www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Radiomics-enhanced modelling
approach for predicting the need

for ECMO in ARDS patients: a
retrospective cohort study

Martin Mirus?, Eric Leitert!, Rebecca Bockholt!, Lars Heubner?!, Steffen Lock?, Marie Brei®*,
Jonas Biehler®*, Jens-Peter Kilhn®, Thea Koch?, Wolfgang Wall® & Peter Markus Spieth***

Decisions regarding veno-venous extracorporeal membrane oxygenation (vv-ECMO) in patients with acute
respiratory distress syndrome (ARDS) are often based solely on clinical and physiological parameters,

which may insufficiently reflect severity and heterogeneity of lung injury. This study aimed to develop

a predictive model integrating machine learning-derived quantitative features from admission chest
computed tomography (CT) with selected clinical variables to support early individualized decision-

making regarding vv-ECMO therapy. In this retrospective single-center cohort study, 375 consecutive
patients with COVID-19-associated ARDS admitted to the ICU between March 2020 and April 2022 were
included. Lung segmentation from initial CTs was performed using a convolutional neural network (CNN) to
generate high-resolution, anatomically accurate masks of the lungs. Subsequently, 592 radiomic features,
quantifying lung aeration, density and morphology, were extracted. Four clinical parameters — age, mean
airway pressure, lactate, and C-reactive protein, were selected on the basis of clinical relevance. Three
logistic regression models were developed: (1) Imaging Model, (2) Clinical Model, and (3) Combined

Model integrating different features. Predictive performance was assessed via the area under the receiver
operating characteristic curve (AUROC), accuracy, sensitivity, and specificity. A total of 375 patients were
included: 172 in the training and 203 in the validation cohort. In the training cohort, the AUROCs were 0.743
(Imaging), 0.828 (Clinical), and 0.842 (Combined). In the validation cohort, the Combined Model achieved
the highest AUROC (0.705), outperforming the Clinical (0.674) and Imaging (0.639) Models. Overall accuracy
in the validation cohort was 64.0% (Combined), 66.5% (Clinical), and 59.1% (Imaging). The Combined

Model showed 68.1% sensitivity and 58.9% specificity. Kaplan-Meier analysis confirmed a significantly
greater cumulative incidence of ECMO therapy in patients predicted as high risk (p<0.001), underscoring its
potential to support individualized, timely ECMO decisions in ARDS by providing clinicians with objective
data-driven risk estimates. Quantitative CT features based on machine learning-derived lung segmentation
allow early individualized prediction of the need for vwv-ECMO in ARDS. While clinical data remain essential,
radiomic markers enhance prognostic accuracy. The Combined Model demonstrates considerable potential
to support timely and evidence-based ECMO initiation, facilitating individualized critical care in both
specialized and general ICU environments.

Trial registration: The study is registered with the German Clinical Trials Register under the number
DRKS00027856. Registered 18.01.2022, retrospectively registered due to retrospective design of the
study.

Keywords ECMO, Extracorporeal membrane oxygenation, Prediction, CNN, Convolutional neural network,
Lung segmentation, CT, Computed tomography, Critical care, Decision making, Radiomic

1Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Carl
Gustav Carus, TUD Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany. 2OncoRay —
National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus,
TUD Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany. 3Institute for Computational
Mechanics, Technical University Munich, Boltzmannstrafte 15, 85748 Munich, Germany. “Ebenbuild GmbH,
HolzstraRe 28, 80469 Munich, Germany. *Department of Diagnostic and Interventional Radiology, Faculty of
Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstrasse 74,
01307 Dresden, Germany. “email: Peter.Spieth@uniklinikum-dresden.de

Scientific Reports|  (2025) 15:34120 | https://doi.org/10.1038/s41598-025-21287-w nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-21287-w&domain=pdf&date_stamp=2025-11-21

www.nature.com/scientificreports/

Abbreviations

Al Artificial intelligence

ARDS Acute respiratory distress syndrome

AUROC Area under the receiver operating characteristic curve
CNN Convolutional neural network

COG Center of gravity

CRP C-reactive protein

CT Computed tomography

DNN Deep neural network

ECMO Extracorporeal membrane oxygenation

HU Hounsfield unit

ICU Intensive care unit

ML Machine learning

MRMR Minimum redundancy maximum relevance

PEEP Positive end-expiratory pressure

Pmean Mean airway pressure

ROI Region of interest

TRIPOD Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis
SHR Subdistribution hazard ratio

va-ECMO  Veno-arterial extracorporeal membrane oxygenation
vv-ECMO  Veno-venous extracorporeal membrane oxygenation

The decision to initiate veno-venous extracorporeal membrane oxygenation (vv-ECMO), a life-saving
intervention for patients with severe acute respiratory distress syndrome (ARDS)!-3, remains complex and
time-sensitive, especially in hospitals with limited ECMO experience. Several scoring systems, such as the RESP
score and the PRESERVE score, have been proposed to guide this decision*®. However, these models were
primarily designed to predict outcomes after ECMO initiation and rely largely on clinical and physiological
variables assessed at or near the time of cannulation’°. Consequently, they offer only limited support for the
early identification of patients who may later become ECMO candidates.

In contrast, early identification of such patients, ideally at ICU admission, may enable timely vv-ECMO
initiation, optimize resource use, support proactive, individualized treatment planning, and facilitate timely
referrals to specialized ECMO centers, avoiding both unnecessary transfers and delayed therapy. Machine learning
approaches based on clinical data have shown promise in predicting ARDS phenotypes and trajectories'®!!, but
their performance may be limited by the lack of morphological and pathophysiological information available in
imaging data. Quantitative chest CT analysis represents an underutilized yet highly informative resource. CT scans
are routinely performed in ARDS patients early in their clinical course, but standard radiology reports offer only
qualitative, often subjective, information. In contrast, quantitative imaging, especially when automated through
convolutional neural networks (CNNs)'?!3, can extract reproducible features that capture the distribution of
lung aeration, density, and geometry'4~!°. These imaging biomarkers may provide complementary information
to clinical parameters, potentially improving predictive performance. Previous studies have shown that CT-
based metrics such as lung weight, aeration, and heterogeneity are associated with ARDS severity and ventilation
response'*1®, but these metrics have not yet been applied to predict future ECMO requirement. Moreover, while
quantitative imaging has been proposed for determining the recruitment potential or PEEP setting, its value in
supporting early triage decisions for ECMO has not been systematically evaluated.

Methods
This publication adheres to the Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD + Al statement)'”.

Study aim

This study aimed to develop and validate a model for predicting vv-ECMO requirements in patients with ARDS
secondary to COVID-19 at the time of intensive care unit (ICU) admission by integrating machine learning-
derived quantitative CT features with key clinical parameters. We hypothesized that the incorporation of
radiomic imaging biomarkers would increase prognostic precision and support individualized, data-driven
decision-making regarding timely initiation of ECMO therapy.

Study design

A retrospective single-center study was conducted including two ARDS cohorts admitted to the ICU: a training
cohort for model development and a validation cohort for model validation. To predict the need for vv-ECMO,
three logistic regression models were developed:

1. Imaging Model: Trained on CT-derived imaging features.
2. Clinical Model: Trained on clinical features.
3. Combined Model: This model integrates both imaging and clinical features.

Model development followed a structured, multistep pipeline involving feature extraction, selection, and
training, as illustrated in Fig. 1, where the overall workflow is depicted. First, imaging features were extracted
from CT scans, whereas clinical features were obtained from patients’ medical records. Next, feature selection
was performed to identify key imaging and clinical features for the development of the three logistic regression
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Fig. 1. Study design: Model development for predicting veno-venous ECMO in ARDS patients. This figure
depicts the process of developing and validating three machine learning models for predicting the need for
vv-ECMO in ARDS patients. In the feature extraction phase, 592 imaging features were extracted through
automated CT segmentation and quantitative image analysis (A), and five clinical features were obtained from

electronic health records (B). During the feature

selection phase, relevant features were selected. For imaging,

a multi-step feature selection process including clustering, cross-validated Minimum Redundancy Maximum
Relevance (MRMR) ranking and correlation analysis were performed (C). Clinical parameters were assessed
for selection on the basis of correlation analysis (D). The selected features formed the basis for the training
of the Imaging Model (E) and the Clinical Model (G). These feature sets were then combined to train the
Combined Model (F). Finally, all the models were validated in the validation cohort (H).
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models. Logistic regression was chosen as the underlying model because of its interpretability and effectiveness
in binary classification tasks. The models were trained and evaluated via standard classification metrics, and
their ability to predict the future need for vv-ECMO support was assessed. Informed consent was waived in
accordance with German legal regulations, and this approach was approved by the competent ethics committee
at the Technical University of Dresden (BO-EK-374072021). The study is registered in the German Clinical
Trials Register (DRKS00027856).

Data collection and inclusion

All patients admitted to the Intensive Care Unit (ICU) of the study center between March 19, 2020, and up to
including March 10, 2021, were screened for inclusion in the training cohort, whereas those admitted from
March 11, 2021, and March 29, 2022 were screened for inclusion in the validation cohort. The inclusion criteria
were admission to the ICU, ARDS according to the Berlin definition!®, and confirmed COVID-19 infection.
There were no exclusion criteria. Clinical data were recorded within 30 min after admission. The ventilator
settings were recorded on admission if the patient was already intubated or within a range of 30 min after
intubation. For the laboratory parameters included in this study, the value at admission was used. If multiple
values were available at admission, the mean of these values was calculated. For lactate, the value from the first
blood gas analysis at admission was used. The CT scan was performed in close temporal proximity to the ICU
admission at the study center, either on site or at the referring hospital.

Imaging model: feature extraction

The quantitative CT analysis in this study enabled the extraction of 592 objective and reproducible features to
quantify the imaged lung in a time-efficient manner!*. This analysis is illustrated in Fig. 2 and can be broadly
divided into three phases: (1) Lung segmentation; (2) Extraction of regions of interest (ROIs) within the lung;
(3) Computation of quantitative features within these regions.

Lung segmentation

The initial step was to delineate the lung boundaries in the CT scan. For this purpose, an in-house segmentation
model based on published CNN-based network architectures'>!3 was used. Prior to applying the segmentation
model, the CT scans were downscaled to a resolution of 256 x 256 x 128 voxels to ensure consistent input
dimensions. Furthermore, voxel intensities (Hounsfield units, HUs) were scaled to zero mean and unit variance
to account for interscan intensity differences and promote comparability. To restore the spatial resolution of the
CT images for the quantitative analysis, the resulting lung masks were subsequently upsampled to the original
resolution of the CT images and underwent postprocessing, including morphological closing to fill small holes
in the segmentation mask and connected component analysis to remove isolated artifacts. To ensure consistent,
high-quality segmentation, all the lung masks were manually reviewed and corrected in a blinded fashion by
clinicians experienced in thoracic imaging and trained in the interpretation of the lung CT scans.

ROI extraction

Specific ROIs within the segmented lung mask were extracted. These include spatial ROIs, which divide the lung
into anatomically distinct compartments; functional ROIs, which categorize lung areas on the basis of aeration
characteristics; and intersectional ROIs, which capture the overlap between different spatial and functional
regions. For the spatial ROIs, the segmented lung mask, comprising both the left and right lungs as a single
compartment, was defined as the primary ROI. To further differentiate anatomical structures, separate masks
for the right and left lungs were extracted. Furthermore, the lungs were subdivided along the ventral-dorsal axis
using two alternative strategies: a two- (ventral and dorsal ) and three-compartment division (ventral, medial,
and dorsal ). For the two-compartment division the lung was sliced along the coronal plane through its centroid,
separating it into a ventral and dorsal region. For the three-compartment division, the lung was first enclosed
within a 3D bounding box. This box was then evenly partitioned along the ventral-dorsal axis, resulting in three
spatially distinct regions: the ventral, medial, and dorsal compartments. To extract the functional ROIs, the lung
mask was partitioned into four compartments, namely, a hyperinflated, normally aerated, poorly aerated, and
nonaerated area, on the basis of the HU ranges, as defined by Gattinoni et al.' and visualized in Fig. 3. To further
analyze spatial relationships, the intersections between different spatial and functional ROIs, such as the overlap
of the left lung with, e.g., the ventral compartment or nonaerated area of the lung, were computed. In total, 42
spatial, functional and intersectional ROIs within the lung were extracted (Table S1).

Feature computation
This involves estimating quantitative characteristics within the extracted ROIs. For each ROI, 14 quantitative
imaging features, which are listed in Table 1, were calculated to capture the intensity and geometric characteristics
of the ROIs.

More specifically, to quantify the geometric properties and describe the shape and structure of each RO, the

overall volume of each ROI (V) was computed by

Vot [mm?®] = Vaoger[mm?®]  NVror (1)

where NV ror denotes the number of voxels within the ROI mask and where Vi 041 represents the volume of
a single voxel. In addition, the spatial dimensions of each ROI were calculated along the transverse, sagittal and
longitudinal axes. To quantitatively assess the lung tissue density and composition of each ROI, ten HU-based
features were computed within each ROL These features included, among others, the mean, standard deviation,
kurtosis, and skewness of the voxel HU intensity values, capturing key statistical properties of their distribution.
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Fig. 2. Three-phase process of quantitative image analysis for feature extraction. The figure illustrates the three
phases of quantitative image analysis for feature extraction from CT images. (1). Lung segmentation: The lungs
are first segmented from the CT scan to define the overall analysis region. (2). ROI extraction: Within the
segmented lungs, ROIs are extracted in three categories: spatial (a) (e.g., anatomical compartments), functional
(b) (e.g., aeration-based regions), and intersectional (c) (overlaps between spatial and functional ROIs). (3).
Feature computation: Quantitative features are extracted from each ROI, including geometrical features (a) to
describe the shape and structure of each ROI and HU-based characteristics (b) to quantify the tissue density in
each ROI. CT: computed tomography; ROI: region of interest; HU: Hounsfield unit.
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Fig. 3. Hounsfield units (HUs) within different lung areas. Exemplary representation of the frequency of
different HUs in the lungs of a COVID-19 patient (blue) from this study. For comparison, a healthy control
(green) is included. The dashed vertical lines indicate the HU intervals used to subdivide the lungs into
regions of different aeration conditions: hyperinflated, normally aerated, poorly aerated, and nonaerated!®. The
frequency of HUs in the different areas differs between the two cases shown. While for the healthy controls
(green), most HUs fell within the range of normal aeration, the COVID-19 patients exhibited a broader
distribution extending into regions associated with poor and no aeration. HU: Hounsfield units.

Features Name Description
Mean Mean value of the distribution of HU values in a ROL
Standard deviation Standard deviation of the distribution of HU values in a ROI.
Kurtosis Kurtosis of the distribution of HU values in a ROIL.
Skewness Skewness of the distribution of HU values in a ROL
Gas volume Gas volume of a ROI (in mm?) according to formula (3).
HU based characteristics Water volume Water volume of a ROI (in mm?) according to formula (4).
Tissue weight Tissue weight of a ROI (in g) according to formula (5).

Position of the HU-weighted center of mass of a ROI along the transversal

Relative position of the center of mass; transversal axis from right to left, relative to the boundary of the lung mask.

Position of the HU-weighted center of mass of a ROI along the sagittal axis

Relative position of the center of mass; sagittal from ventral to dorsal, relative to the boundary of the lung mask.

Position of the HU-weighted center of mass of a ROI along the longitudinal

Relative position of the center of mass; longitudinal axis from caudal to cranial, relative to the boundary of the lung mask.

Geometric characteristics

Volume Volume of a ROI (in mm?>) according to formula (1).
Transversal dimension Spatial dimensions of a ROI (in mm ) along the transversal axis.
Sagittal dimension Spatial dimensions of a ROI (in mm) along the sagittal axis.
Longitudinal dimension Spatial dimensions of a ROI (in mm ) along the longitudinal axis.

Table 1. Overview of quantitative imaging features and their descriptions. Quantitative imaging features. The
table shows both HU-based and geometric characteristics, both of which are extracted from CT images via
quantitative image analysis. Formulas (1, 3-5) referred to in the table are found within the methods section.
HU: Hounsfield unit; ROI: region of interest.

Furthermore, the water and gas volume as well as the weight of the lung parenchyma within each ROI were
estimated via the relationship between CT attenuation and the physical density encoded in the HU values'>!.
More specifically, for this study, the simplifying assumption was adopted that each voxel represents a mixture of
gas and water where the water component consists of lung tissue, blood, extravascular fluid, and cellular debris,
whereas the gas component corresponds to the aerated portion of the voxel. Following this assumption and the
approach of Protti et al.!%, the gas and water volumes of each ROI were computed. Prior to this, the volumetric
gas fraction of each voxel was estimated as follows:
H U’Uozel

Vgas, voxel [mmS] = W * Vvozel[mmg] (2)
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where HU 4, is defined as -1000 HU.

The gas volume within an ROI was obtained by summing the contributions of individual voxels within
that ROIL:

NV ror

Vgas, ROI [mm3] = Z ‘/gas, voxel, i (3)

=1
where 17 explicitly refers to individual voxels within the ROL
Following the assumption that each voxel is a mixture of gas and water, the water volume was estimated by
subtracting the gas volume from the total ROI volume:
Vwater, ROI [mm3] = VROI [mmB} - ‘/gas, ROI [mm3] (4)

The weights of the lung tissue for the ROIs were then estimated as follows:

Wtissue, ROI [g] = ‘/water,ROI [mm3] * 9.9336_4 {#} (5)

where 9.933¢* is the density of water in —Z at 37° C.

m3
Furthermore, the center of gravity (COG) was determined for each ROI relative to the lung boundary.
Finally, the absolute volume of the aeration compartments in the lung, i.e., hyperinflated, normally
aerated, poorly aerated and nonaerated, was converted into relative quantities, expressed as a fraction
of the overall volume of the lung. This process introduces four additional features, complementing the
existing 14 features per ROL As a result, a total of 592 quantitative features were extracted, providing a
comprehensive characterization of lung structure and function across all the ROIs.

Imaging model: feature selection

Before training a machine learning model, it is essential to define and select the most informative features to
avoid overfitting. The CT-derived imaging features consisted of a high-dimensional feature space with a total
of 592 features per patient. The inclusion of all the features increases the risk of an overfitted model that may
perfectly predict events in the training cohort, but owing to its tailoring to the training data, it may be poorly
generalized to unseen cases. To address this, we used the R package “familiar”?® in RStudio (version 2024.04.1
+ 748), which implements a configurable yet standardized pipeline for automated feature selection and model
development. The process was conducted entirely within the training cohort and followed six core steps, which
are illustrated in Fig. 4.

Cross-validation

A 5-times repeated 5-fold cross-validation strategy was employed for signature discovery. In each repetition,
the training cohort was randomly divided into five folds: four used for model development (dev 1-4) and one
for internal validation (val 1), such that every fold was used for internal validation once. Each development set
underwent a feature reduction pipeline, beginning with feature standardization.

Feature standardization

The 592 imaging features from each development fold were first transformed via the Yeo-Johnson transformation
to better approximate a normal distribution?!. The features were subsequently standardized via z-normalization,
which adjusts the data such that each feature has a mean of 0 and a standard deviation of 1. Standardization is
particularly beneficial in machine learning applications, as many algorithms are sensitive to the scale of the input
variables.

Feature clustering and exclusion

To reduce the high-dimensional feature space, features were grouped via hierarchical agglomerative clustering
(HAC) on the basis of Spearman correlation with a threshold of 0.75 and complete linkage. HAC is used to
divide data into groups (clusters) on the basis of similarities. The main purpose is to discover structures in the
data without having to know in advance how many clusters there are. For each cluster, the feature showing the
highest univariate association with the outcome (ECMO) was selected to represent the cluster. Features with
a p value>0.2 in the Mann-Whitney U test were excluded because they were considered irrelevant. This is a
common approach in multistep selection processes where further filtering via MRMR ranking and collinearity
checks is applied downstream.

Feature ranking

The remaining features were ranked by importance via the MRMR (Minimum Redundancy Maximum
Relevance) algorithm?2. This filter-based method prioritizes features that are maximally informative with respect
to the outcome while being minimally redundant with each other, enabling the selection of a diverse and relevant
subset. In image analysis, MRMR helps reduce the dimensionality of image data by prioritizing features that
contribute most to the predictive model while avoiding overlap in the information they provide.

Model development
The remaining features were used for model development via logistic regression. The resulting model was
validated on the respective internal validation fold.
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Fig. 4. Overview of the machine learning pipeline for feature reduction of the imaging data. (o) CT-based
Lung Segmentation and subsequent feature extraction, as described previously, yielded many imaging
features. (i) The 5x 5 cross-validation is the experimental setup. The reduction process is performed on
each development fold (dev 1-4) and begins with (ii) Feature Standardization, including z-normalization
and Yeo-Johnson transformation, followed by (iii) Feature Clustering and Exclusion using hierarchical
agglomerative clustering and best predictor selection. Filtering with the Mann-Whitney U test was used
for irrelevant feature exclusion. (iv) Feature Ranking is carried out via the MRMR algorithm to identify the
most informative variables. This was followed by (v) Model development via logistic regression and internal
validation on the validation fold (val) of the training cohort. (vi) Final Signature is defined by aggregating
the feature rankings over all five cross-validation folds on the basis of the Borda score. MRMR: minimal
redundancy maximum relevance; dev: development fold of the training cohort; val: validation fold of the
training cohort.

Signature features

A final signature was subsequently defined by aggregating the feature rankings over all cross-validation
experiments on the basis of the Borda score?* and selecting the three most relevant features of this ranking as
candidates for the final model. The lower-ranked features showed a high degree of mutual correlation and were
therefore filtered out. Within each rank, the most important feature was identified via a Wald test within logistic
regression. Subsequently, features with a Spearman correlation > 0.5 and at least one more important feature
were excluded to minimize redundancy.

Clinical model: feature extraction and selection

To avoid overfitting and mutual correlation, only a small number of features were extracted. Clinical features
were extracted on the basis of clinical evidence from the literature reflecting the severity of illness and
correlations among these features. The selected features included age?*, laboratory parameters (lactate [mmol/L]
and C-reactive protein [mg/L]*%, positive end expiratory pressure (PEEP) [cmH, O], and mean airway pressure
Pmean [cmH,0]¥. Feature selection was performed on the basis of correlation analysis of these extracted
parameters to avoid mutual correlations among features.

Model training and statistical analysis

Logistic regression was selected to develop all three models due to its interpretability (e.g., regression coefficients
as odds ratios), its ability to directly estimate event probabilities, and its robustness in settings with moderately
sized datasets. The developed models include (1) an Imaging Model that uses the final radiomic feature signature,
(2) a Clinical Model that is based on selected clinical parameters, and (3) a Combined Model that integrates
both feature sets into a single regression equation.

The final models were trained on the entire training cohort using the selected features. An optimal cutoff for
risk prediction was determined via the Youden index*, which identifies the threshold that maximizes the sum
of sensitivity and specificity. Model characteristics were described via regression coefficients, Wald statistics,
and corresponding p values. Higher values of the Wald statistic indicate a more stable and reliable effect. The
p value denotes the statistical significance of each variable, whereas larger regression coefficients indicate a
stronger association with the vv-ECMO prediction within the model. Statistical analyses were performed via
SPSS (Version 30.0.0.0 (IBM, INC, Armonk, NY, U.S.). The Kolmogorov-Smirnov test was used to assess the
normality of continuous variables. Group comparisons were conducted via the Mann-Whitney U test for
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continuous variables and the chi-square test for categorical variables. Unless otherwise stated, continuous values
are reported as the means + standard deviations.

Model validation

The final models and cutoffs were subsequently applied to the independent validation cohort. Model performance
in predicting the need for vv-ECMO was assessed via chi-square statistics, sensitivity, specificity, positive predictive
value, negative predictive value, and overall accuracy. In addition, the discriminative ability of each model was
quantified by the area under the receiver operating characteristic curve (AUROC). To assess cumulative event
differences, Kaplan-Meier curves with risk tables were generated, and statistical significance was evaluated via
the log-rank test. To account for the possibility that patients could die before ECMO initiation, a competing risk
analysis was applied”. Cumulative incidence functions (CIF) were estimated for ECMO initiation (i.e. event 1)
and death without prior ECMO (i.e. event 2, the competing risk). Group differences in CIF curves were assessed
using Gray’s test. In addition, subdistribution hazard ratios (SHR) with 95% confidence intervals were calculated
using Fine-Gray proportional subdistribution hazards regression to quantify the association between model-
predicted ECMO risk groups and the occurrence of each event while accounting for the competing risk. Gray’s
test was chosen to evaluate overall differences in cumulative incidence between groups, whereas the Fine-Gray
model allowed estimation of the effect size and statistical significance for the predefined covariate of interest.
Both ECMO initiation and death without ECMO were analyzed separately to enable joint interpretation of the
model’s discriminatory performance across endpoints.

Results

Characteristics of patients in the training and validation cohorts

After screening and exclusion, 172 patients in the training cohort and 203 patients in the validation cohort were
available for analysis (Fig. 5). The patient characteristics of both cohorts are presented in Table 2. ECMO was
required for 26.7% of the patients in the training cohort. At ICU admission, the prevalence of severe ARDS in
the training cohort was 45.3%. Severe ARDS was present in 50.0% of patients who later required ECMO and in

Screening
N=387

Training Cohort Validation Cohort
N=184 N=262

Exclusion

Incomplete medical records Incomplete medical records

Exclusion (N=12) Exclusion (N=59)

Analysis

v '

Training Cohort Validation Cohort
N=172 N=203

Fig. 5. Study flow chart of patient inclusion. Retrospective patient screening was performed for patients
admitted between March 2020 and March 2022. Patients who fulfilled the inclusion criteria and were admitted
between March 19, 2020, and March 11, 2021, were allocated to the training cohort. Patients who fulfilled the
inclusion criteria and were admitted to the ICU between March 11, 2021, and March 29, 2022 were allocated to
the validation cohort.

Scientific Reports |

(2025) 15:34120 | https://doi.org/10.1038/s41598-025-21287-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Training Validation Training Validation
Non-ECMO (n=126) | ECMO (n=46) | Non-ECMO (2=90) | ECMO (n=113) | Full cohort (n=172) | Full cohort (n=203)
General information
Age [years] 68.40 (9.53) 60.30 (8.70)* | 60.83 (12.24) 55.40 (9.37)** | 66.23 (9.96) 57.81 (11.05)**
Female Sex, n (%) 34 (27) 9 (20) 28 (31) 32 (28) 43 (25.0) 60 (29.6)
Weight [kg] 90.27 (20.75) 97.72 (20.59)* | 94.46 (19.37) 98.47 (24.20) 92.26 (20.91) 96.69 (22.23)*
Body mass index [kg/m?] 29.51 (5.80) 32.35 (8.09)* | 31.41 (6.16) 31.89 (7.14) 30.27 (6.58) 31.68 (6.71)*
Days in ICU 14.46 (9.78) 17.72 (11.28) 13.80 (8.64) 28.12 (19.01)** | 15.33 (10.27) 21.77 (16.85)**
Mortality, n (%) 70 (55.6) 32 (69.6) 41 (45.6) 77 (68.1)* 102 (59.3) 118 (58.1)
Laboratory parameters
C-reactive protein [mg/L] 158.4 (99.8) 218.5 (94.8)** | 155.9 (109.9) 186.9 (116.1) 174.5 (101.8) 173.1 (114.1)
Blood lactate [mmol/L] 1.32(0.77) 1.94 (1.71)* 1.72 (1.65) 1.74 (1.03) 1.48 (1.13) 1.73 (1.34)*
pH 7.38 (0.09) 7.39 (0.11) 7.35 (0.09) 7.38 (0.09)* 7.38 (0.10) 7.37 (0.09)
Course of disease
CCI 4.33 (2.45) 2.54 (1.71)** 2.50 (1.97) 1.51 (1.20)** 3.85 (2.40) 1.95 (1.63)**
Hypertension, n (%) 94 (75) 26 (57)* 59 (66) 64 (57) 120 (69.8) 123 (60.6)
Diabetes, n (%) 59 (47) 14 (30) 28 (31) 27 (24) 73 (42.4) 55 (27.1)*
COPD, n (%) 9(7) 3(7) 2(2) 2(2) 12 (6.9) 4(1.9)*
Pulmonary embolism, n (%) 38 (30) 19 (41) 44 (49) 74 (65)* 57 (33.1) 118 (58.1)**
ARDS mild, n (%) 14 (11) 12) 5(6) 13 (12) 15 (8.7) 18 (8.8)
ARDS moderate, n (%) 57 (45) 22 (48) 37 (41) 45 (40) 79 (45.9) 82 (40.4)
ARDS severe, n (%) 55 (44) 23 (5) 48 (53) 55 (49) 78 (45.3) 103 (50.7)
Respiratory parameters
Days of ventilation 14.93 (9.71) 21.67 (11.34)** | 14.26 (9.47) 31.97 (19.16)** 16.74 (10.57) 24.12 (17.91)**
Horovitz quotient [mmHg] 126.00 (59.71) 106.88 (40.74) 110.67 (49.78) 123.83 (66.71) 120.89 (55.81) 117.99 (60.02)
Driving pressure [cmH,0] 18.52 (2.91) 20.59 (3.10)* | 19.94 (4.03) 21.60 (3.27)* 19.08 (3.91) 20.87 (3.71)**
Mean airway pressure [cmH,0] | 12.63 (2.91) 14.00 (2.16)* 13.76 (2.83) 14.56 (2.40)* 13.00 (2.79) 14.20 (2.63)**

Table 2. Characteristics of patients in the training and validation cohorts. Patient characteristics at ICU
admission. The first and second columns compare the characteristics at admission of patients who never
required ECMO with those who did during their further clinical course, stratified by training and validation
cohorts. The third column compares training and validation without distinguishing the need for ECMO.
Statistically significant differences refer to comparisons within each column and are indicated by bold text and
asterisks (*p <0.05; **p <0.001). The Mann-Whitney U test was used for independent metric samples, and the
chi-square test was used for nominal values. Days of ventilation and mortality are linked to the entire course
of illness, not just to ICU admission. Unless otherwise stated, values are presented as the means (standard
deviations). ARDS: acute respiratory distress syndrome; CCI: Charlson comorbidity index; COPD: chronic
obstructive lung disease; Days in the ICU: total days in the ICU; Horovitz: paO2/FiO2; ICU: intensive care
unit; n.a.: data unavailable for non-ECMO patients; paO2: arterial partial pressure of oxygen; FiO2: fraction of
inspired oxygen.

43.7% of those who did not. In the validation cohort, 55.7% of all patients ultimately required ECMO. Severe
ARDS was present in 50.7% of all patients and in 48.7% of those who subsequently required ECMO (Fig. 6).

Imaging model: feature selection, training, and performance

Initial clustering, filtering, and cross-validation-based MRMR ranking yielded 14 potential model parameters
with three different importance ranks, as presented in Table 3. The most influential imaging features for each
rank group, based on Wald scores, were the proportion of normally aerated lung volume (norm_vent, rank 1),
HU skew from the dorsal lung (lungs_cs2_dors_s_hu, rank 2) and the proportion of atelectatic lung volume
(atelectatic, rank 3) (gray shaded in Table 3). These three image features exhibited high mutual Spearman
correlations (Fig. 7A, Table S2). To prevent high collinearity of features in logistic regression, only one feature
with the highest Wald statistic was selected. The final training model contains the “proportion of normally
aerated lung volume” as the only imaging feature.

The one-parameter Imaging Model is represented by the following formula:

1
1 + ef(1.854+(76.195*n07‘malivent)

P(ECMO = 1jnormal _vent) =

The strength of the feature’s influence in the Imaging Model is quantified by the Wald score and regression
coefficient (Table 4). The Imaging Model yielded in 5-times repeated 5-fold cross-validation during model
development, with an AUROC of 0.745 (95% CI: 0.629-0.850) for the respective internal validation folds in
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Fig. 6. Distribution of patients receiving vv-ECMO according to ARDS severity at admission. Sankey diagram
illustrating the distribution of vv-ECMO therapy according to ARDS severity at admission. Patients were
categorized as having mild, moderate, or severe ARDS on the basis of established criteria. The width of each
flow corresponds to the number of patients transitioning from each ARDS severity category to either vv-
ECMO or no-ECMO treatment. Among patients with severe ARDS, the majority received vv-ECMO (55/103),
whereas patients with mild ARDS were less likely to receive vv-ECMO therapy (5/19). The incidence of
moderate ARDS was nearly equal between the vv-ECMO (44/81) and no-ECMO (37/81) groups. ARDS: Acute
respiratory distress syndrome. Freq. : Absolute number of patients in each group.

the training cohort. In the entire training cohort, the Imaging Model leads to an AUROC of 0.743 (95% CI:
0.661-0.826, p<0.001) (Fig. 7B). For classification, a cutoff of 0.247 was selected by the Youden index on the
training dataset.

In the validation cohort, the Imaging Model reached an AUROC of 0.639 (95% CI: 0.563-0.714, p<0.001)
(Fig. 7B). The Imaging Model predicted ECMO with an overall accuracy of 67.4% (p<0.001) in the training
cohort and 59.1% (p=0.005) in the validation cohort (Tables 5, S3).

Clinical model: feature selection, training, and performance
The five selected clinical features were assessed for mutual correlation in the training cohort (Fig. 8A, Table S4).
The two features PEEP and Pmean are highly correlated (r?=0.835, p<0.001). To prevent high collinearity of
features in logistic regression, of these two features, only one feature with the highest Wald statistic was selected
(Table S5). The four remaining clinical features for the Clinical Model include: Age, Pmean, lactate level and
CRP level at admission.

The four-parameter clinical-based model is represented by the following formula:

1
P(ECMO = 1|Age, Pmean, Lactate, CRP) = 1+ e~ (1.594+4(—0.095% Age+0.087+ Pmean+0.559x Lactate+0.005%C RF)
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95% CI
Borda score | Rank | Wald score | p value | OR Lower | Upper
normal_ventilated [-] 14 1 22.123 <0.001 0.002 | 0.000 0.027
lung_m_HU 14 1 20.666 <0.001 1.007 | 1.004 1.010
r_lung m_HU 14 1 19.850 <0.001 1.007 | 1.004 1.009
lung_cs3_med_m_HU 14 1 18.799 <0.001 1.007 | 1.004 1.010
lung_cs3_med_s_HU 14 1 18.428 <0.001 0.238 | 0.124 0.458
lung s_HU 14 1 18.147 <0.001 0.214 | 0.105 0.435
r_lung cs3_med_m_HU | 14 1 16.867 <0.001 1.006 | 1.003 1.008
r_lung s HU 14 1 16.601 <0.001 0.280 | 0.152 0.517
r_lung_cs3_med_s_HU | 14 1 16.489 <0.001 0.321 | 0.186 0.556
lung_cs2_dors_s_HU 8 2 18.712 <0.001 0.304 | 0.177 0.521
lung_cs3_dors_s_HU 8 2 17.424 <0.001 0.378 | 0.240 0.597
Atelectatic [-] 7 3 21.475 <0.001 | 1446.320 | 66.626 | 31396.825
lung_cs2_dors_m_HU 7 3 18.533 <0.001 1.006 | 1.003 1.008
lung_cs3_dors_m_HU 7 3 15.665 <0.001 1.005 | 1.002 1.007

Table 3. Overview of the most prominent imaging features. Feature Selection for the Imaging Model.

This table presents the feature rankings determined by the MRMR algorithm and the Borda score. Rank 1
represents the most influential feature in clustering parameters regarding ECMO therapy, followed by Rank
2 and Rank 3. The three most influential and robust parameters, identified by the highest Wald scores from
logistic regression, were selected for further evaluation (gray shaded). All the parameters were significantly
correlated with ECMO therapy (p value <0.001). The odds ratio (OR) indicates the direction and magnitude
of influence. For example, a high atelectatic volume is strongly correlated with the need for future ECMO
(OR=1446.3), whereas a high normally ventilated volume is strongly correlated with no need for future ECMO
(OR=0.002). The parameters are explained in Table S1 in the supplement. CI: confidence interval; MRMR:
minimum redundancy maximum relevance; OR: odds ratio; ECMO: extracorporeal membrane oxygenation;
HU Hounsfield unit; CI: confidence interval.
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Fig. 7. (A, B) Development and performance of the imaging model. (A) Correlation matrix for imaging
features. Test of mutual correlation with Spearman correlation. The Spearman correlation coefficient is color-
coded: blue indicates a positive correlation, whereas red represents a negative correlation. The intensity of the
color reflects the strength of the correlation. The parameters are explained in Table S1 in the supplement. (B)
Performance of the imaging model. The ROC curve for the Imaging Model in the training cohort (blue) had an
AUROC of 0.743. The optimal threshold for the Imaging Model was determined via the Youden index, which
yielded a value of 0.247. The performance of the Imaging Model in the validation cohort (red) resulted in an
AUROC of 0.639.
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95% CI for OR
B SE Wald | pvalue | OR | Lower | Upper
Normal_vent [relative proportion] | -6.195 | 1.317 | 22.123 | <0.001 | 0.002 | 0.000 | 0.027

Table 4. Feature influence in imaging model. This table presents the strength of the feature’s influence
quantified by the Wald score and regression coefficient. B: regression coefficient used for model development;
SE: standard error; OR: odds ratio; CI: confidence interval; normal_vent: proportion of normal ventilated lung
volume, expressed as a fraction of the overall volume of the lung.

Imaging model Clinical model Combined model
Cohort Cohort Cohort
Training | Validation | Training | Validation | Training | Validation

General information

Observed need for ECMO 46 113 46 113 46 113
Predicted need for ECMO 76 90 76 155 57 114
Test metrics

Sensitivity (%) 71.7 53.1 84.8 88.5 739 68.1
Specificity (%) 65.9 66.7 70.6 38.9 81.8 58.9
Positive predictive value (%) | 43.4 66.7 51.3 64.5 59.7 67.5
Negative predictive value (%) | 86.5 53.1 92.7 72.9 89.6 59.6
Overall accuracy (%) 67.4 59.1 74.4 66.5 79.7 64.0

Table 5. Performance of the prediction models in the training and validation cohorts. Performance metrics for
all three models. The performances in the training and validation cohorts are depicted separately.
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Fig. 8. (A, B) Development and performance of the clinical model. (A) Correlation matrix for clinical features.
Test of mutual correlation with Spearman correlation. The Spearman correlation coefficient is color-coded:
blue indicates a positive correlation, whereas red represents a negative correlation. The intensity of the color
reflects the strength of the correlation. CRP: C-reactive protein; Pmean: mean airway pressure; PEEP: positive
end expiratory pressure. (B) Performance of the clinical model. The ROC curve for the Clinical Model in the
training cohort (blue) had an AUROC of 0.828. The optimal threshold for the Clinical Model were determined
via the Youden index, which yielded a value of 0.225. The performance of the Clinical Model in the validation
cohort (red) resulted in an AUROC of 0.674.
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Age
normal_vent
CRP [mg/L]
Lactate [mmol/L]
Pmean [cmH20]

PEEP [cmH20]

95% CI for OR
B SE Wald | df | pvalue | OR | Lower | Upper
Age [years] -0.095 | 0.023 | 17.207 |1 |<0.001 |0.910 | 0.870 | 0.951

Pmean [cmH,O] |0.087 |0.057 {2335 |1 |0.126 1.091 | 0.976 | 1.220

Lactate [mmol/L] | 0.559 |0.225 |6.154 |1 |0.013 1.749 | 1.125 | 2.721
CRP [mg/L] 0.005 |0.002 |6.153 |1 |0.013 1.005 | 1.001 | 1.009

Table 6. Feature influence in clinical model. This table presents the strength of the feature’s influence
quantified by the Wald score and regression coefficient. CRP: C-reactive protein; B: regression coefficient, used
for model development; SE: standard error; df: degree of freedom; OR: odds ratio; CI: confidence interval.

normal_vent
CRP [mgiL]
Lactate [mmol/L]
Pmean [cmH20]
PEEP [cmH20]

@
=3
<

Sensitivity

— Training (AUC =0.84)
= Validation (AUC =0.71)

T T T T T T

00 02 04 06 038 10

1 - Specificity

Fig. 9. (A, B) Development and performance of the combined model. (A) Correlation matrix for combined
features. Test of mutual correlation with Spearman. The Spearman correlation coefficient is color-coded:

blue indicates a positive correlation, whereas red represents a negative correlation. The intensity of the color
reflects the strength of the correlation. CRP: C-reactive protein; Pmean: mean airway pressure; PEEP: positive
end expiratory pressure. (B) Performance of the combined model. The ROC curve for the Combined Model
in the training cohort (blue) had an AUROC of 0.842. The optimal threshold for the combined model was
determined via the Youden index, which yielded a value of 0.304. The performance of the Clinical Model in the
validation cohort (red) resulted in an AUROC of 0.705.

The strength of the feature’s influence in the Imaging Model is quantified by the Wald score and regression
coeflicient (Table 6). In the training cohort, the clinical-based model led to an AUROC of 0.828 (95% CI: 0.762-
0.894, p<0.001) (Fig. 8B). For classification, a cutoff of 0.225 was selected by the Youden index on the training
dataset.

In the validation cohort, the Clinical Model had an AUROC of 0.674 (95% CI: 0.599-0.749, p<0.001)
(Fig. 8B). The Clinical Model predicted ECMO with an overall accuracy of 74.4% (p<0.001) in the training
cohort and 66.5% (p <0.001) in the validation cohort (Table 5, S3).

Combined model: feature selection, training, and performance
For the Combined Model, features from both the imaging-based and the clinical-based models were selected.
These five features were assessed for mutual correlation in the training cohort (Fig. 9A, Table S6). All five features
were included in further model development because the highest absolute Spearman correlation coefficient was
less than 0.5 (Fig. 9A, Table S6).

The five-parameter Combined Model is represented by the following formula:

P (ECMO = 1|age, pmean, lactate, crp, normalyent)

1
= 1 o+ 67(3Y775+(70-086*age+0.065*pmean+0.481*lactate+0.004*crp+(74.396*no7‘mal_vent)))
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The strength of the feature’s influence in the imaging model is quantified by the Wald score and regression
coefficient (Table 7). In the training cohort, the Combined Model leads to an AUROC of 0.842 (95% CI: 0.774-
0.910, p<0.001) (Fig. 9B). For classification, a cutoff of 0.304 was selected by the Youden index on the training
dataset.

In the validation cohort, the combined model had an AUROC of 0.705 (95% CI: 0.633-0.778, p<0.001)
(Fig. 9B). The Combined Model predicts vv-ECMO with an overall accuracy of 79.7% (p <0.001) in the training
cohort and 64.0% (p <0.001) in the validation cohort (Table 5, S3).

Model comparison: performance in the validation cohort

Model performances in the validation cohort are summarized in Figs. 10, 11, 12, 13A,B, Tables 5, S3. The
Combined Model demonstrated the highest discriminative ability (AUROC 0.71; overall accuracy 64.0%),
outperforming both the Clinical Model (AUROC 0.67; 66.5%) and the Imaging Model (AUROC 0.64; 59.1%)
(Fig. 10).

According to the Irmaging Model, 90 of the 203 patients (44.3%) were classified as high risk for requiring
ECMO therapy, yielding 60 true positives (66.7%) and 30 false positives (33.3%). Among the 113 patients
predicted not to require ECMO therapy, 60 were true negatives (53.1%), and 53 were false negatives (46.9%)
(Table 5). ECMO-free survival was significantly longer in the predicted no-ECMO group (24.5+2.4 days vs.
18.0 £2.8 days; log-rank x* = 9.856, p=0.002) (Fig. 12). In the competing risk analysis, the Gray test confirmed a
significant difference in the cumulative incidence of ECMO initiation between groups (p=0.001), and Fine-Gray
regression showed a 67% higher subdistribution hazard for ECMO in the “ECMO predicted” group (SHR=1.67;
95% CI: 1.21-2.30; p=0.002). For the competing event “death before ECMO,” no significant difference was
observed (Gray test p=0.071; Fine-Gray: SHR=0.68; 95% CI: 0.38-1.20; p=0.18).

Using the Clinical Model, 155 patients (76.4%) were classified as high risk for requiring ECMO therapy, with
100 true positives (64.5%) and 55 false positives (35.5%). Of the 48 patients predicted not to need ECMO, 35
were true negatives (72.9%), and 13 were false negatives (27.1%) (Table 5). ECMO-free survival was significantly
longer in the no-ECMO group (36.9+4.3 vs. 16.9 + 1.8 days; log-rank x> = 17.897, p <0.001).

The Combined Model predicted 114 ECMO therapies (56.2%), with 77 true positives (67.5%) and 37 false
positives (32.5%). Among the 89 patients who were predicted to be free of ECMO, 53 were true negatives (59.5%),
and 36 were false negatives (40.5%). The ECMO-free time differed significantly between the groups (30.4+ 3.1 vs.
9.9+ 1.2 days; log-rank x> = 16.923, p <0.001) (Fig. 12). Competing risk analysis again demonstrated a significant
difference in ECMO incidence between groups (Gray test p <0.0001), with Fine-Gray regression indicating more
than a doubling of the subdistribution hazard for ECMO in the “ECMO predicted” group (SHR=2.11; 95% CI:
1.48-2.99; p <0.0001). For “death before ECMO,” the cumulative incidence was significantly lower in the “ECMO
predicted” group (Gray test p=0.004), and Fine-Gray regression showed a 59% risk reduction (SHR=0.41; 95%
CI: 0.23-0.73; p=0.002).

If the prediction models were used to guide transfer decisions from centers without ECMO capabilities or
during times of limited resources, the Combined Model would offer the clearest temporal separation and the
most balanced trade-off between overtriage and undertriage (Fig. 11).

The Kaplan-Meier curves and cumulative incidence function for ECMO-free survival stratified by model
predictions are shown in Fig. 12.

A comparison of logistic regression performance and the area under the receiver operating characteristic
curves for the three different models in the training cohort, as well as the corresponding AUROC:s for the
validation cohort, is provided in the supplementary material (Table S7).

To illustrate the magnitude of the influence of age and lactate on ECMO prediction in the Combined Model
the quantitative CT feature “proportion of normal ventilation” was set at 0.492, corresponding to the mean of
this parameter in both cohorts. Figure 13A,B illustrates the effects of age and lactate level on the ability of the
Combined Model to predict ECMO. The 3D surface plot (Fig. 13A) revealed a strong interaction between age
and lactate level: younger patients with elevated lactate levels presented the highest predicted ECMO probability.
Conversely, the likelihood of ECMO decreases markedly with increasing age, particularly in patients with low
lactate. This age-dependent decline is also evident in the 2D stratified plot (Fig. 13B), where the ECMO probability
falls consistently across the age spectrum, whereas higher lactate values uniformly shift the probability curves

95% CI for OR

B SE Wald | df | pvalue | OR | Lower | Upper
Age [years] -0.086 | 0.024 | 13.183 | 1 |<0.001 | 0.917 | 0.0867 | 0.961
Pmean [cmH,0] 0.065 |0.060 | 1.173 |1 |0.279 1.067 | 0.949 | 1.200
Lactate [mmol/L] 0.481 |0.233 4260 |1 |[0.039 1.618 | 1.025 | 2.555
CRP [mg/L] 0.004 |0.002 |4.119 |1 |0.042 1.004 | 1.000 | 1.008
Normal_vent [relativ proportion] | -4.396 | 1.438 | 9.347 |1 |0.002 |0.012 | 0.001 | 0.206

Table 7. Feature influence in combined model. This table presents the strength of the feature’s influence
quantified by the Wald score and regression coeflicient. CRP: C-reactive protein; normal_vent: proportion
of normal ventilated lung volume, expressed as a fraction of the overall volume of the lung; B: regression
coefficient, used for model development; SE: standard error; df: degree of freedom; OR: odds ratio; CI:
confidence interval.
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Fig. 10. Comparison of model performance. The ROC curves for the validation cohort, comparing the
predictive performance of the Imaging Model (blue), the Clinical Model (brown), and the Combined Model
(black). The area under the curve (AUROC) was 0.64 for the Imaging Model, 0.67 for the Clinical Model, and
0.71 for the Combined Model.

upward. These findings underscore the synergistic contribution of metabolic and demographic factors to ECMO
decision-making within the Combined Model.

Discussion

This study presents three models to predict future vv-ECMO needs in ARDS patients, supporting timely,
individualized therapy decisions while minimizing both overtreatment and delays in escalation. In scenarios of
limited resources, objective prediction tools may also aid in determining whether a patient should be transferred
to an ECMO center and help ECMO-capable institutions assess the urgency of accepting referred patients. The
Combined Model developed in this study, which integrates clinical and imaging data at ICU admission, achieved
a sensitivity of 68.1% and a specificity of 59.9% in the validation cohort. The Imaging Model reached a sensitivity
of 53.1% and a specificity of 66.7%. The overall accuracy of the Combined Model achieved 64.0%.

Competing risk analysis showed that model-based classification was associated with clear differences in
ECMO incidence, both in the Imaging and the Combined Model. The lower incidence of death without ECMO
in the Combined Model group could reflect a survival benefit from early ECMO initiation in correctly identified
high-risk patients; however, the retrospective design and differential mortality between groups may also inflate
apparent discrimination by reducing ECMO incidence in the “no ECMO predicted” group. In the context
of competing risks, higher early mortality can lead to seemingly greater separation between groups without
necessarily improving identification of true ECMO candidates. Clinically, it is therefore essential to interpret
ECMO initiation and death without ECMO jointly, and to assess whether patients in the “no ECMO predicted”
group who died before ECMO might have been suitable candidates. Further analyses, such as cause-specific
hazard models, are warranted to separate mortality effects from true predictive performance.
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Fig. 11. Outcomes in the validation cohort if the models guide transfer decisions. If ECMO prediction of

the models would have led to transfer decisions, as in times of limited resources, transfer outcomes in the
validation cohort would be as depicted in this figure. The x-axis groups predictions into four categories:
correct transfer (true positives), missed transfer (false negatives), correct stay (true negatives), and
unnecessary transfer (false positives). The percentages are shown for each outcome, with the Combined Model
demonstrating the most balanced trade-off between avoiding unnecessary transfers and minimizing missed
vv-ECMO cases.

The ECMO course is often complicated by adverse events that are multifactorial and difficult to predict®. A
timely individualized assessment of whether an ARDS patient is likely to progress toward ECMO dependence
- independent of the overall prognosis — could support earlier and more targeted care pathways. This, in turn,
might ultimately influence patient outcomes.

Numerous studies have evaluated survival outcomes in patients receiving vv- or va-ECMO7”8, often starting
analysis immediately before cannulation, such as with the ECMOnet score’, or after cannulation’. However,
only a few studies have attempted to predict the progression of ARDS toward the ECMO requirement at
the time of ICU admission, when ECMO is not yet indicated®'. While survival prediction following ECMO
initiation is undoubtedly important, it remains questionable whether such prognostic estimates should influence
the decision to initiate ECMO therapy. A timely, prognosis-independent assessment of the likelihood that an
ARDS patient will deteriorate to the point of needing vv-ECMO may offer greater clinical utility. This is the
first study to investigate the future need for vv-ECMO in patients with ARDS via models trained and validated
on a temporally separated cohort. By integrating quantitative radiomic features derived from admission CT
scans, the models developed in this study capture early and spatially resolved aspects of lung injury that are
not readily apparent in conventional clinical scores. The radiomic features likely reflect pathophysiological
hallmarks of severe ARDS, such as increased lung weight, consolidation, and fibroproliferative changes, which
have previously been linked to recruitability and disease severity in CT-based studies by Gattinoni et al.!® and
Protti et al.'®. These structural alterations may explain the predictive association with later ECMO requirements,
as also supported by the finding that traction bronchiectasis and mixed-density opacities are associated with
prolonged ECMO duration and difficult liberation®. In the Imaging Model in this study, the ‘proportion of
non-aerated lung areas’ emerged as a key feature in the final feature selection. This variable may reflect similar
structural alterations as the ‘opacity’ characteristics identified by Nishikimi et al.’, particularly in terms of dense,
non-ventilated parenchymal regions.

Our findings complement and extend prior work by Gresser et al.>!, who demonstrated high predictive
value for a combined SOFA score and CT-based lung involvement score in COVID-19 patients (AUC 0.91).
In contrast to their approach, which focused on immediate hospital admission, our model begins at ICU
admission and introduces feature-level granularity through automated radiomics. Additionally their approach
did not include an independent validation cohort. The ‘lung involvement’ metric proposed by Gresser et al.’!
resembles our selected feature ‘proportion of non-aerated lung areas, as both quantify the extent of pulmonary
abnormalities across the entire lung, providing a global perspective on disease burden. Compared with existing
ECMO prediction tools such as the ECMOnet® or RESP scores®, which rely primarily on clinical data shortly
before cannulation, the method in this study enables earlier risk stratification and may support preemptive
clinical decision-making.
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Fig. 12. Cumulative incidence of ECMO initiation and death by prediction group: comparison of cumulative
incidence function (CIF) and Kaplan-Meier (KM) estimates. (A, C) Cumulative incidence of ECMO initiation
stratified by model prediction (predicted no-ECMO “0” vs. predicted ECMO “1”) for the Imaging Model (A)
and the Combined Model (C). Solid lines represent CIF estimates accounting for death as a competing risk,
whereas dashed lines indicate naive KM estimates treating competing events as censoring. Patients predicted
to require ECMO (yellow) consistently showed higher ECMO incidence compared with those predicted

not to require ECMO (blue). KM estimates tended to overestimate ECMO initiation probabilities relative to
CIE. (B, D) Cumulative incidence of death stratified by model prediction for the Imaging Model (B) and the
Combined Model (D). CIF estimates (solid lines) indicated higher death incidence in the predicted no-ECMO
group (red), reflecting poorer outcomes in patients without ECMO therapy, while patients predicted to require
ECMO (turquoise) demonstrated lower death incidence due to the competing risk of ECMO initiation. Naive
KM estimates (dashed lines) underestimated mortality in the predicted no-ECMO group and overestimated it
in the predicted ECMO group. CIF, cumulative incidence function; ECMO, CR, competing risk; extracorporeal
membrane oxygenation; KM, Kaplan-Meier.

Furthermore, radiomic CT features have demonstrated complementary value alongside clinical and
laboratory markers in other models for predicting ICU admission, ventilation, or death in COVID-19 patients.
The added value of image-derived features suggests that quantitative CT analysis may provide important
information on disease severity, distribution, and heterogeneity that traditional scoring systems fail to capture.
Qualitative CT scan analysis and radiological findings alone are often insufficient to determine the need for
ECMO therapy. A detailed quantitative analysis of lung CT scans based on machine learning models could
provide additional insights; however, such analyses are currently not part of routine clinical practice owing to the
labor-intensive nature of manual segmentation*. Automated tools leveraging modern computer vision and deep
learning techniques such as the approach developed in this study could enable routine quantitative CT analysis
and facilitate the development of novel decision-support systems.

The approach developed in this study could primarily support ECMO centers in making more timely
and objective decisions regarding cannulation. Moreover, the model has the potential to facilitate structured,
transparent dialog between referring institutions and ECMO centers, supporting coordinated transfer planning
and optimal resource allocation. By enhancing the prediction of critical illness progression, healthcare resources
can be allocated more efficiently, while patient safety can be improved through the early identification of
clinical deterioration. This could facilitate earlier transfers of ECMO candidates while preventing unnecessary
transfers of patients who do not require ECMO. A key advantage of the Combined Model in this study is the
objectivity of the input criteria, making it independent of the treating physicians’ experience. At ICU admission,
both patients who later required ECMO therapy and those who did not presented with moderate to severe
ARDS. Therefore, the diagnosis of severe ARDS alone is not a reliable predictor of future ECMO requirements.
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Fig. 13. (A, B) Influence of age and lactate level on ECMO prediction in the combined model. (A) and (B)
depict the ECMO prediction in the Combined as a function of age and lactate level, assuming that the CT
feature “normal ventilation” = 0.492 and that the fixed values for CRP (196.0) and Pmean (14.4) correspond to
the mean values for all patients within this study. (A) Three-dimensional surface plot showing the joint effect of
age and lactate concentration on ECMO prediction. Younger age and higher lactate levels are associated with a
greater likelihood of ECMO prediction in the Combined Model. (B) Two-dimensional plot illustrating ECMO
prediction by age, stratified by lactate level (1.0-5.0 mmol/L). ECMO prediction decreases with increasing age
across all lactate strata, with higher lactate levels consistently increasing the predicted probability.
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Statistically significant differences were observed in the validation cohort between patients who required ECMO
and those who did not regarding higher driving pressure and mean pressure, age, and comorbidities. However,
the clinical relevance of these differences remains uncertain. Predicting ECMO necessity on the basis solely of
these parameters is challenging, as it would require defining precise thresholds, which may vary across cohorts.
Providing objective and early risk estimates contributes to more individualized treatment strategies and may
help avoid both overtreatment and delayed initiation.

Given that timely decision-makingis critical for patient survival®**, such amodel has the potential to significantly
impact clinical outcomes. Nevertheless, further validation and a fully automated image segmentation approach
are needed before deployment as a decision support tool for clinicians. In fact, current automatic preprocessing
methods remain limited in handling certain pathological conditions, which may necessitate additional manual
corrections and increase the overall time and effort required for data preparation.

134

Model limitations and generalizability

While the Combined Model demonstrated solid predictive performance and supports individualized decision-
making, several limitations must be emphasized. First, the clinical model includes only four parameters - age,
lactate, mean airway pressure, and C-reactive protein - selected for their early availability, objectivity, and
known relevance to disease severity. We acknowledge that this limited variable set cannot fully capture the
clinical complexity of ARDS. Variables such as vasopressor use, lung compliance, and the P/F ratio may provide
additional prognostic information but were either inconsistently documented or highly collinear with existing
model components. Moreover, age and lactate are known factors in ECMO eligibility assessments and may reflect
clinician bias or institutional practice patterns. This potential overlap highlights the risk of circular reasoning
and underscores the need for further external validation in independent clinical settings.

Second, the study was conducted exclusively in COVID-19-associated ARDS patients retrospectively at a
single center, which may limit generalizability to ARDS of other etiologies. This decision was based on the
consistent availability of CT imaging and the high incidence of severe hypoxemic respiratory failure during
the pandemic. However, we acknowledge that the pathophysiology and decision-making context for vv-ECMO
may differ in bacterial pneumonia, trauma-related ARDS, or extrapulmonary etiologies. Future work should
therefore evaluate the model’s performance in non-COVID ARDS populations. All patients were treated during
the COVID-19 pandemic, a period characterized by dynamic resource constraints and altered clinical decision-
making, particularly with respect to ECMO initiation, which may have influenced outcome distributions and
model generalizability. However, all patients were treated at a single tertiary center, within a highly coordinated
team, and under largely uniform decision-making standards at regarding ECMO initiation in our center.
Although we deliberately validated the model in a temporally distinct cohort to test robustness, this temporal
stratification may also reflect evolving treatment standards rather than pure differences in disease trajectory. As
such, external validation across centres and time periods is essential before clinical deployment.

Third, although all patients met the Berlin criteria for ARDS and were admitted to a tertiary ICU with ECMO
expertise, formal ECMO eligibility was not systematically documented at the time of admission. Some patients
may have had predefined treatment limitations or comorbidities that would have precluded ECMO therapy, but
these were not consistently captured in the dataset. Nevertheless, throughout the pandemic, the role of the ICU
involved in this study remained constant: it served as the designated unit for patients with severe respiratory
failure considered potential candidates for vv-ECMO. Admission to this unit therefore implicitly required
the absence of formal contraindications to ECMO, even if this was not explicitly recorded. In addition, the
institutional ECMO protocol mandates that patients transferred from external hospitals are accepted only if no
known contraindications to ECMO exist - a requirement routinely confirmed prior to transfer. These factors
suggest that, despite the absence of structured eligibility documentation, the cohort was composed of clinically
appropriate ECMO candidates. However, potential selection bias cannot be entirely excluded and should be
addressed in future prospective studies with clearly defined inclusion criteria. If such bias did occur, it would
have likely affected both the training and validation cohorts in a similar and systematic manner. It should also be
noted that, as a specialized tertiary care centre for ARDS and ECMO, a substantial proportion of patients were
referred from external hospitals. This may have introduced referral and pretreatment bias. Furthermore, changes
in clinical practice, triage policies, and resource availability between the early and later phases of the pandemic
may have influenced the timing and frequency of ECMO initiation.

Fourth although CT scans are processed via a standardized CNN-based segmentation pipeline, manual
review and correction of lung masks remain necessary, which may limit the feasibility of fully automated clinical
implementation. Additionally, the lack of standardized CT acquisition protocols, e.g., the absence of respiratory-
hold scanning and variability in ventilator settings between ward and transport ventilation, may have affected
the consistency of the extracted radiomic features. Furthermore, clinical and imaging data are collected under
routine clinical conditions and not always aligned temporally or methodologically; for example, ventilation
parameters may differ slightly between the time of CT acquisition and concurrent clinical assessments. Although
this introduces a degree of heterogeneity, it also enhances the real-world applicability of our findings. External
validation in broader, multicenter ARDS cohorts and under standardized imaging protocols is therefore essential
to confirm the robustness and clinical utility of the proposed model.

In contrast to end-to-end deep learning models, where feature selection is inherently embedded in the
training process, our approach applies feature extraction and selection as separate steps. While this improves
interpretability, it may limit the synergy between learned features and model optimization. Moreover, the logistic
regression model, while transparent and easy to interpret, may not fully capture complex nonlinear relationships
present in the data. Advanced models such as ensemble methods or deep learning architectures could offer
improved predictive performance but were not explored here because of the focus on model explainability.
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The automated analysis of chest-lung CT images has great potential for significantly reducing the time required
to evaluate CTs in hospitals and thus contributes to faster therapy decisions. With the help of tools such as
the Combined, the Clinical, and the Imaging Model, as proposed in this study, faster and safer decisions for
or against ECMO therapy or referral to a center with ECMO capability can be made. Despite the imperfect
standardized data collection, we were able to provide positive results for decision support and initial assessment.
We see value in further investigations and data-driven and CT-based analyses to improve outcomes for patients
with severe lung failure and the option of ECMO therapy. In this context, a prospective validation of the models
developed in this study in non-COVID-19 ARDS patients would be valuable for assessing their generalizability.

Conclusion

In this retrospective cohort study, we developed a machine learning-based model that integrates clinical
parameters with quantitative imaging features derived from CT segmentation to predict the need for vv-ECMO
therapy in patients with ARDS. The combined use of clinical and imaging data outperformed models based
on clinical or imaging data alone, demonstrating improved accuracy in identifying patients at increased risk
for ECMO. By providing an objective, data-driven tool for early risk stratification, this model may support
clinicians in recognizing patients with a high likelihood of severe disease progression, thereby facilitating timely
and individualized therapeutic decision-making in the management of ARDS.

Data availability
The datasets are not publicly available due to data sharing protocols but are available from the corresponding
author upon reasonable request.
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