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Privacy preservation in diabetic
disease prediction using federated
learning based on efficient cross
stage recurrent model
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Diabetic retinopathy (DR) is a major problemfor the diabetes patients that makes a serious threat

to vision and causes the irreversible blindness if not diagnosed and treated early. Conventional deep
learning-based approaches designed for DR detection have demonstrated promising results; still,

the requirement of centralized data aggregation makes privacy and security concerns for sharing

the healthcare data. Thus, for providing the privacy preservation federated learning (FL) based
methods were designed; still, the computation overhead and inaccurate detection of disease limits
the performance. Hence, this research introduces a privacy-preserving framework named federated
learning based diabetic retinopathy detection network (FedDRNet) model. The proposed FedDRNet
model includes efficient cross stage recurrent network (ECSRNet) for training the local and server
model that combines the strengths of ShuffleNet, CSPNet, and GRU to achieve high accuracy and
computational efficiency. Besides, to strengthen the privacy, Homomorphic Encryption is applied prior
to the update sharing for obtaining secure communication between clients and the central server.
Also, improved K-means clustering (IKMC) based user selection enhances the communication efficiency
by reducing the communication rounds. The analysis of FedDRNet by implementing in PYTHON
programming tool based on Accuracy, Precision, Recall, F-Score, and Specificity acquired the values of
98.6, 98.8, 98.3, 98.6, and 98.1% respectively.

Keywords Diabetic retinopathy, Federated learning, ShuffleNet, Cross stage partial network, Homomorphic
encryption, Client clustering model, Multi-scale filtering, Noise removal, Privacy-preservation

Diabetic retinopathy (DR) is a progressive eye disease that causes due to prolonged high blood glucose levels
among the diabetes mellitus patients of Type I and Type II category'. The patients with DR initially affect the
retinal blood vessels and leads to the vision impairment and blindness among the patient?. As per the world
health organization (WHO), around 422 million people were affected by diabetes in 2014. The disease count
will be projected to grow to 552 million by 2030 that indicates the diabetes and its complications. DR accounts
for about 2.6% of all cases of visual impairment like just myopia®. It also causes blindness due to retinal damage
among the diabetic infected people. DR develops when excess glucose in the bloodstream damages small blood
vessels in the retina that is light-sensitive tissue at the back of the eye®. The retina sends visual signals to the brain
through the optic nerve and hence the damage in retina disrupts the vision. DR shows minimal symptoms in
early stages that make it hard to detect without routine screenings’. Misdiagnosis occurs due to smaller visual
cuesin under-resourced areas and the undiagnosed DR lead to irreversible blindness. Thus, early detection and
monitoring are critical for the DR patients®.

Conventional methods designed for DR detection utilized manual diagnosis using retinal fundus photography,
where ophthalmologists visually inspect images for clinical signs like microaneurysms, hemorrhages, and
exudates’. The diagnostic tools like fluorescein angiography and optical coherence tomography (OCT) are used
to detect the retinal changes in the images®. The conventional methods are clinically effective; still, the highly
dependent of expert knowledge and time-consuming process due to labor-intensive degrades the performance’.
Also, while considering the resource-limited regions that has the limited access to specialized equipment and
skilled personnel lead to delayed or missed diagnoses!®. The subjectivity nature of the manual assessment
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introduces variability and the infrastructure cost in the regular screening is prohibitively high for many low-
income settings!!.

To overcome the limitations in the manual diagnosis deep learning has developed for automated DR detection.
Deep learning models based on convolutional neural networks (CNNs) has the capability of learning complex
patterns from retinal images that enables the model to detect DR with high accuracy and consistency'>!3. The
deep learning models significantly reduce the need for manual feature extraction and expert requirementprovides
the faster and more scalable screening processes!*. Also, while considering the deep learning models that is
trained and deployed in telemedicine platforms that provide the diagnostic capabilities to under-resourced or
remote areas'”. Still, traditional deep learning approaches require centralized data collection for model training
that raises significant concerns in patient privacy, data security, and compliance with health data protection
regulations!®.

Federated learning (FL)based methods solves the challenges by enabling collaborative training of deep
learning models across decentralized data sources without sharing raw patient data!’. In federated learning
models, each participating hospital trains the model locally and shares only the model updates with a central
server that aggregates to form a global model'®. The FL basedapproach preserves data privacys; still, the diversity
of medical datasets from multiple institutions enhances model robustness and generalization'®. FL based
models by combining the predictive power of deep learning with the privacy-preserving and collaborative
nature of federated learning provides enhanced detection accuracy by maintaining privacy?. Thus, this research
introduces a FL based approach for DR detection. The major contributions of the research are:

Design of ECSRNet

The local and global model training is devised using the Efficient Cross Stage Recurrent Network (ECSRNet)
that combines the strengths of ShuffleNet, Cross Stage Partial Networks (CSPNet), and Gated Recurrent Unit
(GRU) to achieve high accuracy and computational efficiency.

Design of IKMC
The improved K-means clustering (IKMC) based user selection is devised in the proposed FedDRNet model for
enhancing the communication efficiency.

Design of FedDRNet model
The proposed federated learning based diabetic retinopathy detection network (FedDRNet) model for the
DR detection to enhance the accuracy of disease detection with minimal computation burden and enhanced
privacy preservation. The data learning using ECSRNet enhances the detection accuracy and IKMC assist in
reducing the communication round. Besides, the inclusion of Homomorphic encryption enhances the privacy
preservation of the model.

The research is organized as: Section “Related works” details the related works with problem statement
and the detailed proposed methodology in Section “Proposed methodology” The results and discussions are
presented in Section “Result and discussion” and the conclusion in Section “Conclusion”.

Related works

FL with Vision Transformer FLViT architecture was designed by?! to build a robust DR detection model using
multiple data gathered through geographically distributed healthcare institutions by preserving the privacy of
sensitive patient data. The designed model utilized a global ViT model for coordinating client. In this, each
participating institution receives a copy of the current global ViT model. The training process of the model
includes feeding batches of local images to the model by calculating the loss and updating the model’s weights
based on the gradients. The aggregated weights were used to update the global ViT model residing on the central
server. The designed model demonstrated the more accurate and reliable DR detection outcome. Still, frequent
exchange of model updates between clients and the server was bandwidth-intensive and slow down the training
process for large number of clients.

FL with deep learning (FedDL) was designed by?? to improve the accuracy of DR detection. The designed
model integrates the five cutting-edge CNNs like VGGNet19, EfficientNetB7, AlexNet, DenseNet201 and
ResNet50. Each client locally preprocesses its fundus images and applies data augmentation techniques to
increase the size and variability of its training data. The central server aggregates these received model updates
using a federated aggregation algorithm. After global training, each client further fine-tunes the global model on
its local data. The FedDL model demonstrates higher accuracy compared to traditional FL methods, leading to
more reliable diagnoses. Here, the consideration of five various deep learning models enhances the computation
burden of the model.

FL with convolutional neural network (FedCNN) was designed by?*. The designed model incorporates the
Weiner and median filtration (Weinmed) to perform noise reduction by removing salt-and-pepper noise and
preserving edges. In this, VGG architecture (VGG-19) based feature extraction and CNN based classification
was devised for the final classification of DR severity levels. FedCNN ensures that sensitive patient retinal images
remain within the local medical institutions by protecting patient privacy and complying with data security
regulations. Malicious institutions could potentially send harmful model updates to the central server that may
compromise the integrity of the global model.

Differentially private federated learning (DPFL) was designed by*! to enable collaborative training of DR
detection. The designed model considered differential privacy (DP) into the federated learning process to provide
rigorous privacy guarantees. In this, the clients participate in subsequent training rounds and update only the
latest checkpoint from the server instead of the entire model that reduces the communication overhead using
the checkpoint criteria. The framework based on global collaborative systems improving access to screening
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and early detection worldwide. Still, the addition of noise for differential privacy inevitably leads to some loss in
model accuracy.

FL with dynamically weighted federated averaging (data weighted fed) was designed by?® for effective fundus
disease diagnosis from ophthalmic images. The designed model utilized a custom model aggregation method,
wherein the weights of each client’s local model in the global aggregation were determined dynamically based
on the size of their local training dataset. In this, the clients with larger datasets have a greater influence on
the global model update. For this, the client selection was devised using k-Client selection training, wherein
only a subset with k clients from the available clients were selected to participate in each round of federated
learning. The wFedAvg aims to improve accuracy; still, it might disproportionately favor institutions with very
large datasets that overlooking valuable information from smaller but diverse datasets.

A federated learning approach that preserved data privacy by enhancing accuracy in distributed environments
was designed by?®. The method utilized decentralized training to mitigate data leakage risks and achieved robust
performance across heterogeneous networks. The framework demonstrated scalability, efficiency, and strong
adaptability against evolving cyber threats. A blockchain-driven customized federated learning framework to
secure data was designed by?’. The approach ensured data confidentiality and integrity through blockchain
consensus by enabling collaborative learning across medical devices. The designed model offered efficient
computation, privacy preservation, and resilience against cyber-attacks, significantly improving IoMT security
and performance.

Problem statement

The occurrence of diabetic diseases among the people causes the DR that necessitates the development of early
detection and classification model more accurately for proper medication. Traditional deep learning methodsof
DR disease prediction depend on the centralized data collectionthat enhances the privacy concerns due to
the sensitive nature of medical records and imaging data. The privacy preservation is the challenging aspect
among healthcare scenariowhere data confidentiality, regulatory compliance, and patient trust are significant.
To address the challenge associated with deep learning methods distributed medical data without compromising
security is introduced by the FL based methods. Still, the inefficient learning capability, higher computation
burden and several other factors limits the FL based methods. Thus, thisresearch introduces a model to tackle
the issue by introducing Federated Learning based Diabetic Retinopathy Detection Network (FedDRNet) model.
The proposed model includes Efficient Cross Stage Recurrent Network (ECSRNet) that combines the strengths
of ShuftleNet, CSPNet, and GRU to achieve high accuracy and computational efficiency. Besides, Improved
K-Means Clustering (IKMC) based user selection enhances the communication efficiency by reducing the
communication rounds.

Proposed methodology

DR is a severe complication of diabetes that makes vision impairment and blindness for the patients. Traditional
deep learning-based DR detection models require centralized data gathering that may generates the privacy
concerns due to the sensitive nature of medical images. To address the issue, FL based models are utilized due to
the privacy-preserving solution by enabling collaborative model training without directly sharing patient data.
The FL models are efficient in preserving the privacy through sharing the weights of the patient’s data instead of
sharing the patient’s data directly. Thus, this research proposes an efficient and privacy-preserving DR detection
framework named Federated Learning based Diabetic Retinopathy Detection Network (FedDRNet) model. The
proposed model utilized Efficient Cross Stage Recurrent Model (ECSRNet) for designing the local and global
model training. The proposed ECSRNet combines the ShuftleNet, Cross Stage Partial Networks (CSPNet), and
Gated Recurrent Unit (GRU) for enhancing the disease detection accuracy by learning the spatial and temporal
features more effectively with minimal computation burden. In the proposed FedDRNet model, the privacy
preservation is further enhanced using the Homomorphic encryption. The privacy preservation prior to the
weight sharing assists the model to enhance the security of the model. Besides, Improved K-Means Clustering
(IKMC) based user selection is devised further for enhancing the communication efficiency. The IKMC based
user selectiongroups the clients based on the similarity of their data distributions. In addition, the image quality
is enhanced using the Multi-scale Gaussian Bilateral Filtering based pre-processing technique. The structure of
proposed FedDRNet model for DR Detection is portrayed in (Fig. 1).

Local model

The local model is deployed on each client device called hospitals, wherein patient’s retinal fundus images are
stored. The local model is responsible for learning DR-related patterns from the hospitals data without ever
sharing the data externally. The traditional FL method employed DNN for learning the characteristics of
patient’s retinal fundus images. In the proposed model, a novel deep learning architecture ECSRNet is proposed
for learning the retinal fundus images. It is helpful to extract both spatial and temporal features from the image
for enhancing the disease detection accuracy. Each client hospitals train the model locally using its own data and
optimize the loss function using Adam optimizer.

Server model

The server model is the central aggregator in the federated learning system. The server in FL coordinates
communication between the clients and aggregates model updates received from the client. The server initializes
the global model and distributes it to the clients at the beginning of each round. After receiving updates from
the clients post-local training is devised and the server aggregates these updates to refine the global model. In
the proposed FedDRNet model, the client selection is employed using the IKMC model. The designed IKMC
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Fig. 1. Proposed FedDRNet model for DR detection.

model assists the proposed model in reducing the communication round for enhancing the performance with
minimal computation burden.

Aggregation layer

The aggregation layer is utilized for combining the model weights from all clients to produce the updated global
model. The FedAvg is utilized in the aggregation layer for computing theweighted average of the client’s model
parameters.

Client side pre-processing
The image pre-processing is devised using the MSBF for enhancing the quality of the image.

Enhanced privacy preservation
The privacy preservation is devised using the Homomorphic encryption method.

Data acquisition
The input data is acquired from the publically available datase
2015 Data Colored Resized dataset.

t28, which is acquired from Diabetic Retinopathy

Pre-Processing using multi-scale Gaussian bilateral filtering

The multiscale bilateral Gaussian filter (MSBF) is utilized for enhancing image quality by preserving edge
features. The MSBFsmooths uniformly by considering the spatial and intensity information to selectively smooth
regions without losing edge details?*. The MSBF filter at multiple scales allows it to capture both fine and coarse
image features that ensureenhanced visual interpretability. The filtered outcome of the bilateral Gaussian filter is:

Bra (d) = 3= > Mi(ld = hl) - Ma (1B (&) = B (W)]) - B () W

heg

where, B (d) notates the intensity at pixel d in the original image, B (d) signifies the output intensity at pixel
d after filtering, and h € ¢ interprets the neighboring pixels within a spatial window. M; (||d — h||) signifies
the spatial Gaussian kernel, M, (|B (d) — B (h)|) signifies the range Gaussian kernel and V; defines the
normalization factor to ensure weights sum to 1.

Va= 3" Mi(Jd—hl)- M. (1B (d) - B (1)) @
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Spatial Gaussian kernel
The spatial Gaussian kernel is utilized to measure how close the neighboring pixels to focus on local

neighborhoods.
d— hl|
1

where, x; is useful for controlling the spatial influence.

Range Gaussian kernel
The range Gaussian kernel is utilized to measure how similar the pixel values for preserve edges.

(B(d)-B (h)f) W

R e

where,x,, is useful for controlling the intensity difference.

Multi-scale filtering
Multi-scale filtering uses multiple versions of the image, each processed with a bilateral filter using different
spatial and intensity intensities. It is formulated as:
Bl (d) = o7 S M (ld— hl)- M2 (1B (d) — B (h)])- B (k)
fil T ye Z i - e - ! (5)

d pega

where, B? signifies the image at scale ¢,¢? notates the neighborhood window at scale ¢, and x; and sz
specifies the scale-specific spatial and range intensities.After filtering at all scales, the enhanced image Be. is
obtained by combining the multi-scale results:

Q
Be=Y X Bl 6)
q=1

where, )\ signifies the weight for each scale and Z A¢ = 1, which is the normalization value.The outcome of the

pre-processing using MSBF enhances lesion contrast while keeping the retinal vessel edges intact and it reduces
illumination artifacts. The pre-processed image is utilized for training the local model of FedDRNet.

Local model training using ECSRNet

The efficient cross stage recurrent network (ECSRNet) based federated learning architecture is designed to
balance performance and resource efficiency by combining ShuffleNet, cross stage partial networks (CSPNet),
and gated recurrent unit (GRU). Each of the local client like hospitals trains the local model using the retinal
fundus images that are processed through a lightweight ShuffleNet backbone to extract low-cost spatial features
that are refined through CSPNet that splits the feature flow to reduce memory consumption by preserving
enhanced feature representations. The spatial features are passed sequentially into a GRU for capturing the
progression and temporal patterns of the disease’’.The model output provides features of DR disease that is
used for transmitting to the server without sharing the raw patient data. The structure of ECSRNet is presented
in (Fig. 2).

The CSPNet is utilized in the model training due to its capability in enhancing both training stability and
better feature representation. By splitting the input feature map into two parts and processing only one through
ShuffleNet modules and then merging at the final stage helps to preserve gradient flow that is essential for
deep networks. The design minimizes redundancy and reduces memory usage while still maintaining enhanced
feature representation. For the proposed diabetic retinopathy detection, CSPNet ensures that key features like
blood vessel morphology and lesion boundaries are retained during down-sampling and deep processing that
contributes to more accurate and robust detection for the varied-quality fundus images across clients!. The
CSPNet splits the features two parts and its passes the features through two various paths like main path and
short path. It is defined as:

kma1, kmo = split (ky,) (7)

It process only one part km1 with the ShuffleNet blocks and the other through the short path. The ShuffleNet
block is a lightweight feature extractor that is designed with grouped convolutions and channel shuffling, which
is helpful in reducing the number of operations (FLOPs) and memory usage compared to traditional CNN based
models. In federated learning, for the resource-constrained environmentlow computational cost is significant by
preserving the spatial patterns of the DR image with small lesions®2. Also, architecture of ShuffleNet provides
the parallel computation that makes the mode ideal for deployment across heterogeneous devices. Let, the input
denoted as k,,; is fed into the ShuffleNet module and its outcome is denoted as:

k. = ShuffleNet (km1) (8)
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Fig. 2. Structure of ECSRNet based training.
where, k.1 € RDPIxAIX B! which is the intermediate feature map. Then, at the final stage, the features from both
the main path and short path are concatenated together as:
k" = concat (k,’nl, kmg) 9)
Then, flattening based transformation is devised for mapping the 2D spatial feature maps into 1D vectors suitable
for feeding into recurrent layers based on GRUs. It allows the model to connect spatial patterns across timefor
capturing the sequences of fundus features. While considering the DR detection, patients has the small changes
in lesion appearance or distribution that evolve gradually. Flattening allows the model to capture these shifts and
the flattening is defined as:
U, = Flatten (kiy") (10)
The GRU is designed for modeling temporal dependencies for capturing how a patient’s condition changes over
time. It uses update and reset gates to control memory flow and allows it to retain long-term disease patterns
while discarding irrelevant noise. It is important for DR, where disease progression is not always linear®>. GRU
helps in modeling finer characteristics of micro-vascular damage and in stabilizing predictions by aggregating
features. The lightweight of GRU compared to LSTM aligns with the efficiency goals of federated learning and
making it feasible to deploy in low-power environments. Let, the input obtained by the GRU is the outcome of
flatten layer and is represented as 4,,.
l m m—
gm =7 (Vou™ + Ilg ") (11)
d m m—
g = (Veu™ + Ll ") (12)
I, = tanh (Viu™ + 1,017 ") (13)
lfn _ (1 — )@lm 1 meld (14)
Here, weight matrices for gates from input-to-hidden is signified as Vg, V;; and V;, and weight matrices for gates
from hidden-to-hidden is signified as I, 92 I, and I respectively. Hidden state at current time step is defined as
3", candidate hidden state 1s signified as [2, and hidden state from prev1ous time step is defined as I/ . Update
gate vector is signified as g%, and reset gate vector is symbolized as ¢%,. The acquired weights are further secured
by performing Homomorphic encryption.
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Homomorphic encryption

Homomorphic encryption allows computations on encrypted data. Thus, the Homomorphic encryption is
employed in the proposed FL method for enhancing the security further®*. The steps considered in the Paillier-
style based Homomorphic encryption are:

« Two large prime numbers are chosen and is symbolized as:g, y

 Generation of private and public keys

« The public key is generatedas: h = g - y

« For performing the data decryption, the key generation is devised as: v = LCM (g — 1,y — 1), where LCM
is the least common multiple.

o For generating the private key, random number is identified as: r € Z ;2 ,  wherein
GCD (Q (r” mod %) ,h) =1

« The estimation of Q (s) = £+

o Then, the private key estimation is formulated as:n = Q (r"* mod h2) ! mod h

« The encryption of the weight vector is employed as: p = 7 - ¢" mod h?

where, p notates the cipher text,a symbolizes the plaintext message, and r is the generator (part of the public
key).q notates the random number (fresh each encryption) to ensure non-determinism,h interprets the public
modulus and h? ensures the cipher text space is large enough for security™.

o Extract the original message a using the private key v and decryption function Q. The decryption is formu-
lated as: a = Q (p"’ mod h2) -1 mod h

Thus, the Homomorphic Encryption based encryption to encrypt local model outcomes in Federated Learning
for DR detection provides strong privacy protection of patient’s data. Using the Homomorphic Encryption
outcome, the computations and model aggregation are performed directly on encrypted data without decrypting
the patient data trained in local model updates®. Here, the inclusion of Homomorphic Encryption prevents
privacy attacks and gradient inversion that ensures the authorized clients decryption by the aggregated global
model. Hence, the enhanced security is acquired through the inclusion of Homomorphic Encryption in the
proposed FL model.

Clustering based user selection

In federated learning (FL), clients (hospitals) have the data in non-independent and identically distributed (non-
IID) form, which indicates the local data distributions will vary significantly. The heterogeneity of the data
poses a challenge and hence the random client selection leads to inefficient training and unstable global model
performance due to biased or unrepresentative updates. To address this issue, Improved K-means clustering
(IKMC) is utilized in the client selection process, wherein grouping of clients is devised based on the similarity
of their data distributions or model updates®’. By forming clusters and selecting representative or diverse clients
from each group, IKMCenhances the quality of participation that leading to more stable model convergence. It
also assist in improving training efficiency, and generalization capability of the model. Initially, the Adjacency
Matrix is generated by representing all users as nodes in a graph. Edges are weighted based on similarity.

Si,n = CS (p1,pr) (15)

where, adjacency matrix is notated as S 5, p; is the feature vector of client and C'S (pi,pr) signifies the
similarity that is estimated based on cosine similarity. The construction of adjacency matrix is utilized for
encoding the relationship strength between clients based on the data.Then, degree matrix (K) and Laplacian
(Q) is designed for encoding the structure of the data graph and is used to find cluster boundaries through
eigenvalues.

Ku=2 Sun (16)
h

The Laplacian matrix is estimated as:
Q=K-8 (17)
The normalized outcome of the Laplacian matrix is estimated as:
Qnorm =1— K~ V?SK™/? (18)
The first k eigenvectors, the eigenvectors with the smallest eigenvalues of the normalized Laplacian:
Qnorm,Vn = Bron for h=1,...d (19)

where,v, represents the h'" eigenvector and /3, corresponding eigenvalue. All the eigenvectors are stacked to
form a new matrix:
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V = [1}1, V2, ...vd] (20)

The eigen decomposition converts the data from non-linear space to a linearly separable space that makes the
clustering simpler. Then, the K-Means clustering is applied to the matrix for grouping the similar users.

Here, grouping clients with similar data enables the structured selection instead of random selection for
minimizing the number of communication rounds.

Result and discussion

The proposed FedDRNet model is implemented in PYTHON programming language and is compared with
existing methods like FLViT?!, FedDL??, FedCNN??, and data weightedfed®® to demonstrate the superiority of
the proposed model. The proposed model is assessed using the diabetic retinopathy 2015 data colored resized
dataset?®. The implementation parameter of the proposed model is presented in (Table 1). It quantifies and
controls the amount of information leakage during the model training and aggregation process.

Dataset description

The diabetic retinopathy 2015 data colored resized dataset®® is utilized for evaluating the proposed FedDRNet
model. The dataset comprises of 35,126 retina scan images with five various classes like Proliferate_DR, Severe,
Moderate, Mild and No_DR. All the images in the dataset are resized to the pixel of 224 x 224 size. Also, the
Messidor dataset®® is utilized for evaluating the proposed model. It contains around 1748 high-resolution fundus
images from 874 examinations.

Experimental outcome
The experimental outcome of the proposed FedDRNet model along with the pre-processing and the input image
is presented in (Fig. 3).

Accuracy analysis presented in Fig. 4 is the ratio of correctly predicted instances to the total number of
predictions made on the DR image. The consideration of ShuffleNet based CSPNet provides the lightweight but
high-representation feature extraction for improving learning capability without over-fitting. Besides, GRU-
based temporal modeling helps in learning sequential patterns andfiner variations across image sequences.
The FedDRNet modelensures a more diverse dataset exposure without centralizing data for enabling enhanced
generalization. Besides, IKMCensures that selected clients represent various distributions thatreduce the model
bias. The detailed analysis of FedDRNet model based on accuracy is presented in (Table 2).

Precision analysis measures how many of the predicted positive cases were actually positive that is presented
in Fig. 5 with its detailed analysis in (Table 3). The proposed FedDRNet modelwith the ECSRNet improves the
learning of fine-grained features by controlling gradient flow and reducing information loss in shallow layers.
Besides, ECSRNetallows the context-aware learning using the GRU lead to minimize the false positives. The
FedDRNet modelwith diverse clientsand IKMCbased client selection improves the model’s ability to distinguish
true disease markers from similar-looking non-disease features that assist in improving precision of the proposed
model.

Recall is utilized to measure how many actual positive cases were correctly predicted for the DR detection,
the outcome of the analysis is presented in Fig. 6 and its detailed analysis in (Table 4). The ECSRNetmodels
efficient feature learning with CSPNet based on ShuffleNetand GRUfor capturingfiner pathological cues in DR
like microaneurysms or hemorrhages. The FedDRNet modelreduces the chance of missing rare or complex cases
using the enhanced generalization capability through the acquisition of enormous features acquired through
the IKMC client selection. The IKMCenhances recall by ensuring that under-represented distributions are also
included in the training updates.

F1-Score analysis presented in Fig. 7 is employed to measure the balance between both precision and recall
with its detailed analysis in (Table 5). The ECSRNetarchitecture makes better trade-offs between false positives
and false negatives. Besides, IKMC client selectionbased on clustering avoids over-fitting to dominant client data

Parameters Values
CSP stages 3
GRU hidden size 512
GRU layer 1

Total clients 10
Total rounds 60-90

Clients per round Based on IKMC

Optimizer Adam

Learning rate 1x10*

Aggregation method | 1x 1074

Testing data 20%
Validation data 20%
Training data 60%

Table 1. Simulation parameters.
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Fig. 3. Experimental outcome.

for enhancing model fairness and maintaining a strong balance between precision and recall. The FedDRNet
model with homomorphic encryption promotes secure and consistent client participation for enabling a stable
model with balanced predictive capability.

Specificity presented in Fig. 8 with its detailed analysis in Table 6 measures how well the model identifies
negative (healthy) cases. The ECSRNet with lightweight and deep convolutional layers of ShuffleNet helps in fine
feature discrimination for reducing misclassification of healthy images as DR. The model avoids false alarms
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Fig. 4. Accuracy of DR detection methods.

60 89.2 91 92.4 93.1 94.2
70 911 93 93.9 94.8 95.5
80 92.8 93.6 95.1 95.7 96.9
90 93.6 94.9 96.8 97.5 98.6

Table 2. Accuracy analysis.
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Fig. 5. Precision analysis.

60 88.6 90.3 91.7 92.5 93.5
70 90.2 92.1 93.4 94.1 95.8
80 91.5 93 94.2 95.2 96.72
90 92.4 94.1 95.6 96.3 98.8

Table 3. Precision analysis.

by learning inter-class boundary features more robustly. The FedDRNet model increases exposure to healthy
patient samples from varied demographics assist in enhancing the specificity through broader training exposure.

The accuracy-loss analysis of FedDRNet model is presented in (Fig. 9). The consideration of ECSRNet in
the FedDRNet model enhances the efficiency through lightweight components to reduce communication
and computation costs. Besides, IKMCensures that only the most representative clients are selected that
reduces update noise and convergence delay. Besides, GRU’s capacity to retain temporal information with
fewer parameters minimizes local model complexity and helps with fewer rounds of communication. Thus,
enhanced accuracy with minimal loss is derived by the proposed FedDRNet model.
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Fig. 6. Recall based analysis.

60 87.9 89.8 91.1 92 93.1
70 89.6 91.2 92.9 93.6 94.7
80 90.9 92.5 94 94.8 96.9
90 91.8 93.6 95.2 96.1 98.3

Table 4. Recall based analysis.
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Fig. 7. F-Score based analysis.

60 88.2 90.1 91.4 92.3 93.3
70 89.9 91.7 93.2 94 94.9
80 91.1 92.8 94.3 95 96.81
90 92.1 93.9 95.4 96.2 98.6

Table 5. F-score based analysis.
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Fig. 8. Specificity based analysis.
60 90 91.7 92.8 93.6 94.6
70 91.4 93 94 95 96.2
80 92.6 94.1 95.3 96.1 97.4
90 93.2 95 96.1 97 98.1
Table 6. Specificity based analysis.
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Fig. 9. (a) accuracy and (b) loss analysis.

The confusion matrix showing accurate and misclassifications by the proposed FedDRNet model is
presented in (Fig. 10). The enhanced outcome by the FedDRNet model is accomplished due to accurate
modeling of both disease-specific and non-disease features.

Analysis for various noise levels
The capability of the proposed FedDRNet model for various levels of noise high, moderate and no noise is
presented in (Fig. 11). The proposed method performed well with all the levels of noise compared to the
existing methods due to the integrated design of ECSRNet based feature extraction, IKMC based client
selection and MSBF based filtering.

The accuracy analysis with various data size based on training percentage is presented in (Fig. 12),
which demonstrates that the FedDRNet model acquired high detection accuracy with reduced training data
and outperformed existing models. The improvement is employed due to the incorporation of ECSRNet
with ShuffleNet, CSPNet, and GRU that makes the model to extract rich spatial-temporal features with
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minimal computation burden. Besides, the multi-scale Gaussian bilateral filtering further enhances input
image quality and enables the model to learn more significant features irrespective of training percentage.

The memory computations based on the Floating Point Operations (FLOPS) illustrated in (Fig. 13)
demonstrates that the proposed FedDRNet acquired lower computational complexity compared to existing
federated learning models. The consideration of ShuffleNet and CSPNet reduces redundant convolution
operations by maintaining strong feature representation. Here, the reduction of FLOPS in the proposed
model minimizes the memory and acquired improved efficiency with limited hardware capabilities.

The latency analysis showed in Fig. 14 demonstrates that FedDRNet has acquired lower inference delay
due to the lightweight design. Besides, the homomorphic encryption is employed only for secure weight
sharing, which minimizes cryptographic computation during inference. Similarly, the analysis based on
training time demonstrates that FedDRNet acquired faster completion time due to efficient feature learning
and reduced model complexity. The design of ECSRNet architecture ensures that fewer epochs are required
to reach optimal accuracy. Besides, the IKMC reduces communication delays by selecting clients with
similar data distributions.

The convergence rounds analysis by varying the number of clients portrayed in (Fig. 15a) demonstrates
that FedDRNet converges faster compared to existing models as the client count increases. In this, the
IKMC ensures that updates from each communication round are highly relevant to the global model that
reduces the number of iterations needed for stable learning. Thus, the convergence rounds for the proposed
method is minimal compared to the existing methods. Similarly, the analysis based on computation
cost by varying number of clients presented in (Fig. 15b) demonstrates that FedDRNet reduces the per-
client processing overhead. The proposed model with lightweight architecture minimizes the required
computational resources and the clustering-based client selection reduces unnecessary computation for
clients with low-quality or irrelevant data. Thus, when the number of clients is increased, the proportional
increase in computation cost is much lower compared to existing models.
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The ablation study of the proposed model is presented in (Fig. 16). The analysis based on accuracy
demonstrated that role of each modules in the proposed FedDRNet model in detecting the DR. The results
demonstrate that IKMC effectively mitigates the adverse impact of non-IID data by achieving higher
overall accuracy, faster convergence, and more balanced performance across clients compared to baseline
methods. This indicates that the consolidation strategy preserves critical knowledge from diverse data
sources and reduces the bias introduced by skewed distributions, confirming the robustness of IKMC in
heterogeneous environments.

The analysis of the Homomorphism encryption algorithm for various numbers of users is made to
demonstrate the scalability of the model and is presented in (Fig. 17).

The analysis of the proposed method with the data acquired from the Kaggle and Messidor data is
presented in (Fig. 18). Here, the analysis demonstrated the better performance by the proposed model for
both the datasets for all the assessment measures.

Statistical analysis based on Friedman test is presented in Table 7 for the federated learning based DR
detection models. The Friedman test checks the statistically significant differences in performance across
the DR detection models. Here, the test statistic measures how far the observed rank sums deviate from
what would be expected under the null hypothesis. Here, p <0.05 denotes the rejection of null hypothesis.
It indicates the statistically significance based on difference in performance among the models. Besides, the
proposed model consistently achieves the highest performance ranks across all rounds.

The comparison of the proposed FedDRNet with the baseline DR methods from the existing literatures
is presented in (Table 8).
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Metric Value
Test statistic (x?) | 16
p-value 0.003019
Table 7. Friedman test.
Techniques | Dataset Accuracy (%)
CNN8 OCT 97
DRNet13!? | Fundus 97
FedDEO!'” | MESSIDOR | 96.98
FedDRNet | Fundus 98.6
Table 8. Baseline method comparisons.
Metrics/methods | FLViT | FedDL | FedCNN | DataWeightedFed | Proposed
Accuracy 93.6 94.9 96.8 97.5 98.6
Precision 92.4 94.1 95.6 96.3 98.8
Recall 91.8 93.6 95.2 96.1 98.3
F-score 92.1 93.9 95.4 96.2 98.6
Specificity 93.2 95 96.1 97 98.1

Table 9. Comparative discussion.

Here, the analysis demonstrates the superiority of the proposed FedDRNet model in detecting the DR

disease.

Comparative discussion

The comparative discussion based on the best outcome is presented in (Table 9). The accuracy estimated
by proposed FedDRNet acquired the accuracy of 98.6%, which is 5.07, 3.75, 1.83, and 1.12% enhanced
outcome compared to FLViT, FedDL, FedCNN, and DataWeightedFed methods. The precision estimated
by proposed FedDRNet acquired the accuracy of 98.8%, which is 6.48, 4.76, 3.24, and 2.53% enhanced
outcome compared to FLViT, FedDL, FedCNN, and DataWeightedFed methods. The recall estimated
by proposed FedDRNet acquired the accuracy of 98.3%, which is 6.61, 4.78, 3.15, and 2.24% enhanced
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outcome compared to FLViT, FedDL, FedCNN, and DataWeightedFed methods. The F1-Score estimated
by proposed FedDRNet acquired the accuracy of 98.6%, which is 6.59, 4.77, 3.25%, and 2.43% enhanced
outcome compared to FLViT, FedDL, FedCNN, and DataWeightedFed methods. The Specificity estimated
by proposed FedDRNet acquired the accuracy of 98.1%, which is 4.99, 3.16, 2.04, and 1.12% enhanced
outcome compared to FLViT, FedDL, FedCNN, and DataWeightedFed methods.

The analysis demonstrates the enhanced performance by the proposed FedDRNet model based on
Accuracy, Precision, Recall, F-Score, and Specificity. The use of the ECSRNet is efficient in achieving high
accuracy by efficiently extracting both spatial and temporal features. The ShuffleNet ensures lightweight
and fast feature extraction andCSPNetassist in enhancing the gradient flow and feature reuse across
stages for better generalization. Also, GRU assist in learning the sequential attributes that leads to robust
classification of images with smaller DR stages. The incorporation of Homomorphic Encryption guarantees
secure weight sharing without compromising data integrity that improves recall by reducing missed cases.
Also, the IKMCbased user selection enhances communication efficiency and model convergence by
grouping clients with similar data distributions and hence reduces the model inconsistency and boosting
F-Score that balances precision and recall. Thus, the enhanced outcome is derived by the proposed model.

Conclusion

The proposed FedDRNet modelprivacy-preserving DR detection framework addresses key challenges in DR
detection by offering data privacy, computational efficiency and enhanced accuracy. Using the ECSRNet,
the FedDRNet modelachieves high diagnostic performance by maintaining low resource consumption
that makes it suitable for deployment in real-world healthcare settings. Besides, the consideration of
Homomorphic Encryption ensures secure communication inthe sever training for handling sensitive
patient information. The use of IKMCfor client selection enhances the communication efficiency and
convergence of FedDRNet framework. Still, the FedDRNet framework has certain limitations in handling
highly heterogeneous data distributions and increased computational overhead due to encryption. Thus,
in the future work, the model will be enhanced by exploring adaptive learning strategies to better manage
data non-IID conditions and integrating differential privacy techniques for an additional layer of security.

Data availability
https://www.kaggle.com/datasets/sovitrath/diabetic-retinopathy-2015-data-colored-resized. https://www.kaggl
e.com/datasets/mariaherrerot/messidor2preprocess.
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