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Data from wearable devices collected in free-living settings, and labelled with physical activity 
behaviours compatible with health research, are essential for both validating existing wearable-based 
measurement approaches and developing novel machine learning approaches. One common way 
of obtaining these labels relies on laborious human annotation of sequences of images captured by 
body-worn cameras. The aim of this study was to investigate whether open-source vision-language 
models could accurately annotate activity intensity classes in wearable camera-based validation 
studies, thereby reducing the annotation burden. We compared the performance of three vision 
language models and two discriminative models on two free-living validation studies with 161 and 
111 participants, collected in Oxfordshire, United Kingdom and Sichuan, China, respectively, using 
the Autographer (OMG Life, defunct) wearable camera. We found that the best open-source vision-
language model (VLM) and fine-tuned discriminative model (DM) achieved comparable performance 
when predicting sedentary behaviour from single images on unseen participants in the Oxfordshire 
study; median F1-scores: VLM = 0.89 (0.84, 0.92), DM = 0.91 (0.86, 0.95). Performance declined for 
light [VLM = 0.60 (0.56, 0.67), DM = 0.70 (0.63, 0.79)], and moderate-to-vigorous intensity physical 
activity [VLM = 0.66 (0.53, 0.85); DM = 0.72 (0.58, 0.84)]. When applied to the external Sichuan study, 
performance fell across all intensity categories, with median Cohen’s κ scores falling from 0.54 (0.49, 
0.64) to 0.26 (0.15, 0.37) for the VLM, and from 0.67 (0.60, 0.74) to 0.19 (0.10, 0.30) for the DM. 
Freely available computer vision models could help annotate sedentary behaviour, typically the most 
prevalent activity of daily living, from wearable camera images within similar populations to seen data, 
reducing the annotation burden when using cameras as the source of ground-truth.

Wearable measurements of physical activity behaviours have helped advance our understanding of the 
relationship between physical activity and health outcomes1, provided more sensitive outcomes in clinical 
trials2 and introduced new ways of monitoring population physical activity levels3. The most realistic setting 
for validating behaviour measurement approaches and developing novel machine learning approaches4–8 is in 
diverse populations of people living their everyday lives, highlighting the need for large, labelled, wearable data-
sets, captured in free-living conditions9–11.

Activity intensity classes, Sedentary Behaviour (SB), Light Intensity Physical Activity (LIPA) and Moderate-
to-Vigorous Physical Activity (MVPA), provide a simple classification of daily activities based on their energy 
expenditure, are clearly defined13–15, and have been widely adopted in epidemiological research6,16,17 and 
physical activity guidelines18. A pragmatic approach to collecting these data-sets in free-living settings has been 
for participants to wear cameras, which record footage that later is reviewed by annotators to inform the ground-
truth labels11,19. However, the sensitive nature of this footage has meant that access to it is restricted to select 
researchers, trained to handle sensitive data20, making it costly and time-consuming to label.

Recently, Keadle et al.15 proposed adopting approaches from computer vision to predict aspects of physical 
activity in a study of 26 adults, using video-recorded direct observation, emphasising the distinction between the 
definitions of physical activity used in health research13,21,22, such as activity intensity, and the varied definitions 
of activity prevalent in human activity recognition literature23. This work estimates the performance of computer 
vision methods based on video-recorded direct observation, leaving the performance on studies using wearable 
image-capturing cameras unexplored, in addition to questions of how stable model performance will be between 
different populations, and within larger populations.
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In this work, we evaluate using open-source Vision Language Models (VLMs), and Discriminative Models 
(DMs) to classify activity intensity in two validation studies collected in Oxfordshire, United Kingdom19 and 
Sichuan, China24, with wearable camera data from 161 and 111 participants respectively (Fig. 1). Although ethical 
issues prevent us from making the wearable camera portion of these data-set publicly available, a detailed quality 
assessment of these data-sets is conducted, and we will make our codebase and models publicly available (the 
annotated wrist-worn accelerometer data is publicly available for the Oxfordshire study19). To our knowledge, 
this is the first work which assesses the adoption of VLMs in this setting, and highlights a less labour-intensive 
approach to gathering labelled validation data-sets in free-living settings.

Relevant work
Measuring activity intensity at scale
In this paper, we focus on the activity intensity classes sedentary behaviour, light intensity physical activity and 
moderate-vigorous physical activity, which are defined as:
Sedentary behaviour (SB) waking behaviour at≤1.5 METs in a sitting, lying or reclining pos-

ture,
Light intensity physical activity(LIPA) waking behaviour at< 3METs not meeting the sedentary behaviour 

definition,
Moderate-vigorous physical activi-
ty(MVPA)

waking behaviour at≥ 3METs, and

Sleep Non-waking behaviour (not used in this work, though included for 
completeness),

 where the metabolic equivalent of task (MET) index estimates the ratio of an activity’s metabolic rate to 
a resting metabolic rate, set by convention to 3.5 ml O2 kg body weight−1 min−114,25. These definitions of 
the activity intensity classes are in line with the definition of SB obtained through consensus in13, and the 
definitions of LIPA and MVPA used by14,15. Current WHO guidelines on physical activity are framed in terms 
of these activity intensity classes, emphasising the importance of accurately monitoring activity intensity in 
large populations18.

Fig. 1.  Illustration of the computer vision approaches compared (top). Below, quartile plots12 show the 
five-number summary of per-participant F1-scores for sedentary behaviour (SB), light intensity physical 
activity (LIPA), and moderate-to-vigorous physical activity (MVPA), for the best-performing vision-language 
model, LLaVA (squares), and the best-performing discriminative vision model, ViT (circles), selected via 
hyperparameter tuning. Performance is shown for participants in the Oxfordshire study (blue) and the Sichuan 
study (red) withheld from model selection. MVPA constitutes only 8% of the training set, which is reflected in 
the high variance of per-participant F1-scores.
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Although wearable cameras alone could be used to measure activity intensity classes, they raise privacy 
concerns, making deploying them at scale less feasible. Thus, wearable cameras play a supporting role in 
capturing concurrent data that can be labelled for training activity intensity recognition models based on other 
wearable devices5,26, and assessing the performance of these approaches in free-living settings, in so-called 
validation studies19. In10’s framework for developing devices that measure physical behaviour, they recognise 
both laboratory development (phase I), semi-structured evaluation (phase II) and naturalistic evaluation (phase 
III) as being necessary. Within this framework, wearable cameras can contribute naturalistic labelled data. This 
supports both the development of the new machine learning-based approaches, and the naturalistic evaluation 
of devices (phase III).

Although machine learning based approaches to measuring activity intensity classes from wearable 
accelerometers have overcome many of the shortcomings of than approaches reliant on cutpoints27–29, they still 
have issues generalising to unseen populations24, supporting the need to collect more training and validation 
data in new populations.

Currently, indirect calorimetry is recognised as the best way of measuring activity intensity over time10. In 
order to capture indirect calorimetry outside of lab-based conditions, participants wear facemasks and backpacks 
measuring the volume of oxygen inspired and expired over time. However, it is difficult for participants to wear 
these for extended periods of time in free-living situations. Doubly labelled water is a means of measuring total 
energy expenditure, but it is not possible to determine when participants were engaged in activities of different 
intensities using doubly labelled water30.

Since indirect calorimetry is impractical in free-living settings over long durations, a pragmatic alternative 
is to use wearable camera footage to annotate activity intensity at scale10. In this approach, footage captured by 
the participant is reviewed by a trained annotator, and based on which activity the participant is engaged in, 
the annotator is able to estimate the corresponding activity intensity class using the Compendium of Physical 
Activity as reference. This approach has been used in a number of free-living validation studies19,31–34, and has 
been shown to relatively accurate compared to indirect calorimetry35.

Wearable data-sets of health-relevant behaviours
There are varying approaches to capturing free-living data-sets using cameras, arising from where the cameras 
are positioned relative to the participants, and the frequency with which cameras capture frames. Cameras can be 
worn by the participants, resulting in egocentric footage, held by observers following the participants, or placed 
in static positions, with the latter two options resulting in third-person footage. The frame-rate can be high, as is 
the case with video, or low, resulting in sparse sequences of images, similar to a time-lapse. Historically, battery 
limitations have meant that there has been a trade-off between the temporal resolution, and total duration 
recorded. For instance, Keadle et al.15 used GoPros to record two sessions of 2 h of free-living data in a study of 
26 participants. On the other hand, the studies considered in this work have recordings covering 8+ h in over 100 
participants each, though at the expense of only capturing images every 20+ s. In Table 1, we highlight the sizes 
of comparable camera based validation studies, and there is a notable gap between the size of studies achieved 
using video compared to time-lapse recordings.

CAPTURE24: the Oxfordshire and Sichuan studies
The CAPTURE24 study was collected in 2014 from 165 participants in the Oxfordshire county of the United 
Kingdom in order to validate wrist-worn accelerometer-based physical activity measurement approaches in 
adults19,42. The CAPTURE24-CN study was collected in 2017 from 113 participants in the Sichuan province of 
China alongside a similar effort to develop and validate approaches to derive wrist-worn accelerometer-based 
physical activity measurements in over 20,000 participants in the China Kadoorie Biobank24. Though these 
studies only comprise roughly 100 participants each, they are the primary source of labelled data used to validate 
the measurements conducted in large scale health studies such as the UK and China Kadoorie Biobank6–8,43, 

Viewpoint No. participants Median δt (s) Hours labelled Paper

1st 161 24 1546 19 (Oxfordshire)

1st 111 84 1078 24 (Sichuan)

1st 50 15 1218 33

1st 22 Video 11 37

3rd 22 Video 34.3 38

1st 25 20 768 34

1st 22 Video 38 39

3rd 48 Video 192 40

3rd 31 Video 31 41

Table 1.  Number of participants and estimated number of labelled hours of studies using cameras to validate 
wearable measurements of physical activity identified in a recent systematic review36, and scoping review35. 
We recommend referring to the reviews for a more comprehensive list of validation studies. The two studies 
collected in Oxfordshire and Sichuan used in this work are shown at the top of this table. The estimates of 
the number of hours of labelled data for the timelapse studies is optimistic, since the temporal resolution of 
timelapse is much lower than video, resulting in periods of time that are difficult to label.
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comprising tens of thousands of participants. As highlighted in Table  1, they represent the largest available 
validation studies.

Recognising activities from sparse sequences of egocentric images
Collecting and analysing data using wearable cameras has a history spanning over 3 decades, with pioneering 
work by Mann44 and Aizawa45, but was also foreseen as early as 194546. There have been several works which 
explore human activity recognition in third person15,47–49, and, to a lesser extent, egocentric videos50–52. Working 
towards the goal of reducing annotation burden in wearable data-sets, Bock et al.53 proposed a clustering-based 
strategy where annotators label a representative clip in clusters of similar clips, derived from vision-foundation 
model features54–56, which is then applied to all clips within each cluster. In contrast, we focus on methods which 
do not require human input, and which work on sparse sequences of images.

There has been some prior work on human activity recognition from sparse, egocentric sequences of 
images57–62, though in datasets with only 10s of participants. These works focus on training discriminative 
models to predict predefined sets of labels, but the variation in how these labels are defined, and lack of publicly 
available benchmarks, makes it difficult to compare results across different works.

Though there has been less work on modelling activity from sparse sequences of egocentric images seems 
over the past few years, there has been increased interest in modelling egocentric video, spurred on by a number 
of relatively large, open-source data-sets, such as EPIC-KITCHENS63, Ego4D50, and Ego-Exo4D64 which move 
away from being labelled by sets of predefined activities towards open-ended natural language descriptions.

Vision language models
Vision-language models (VLMs) are a broad class of models which process both visual, and textual data for tasks 
such as image-based text retrieval, image captioning, and image classification65. Natural language descriptions 
of visual content, such as alternative text descriptions of images, or summaries of video segments, are widely 
available on the internet, sidestepping the need for annotated data. VLMs, such as CLIP54, and LLaVA66, are 
typically trained on large data-sets of pairs of images and text, scraped from the internet, such as WebImageText54 
and LAION-5B67, and increasingly, synthetic labels generated by frontier multimodal models, such as GPT-4, 
are used to make up higher quality data-sets in a secondary training stage66. Despite having not been explicitly 
trained for them, these models have shown good performance in several downstream tasks, including image 
classification on benchmarks such as ImageNet68, suggesting that pretraining VLMs on large data-sets produces 
models which transfer well to new tasks. One recent work suggests the success of VLMs in recognising concepts 
in downstream tasks can be attributed to the prevalence of these concepts in their large pretraining data-sets, 
though with the performance scaling logarithmically with concept frequency69.

In this work, we consider both a dual encoder VLM, CLIP54, which quantifies the similarity between images 
and text, and generative VLMs, BLIP2 and LLaVA, which can be prompted to describe, and answer questions 
about images. All of these models have mechanisms which allow them to perform image classification in a “zero-
shot” transfer setting, i.e. without having seen task-specific data, in this case, egocentric images labelled with 
activity intensity classes.

Methods
Our aim was to assess the performance of VLMs for predicting activity intensity classes from wearable camera 
images. To do this, we compared the performance of different VLMs and discriminative models on two free-
living validation studies labelled with labels from the compendium of physical activity, which have known 
mappings to activity intensity classes.

Data processing and quality assessment
The Oxfordshire and Sichuan validation studies collected concurrent chest-worn camera (OMG Life 
Autographer) and wrist-worn accelerometer data (Axivity AX3). Trained human annotators reviewed the 
recorded sequences of images and annotated the activity depicted in each image based on the Compendium of 
Physical Activity14, e.g. occupation;interruption;13030 eating sitting. The start and stop 
times of an annotation are based on the first and last image demonstrating the activity, as opposed to being based 
on true activity boundaries (likely between images), or fixed epochs (e.g. 1 min). It is possible to aggregate the 
image-timestamp-based annotations into epoch-based annotations. The estimated MET values associated with 
the compendium entries, along with the posture, were then used to classify the activity associated with each 
image as either sedentary behaviour, LIPA or MVPA, based on the provided definitions. Additional data-set and 
the annotation protocol details are in19,24. We report the median of the number of images in each intensity class 
per participant in Table 2, and show the spread in quartile plots in Supplementary Fig. S2b.

The images in these data-sets are egocentric, meaning there is inherent ambiguity in the participant’s activities 
since the participants is largely unobserved. Ambiguity also arises from the low, variable frame rate (e.g. 1 
image/20 s in the Oxfordshire study) and the occasional obstruction or removal of the camera. For instance, brief 
bursts of activity shorter than the frame-rate may be missed. All of these factors influence annotation quality. An 
illustration of a sequence of images captured at this frame rate is shown in Supplementary Fig. S1. In Section 2 
of the Supplement, we explore the relationship between image capture rate and the number of distinguishable 
activities per participant, and image obscurity (darkness and variation in pixel values), against whether the 
image was annotated.

Images in both studies that were not labelled were excluded from the rest of our analysis. We indicate the 
number of labelled images in each study in Table  2, and the number of unlabelled images in each study in 
Supplementary Table S1. Based on the large number of unannotated images in the Sichuan data-set, we decided 
not to do model development on this data-set, and purely reserve it for model testing. 70% of the participants in 

Scientific Reports |        (2025) 15:37253 4| https://doi.org/10.1038/s41598-025-21350-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the Oxfordshire study were randomly selected for model training, 15% for validation and model selection, and 
15% for testing the final models.

Eligible participants provided written informed consent prior to any study procedures taking place. Ethical 
approval of all experimental protocols was granted by the University of Oxford Inter-Divisional Research Ethics 
Committee (Ref SSD/CUREC1A/13–262) for the Oxfordshire study, and by the Sichuan Center for Disease 
Control and Prevention for the Sichuan study. All procedures were conducted in accordance with the Declaration 
of Helsinki. The egocentric images from these studies are not publicly available due to the sensitive nature of the 
images, but are available from the corresponding author on reasonable request. The labelled accelerometer data 
from the Oxfordshire study is publicly available at ​h​t​t​p​s​:​​/​/​o​r​a​.​​o​x​.​a​c​.​​u​k​/​o​b​j​​e​c​t​s​/​​u​u​i​d​:​9​​9​d​7​c​0​9​​2​-​d​8​6​5​​-​4​a​1​9​-​b​0​9​
6​-​c​c​1​6​4​4​0​c​d​0​0​1.

Simplifying labels
When doing exploratory data analysis, we noticed that some of the raw labels were misspelled, e.g. “office wok/
computer work general”, and that the same activities would be included in multiple labels with different prefixes, 
such as “walking;5060 shopping miscellaneous, and “5060 shopping miscellaneous”. To come up with a more 
concise set of labels, we used a sentence embedding model70 to embed the labels, and then used agglomerative 
clustering to build a dendrogram of related labels, based on their embeddings71,72. We then manually went 
through the tree, merging sets of labels with the same meaning together. We refer to this concise, semantically 
deduplicated set of labels as the ‘clean labels’. This set of labels represents a more detailed set of colloquial 
activities encompassing the activities performed in the Oxfordshire study, which we use in “Generative models” 
section as an intermediate set of targets when predicting activity intensity.

Predicting activity intensity using computer vision
In order to asses how well computer vision methods can predict activity intensity classes from wearable cameras, 
we went through a process of model training, hyperparameter tuning, model selection and testing on data 
from unseen participants. We considered two different discriminative and three different VLMs, and for each 
model, we conducted a random search over the model hyperparameters73, evaluating the performance of each 
hyperparameter run on the validation split. Finally, we selected the best discriminative model, and VLM, and 
evaluated their performance on the test split of the Oxfordshire study, and on the entire Sichuan study.

Given an image as input, the discriminative models output a vector, indicating the probability of the image 
belonging to one of the 3 activity intensity classes. The VLMs can further be divided into generative models, 
which output natural language descriptions given an image and an optional prompt as inputs, and dual-encoder 
models, which embed each image and a natural language description of each class into a joint embedding space, 
where the similarity between different images and descriptions can be quantified by looking at the similarity 
between their embeddings.

We investigated two generative VLMs, 3 billion parameter BLIP274, based on the FlanT5-XL language 
model75, and 7 billion parameter LLaVA66, and one dual-encoder model, CLIP54. We used the model checkpoints 
available on Hugging Face76, and the exact Hugging Face model IDs are given in Supplementary Table S2. BLIP2 
and LLaVA are both open-source VLMs which have shown strong performance on image captioning, with both 
adopting the CLIP vision encoder as a component, motivating the inclusion of CLIP as a stand-alone model 
to ablate the benefits of using prompted, generative VLMs, which include language models as an additional 
component, over a dual-encoder model.

We tested these VLMs against a commonly adapted transfer learning approach of fine-tuning a pretrained 
model using task specific data, and we refer to the resulting models as discriminative models. As a baseline 
model, we used a ResNet-5077, pretrained on ImageNet-1K68, and the image encoder from CLIP, pretrained on 

Oxfordshire Sichuan

Number of participants 161 111

Number of labelled images (% all images) 231,837 (74%) 46,184 (34%)

Median δt (1st, 3rd quartile) between images (s) 24 (23, 32) 84 (69, 88)

No. unique labels 220 110

Median instances per participant: Sedentary 884 184

LIPA 441.5 142

MVPA 81 45

Number of participants (%) aged: 0–30 45 (28%) 12 (11%)

30–50 67 (42%) 43 (41%)

50–70 39 (24%) 49 (47%)

70–100 8 (6%) 1 (1%)

Sex: Female 103 (64%) 63 (58%)

Male 58 (36%) 45 (42%)

Table 2.  Summary statistics for each data-set, comparing the size, resolution and demographics between the 
Oxfordshire and Sichuan study. There were no reported ages for 2 participants in the Oxfordshire study. In the 
Sichuan study, 4 participants had no reported age, 2 had invalid ages (≥ 500), and 3 had no reported sex.
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WebImageText54, which we refer to as ViT, which is a reference to its vision transformer architecture78. Though 
the focus of this paper is on image based classification, we also include the best sequence model found in61, 
ResNet-LSTM, which has the advantage of being able to access information from multiple images.

Discriminative models
For the discriminative models, we trained the models on the training split, monitoring performance on the 
validation split throughout training. We used the AdamW optimizer79 to update model weights to minimise the 
cross-entropy loss, and used early stopping to terminate the training, monitoring the validation cross-entropy 
loss, with a patience of 5. The best model found during training based on the validation loss was used to made 
predictions on the validation split, from which we calculated the validation metrics used to perform model 
selection, and study the impact of hyperparameters. For all models, we replaced the final fully connected layer of 
the image encoders. For the single image models, ResNet and CLIP image encoder, we replaced it with a linear 
layer with three outputs. The ResNet-LSTM was constructed by using a long short-term memory unit80 to model 
temporal dependencies across 3 independently encoded image embeddings produced by a ResNet-5077.

One of the most important hyperparameters for discriminative models is the learning rate73, and for all the 
single-image based discriminative models we did a random search over different learning rates, batch-sizes, 
whether we applied data-augmentation, and whether we did full fine-tuning, or only fine-tuned the linear layer. 
For each model, we did 30 trials of different hyperparameters. The search space for these hyperparameters is 
presented in Supplementary Table S3, and the exact sweep configurations for each model are in the repository. 
The only hyperparameter tuning done for the ResNet-LSTM was to train three different models with learning 
rates, 10−3, 10−4, 10−5. For data-augmentation, we used TrivialAugment, which samples a single augmentation 
uniformly at random from a set of 21 augmentations, along with a strength with which the augmentation is 
applied to each image81.

Dual-encoder CLIP
As proposed in54, we classify images by embedding them using the image encoder, and the set of labels using 
the text encoder. Classification is then framed as a text retrieval task where for each image, we retrieve the most 
similar label by looking at the cosine similarities between each image embedding, and all the label embeddings, 
and selecting the label associated with the largest cosine similarity.

We either used natural language descriptions of the intensity classes as targets, or used the more detailed 
clean labels as targets, which have a known mapping to the intensity classes. Intuitively, the set of clean labels 
represent more colloquial descriptions of physical activity, which may be better represented in the pretraining 
data-sets of VLMs compared to the intensity classes. For instance, the phrase “sedentary behaviour” might not 
be well represented, whereas phrases such as “lying down” which represent instances of SB, might be more 
prevalent. When using the intensity classes as targets, SB was represented as “sedentary behavior”, LIPA as “light 
physical activity”, and MVPA as “moderate-to-vigorous physical activity”.

A similar idea of adapting pretrained VLMs by rephrasing the text targets was explored in82, where they 
used a large language model to generate alternate descriptions for each of the target labels and trained a linear 
classifier to map between embeddings of the target labels and embeddings of the corresponding alternate 
descriptions. Our approach can be viewed as a non-parametric alternative to this. However, a weakness with 
both of these approaches is that neither of them strictly check whether an intensity class is implied by the 
generated description, and we show some of these failure cases in Supplementary Table S5.

Generative models
For the generative VLMs, we used different prompts to condition text generation. To evaluate whether the true 
intensity class could be inferred from the model’s natural language description of each image, we used a text-
embedding model, all-MiniLM-L12-v2, to embed the descriptions70, and then followed a similar strategy to CLIP 
of mapping these descriptions to either the nearest intensity class, or the nearest clean label based on the similarity 
of their embeddings. In addition to varying the mapping approach, we varied the number of tokens generated, 
the prompt, and how we represented the activity intensity classes. We proposed an initial set of prompts, ranging 
from task-specific ones, e.g. “Question: What is the intensity of the physical activity in the image? Options: 
Sedentary, Light, Moderate-Vigorous. Short answer:”, to more generic descriptive prompts, e.g. “a photo of ”. We 
also augmented the set of prompts by asking proprietary large language models, ChatGPT, Claude, and Gemini, 
to suggest similar prompts and selecting sensible ones. The final set of 17 prompts is included in the repository. 
The exact hyperparameters that were varied for each model are shown in Supplementary Table S2.

Evaluation
We assessed each model’s performance across activity intensity classes using Cohen’s κ score, and the 
performance per class using the F1-score of the class72. The Cohen’s κ score (κ or “kappa” for short in Figures) 
is 0 if the model’s performance is on par with a random classifier, and 1 if all instances were correctly predicted. 
The F1-score for a class is the harmonic mean of the recall, the proportion of instances of the class that were 
correctly predicted, and the precision, the proportion of predictions of that class that were correct. Since there 
is a class imbalance, reporting per class F1-scores helps avoid inflating the performance of classifiers that are 
biased towards predicting the majority class. We calculated these metrics per participant and present the spread 
of the per-participant scores in our results. This does however come with the caveat that some participants had 
relatively few instances of LIPA and MVPA, thus the estimate of these metrics at the participant level had high 
variance.

Scientific Reports |        (2025) 15:37253 6| https://doi.org/10.1038/s41598-025-21350-6

www.nature.com/scientificreports/

https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
http://www.nature.com/scientificreports


Results
In “Data processing and EDA” section, we present the results from data-processing and exploratory data analysis, 
highlighting some of the challenges of modelling free-living egocentric timelapses, and in “Model results” 
section, we present results from model selection, motivating the choice of the best models. Finally, we present 
the performance of the best vision-language and discriminative model.

Data processing and EDA
The Oxfordshire study had 231,837 (from an original 312,585) images with non-trivial labels from 161 
participants (Table 2), i.e not labelled as “uncodeable”, or “undefined”. The median time interval, δt, (1st, 3rd 
quartile) between images was 24 s (23, 32). The Sichuan study had a much larger median time interval of 84 s 
(69, 88), and a much smaller proportion of images with non-trivial labels of 46,184 images (from an original 
132,850 images) from 111 participants.

We estimated the time covered in each study as

	
Time covered (h) = No. labelled images × median δt between images (s)

60 × 60 ,

suggesting that there were 1546 h of labelled data in the Oxfordshire study and 1078 h of labelled data in the 
Sichuan study, though this is an overestimate because the low temporal resolution, particularly in the Sichuan 
study, means that knowing the activity in each image does not necessarily mean we continue to know the activity 
in an 84-s window surrounding that image.

One noticeable feature of both data-sets is the large number of images that were difficult to label. We 
differentiate between images that were unlabelled, and images where the labels were unknown, which includes 
both unlabelled images, and images with labels such as “image dark/blurred/obscured”. Although the number of 
unlabelled images in both study was relatively low (7.57% for the Oxfordshire study and 1.31% for the Sichuan 
study), the number of images with unknown labels was very high (25.8% for the Oxfordshire study and 65.2% 
for the Sichuan study).

The median δt between frames was much lower in the Sichuan study, compared to the Oxfordshire study. 
Supplementary Fig. S2a, echoes this, though by showing the median δt for each participant, also reveals that 
participants clustered around four distinct median capture rates, suggesting that different base capture rates were 
erroneously set on the Autographers, leading to these different resolutions. Although the estimated number of 
hours captured in each study are of similar orders of magnitude, the number of annotated events in the Sichuan 
study is much lower, pointing to the lower capture rate set on the devices as being a bottleneck for the resolution 
of the annotations.

Model results
We used the model’s validation performance on the Oxfordshire study to identify promising models, and for each 
model, promising hyperparameters. The left side of Fig. 2a shows that for the VLMs, differences in the prompts, 
mapping approach, and number of generated tokens resulted in large differences in validation performance (κ 
scores range from 0 to 0.5). The right side of Fig. 2a shows the validation performance of fine-tuned DMs, which 
tended to be better than the VLMs, though also displays a sensitivity to different hyperparameters.

For the VLMs, we highlight the mapping approach as one of the hyperparameters associated with this 
variation. Figure  2b visualises the difference in performance between runs that used the larger-set of more 
colloquial activities as targets and those which directly used SB, LIPA, and MVPA as targets. Across all VLMs, 
the median performance of the runs that adopted the more colloquial targets was higher. Despite this, the best 
performing VLM, LLaVA, which was prompted, “Walking, Running, Sitting, Standing, Other. Based on the 
objects in the image, what is the person likely doing?”, had its responses directly mapped to one of the activity 
classes, and not the clean labels.

Examining the spread in validation performance across different hyperparameter runs for the ResNet 
and ViT in isolation suggests that the ResNet is the more robust model, since the median of the median κ 
scores is higher, and the interquartile range is narrower. Figure 2 celaborates on this picture, revealing that the 
combination of doing full fine-tuning and using a high learning rate (l ≥ 10−4) was particularly detrimental for 
the ViT, and that when when only fine-tuning the last layer, the performance of the ViT was consistently better 
than the performance of the ResNet. We saw better performance from fine-tuning the last layer as opposed to 
full fine-tuning, despite the latter being a more flexible model adaptation technique. In general, lower learning 
rates were associated with better validation performance, with the relationship between the logarithm of the 
learning rate and the median κ roughly following a negative linear line, suggesting that performance could be 
further improved by using even lower learning rates.

Finally, we selected the best performing vision-language (LLaVA), and discriminative model (ViT), and 
assessed their performance on the withheld test-set (Fig. 1). SB in the Oxfordshire test-set was well predicted 
by all models, with median F1-scores of 0.89 (0.84, 0.92) for LLaVA and 0.91 (0.86, 0.95) for ViT. Predictive 
performance on LIPA and MVPA, although much better than chance performance, was worse than SB, which a 
median F1-score of 0.60 (0.56, 0.67) for LLaVA, and 0.70 (0.63, 0.79)) and for ViT. The spread in the performance 
across participants was large for these behaviours, particularly MVPA. We found a large drop in performance 
when going from the Oxfordshire study, where models were trained and/or hyperparameter-tuned, to the 
Sichuan study. The largest drop in performance was for the ViT, which went from a median κ of 0.67 (0.60, 0.74), 
which can be interpreted as showing substantial agreement relative to the human annotations83, to 0.19 (0.10, 
0.30), which only shows fair agreement. For LLaVA the drop in performance was from a median κ of 0.54 (0.64, 
0.49) to 0.26 (0.15, 0.37).
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Whereas human annotators were allowed to view the entire history of a participant’s day when annotating 
each image, these models make predictions based on single images. In order to estimate human performance in 
the same setting, one of the present authors manually labelled > 500 randomly selected images from the test-
set of each study, without temporal context, and obtained a median κ of 0.63 (0.45, 0.72) on the Oxfordshire 
study, and 0.572 (0.46–0.61) on the Sichuan study. The performance on the Oxfordshire study is similar to the 
performance observed for the best model, though noticeably better than the model performance of the Sichuan 
study.

Though not strictly a fair comparison to the single-image models, we also tested the performance of a 
sequential model (ResNet-LSTM) to investigate the benefits of going beyond single frame predictions. This 
model consistently had similar or slightly better F1-scores for each of the activity intensity classes compared to 
the best single-image model, and obtained a median κ of 0.66 (0.59, 0.72) on the Oxfordshire study and median 

Fig. 2.  Impact of different hyperparameters on the performance of each model on the validation-set of the 
Oxfordshire study.
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κ of 0.31 (0.18, 0.41) on the Sichuan study suggesting that performance can be further improved by developing 
sequential models for these sparse sequences of images.

Finally, if we look at the accuracy of the models, which is misleading in that it is dominated by performance 
on the majority class, but relevant in that it relates to the fraction of images that would have to be corrected by a 
human annotator, both of the best models achieve an accuracy > 80% on the Oxfordshire test-set, and > 50% 
on the Sichuan study.

Discussion
We compared the performance of VLMs and DMs on predicting activity intensity in two free-living validation 
studies, and found that SB was well predicted in unseen participants within the Oxfordshire study, but that LIPA 
and MVPA were less well predicted, and all models generalised poorly to the Sichuan study. The overall accuracy 
of the models on unseen participants in the Oxfordshire study suggest they might still be useful for labelling 
wearable camera images, especially in free-living data where SB typically makes up the majority of instances as 
seen in Table 2, though within similar studies to ones they have been adapted for.

Similar work by84, though based on third-person still frames from a GoPro, found that their best model 
at distinguishing between SB, light, moderate, and vigorous intensity physical activity, a tree-based model 
(XGBoost85) based on features from AlphaPose86, was able to do so with an accuracy of 68.6%. Although they 
separate out moderate and vigorous physical activity into distinct classes, we can calculate performance metrics 
compatible with this work by combining the rows and columns for these classes in the confusion matrix in Table 
3 of their work, included here in Supplementary Table S4, comparing it to the confusion matrix in Supplementary 
Fig. S3.

The overall accuracy for predicting activity intensity of XGBoost was 69.2%, compared to the finetuned ViT 
in this work, which achieved an accuracy of 84.6% on unseen data in the Oxfordshire study, and LLaVA, which 
achieved an accuracy of 80.9%. The improved performance of ViT and LLaVA in this context is in part driven by 
better recall of SB, which was predicted with a recall of 71.6% in15, but with recalls of 90.7% and 89.1% for ViT 
and LLaVA, respectively, in this work, and there was also a higher proportion of SB in studies used in this work, 
thus the accuracy was more heavily weighted by SB. If we consider the average of the per-class recalls, which 
weights the classes equally, the performance is closer, 70.0% for XGBoost, 76.8% for ViT and 72.5% for LLaVA.

However, there are many limitations to this comparison, including the varying perspectives (first vs. third 
person), and frame-rates (0.05 vs. 30 fps) with which each study captured footage. Annotating activity intensity 
classes from third person video recordings is a more accurate way of validating device-measured activity intensity 
measurements10. Martinez et al.87 compared using sparse sequences of images captured by wearable cameras to 
assess posture against the activPAL and reported that, although the bias in estimates of sitting time was not 
significant, there was significant bias in estimates of standing and movement time. On the other hand, the use of 
egocentric cameras for capturing validation data is more scalable since it does not require researchers to follow 
participants, enabling the Oxfordshire and Sichuan validation studies to collect data from 100+ participants 
each.

Supplementary Fig. S2c highlights the challenge of interpreting images in poorly lit conditions, with a large 
number of dark images left unannotated. Consistent with this, Supplementary Table S6 shows that both LLaVA 
and the ViT performed worse in the darkest 5% of images (LLaVA median κ: 0.31 [0.12, 0.44]; ViT: 0.33 [0.18, 
0.55]) compared to brighter images in the Oxfordshire test-set. This highlights the broader issue that low-visibility 
conditions, frequently encountered with wearable cameras in free-living settings, substantially limit annotation 
quality, whether human- or model-derived. 26% of images in the Oxfordshire dataset remained unannotated 
by humans, likely due in part to low visibility. Consistent with this, both visual-language models demonstrated 
notably reduced performance on the darkest 5% of images. While lighting clearly impacts annotation reliability, 
the exact proportion of annotation loss attributable specifically to low visibility remains uncertain, especially 
given the higher proportion of unannotated data in the Sichuan data-set (66%), where additional factors such as 
its much lower capture rate are likely influential.

The focus on models based on single images was motivated by the availability of VLMs in this setting, and 
the lack of models for sparse sequences of images. However, predicting activities from single images is a notable 
obstacle, and our limited analysis of one annotator’s performance in this regime suggests that the current levels 
of performance on the Oxfordshire study are close to human performance based on single images. Beyond 
single-image models, the ResNet-LSTM, performed slightly better than the single-image models, and did not 
undergo hyperparameter tuning to the same extent. This suggests the necessity of moving beyond single-frame 
models, and developing and assessing multi-modal models which can handle sparse sequences of images.

A sentence embedding model was used to embed model responses from off-the-shelf VLMS so that we 
could quantify their similarity to activity intensity classes. However, this introduced some semantic mismatches 
where model responses were mapped to activity classes which were not implied by the response (Supplementary 
Table S5). These VLMs could be further improved by adaptation techniques such as parameter efficient fine-
tuning88, or prompt engineering89. This work examined performance in two populations of ambulant adults, 
and may not reflect performance in other populations, such as non-ambulant people. This was an imbalanced 
problem, and we observed high variation in the performance estimates of the less prevalent classes. Our 
performance estimates could have been more robust by adopting methods such as cross-validation, though at 
the expense of these experiments being more computationally expensive. Each hyperparameter-tuning run took 
an average of 5 h to complete on a V100 GPU for the ResNet, the smallest model.

Despite these limitations, this work was able to assess performance in studies collected in free-living 
conditions in a large number of participants revelative to existing wearable validation studies, and it assessed 
generalisation using an independently collected study. Activity intensity classes have been adopted in a number 
of downstream epidemiological works6,16,17, and we used definitions compatible with this field of research. The 
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application of VLMs to estimating activity intensity is novel, and also raises the possibility of measuring new 
behaviours, such as environmental exposures, social interactions, eating and drinking behaviours, without the 
need for task specific training. An application using VLMs to label outdoor time to validate wrist-worn light 
sensors is concurrently being explored.

Improvements in technology not only suggest new ways of analysing validation studies, but also conducting 
them. Tran et al.90 proposed developing wearable cameras which cost less, and Mamish et al.91 proposed a 
wearable camera able to capture footage at high frame-rates while lasting several days. Commercially available 
body cameras, such as those manufactured by BOBLOV and MIUFLY, are commercially available and able to 
record  15 h of video footage on a single charge. The adoption of these cameras in future validation studies would 
reduce the annotation uncertainty due to low frame-rates whilst making it easier to adopt activity recognition 
approaches developed for egocentric video92. Although we focus on wearable cameras as a way of informing 
ground truth labels to validate and train measurement approaches typically using other wearable sensors, 
wearable cameras have also been used in small health studies32,93,94 as the measurement device themselves. 
Given the range of behaviours that can be measured simultaneously from a single camera in comparison to other 
wearables, and the human interpretable nature of the modality, one might be tempted to directly adopt them in 
health studies. However, the large amount of information captured by these cameras raises various ethical issues, 
and has made it unlikely that they will be adopted for large scale health studies20,95,96.

Although we have made the distinction between the broader field of activity recognition and recognising 
health relevant activity intensity classes, progress in the former is vital to this task, and should not be disregarded. 
This work showed that the performance of generalist VLMs is similar to domain specific discriminative models, 
and progress on developing more capable generalist models might well outpace approaches reliant on annotated 
wearable data. This suggests the importance of exploring similarities between more mainstream computer vision 
research and the present study. There is also additional work needed in applying methods from fields such as 
continual learning, active learning and uncertainty quantification so that models can be adapted and assessed ‘on 
the fly’ to efficiently learn from new labelled data, so that human input can be used efficiently in correcting the 
most informative instances, and so that models can indicate which samples they cannot reliably label. After all, 
model accuracy is only one aspect impacting the efficiency of labelling wearable data-sets.

Conclusions
In this paper we assessed the performance of fine-tuned discriminative models and vision-language models on 
the simple, but important task of predicting activity intensity classes from two free-living validation studies, each 
comprising over 100 participants, conducted in Oxfordshire, UK, and Sichuan, China. Sedentary behaviour was 
well predicted within unseen participants from a seen population by both types of models. Random searches over 
different hyperparameters revealed the importance of how activity intensity classes were phrased when using 
vision-language models, and the importance of minimal fine-tuning for the discriminative models. Although 
none of these approaches pass the threshold required for trained human annotators, we only focused on activity 
prediction based on single images, which is a notable handicap on model performance, and initial results 
reproducing a sequence-based classifier in this setting shows slightly better performance. Although several times 
bigger than existing validation studies, the studies used here were still prone to errors in the ground-truth labels 
arising from the sparsity of the images, and large numbers of obscure images. Despite these limitations, we 
would recommend the adoption of the best models found in this study to label sedentary behaviour in free-living 
studies as they are freely available, relatively easy to adapt and can substantially reduce the annotation burden 
given the prevalence of sedentary behaviour. We would also encourage research groups conducting wearable 
camera based validation studies to consider moving to newer wearable cameras which are able to record videos 
for the full waking day, which would significantly lower the uncertainty in the ground-truth labels of physical 
activity.

Data availability
The egocentric images from these studies are not publicly available due to the sensitive nature of the images, but 
are available from the corresponding author on reasonable request. The labelled accelerometer data from the 
Oxfordshire study is publicly available at ​h​t​t​p​s​:​​​/​​/​o​r​​a​.​o​​x​.​​a​c​.​​u​k​/​o​​b​j​e​​c​t​​s​/​u​​u​i​​d​:​9​9​d​7​​​c​0​9​2​-​​​d​8​6​5​​-​4​a​1​9​​-​b​0​9​6​-​c​c​1​6​4​4​0​c​
d​0​0​1. Code available at https://github.com/oxwearables.
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