be discussed
in “Results” section. The complexity of sorting and filtering is O (2d¢ ). Therefore, for each variable X € V, the
worst-case complexity is O (|D] - |[V| 4 [V] - log (|V| — 1) — log (|V| — 1)). Naturally, the worst complexity of
the first phase is O (|V|2)

In the second phase (Lines 11-23), PPGES obtains a CPDAG with the strongest dependencies. Based on the
set SD x, we conduct connect rules for the variables:

o Rule1.If X € SDy AY ¢ SDx, the algorithm applies AddEdge(X — Y);
o Rule2.If X ¢ SDy AY € SDx, the algorithm applies AddEdge(X < Y);
o Rule3.IfX € SDy AY € SDx, the algorithm applies AddEdge(X —Y).

These connection rules are based on the conditional dependence information captured by PPRE. For Rules 1
and 2, if X strongly depends on Y but not vice versa, we direct the edge as X < Y/, reflecting that knowing Y
reduces the uncertainty of X more than the reverse. Rule 3 handles the case where both variables are strongly
dependent on each other; since the direction cannot be reliably determined from PPRE alone, we add an
undirected edge X — Y, consistent with the PDAG representation in Bayesian networks. Overall, these rules
ensure the resulting PDAG respects acyclicity and can serve as a sound seed graph for the subsequent GES
optimization. While heuristic in implementation, they are theoretically motivated by conditional dependence
and BN structure constraints. In order to prevent the repeated addition of edges, X is removed from SDy- after
connecting them. Since the operation of the first phase, for VX € V,|SDx| < dg, the worst case of the above
operations’ complexity is O (d?; . |V|) The function AddFEdge(-) in Lines 15 and 18 denotes the operation
of adding an edge into the current graph. In our implementation, it is realized by functions such as set.edge()

and set.arc() in the bnlearn package. After connecting their strongest dependent variables for each variable, the
resulting graph is a PDAG. However, the required input for GES is CPDAG. Thus, the final step of the second
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Fig. 2. Examples of PPGES. (a) An empty graph. (b) The resulting graph after the first phase of PPGES. (c) The
resulting graph after the second phase of PPGES. (d) The resulting graph after the third phase of PPGES, that
is, the final CPDAG.

Networks | Nodes | Edges | Parameters | Maximum indegree
Asia 8 8 18 2
Sachs 11 17 178 3
Alarm 37 46 509 4
Child 20 25 230 2
Insurance |27 52 1008 3
Water 32 66 10,083 5
Hailfinder | 56 66 2656 4
Hepar2 70 123 1453 6
Win95pts | 76 112 574 7

Table 1. The characteristics of benchmarks.

phase transforms the resulting graph into a CPDAG using PDAG to CPDAG, whose worst complexity is
O (dé S|V|+d% - |E| + dQG), where |E| represents the number of edges in G. Therefore, the upper bound of

the second phase’s complexity is O (| V]).
The final phase (Line 24) of PPGES uses the CPDAG obtained in the second phase as input to optimize the
final CPDAG further using GES. Figure 2 shows an example of PPGES.

Results

In this section, we first introduce the backgrounds of method comparisons in “Backgrounds of comparisons”
section, such asbenchmarks, comparison algorithms, and hardware and software conditions. Then, “Comparisons
on GES and PPGES” section compares the performance differences between GES and PPGES with different
parameters. “Comparisons on PPGES and other algorithms” section shows the accuracy of the results of PPGES
and other competitive algorithms. Finally, “Comparisons on real data” section applies the proposed algorithm
and the state-of-the-art solver to a real dataset.

Backgrounds of comparisons
All benchmarks in “Comparisons on GES and PPGES” and “Comparisons on PPGES and other algorithms”
sections are sampled from the ground-truth models, which can be downloaded from the Bayesian Network
Repository (https://www.bnlearn.com/bnrepository/). We select two small networks (Asia, Sachs), four medium
networks (Alarm, Child, Insurance, Water), and three large networks (Hailfinder, Hepar2, Win95pts), as well
as the classification criteria are also from the Bayesian Network Repository. The characteristics of these real
networks are given in Table 1.

All the state-of-the-art or well-established algorithms used for the comparison are briefly described as follows:

« PC.stable!®: The competitive CB baseline algorithm;
o GOBNILP2: The state-of-the-art exact search solver;
« GES*: The most representative E-space local search algorithm;
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o ILGES"!: The state-of-the-art E-space local search algorithm;

o ARGES*%: The hybrid algorithm in E-space;

« MMHC: The hybrid baseline algorithm in D-space;

o MMPC+GES: The initial graph for GES is provided by MMPC;

o MAHC?: A D-space local search algorithm using model averaging;

« DAG-GNN*: The competitive continuous optimization baseline algorithm.
« GOLEM?®!: A continuous optimization baseline algorithm.

« DAGMA®2 The competitive continuous optimization baseline algorithm.

PC.stable and MMHC are programmed using the R package bnlearn®” (https://www.bnlearn.com/). GOBNILP
runs in C based on the source code (https://www.cs.york.ac.uk/aig/sw/gobnilp/). GES, ILGES, and the proposed
PPGES are implemented in R based on bnlearn and pcalg. ARGES runs based on the R package pcalg™.
MAHC runs in Java using the source code (https://bayesian-ai.eecs.qmul.ac.uk/bayesys/). ESTOBS runs in
C++, leveraging the source code from its authors. DAG-GNN (https://github.comfi/shmoon1234/DAG-GNN),
and DAGMA (https://github.com/kevinsbello/dagma) run in Python based on their source code. GOLEM is
provided by the Python toolbox gCastle®. It is noted that GOBNILP plays a role in searching for the global
optimum in the comparisons, which provides a reference for other algorithms. MMPC+GES combines the
MMPC phase of MMHC with GES according to the operations of the authors of ARGES. The parameters of all
the above algorithms use the default values from their papers. All comparisons are made on a computer with an
Intel Core i7-10700f (2.9GHz) processor and 32GB of RAM.

In “Comparisons on GES and PPGES” section, the criteria of comparisons are BIC and run time. In
“Comparisons on PPGES and other algorithms” section, the criteria are BIC and structural hamming distances
(SHD). SHD is defined by the authors of MMHC to compare the differences between the learned CPDAG
E€learned and the true CPDAG of BN €4, which can be computed as follows:

SHD(Eiearned; Etrue) = #missing edges + #extra edges + #reversal edges. (14)

That is, SHD is the sum of the number of missing edges, extra edges, and edges with the opposite direction in the
learned CPDAG compared to the true CPDAG.

Sensitivity analysis of PPGES parameters: comparisons with GES

To investigate how the parameters of PPGES affect its performance, we conduct a sensitivity analysis by
comparing PPGES with GES under different parameter settings. Specifically, for the maximum in-degree, we
consider three alternatives do = {1, 3, 6}. For the threshold parameter, we select the mean, median, and upper-
hinge (the latter two are values in Tukey’s five-number summary®®) of PPRE, which corresponds to the strongest
variable dependence among all ground-truth models. Note that these threshold values are computed globally
across all variables rather than individually. This yields nine combinations of parameters for PPGES, which are
evaluated in this section.

We sample 10,000 instances for each benchmark network as this section’s data sets. On the one hand, the
differences between GES and PPGES run time, A¢ime = TPraEs — TcEs, are used to show that PPGES
improves the efficiency of GES with different parameters. On the other hand, Aprc = BICppgrs — BICgEs
shows the effect of PPGES on the scores of GES under different parameters. The results are given in Figs. 3 and
4. The combination of parameters is represented as “in-degree=X,threshold=X". For example, “d=3,t=upper”
indicates the result when the maximum degree is set to 3, and the threshold is set to upper-hinge. The lighter bars
in Figs. 3 and 4 indicate that PPGES improves the performance of GES, while the darker bars imply that PPGES
does not perform as well as GES.

In each graph of Fig. 3, the results of PPGES with different parameters are lighter bars, which means that PPGES
with different parameters achieve better efficiency. To the contrary, some combinations of parameters obtain
worse scores than GES. In summary, the parameters we choose for PPGES are dg = 3 and t = upper - hinge.
PPGES with the combination outperformed GES in 7/9 networks, and of those seven networks, four were the
most accurate results. Meanwhile, PPGES with the combination performs well in terms of efficiency as shown
in Fig. 3.

With the parameters, we compared the ratio in which PPGES improved efficiency with different amounts of
data. Meanwhile, in this subsection, we compare the efficiency of MMPC+GES and PPGES, and their accuracy
will be compared in “Comparisons on PPGES and-other, algorithms” section. In Fig. 5, the x-axis represents the
amount of data, and the y-axis represents — Topg -

Obviously, both MMPC+GES and PPGES can significantly improve the efficiency of GES. As a well-
established CB method, MMPC is more efficient than the proposed algorithm. MMPC+GES runs faster than
PPGES in 29/36 cases, and the differences between their results are less than 0.25 in 16/29 cases.

Comparisons on PPGES and other algorithms
In this section, we sample 1000, 5000, 10,000, and 100,000 instances for each ground-truth model. The BIC
scores obtained by all the comparison algorithms are listed separately in Tables 2, 3, 4, and 5. The results of
SHD are shown in Tables 6, 7, 8, and 9. The best score for each of the benchmarks in the table is written in bold,
and two decimal places are reserved for BIC. If the algorithm goes wrong for some reason, the results will be
represented as “-”.

In Table 2, although GOBNILP finds a global optimum on Asia, Sachs, and Child, it fails when the number
of nodes increases. MAHC, DAG-GNN, GOLEM and DAGMA can stably output results, but their scores are
far from those of other algorithms, especially in the Hailfinder model. PC.stable wins 1 of 9 models, but its
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Fig. 3. Comparisons of PPGES and GES in terms of running time.
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Fig. 4. Comparisons of PPGES and GES in terms of BIC.
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performance is limited by the conditional independence tests. PPGES and ILGES obtain higher scores than GES
in most models. In detail, ILGES outputs the Hepar2 model with the highest score, whereas PPGES outperforms
other competitive solvers in 6/9 models. Moreover, although PPGES is not the best method for the Sachs and
Hepar2 models, it also gets excellent scores that are very close to the highest score.

The results of 5000 instances are similar to those of 1000 instances, as shown in Table 3. ARGES successfully
outputs a CPDAG in the Insurance model, but it fails in Table 2. It also maintains excellent performance in
the Asia model but still obtains a poor result on the Alarm model. Obviously, PPGES still outperforms other
algorithms on 6/9 models. Although PPGES is not the best algorithm on models Asia, Sachs, and Child models,
its score is only 1.37%, 2.53%, and 0.43% away from the optimal score, respectively.

As the amount of data increases, algorithms perform better in all models, such as DAG-GNN, which scored
only 0.47% worse than the highest score in the Water model. Obviously, PPGES stably outputs better CPDAG
for 7/9 models with 10,000 instances. In these seven networks, PPGES improves from 0.30% to 2.11% over the
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Fig. 5. The ratio of which PPGES and MMPC+GES improved efficiency with different amounts of data.

suboptimal algorithm. For the Asia and Child models, PPGES is only 1.05% and 0.11% less than the global
optimal, respectively.

In the comparison results of 100,000 instances, seven comparative algorithms search for the global optimal in
the Sachs model, as shown in Table 5. PPGES performs better than the results in Tables 2, 3, and 4. In the results
of the Child model, the proposed method outputs the same score as GOBNILP. Although MMPC+GES obtains
the same result as GES for the Asia and Sachs models, it performs worse than GES for 6/9 models.

As for SHD, PPGES does not perform as well as in comparisons of BIC, especially in Table 6. That is because
GES is an S&S algorithm, and the search for the best results is based on the score function. Similarly, the
structures with global optimal scores found by GONBNILP do not necessarily have the lowest SHD. As the
amount of data increased, the trend of BIC and SHD gradually matched, and PPGES performed better and
better. In the results of Table 9, PPGES found the CPDAG on 6/9 models that were closest to the real structure.
In contrast to the BIC comparison results, MAHC performed better in the SHD comparison, possibly because
the method used the strategy of model averaging. Similar to BIC, MMPC+GES is still not better than GES in
terms of any amount of data.

As for the comparisons between PPGES and MMPC+GES, the proposed algorithm can improve GES in
terms of both efficiency and accuracy, while MMPC+GES only enhances efficiency and even worsens accuracy
in many cases.

It is also worth noting that a better BIC score does not necessarily imply a lower SHD, because BIC and
SHD evaluate different aspects of model quality. As a score-equivalent and consistent scoring function, BIC is
guaranteed to asymptotically identify the p-map of the underlying distribution. In contrast, SHD is a purely
combinatorial metric that counts edge-level differences between graphs, which makes SHD more sensitive to
local structural variations, sample fluctuations, and characteristic of benchmark networks. Consequently, it is
possible for BIC to show clear improvement while SHD appears unstable in certain cases. Nevertheless, in line
with the asymptotic property of BIC (see Theorem 2), our experiments show that the SHD of PPGES improves
with increasing sample size across most benchmark networks (see Tables 6-9).

Comparisons on real data

Since it is much more difficult to obtain the true causal structure from real datasets, in this section we only
select PPGES and MAHC, which performed best in SHD in the previous comparisons, and apply them to a real
dataset. This dataset is derived from a research®! that recorded the development of the 2019 coronavirus disease
(COVID-19) in the UK over 866 days from January 2020 to June 2022, forming raw data with 866 rows and 18
columns. The raw data, processed data, processing methods, ground-truth graph, and data set descriptions are
available from the literature®!.

The scoring performances of PPGES and MAHC are listed in Table 10. Undoubtedly, PPGES has more
advantages compared with MAHC on this real dataset, whether in terms of structure score or graphical
evaluation. Then, to observe the causal structures obtained by the two methods more intuitively, the subgraphs
of the causal structures they output are shown in Fig. 6. In Fig. 6a and b, the correct edges, the extra edges (the
edges that do not exist in the ground-truth graph but are output by the algorithm), and the incorrect edges (the
missing edges compared to the ground-truth graph and the edges in the opposite direction) are marked in black,
blue dash lines, and red, respectively.

In detail, MAHC recovers five correct edges, all of which are also correctly discovered by PPGES.
PPGES correctly determine the causal relationships, New infections — Positive tests and
Hospital _admissions — Patients_in__hospital, while MAHC fails in these causality. Moreover,
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PC.stable | GOBNILP | MAHC | MMHC | DAG-GNN | GOLEM | DAGMA | GES | MMPC+GES | ILGES | ARGES | PPGES
Asia 6 1 1 4 11 11 8 6 |6 6 1 1
Sachs 8 1 7 8 16 18 11 10 |5 0 22 8
Alarm 32 oM 26 28 41 68 34 46 |45 16 53 27
Child 13 12 16 18 23 45 23 16 |17 10 26 8
Insurance | 44 oM 45 43 59 62 51 52 |49 46 - 44
Water 60 oM 58 60 66 99 60 60 |60 58 - 60
Hailfinder | 43 oM 42 49 70 120 88 58 |63 53 - 34
Hepar2 | 125 OM 116 114 122 172 120 119 | 135 114|115 114
Win95pts | 91 OM 76 92 112 184 103 90 | 110 1o |- 64
Table 6. The SHD of all algorithms for benchmarks with 1000 instances.
PC.stable | GOBNILP | MAHC | MMHC | DAG-GNN | GOLEM | DAGMA | GES | MMPC+GES | ILGES | ARGES | PPGES
Asia 4 1 3 4 8 12 8 6 |6 3 1 4
Sachs 8 0 2 3 16 21 12 10 |2 1 24 8
Alarm 22 oM 23 22 41 82 35 46 |43 23 56 16
Child 9 0 8 16 22 48 24 15 |19 0 39 6
Insurance | 40 oM 40 41 55 84 53 45 45 44 75 39
Water 63 oM 54 58 65 93 60 53 |61 47 - 51
Hailfinder | 48 OM 32 44 70 119 93 57 |66 39 - 47
Hepar2 | 109 oM 73 93 123 176 119 102|122 72 65 60
Win95pts | 61 oM 71 68 112 162 104 83 | 108 90 - 38
Table 7. The SHD of all algorithms for benchmarks with 5000 instances.
PC.stable | GOBNILP | MAHC | MMHC | DAG-GNN | GOLEM | DAGMA | GES | MMPC+GES | ILGES | ARGES | PPGES
Asia 4 0 3 4 8 10 8 6 |6 3 1 4
Sachs 14 0 2 2 15 16 11 10 |2 2 29 0
Alarm 14 OM 23 23 44 73 35 30 |42 7 63 8
Child 7 0 7 14 22 44 24 15 |16 0 40 4
Insurance |28 oM 38 41 52 68 51 36 47 43 64 28
Water 60 oM 48 58 63 97 60 58 | 60 46 - 56
Hailfinder | 49 oM 27 41 70 109 84 5 |65 51 - 46
Hepar2 | 101 oM 68 87 123 177 119 86 | 127 79 55 52
Win95pts | 59 oM 68 65 112 146 109 60 | 105 85 - 42
Table 8. The SHD of all algorithms for benchmarks with 10,000 instances.
PC.stable | GOBNILP | MAHC | MMHC | DAG-GNN | GOLEM | DAGMA | GES | MMPC+GES | ILGES | ARGES | PPGES
Asia 3 0 2 3 8 13 8 5 s 7 2 3
Sachs 0 0 1 0 16 21 11 0o |o 0 22 0
Alarm 10 oM 29 27 50 86 35 46 |43 18 90 5
Child 1 0 0 18 22 44 24 15 |18 0 60 0
Insurance | 46 oM 33 38 52 69 52 26 |45 45 105 25
Water 50 OM 48 50 64 97 60 52 |6l 57 - 44
Hailfinder | 45 oM 26 42 74 117 85 4 |61 56 - 34
Hepar2 |91 oM 23 66 122 168 119 116 | 121 75 58 53
Win95pts | 108 oM 79 46 110 156 107 44 102 98 - 22

Table 9. The SHD of all algorithms for benchmarks with 100,000 instances.
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PPGES MAHC
BIC SHD | BIC SHD
—-10,095.77 | 34 —-17,110.85 | 40

Table 10. The performance of PPGES and MAHC on the COVID-19 dataset.
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Fig. 6. Subgraphs of causal structures recovered from (a) PPGES and (b) MAHC in the COVID-19 dataset.

PPGES discovers the causal relationships between the policy node Lockdown and the mobility node
Transportation _activity, and between the two mobility nodes Work and_school activity and
Transportation__activityHowevesMAHCdonotcorrectlysearchtheedgesl ockdown — T'ransportation _activity
and Work _and__school _activity — Transportation _activity. PPGES incorrectly finds an undirected
edge Positive_tests — Majority COVID _19_wvariant, while MAHC does not make the same mistake.

Discussion
In this study, we proposed an improved E-space algorithm called PPGES to improve the performance of GES.
First, the strongest dependence relations were determined. In order to find the relations behind the data, we
designed a metric called PPRE based on the relative entropy of the prior and posterior distributions. Then, for the
proposed metric, we constructed a framework containing well-designed connection rules to obtain an excellent
initial graph of GES. The connected graph is converted into E-space and further optimized using GES to obtain
the final CPDAG. The experimental results reveal that the proposed algorithm improves the performance of
GES in terms of time and scores. Moreover, PPGES outperformed other solvers in most models with different
instances. Finally, PPGES also output a more accurate structure for a real dataset about COVID-19.

Our future works will focus on parallelizing the algorithm to further improve its efficiency and studying how
to achieve the same excellent results under weak faithfulness conditions.

Data availability
All data generated or analysed during this study are included in this paper (including, but not limited to, repos-
itory name, author, and URL).
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