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When strong light enters the lens, multiple internal reflections and scattering can cause flare, 
significantly degrading image quality and affecting the performance of downstream vision tasks. In 
practical photography, flare is often caused by multiple strong light sources, resulting in artifacts such 
as bright streaks or diffuse halos, which often cover large areas of the image. To effectively remove 
flare, the network needs to have a large receptive field. However, although the native Transformer 
architecture has global modeling capability, its computational complexity grows with the square of the 
image resolution, making it difficult to apply on resource-constrained devices. The windowed attention 
mechanism, as a compromise, improves computational efficiency but limits the receptive field to 
within the window, making it difficult to achieve true global perception. To address these issues, we 
propose a simple multi-domain image flare removal network-SMFR-Net, which achieves state-of-
the-art (SOTA) performance with 7.981M parameters. Specifically, SMFR-Net consists of an encoder 
that jointly models the frequency and spatial domains, and a decoder with a simplified structure. The 
encoder first enhances global contextual awareness using a frequency domain module with Fourier 
Transform, then further expands the receptive field through a spatial domain module combined with 
multi-scale dilated convolutions, and introduces a Channel-Spatial Attention Mechanism to precisely 
locate the flare regions. The decoder, based on this, discards frequency domain modeling and simplifies 
the structure to reduce redundant computation. Furthermore, we design a structure-aware composite 
loss function for the network to improve overall performance. Experimental results show that SMFR-
Net outperforms existing methods on the Flare7K++ real-world test set, synthetic test set, and several 
real-world scenes across most metrics, demonstrating superior flare removal performance and good 
application potential with its simple and efficient structure.
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In natural scene photography and computer vision perception, lens flare is a common and complex imaging 
degradation phenomenon, usually caused by strong light sources (such as the sun or artificial lights) entering the 
camera, resulting in unwantedreflections and scattering within the lens system. These interfering light rays do 
not participate in the normal imaging process but are projected onto the sensor surface along abnormal paths, 
disrupting the structure and brightness distribution of the image. Depending on the manifestation and cause of 
the flare in the image, it is typically classified into two types: stray flare and reflected flare1. The former is usually 
caused by scattering phenomena due to dust, stains, or scratches on the lens surface, often appearing as bright 
streaks or overexposed regions extending along the light path; the latter is typically caused by multiple reflections 
within the lens group, forming bright spots with regular geometric shapes, such as polygonal halos or star-shaped 
light spots. Both types of flare interfere with the structural information of the image, degrade visual quality, and 
significantly affect downstream tasks such as semantic segmentation2, object detection3, and monocular depth 
prediction4. As shown in Fig. 1, the presence of flare causes severe interference with downstream tasks: it induces 
significant structural recognition errors in semantic segmentation and results in a loss of depth information in 
depth estimation, underscoring the great importance of its effective suppression for downstream applications.

To mitigate the impact of lens flare on image quality, early research primarily focused on optical optimization 
at the hardware level. Camera systems typically introduce anti-reflective coatings (AR coatings) on optical 
element surfaces to reduce reflectivity, thereby suppressing multiple reflections and interference caused by 
strong light sources within the lens system. These coatings are based on the principle of phase-cancellation 
interference and can effectively reduce the intensity of reflected light within specific wavelength ranges, thus 
enhancing image contrast. However, AR coatings generally function only under specific incident angles and 
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spectral bands, and their high cost limits large-scale deployment. Another common approach is the use of lens 
hoods or the optimization of lens barrel designs to physically block off-axis incoming light, thereby reducing 
the interference of stray light in the imaging process. These methods can partially suppress the occurrence of 
bright artifacts, but their effectiveness is constrained by scene composition and light source positions, making 
them less adaptable to complex and dynamic natural lighting conditions. Moreover, hardware-based approaches 
are essentially pre-capture suppression strategies, which are incapable of addressing flare artifacts in already 
captured images. As a result, they exhibit inherent limitations in practical applications.

To overcome the limitations of hardware-based methods in adaptability and post-processing, researchers 
have proposed a variety of software-based approaches for image flare removal. Most traditional methods adopt a 
two-stage strategy: first detecting potential flare regions in the image, followed by restoration and reconstruction 
of the affected areas. Early works typically relied on explicit modeling based on image brightness, shape, or spatial 
features. For example, Chabert et al.6 constructed candidate flare regions using multi-thresholding and contour 
feature extraction, and completed reconstruction via sample-based image inpainting; Vitoria et al.7 detected 
overexposed local features to generate masks for flare suppression; Asha et al.8 focused on strong highlights in 
the background caused by sunlight or flickering sources to formulate a targeted flare-filling strategy. Although 
such methods perform significantly well in handling flare with regular shapes or single-type artifacts, they rely 
on handcrafted features and struggle to handle real-world flare phenomena that are complex, asymmetric, and 
spatially variant.In addition, some approaches attempted to model the point spread function (PSF) and restore 
occluded regions via deconvolution9. However, these methods usually assume spatial invariance and circular 
symmetry of the flare patterns, which limits their applicability in practice. Due to the diversity of flare in terms 
of intensity, shape, and position, as well as the ambiguous boundaries between flare and naturally bright regions, 
traditional image-processing-based methods often suffer from high false detection rates and weak generalization, 
making them insufficient for robust image quality restoration in complex scenes.

In recent years, deep learning methods have achieved remarkable progress in image restoration and other 
visual tasks, providing new solutions to the problem of lens flare removal. Wu et al.10 combined physical 
modeling to synthesize the first training dataset for flare removal and proposed the SIFR method based on the 
U-Net architecture11, enabling end-to-end training. However, due to the relatively simplified data generation 
rules, there exists a significant domain gap between the synthesized samples and real-world scenes, which 
limits the generalization capability of the model. To alleviate the difficulty of acquiring paired data, Qiao et al.12 
proposed an unsupervised generative training framework, which employs a dual-mask prediction mechanism 
to separately model the light source and flare regions, and incorporates light source information to guide the 
flare removal process. This enables effective training on unpaired data. Subsequently, Dai et al.1 constructed the 
widely used nighttime flare removal dataset Flare7K, and further extended it to Flare7K++13 by incorporating 

Fig. 1.  The negative impact of lens flare on different downstream tasks. The left panel shows semantic 
segmentation results generated by Segment Anything5, and the right panel shows monocular depth estimation 
results from Vision Transformers for Dense Prediction4. In both tasks, the flare-corrupted input (top-left 
of each set) leads to an erroneous output (bottom-left), while the output from the flare-free ground truth 
(bottom-right) is accurate.
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real captured flare patterns, significantly enhancing the model’s adaptability to multiple types of strong scattering 
degradations. With the Transformer architecture14 and its variant Swin Transformer15 gaining widespread 
attention in image modeling tasks, a series of image restoration networks such as Uformer16 and Restormer17 
have been developed. These methods have achieved outstanding performance in tasks such as image denoising, 
deraining, and general image restoration. Building upon this, Zhang et al. proposed FF-Former18, which 
introduces the Fast Fourier Convolution (FFC) module to construct Spatial Frequency Blocks (SFB). Through 
frequency-domain modeling, the method enhances the model’s ability to perceive global dependencies and 
effectively improves restoration quality in nighttime scenes with strong lens flare. In another direction, Kotp et 
al.19 proposed a two-stage architecture that integrates depth estimation and image restoration. They utilize the 
scene depth map predicted by the DPT network as structural guidance and feed it together with the input image 
into the Uformer16 network, thereby enhancing the model’s ability to distinguish between real image content and 
flare artifacts. This approach improves image reconstruction accuracy and generalization in real-world scenes, 
demonstrating the potential of depth-aware guidance in lens flare removal tasks. In addition to multimodal 
guidance, other advanced paradigms have also shown great potential in the field of image restoration. Among 
them, diffusion models, which have attracted significant attention in recent years20, are increasingly being applied 
to low-level visual tasks due to their powerful generative priors and high-quality sample generation capabilities. 
For instance, WaveDM21 innovatively combines wavelet transforms with the diffusion process, enabling more 
effective restoration of image structure and texture details by denoising across different frequency sub-bands. 
Furthermore, advanced attention mechanisms have also demonstrated their importance in specific removal 
tasks. DeSeal22 serves as a case in point, designing a semantic-aware attention mechanism that can precisely 
locate and remove seals from document images while preserving the background content.

Although existing methods have achieved certain success, balancing large-scale flare modeling with 
computational efficiency remains a core challenge in current research. On one hand, Convolutional Neural 
Networks (CNNs), due to the limitation of local receptive fields, typically require deep stacking or multi-scale 
strategies to expand their perceptual range, which is inefficient and yields limited effectiveness when dealing 
with large-area, diffuse flares. On the other hand, some advanced architectures with powerful global modeling 
capabilities also face computational efficiency bottlenecks. For instance, diffusion models, which are based on 
an iterative sampling process, often require hundreds to thousands of inference steps to generate high-quality 
results, leading to extremely high inference latency. Meanwhile, the standard Transformer architecture14, despite 
its capability for single-step global modeling and long-range dependency capture, suffers from a self-attention 
mechanism with O(N2) quadratic computational complexity, making it difficult to apply to high-resolution 
images and severely restricting its practical deployment. To reduce computational costs, Swin Transformer15 
restricts attention computation to local windows. While this alleviates the computational bottleneck to some 
extent, it also sacrifices the global receptive field, making it difficult to perform interaction and modeling across 
the entire image. To address these issues, this paper proposes a simple multi-domain flare removal network-
SMFR-Net (Simple Multi-domain Flare Removal network). The model is designed with simplicity and efficiency 
in mind, and enhances the receptive field through collaborative modeling in both the frequency and spatial 
domains. While maintaining a parameter count of only 7.981M, it achieves high-quality image reconstruction 
and superior performance. The main contributions of this paper are as follows:

•	 This paper proposes a structurally concise multi-domain architecture for image flare removal–SMFR-Net. 
The encoder integrates a Frequency Domain Modulation (FDM) module and a Multi-Scale Grouped Dilated 
Convolution (MGDC) module to achieve joint modeling of frequency and spatial domain features. Addition-
ally, a lightweight Channel-Spatial Attention Module (CSAM) is designed to enhance the model’s responsive-
ness to flare regions. The decoder adopts an asymmetric structure and is simplified at this stage by retaining 
only the MGDC module and introducing components such as the Simple Channel Attention (SCA) module, 
effectively controlling model complexity.

•	 A novel structure-aware composite loss function tailored for flare removal is proposed, which leads to signif-
icant improvements in quantitative evaluation metrics.

•	 SOTA performance: Extensive benchmark results demonstrate that the proposed method outperforms exist-
ing approaches and exhibits strong generalization ability in real-world scenarios.

Methods
In this section, we provide a detailed introduction to the SMFR-Net we proposed. First, we present its overall 
encoder-decoder architecture. Then, we delve into the core building block of the network: the Simple Multi-
domain Encoder Block (SMEBlock), specifically designed for flare removal, and its key components. Finally, we 
introduce the simplified decoder module,the Simple Multi-scale Decoder Block (SMDBlock), along with the 
composite loss function used for optimization.

Overall architecture
As shown in Fig. 2, SMFR-Net adopts a structurally simple encoder-decoder architecture and introduces a global 
residual learning strategy23 to stabilize the training process and improve image reconstruction accuracy. Given 
an input flare image Iflare, the network learns a residual mapping function F (·), and the restored clean image 
Iclean is defined as:

	 Iclean = Iflare + F (Iflare)� (1)

Unlike traditional symmetric architectures, SMFR-Net adopts a task-oriented, modularly differentiated design 
in its encoder and decoder. The encoder focuses on enhancing feature representation capabilities, while the 
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decoder is dedicated to efficient structural reconstruction and detail restoration, thereby achieving a good 
balance between model performance and computational efficiency. In the encoding path, SMFR-Net stacks 
multiple SMEBlocks to progressively extract features, with a bottleneck module placed in the middle of the 
backbone to integrate high-level semantic information. The decoding path, in turn, uses multiple SMDBlocks 
to gradually restore the spatial structure. Skip connections are introduced to fuse shallow and deep features, 
effectively mitigating the problems of gradient vanishing and information degradation. Finally, the output 
features are spatially upsampled via PixelShuffle operations to restore the original image resolution.

SMEBlock
This section mainly introduces the SMEBlock, the core unit in the encoding path of SMFR-Net (as shown in 
Fig. 3(a)). The SMEBlock is composed of three modules: FDM, MGDC, and CSAM. It adopts a two-stage design: 
first, it performs a preliminary extraction of global features in the frequency domain through the FDM module; 
then, it further extracts global features and local details in the spatial domain by combining the MGDC and 
CSAM modules.

Frequency Domain Modulation module (FDM)
The Fast Fourier Transform (FFT) maps an image from the spatial domain to the frequency domain, such 
that each frequency component contains the image’s global information. Therefore, FFT naturally possesses 
an infinite theoretical receptive field, which gives it great potential for modeling long-range dependencies and 
global artifacts (such as large-scale flare). To fully leverage the advantage of global perception in the frequency 
domain while ensuring model simplicity, we propose a Frequency Domain Modulation (FDM) module that 
operates entirely in the frequency domain and is applied directly to the input features. As shown in Fig. 3(c), 
this module aims to perform global modeling on the input features at a low computational cost. The core idea 
of FDM is to process only the magnitude spectrum, which primarily encodes content and contrast information, 
while keeping the phase spectrum unchanged to preserve the crucial structural and positional information. 
The module first applies a 2D Fast Fourier Transform to the input features X ∈ RB×C×H×W  to obtain their 
complex frequency-domain representation:

	 F (x) = MejΦ� (2)

where M represents the magnitude spectrum, and Φ is the phase spectrum. Subsequently, we perform adaptive 
channel re-weighting on the magnitude spectrum M through a simple channel attention mechanism to focus 
on feature channels with more abundant information. The enhanced magnitude spectrum M̂  is calculated as 
follows:

	 M̂ = M ⊙ σ(Conv1×1(GAP(M)))� (3)

Fig. 2.  The overall network architecture of SMFR-Net.
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where GAP( ) represents global average pooling, Conv1×1(·) refers to a 1 × 1 convolution, ⊙ denotes element-
wise multiplication, and σ(·) represents the Sigmoid function. The enhanced magnitude spectrum M̂  is then 
passed into a lightweight MLP composed of two 1 × 1 convolutions and a LeakyReLU activation function δ to 
extract deeper features:

	 Mprocessed = Conv1×1(δ(Conv1×1(M̂)))� (4)

In order to adaptively adjust the response based on frequency position, we designed the Frequency Distance 
Adjustment Mechanism (FDAM). This mechanism first defines a fixed, normalized frequency distance map 
Dfreq , which represents the distance from each frequency point (u, v) to the spectral center (DC component). 
Then, a very lightweight convolutional network fθ  is used to learn from this distance map, generating a learnable 
modulation weight map Wfreq = fθ(Dfreq). The final magnitude spectrum is fine-tuned via the following 
equation:

	 Mout = Mprocessed ⊙ (1 + γ · Wfreq)� (5)

where the hyperparameter γ (set to 0.1 in this paper) controls the adjustment strength. Finally, we reconstruct 
the complex spectrum with the modulated magnitude Mout and the original phase Φ, and then transform it 
back to the spatial domain via the inverse Fourier Transform F −1 to obtain the frequency-enhanced features 
xfreq:

	 xfreq = F −1(Moute
jΦ)� (6)

This feature is then passed through a learnable gating fusion mechanism to be combined with the original input 
x, yielding the final output of the FDM, xout:

	 xout = σ(α) · xfreq + (1 − σ(α)) · x� (7)

Multi-scale Grouped Dilated Convolution (MGDC)
After processing through the FDM, this paper further designs a multi-scale grouped dilated convolution 
module to simultaneously expand the receptive field and enhance the perception of local fine-grained details. 
This module is constructed based on dilated convolution24 and achieves multi-scale structural information 
extraction by setting different dilation rates for parallel convolutional branches. The overall structure is shown 
in Fig. 3(e). The MGDC module first introduces a learnable channel-wise bias term β ∈ RC  to the features 

Fig. 3.  The structure of core components in SMFR-Net. (a) The Simple Multi-domain Encoder Block 
(SMEBlock). (b) The Simple Multi-scale Decoder Block (SMDBlock). (c) The Frequency Domain Modulation 
Module (FDM). (d) The Simple Gate Module (SG). (e) The Multi-scale Grouped Dilated Convolution Module 
(MGDC). (f) The Channel-Spatial Attention Module (CSAM).
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X ∈ RB×C×H×W  processed by the FDM, obtaining the shifted features X̃ = X + β. Subsequently, X̃  is 
simultaneously sent into three parallel sets of 3 × 3 grouped dilated convolutions. The dilation rates for these 
convolutions are set to 1, 3, and 5, respectively, aiming to capture multi-scale structural information from local 
details to a larger context. To effectively control computational complexity, we set the number of groups for each 
convolution to a fixed value g = 4, which means each convolutional kernel only operates on its assigned channel 
subset, thereby reducing computational overhead. The outputs of the convolutions are then processed by the 
RPRELU25 activation function, fused, and finally passed into a Layer Normalization layer to further enhance 
feature stability and network convergence speed. The overall expression for this module can be simplified as:

	
Y = LN

(
3∑

i=1

RPRELU
(
Conv(di,g)

3×3 (X + β)
))

� (8)

where di ∈ {1, 3, 5} represents the dilation rate of different branches, and Conv(di,g)
3×3  denotes the convolution 

operation with dilation rate di and number of groups g. After the MGDC processing, we use SimpleGate(SG)26 
to replace the activation function.

Channel-Spatial Attention Module (CSAM)
To enhance the model’s perceptual capability for flare regions, this paper proposes a lightweight Channel-Spatial 
Attention Module (CSAM). As shown in Fig. 3(f), this module combines the lightweight design of SCA26 with 
the spatial modeling capability of CBAM27, employing parallel channel and spatial attention branches. This 
design ensures computational efficiency while effectively enhancing the modeling ability for flare regions, 
thereby improving the model’s adaptability to complex lighting scenes. The channel attention branch is based on 
the SCA structure, introducing a 1 × 1 convolution and a Sigmoid gating mechanism, which makes the response 
weight of each channel learnable, expressed as:

	 Mc = σ(Conv1×1(AvgPool(X)))� (9)

The spatial attention branch borrows from the design of CBAM27. It employs channel-wise average pooling and 
max pooling for feature compression. The concatenated results are then passed through a 3 × 3 convolution to 
extract spatial saliency for generating the spatial attention map:

	 Ms = σ (Conv3×3 ([AvgPoolc(X)∥MaxPoolc(X)]))� (10)

Finally, the two attention maps are applied to the input feature map through element-wise weighting, yielding 
the fused output:

	 X ′ = (X · Mc) + (X · Ms)� (11)

SMDBlock
Compared to the encoder, which focuses on expanding the receptive field, our decoder design places greater 
emphasis on feature reconstruction and detail restoration, while also striving for simplicity and efficiency. To 
this end, we drew inspiration from the block design in NAFNet26. This design deconstructs complex processing 
modules into two more concise core components: a global attention module and a feed-forward network (FFN). 
Its computation process can be represented by the following equations:

	 z1 = Attention(LayerNorm(x)) + x � (12)

	 z2 = FFN(LayerNorm(z1)) + z1 � (13)

where x is the input feature and z2 is the output feature. On this basis, we further incorporate functionally specific 
enhancement modules to improve the model’s performance and adaptability. As shown in Fig. 3(b), the input 
feature X ∈ RB×C×H×W  first undergoes normalization and then enters the global branch pathway. Initially, 
a 1 × 1 convolution is applied to expand the channel dimension, followed by the MGDC module to achieve 
multi-scale global contextual modeling.The output is then passed through the SG module26 and combined with 
the SCA for channel re-weighting,before a final a 1 × 1 convolution restores the original dimension, forming the 
first residual branch.The FFN path adopts the intermediate features after normalization and sequentially applies 
a 1 × 1 convolution, the SG module, and another 1 × 1 convolution to construct the pre-FFN path, forming the 
second residual branch. These two residual branches are scaled by learnable factors β and λ, respectively, and 
then added to the input feature X as residual connections to obtain the final output Y. The computation process 
of the decoder module is formulated as:

	 Y = X + β · Fglobal(X) + λ · Fffn(X)� (14)

Here, Fglobal(·) and Fffn(·) represent the mapping functions of the global and FFN branches, respectively, 
defined as:

	 Fglobal(X) = Conv1×1(SCA(SG(MGDC(Conv1×1(LN(X)))))) � (15)
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	 Fffn(X) = Conv1×1(SG(Conv1×1(LN(X)))) � (16)

where LN(·) denotes 2D Layer Normalization and Conv1×1(·) denotes a 1 × 1 convolution. The learnable 
scaling factors β and λ are used to balance the contribution weights of the global and FFN branches in the final 
output.

Loss function design
To enhance the model’s reconstruction capability in regions affected by strong light interference and improve 
overall perceptual quality, we designed a structure-aware composite loss function for the training phase. 
Specifically, this loss function consists of three components: L1 loss, perceptual loss23, and multi-scale structural 
similarity loss (MS-SSIM)28. The final loss is defined as follows:

	 Ltotal = λ1 · Lpixel + λ2 · Lpercep + λ3 · LMS-SSIM� (17)

where λ1 = 0.5, λ2 = 0.5, and λ3 = 0.2 are the weighting coefficients for each respective loss term.
We employ the Mean Absolute Error (MAE) as the basic pixel-wise loss, encouraging the network to perform 

precise reconstruction in the pixel space. It is defined as:

	
Lpixel(Î , I) = 1

N

N∑
i=1

|Îi − Ii|� (18)

where Î  and I denote the predicted image and the corresponding ground truth (GT) image, respectively. To 
enhance the semantic consistency and subjective visual quality of the flare-removed results, we introduce a 
perceptual loss based on VGG19. This loss extracts features from multiple layers of the predicted and ground 
truth images, and computes the L1 distance in the feature space:

	
Lpercep =

∑
l∈L

wl ·
∥∥ϕl(Î) − ϕl(I)

∥∥
1� (19)

where ϕl(·) denotes the feature map from the l-th layer of the VGG network, and wl is the weight for this specific 
feature layer. In this work, the 2nd, 7th, 12th, 21st, and 30th layers of VGG19 are selected as perceptual layers.

To further enhance texture and structure restoration, the MS-SSIM loss is introduced. It measures the 
structural similarity between images across multiple scales:

	 LMS-SSIM = 1 − MS-SSIM(Î , I)� (20)

where an MS-SSIM value closer to 1 indicates a higher structural similarity. We use SSIM computed at five scales 
with weighted averaging, where the weights are set to [0.0448, 0.2856, 0.3001, 0.2363, 0.1333].

The composite loss described above collaboratively guides the training process, significantly improving the 
flare removal performance. Experimental results demonstrate that it outperforms single-loss training strategies.

Experiments
Datasets
To train our flare removal model, we primarily used the Flare7K++13 dataset. This dataset consists of two parts, 
Flare7K and Flare-R: Flare7K contains 5,000 simulated scattering flare images and 2,000 simulated reflective 
flare images, while Flare-R supplements this with 962 real flare patterns. We utilize its dynamic synthesis pipeline 
to generate paired training samples by randomly selecting backgrounds from the 23,949 natural images in the 
Flickr24K29 dataset and sampling flare patterns and their corresponding light sources with equal probability 
from Flare7K and Flare-R. To enhance the model’s adaptability to real-world nighttime scenes, we also 
additionally introduced 600 real images from FlareReal60030. However, this portion of data serves only as a 
minor supplement, accounting for approximately 2.44% of the total training samples, which exceed 24,000. The 
vast majority of the training data still originates from Flare7K++.

Prior to training, we apply a series of complex data augmentation operations, with the detailed parameters 
shown in Table 1, to the images from the Flare7K13, Flare-R13, and FlareReal60030 datasets. The entire process 
strictly distinguishes the processing for base images and flare images: first, all base images and flare images 
undergo an initial random gamma correction (γ ∼ U(1.8, 2.2)) and random flips (horizontal or vertical). 
Subsequently, to simulate diverse flare morphologies, only the flare images are subjected to a series of exclusive 
geometric and appearance transformations, including random rotation (0◦ to 360◦), translation (up to 50 
pixels), scaling (0.8 to 1.1 times), shear (±10◦), and Gaussian blur (σ ∼ U(0.1, 3)), after which they are 
center-cropped to 256 × 256. Meanwhile, only the base images are randomly cropped to the same size and are 
enhanced to simulate the physical characteristics of the sensor by adding Gaussian noise (σ ≈ 0.01 × χ2(1)) 
and multiplying by a random gain (g ∼ U(0.5, 1.2)). The processed flare component is added to the enhanced 
base image to generate the low-quality (LQ) input. Finally, both the LQ image and the enhanced base image, 
which serves as the ground truth (GT), are subjected to a reverse gamma correction, ultimately forming the 
training pair ⟨LQ, GT⟩ normalized to the range [0, 1].

During the testing phase, we evaluate our model on two standard test sets provided by Flare7K++13. The 
first is the Flare7K++ real test dataset, which contains 100 pairs of real nighttime images captured under diverse 

Scientific Reports |        (2025) 15:37251 7| https://doi.org/10.1038/s41598-025-21378-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


lighting conditions and flare patterns. The second is the Flare7K++ synthetic test dataset, which we use to 
further verify the model’s generalization ability on synthetically generated flare images. In addition to these 
public datasets, we captured our own real-world nighttime scenes using an iPhone 15 Pro and a Xiaomi 13 
smartphone. This allows us to evaluate the robustness and practicality of our model on unlabeled images from 
real-world scenarios.

Training settings
The entire training process is conducted on a single NVIDIA TITAN RTX GPU with 24 GB of memory. Our 
model is an image restoration network based on an encoder-decoder architecture, where the encoder and 
decoder are composed of [1, 2, 3] and [3, 1, 1] residual blocks, respectively. We train the model using the 
AdamW optimizer with an initial learning rate of 1 × 10−3, a batch size of 8, and for a total of 100,000 steps. 
To enhance stability during the initial training phase, we employ a warm-up strategy for the first 5,000 steps, 
gradually increasing the learning rate. Subsequently, we use the MultiStepLR scheduler to decay the learning rate 
by a factor of 0.5 at three predefined milestones (30k, 60k, and 90k steps). This strategy helps mitigate training 
fluctuations and improves the final convergence accuracy.

Evaluation metrics
Most existing flare removal methods evaluate on images with a resolution of 512 × 512. To ensure a fair and 
consistent comparison, all test images are uniformly cropped or resized to 512 × 512 and normalized to the 
range [0, 1]. We adopt three widely-used metrics to evaluate image restoration quality: Peak Signal-to-Noise 
Ratio (PSNR), Structural Similarity Index (SSIM)31, and Learned Perceptual Image Patch Similarity (LPIPS)32. 
To more comprehensively assess the model’s performance in removing different types of flare components, 
we also introduce two local evaluation metrics proposed by Dai et al.13: S-PSNR and G-PSNR. These metrics 
independently evaluate the regions of strong glare and stripe diffusion, respectively. In addition to these 
quantitative metrics, we report the number of parameters and FLOPs for each model to assess their computational 
cost. We also conduct a qualitative analysis on real-world nighttime images to demonstrate the model’s ability to 
suppress complex lighting interference while preserving structural details.

Results
To comprehensively verify the effectiveness and superiority of the proposed SMFR-Net in the image deglare 
task, we selected several representative existing methods for performance comparison. These methods cover 
traditional image enhancement techniques, direct glare removal methods, and various recently proposed end-
to-end image restoration network architectures. Specifically, the comparison methods include: the glare removal 
method proposed by Wu10; the end-to-end restoration network proposed by Dai13; the nighttime lighting 
enhancement method proposed by Sharma33; several well-known image restoration networks trained on the 
Flare7K++ or Flare7K datasets, such as U-Net11, HINet36, MPRNet35, Restormer17, Uformer16, and NAFNet26; 
the Uformer+ND method based on depth estimation by Kotp and Torki19; as well as recent state-of-the-art 
methods SPDDNet37 and LPFSformer38, ensuring a comprehensive comparison. Detailed evaluation results can 
be found in Tables 2 and 4.

The results indicate that SMFR-Net exhibits leading performance on both the real and synthetic test sets of 
Flare7K++, significantly outperforming most mainstream methods. Compared to the current state-of-the-art 
methods, SMFR-Net improves PSNR, G-PSNR, and S-PSNR by 0.114 dB, 0.048 dB, and 0.065 dB, respectively, 
on the real test set. It is worth noting that most models in Table 2 were trained only on the Flare7K++ dataset, 
whereas SMFR-Net incorporates both Flare7K++ and FlareReal600 to leverage additional diversity. To isolate 
the impact of data differences and objectively validate the effectiveness of the model architecture itself, we 
conducted a fair comparison by training a version of SMFR-Net using only the Flare7K++ dataset. As shown in 
Table 3, while the absence of diversity from FlareReal600 resulted in a slight decrease in some metrics compared 
to the dual-dataset training, this version of SMFR-Net still significantly outperforms most mainstream methods.

On the synthetic test set, SMFR-Net also demonstrates a clear advantage, achieving a PSNR of 30.276, which 
surpasses the Uformer and Kotp methods by 0.778 dB and 0.703 dB, respectively. Furthermore, the SSIM score 

Transformation Type Transformation Range

Gamma transformation γ ∼ U(1.8, 2.2)

Rotation θ ∼ U(0, 360◦)

Translation t ∼ U(−50 px, 50 px)

Shear α ∼ U(−10◦, 10◦)

Scaling s ∼ U(0.8, 1.1)

Blurring (Gaussian) σ ∼ U(0.1, 3)

Flip Horizontal or vertical (random)

RGB gain g ∼ U(0.5, 1.2)

Gaussian noise σ ≈ 0.01 × χ2(1)

Table 1.  Training data augmentation parameters.
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increases to 0.966, while the LPIPS value decreases to 0.0177. These results strongly indicate that SMFR-Net is 
more effective at restoring image details in regions affected by strong glare and streak diffusion.

At the same time, SMFR-Net demonstrates excellent computational efficiency. The model only requires 
7.981M parameters and 103.888G FLOPs, maintaining superior performance while significantly reducing 
computational costs compared to high-complexity networks, such as Kotp (129.306M / 271.419G) and HINet 
(88.674M / 685.127G).It is worth noting that, due to the high computational cost of the original MPRNet 
and Restormer models, this study adopted their lightweight versions for comparison. At the same time, we 

Dataset Flare7K++ synthetic test dataset

Metrics PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑
Input 22.561 0.856 0.0777 19.555 13.104

NAFNet26 27.818 0.946 0.0333 23.388 22.267

Kotp and Torki19 29.573 0.961 0.0205 24.879 24.458

Uformer16 29.498 0.962 0.0210 24.686 24.115

SMFR-Net-L (ours) 29.649 0.962 0.0199 24.914 24.793

SMFR-Net (ours) 30.276 0.966 0.0177 25.561 25.545

Table 4.  Comparison results on the Flare7K++ synthetic test dataset. All models were trained on the 
combined Flare7K++ and FlareReal600 datasets. Best results are highlighted in bold, second-best in italic.

 

Dataset Flare7K++ real test dataset

Metrics PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑ Params (M) MACs (G)

Input 22.561 0.856 0.0777 19.555 13.104 - -

Flare7K++
SMFR-Net-L (ours) 28.223 0.906 0.0405 24.763 23.802 2.152 31.228

SMFR-Net (ours) 28.354 0.907 0.0389 24.831 23.938 7.981 103.888

Flare7K++ FlareReal600
SMFR-Net-L (ours) 28.225 0.907 0.0403 24.760 23.832 2.152 31.228

SMFR-Net (ours) 28.352 0.907 0.0384 24.841 23.941 7.981 103.888

Table 3.  Performance of SMFR-Net trained on Flare7K++ vs. Flare7K++ with FlareReal600. Best results are 
highlighted in bold and second best in italic

 

Dataset Flare7K++ real test dataset

Metrics PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑ Params (M) MACs (G)

Input 22.561 0.856 0.0777 19.555 13.104 - -

Previous Synthesis Pipelines

FF-Former†18 27.350 0.901 0.0440 - - - -

Sharma33 20.492 0.826 0.1115 17.790 12.685 22.365 285.12

Wu10 24.613 0.871 0.0598 21.772 16.728 34.526 261.901

Flare7K1 26.978 0.890 0.0466 23.507 21.563 20.429 159.643

Flare7K++

Zhou et al.34 25.184 0.872 0.0548 22.112 20.543 20.628 327.347

Restormer*17 27.597 0.897 0.0447 23.828 22.452 2.981 57.975

MPRNet*35 27.036 0.893 0.0481 23.490 22.267 3.642 567.187

U-net11 27.189 0.894 0.0452 23.527 22.647 34.527 261.953

NAFNet26 27.042 0.888 0.0556 24.098 22.459 67.788 252.314

Uformer16 27.633 0.894 0.0428 23.949 22.603 20.601 164.361

HINet36 27.548 0.892 0.0464 24.081 22.907 88.674 685.127

Kotp and Torki19 27.662 0.897 0.0422 23.987 22.847 129.306 271.419

SPDDNet37 28.033 0.903 0.0420 24.537 23.614 25.620 105.010

LPFSformer38 28.238 0.905 0.0422 24.793 23.876 13.733 525.442

Flare7K++ FlareReal600
SMFR-Net-L (ours) 28.225 0.907 0.0403 24.760 23.832 2.152 31.228

SMFR-Net (ours) 28.352 0.907 0.0384 24.841 23.941 7.981 103.888

Table 2.  Comparison results on the Flare7K++ real test dataset. Best results are highlighted in Bold, second-
best in Italic. * denotes models with reduced parameters due to limited GPU memory. † indicates methods 
without released code, for which metrics are reported from the original paper and may be incomplete. Note: 
The average inference time per image for SMFR-Net and SMFR-Net-L is 0.0825 s and 0.0412 s, respectively, 
measured on an NVIDIA TITAN RTX (24 GB) GPU.
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also proposed our own lightweight model–SMFR-Net-Light (SMFR-Net-L)–whose network width is 32, with 
parameters and FLOPs of 2.152M and 31.228G, respectively. Although the performance of this model is slightly 
lower than the full version of SMFR-Net, it still significantly outperforms other comparison methods.

In qualitative analysis, SMFR-Net also demonstrates clear and stable visual results on the Flare7K++ real test 
images (Fig. 4) and the self-collected validation set (Fig. 5), particularly excelling in restoring details in large-
scale glare regions, further confirming its practical application value and structural preservation capability.

Ablation study
In addition to validating the overall performance of the backbone model, we conducted a series of ablation 
experiments to explore the impact of individual components and training strategies. The first group of 
experiments mainly focuses on evaluating the effectiveness of the designed modules, specifically MGDC, FDM, 
CSAM, and the structure-aware composite loss function. To achieve this, we systematically removed each 
individual module or loss term, built corresponding control models, and compared their performance with the 
full SMFR-Net on the Flare7K++ real test dataset. The results are shown in Fig. 6 and Table 5.

Among all the comparison models, the complete SMFR-Net consistently outperforms in all metrics, fully 
demonstrating the synergistic effect of frequency domain modeling, dilated convolutions, and attention 
mechanisms in improving glare region modeling and image structure restoration. Furthermore, the structure-
aware composite loss function significantly enhances perceptual consistency and subjective visual quality.

The second set of experiments aims to explore the impact of different encoder-decoder combinations on 
model performance and complexity. We construct multiple combinations using SMEBlock, NAFBlock, and 
SMDBlock, and compare them with the final model architecture (SMFR-Net). To improve training efficiency, 
the channel number was reduced from 64 to 16 during experiments, so the overall performance is slightly lower 
than the full configuration. As shown in Table 6, SMFR-Net (ours), which adopts the SMEBlock + SMDBlock 
combination under the full configuration, achieves the best performance, outperforming all other combinations 
across multiple key metrics, while maintaining a good balance between performance and efficiency with 7.981M 
parameters and 103.888G FLOPs.

In comparison, SMEBlock + NAFBlock exhibits a slight advantage in G-PSNR (24.279), but falls short of 
SMFR-Net in PSNR, LPIPS, and other subjective and objective metrics; while All NAFBlock, despite having 
the lowest parameter count (6.439M) and computation (92.735G), shows a significant drop in performance. 
In summary, the combination of SMEBlock and SMDBlock can more effectively model image structures and 
restore details under strong light interference, achieving an ideal balance between performance and complexity, 
and validating its rationality and superiority as the final backbone architecture.

Fig. 4.  Visual comparison of flare removal results by different methods on the Flare7K++ real test dataset. 
Red boxes highlight significant differences in artifact suppression among the methods. Under challenging 
conditions with multiple strong light sources, most existing methods struggle to effectively remove large-area 
flare artifacts. In contrast, SMFR-Net significantly suppresses glare interference and restores clear structural 
details, demonstrating superior capability in large-receptive-field modeling and image restoration.
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In the third group of experiments, we compare different combinations of loss functions to evaluate their 
impact on model performance. Specifically, we conducted a systematic ablation study to analyze each loss 
component and its corresponding weighting coefficient. As shown in Table 7, the experimental results illustrate 
our step-wise process to determine the final configuration. We begin with a baseline model using only L1 loss 
(λ1 = 1.0). Upon introducing the perceptual loss, we drew from successful practices in the image deglaring 

Fig. 6.  Visual comparison of flare artifacts with and without MGDC and FDM modules. Red boxes highlight 
regions where the absence of each module leads to more pronounced flare artifacts, confirming their 
effectiveness in suppression.

 

Fig. 5.  Visual comparison of flare removal results on real-world images captured by Xiaomi 13 and iPhone 
15 Pro. SMFR-Net is compared with NAFNet, Uformer, and Kotp et al.19 under various challenging lighting 
conditions. Red boxes highlight regions with significant visual differences, where SMFR-Net achieves the best 
glare removal performance.
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field for balancing pixel-level fidelity with perceptual quality, such as in Flare7K++13, and adopted a balanced 
weighting of λ1 = 0.5 and λ2 = 0.5. As the data in the table shows, this combination improves PSNR while 
reducing LPIPS from 0.0430 to 0.0401. The next step is to introduce and fine-tune the MS-SSIM loss. The 
experiment shows that assigning a high weight (λ3 = 0.5) leads to a decrease in all metrics (e.g., PSNR drops 
to 28.105 and SSIM to 0.894). Therefore, by reducing its weight to λ3 = 0.2, the model achieves the best values 
across all evaluation metrics, with a PSNR of 28.352 and an SSIM of 0.907. This study indicates that our final 
weighting coefficients (λ1 = 0.5, λ2 = 0.5, λ3 = 0.2) are a well-justified combination of established practices 
and empirical fine-tuning.

Furthermore, we conducted an ablation study on the CSAM module to evaluate the role of its spatial attention 
(SA) mechanism in the deglaring task. As shown in Table 8, the results reveal a noteworthy phenomenon: on the 
Flare7K++ real test set, while removing the spatial attention branch led to a slight increase in PSNR (from 28.352 
to 28.463), the perceptually-oriented metrics, such as LPIPS, G-PSNR, and S-PSNR, all exhibited a significant 
decline. We attribute this seemingly contradictory result to a trade-off where the model sacrifices structural 
details for a lower pixel-level mean squared error. For instance, G-PSNR decreased from 24.841.   to 24.753, 
indicating that the model’s global modeling capability for handling strong light interference was significantly 
compromised. On the Flare7K++ synthetic test dataset, this trend becomes even more pronounced: the model 
with spatial attention preserved outperforms the version without it in multiple metrics, including PSNR (30.276), 
SSIM (0.966), LPIPS (0.0177), and G-PSNR (25.561), further confirming the critical role of the spatial attention 
mechanism in structural perception and detail restoration.

Additional analyses
To validate the applicability and effectiveness of the proposed glare removal method in real-world visual tasks, we 
conducted experimental evaluations on two representative tasks: semantic segmentation and object detection.

For semantic segmentation, we employed the Segment Anything Model (SAM) proposed by Meta AI5. 
This model possesses zero-shot segmentation capability, enabling high-quality segmentation without fine-
tuning, and is suitable for various visual scenarios. As shown in Fig. 7, we input the original image, the image 
processed by SMFR-Net, and the glare-free ground truth (GT) image into the SAM model to generate the 
corresponding semantic segmentation results. The results show that the strong glare region in the original image 

Loss Components Weights (λ1, λ2, λ3) PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑

Lpixel (1.0, –, –) 28.178 0.904 0.0430 24.753 23.016

Lpixel + Lpercep (0.5, 0.5, –) 28.207 0.904 0.0401 24.670 23.296

Lpixel + Lpercep + LMS−SSIM (0.5, 0.5, 0.5) 28.105 0.894 0.0420 24.630 23.614

Lpixel + Lpercep + LMS−SSIM(ours) (0.5, 0.5, 0.2) 28.352 0.907 0.0380 24.841 23.941

Table 7.  Ablation study on loss function components and associated weights on the Flare7K++ real test 
dataset. Best results are in bold.

 

Models PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑ Params (M) MACs (G)

SMEBlock NAFBlock 27.833 0.896 0.0438 24.279 22.345 7.777 95.885

NAFBlock SMDBlock 27.691 0.895 0.0456 24.028 22.516 7.081 95.676

All SMDBlock 27.577 0.896 0.0436 23.997 22.398 6.981 110.963

All SMEBlock 27.835 0.896 0.0435 24.370 22.740 8.420 98.826

All NAFBlock 27.317 0.893 0.0464 24.027 21.891 6.439 92.735

SMFR-Net (ours) 27.925 0.901 0.0407 24.204 22.894 7.981 103.888

Table 6.  Comparison of different encoder–decoder combinations on model performance and complexity on 
the Flare7K++ real test dataset. Best results are highlighted in bold.

 

Models PSNR↑ SSIM↑ LPIPS↓ G-PSNR S-PSNR↑ Params (M) MACs (G)

w/o FDM 28.141 0.901 0.0406 24.854 23.247 5.490 88.423

w/o CSAM 28.202 0.903 0.0387 24.735 23.694 7.484 103.831

w/o MGDC 27.912 0.899 0.0436 24.675 23.057 7.438 85.659

w/o Loss 28.178 0.904 0.0430 24.753 23.016 7.981 103.888

SMFR-Net (ours) 28.352 0.907 0.0384 24.841 23.941 7.981 103.888

Table 5.  Ablation study of key modules and the loss function in SMFR-Net on the Flare7K++ real test dataset. 
Best results are highlighted in bold.
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was misidentified as a semantic object, resulting in segmentation errors; whereas after SMFR-Net processing, the 
glare regions were effectively removed, image structural boundaries became clearer, and semantic partitioning 
was more accurate and closely aligned with the GT. This verifies the effectiveness of our method in restoring true 
semantic structures.

For object detection, we selected the medium-scale variant YOLOv11m of the YOLOv11 model39 for 
inference evaluation. This model achieves relatively high detection accuracy while maintaining good inference 
speed, making it suitable for multi-object detection tasks in complex nighttime environments. As shown in 
Fig. 8, strong light interference in the original image significantly affects the model’s perception ability, leading 
to missed detections or low confidence scores. For example, in the Input4 scene, due to glare occlusion, the 
motorcycle was detected as “motorcycle” with a confidence score of only 0.56. In contrast, in the image processed 
by SMFR-Net, the glare interference was effectively suppressed, the confidence of “motorcycle” increased to 0.76, 
and the detection bounding box aligned better with the object edges.

To further quantify the changes in detection performance, we collected confidence differences of eight 
targets across four scenes before and after processing. The results indicate that after SMFR-Net processing, target 
confidence scores generally improved, with an average increase of 0.089, further validating the applicability and 
effectiveness of our method in real-world visual tasks.

Limitation
Although the SMFR-Net proposed in this paper demonstrates effectiveness across various scenarios, as a model 
based on supervised learning, its performance is still limited in certain extreme cases. When the scale and 
intensity of the flare cause the underlying texture and structural information in vast regions of an image to be 
completely occluded, the model’s restoration capability is affected. In situations of complete information loss, a 
supervised learning model struggles to reconstruct complex, scene-consistent details due to the lack of effective 
input cues, and its output tends to converge towards blurry or overly-smooth results. To address this challenge, 
a research direction worth exploring is the combination of the efficient SMFR-Net architecture with generative 
models. By leveraging the prior knowledge of generative models, it is expected to enable plausible generative 
inpainting for regions with complete information loss, thereby enhancing the model’s restoration capabilities in 
extreme degradation scenarios.

Fig. 7.  Semantic segmentation results using SAM before and after SMFR-Net processing. SMFR-Net effectively 
suppresses glare, enabling more accurate segmentation boundaries and better alignment with ground truth 
results.

 

Dataset Models PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑

Flare7K++ real test dataset
w/o SA 28.463 0.907 0.0381 24.753 23.694

CSAM (full) 28.352 0.907 0.0380 24.841 23.941

Flare7K++ synthetic test dataset
w/o SA 29.895 0.962 0.0195 25.083 24.846

CSAM (full) 30.276 0.966 0.0177 25.561 25.545

Table 8.  Comparison results of CSAM (full) vs. w/o SA on Flare7K++ test datasets. Best results are highlighted 
in bold.

 

Scientific Reports |        (2025) 15:37251 13| https://doi.org/10.1038/s41598-025-21378-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusion
This paper proposes a multi-domain flare removal network–SMFR-Net, aiming to provide a simple and 
efficient solution. By designing an encoder for multi-domain modeling and a decoder for efficient restoration, 
SMFR-Net expands the receptive field while maintaining a low computational cost. SMFR-Net contains only 
7.981M parameters and achieves significant removal effects in various scenarios, demonstrating its advantages 
in performance. Furthermore, this paper also proposes a lightweight version of SMFR-Net–SMFR-Net-L, 
containing only 2.152M parameters, which effectively reduces the computational burden and is more suitable 
for resource-constrained devices. Experimental results show that although the performance of the lightweight 
version is slightly lower than the full version, SMFR-Net-L still exhibits good results in the flare removal task 
and surpasses most existing methods on both the Flare7K++ test set and in real-world application scenarios.

Data availability
The datasets used in this study are publicly available. Flare7K++ is available at https://github.com/ykdai/Flare7K 
under the S-Lab License 1.0. FlareReal600 is available at https://github.com/Zdafeng/FlareReal600.
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