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The effective management of meteorological forecasting data is crucial for enhancing agricultural 
sustainability and precision, especially considering climate change. This study presents an innovative 
framework that integrates multispectral image analysis, advanced weather forecasting, and rule-
based models to improve agricultural practices in Egypt’s Al-Sharkia region, specifically targeting rice 
and wheat cultivation. The framework employs artificial intelligence and sophisticated data processing 
techniques to analyze information from satellites, remote sensing devices, and meteorological 
stations, delivering accurate weather predictions and climate forecasts. The Convolutional Neural 
Network (CNN) model classified agricultural land into appropriate categories, exhibiting exceptional 
performance with a reduction in training loss from 0.2362 to 6.87e-4. The Recurrent Neural Network 
and Long Short-Term Memory (RNN-LSTM) model demonstrated significant predictive accuracy, 
achieving a root mean square (RMS) error of 0.19 in forecasting critical meteorological variables. 
In contrast to prior research that utilizes solely remote sensing or meteorological data, this study 
introduces an innovative hybrid framework that amalgamates CNN-based image analysis, LSTM-based 
weather prediction, and rule-based crop advisories. This comprehensive method provides precise, 
localized forecasts and customized agricultural advice, facilitating informed decisions regarding crop 
selection, planting schedules, and resource allocation. This thorough methodology, validated by 
Sentinel-2 and NOAA data, aims to reduce crop losses, decrease operational costs, and encourage 
sustainable agricultural practices in response to climate change problems.

Keywords  Smart agriculture, Artificial intelligence, Climate change, Satellite images processing

 The implementation of precision and sustainability in agriculture is contingent upon the intelligent administration 
of meteorological data. It is a critical component of a variety of duties, including irrigation scheduling, crop 
growth, development, and yield. Technological advancements have enabled the collection of this meteorological 
data from a variety of sources at a low cost and with high temporal resolution. Recent studies highlight the 
growing impact of climate change on agriculture, particularly through its adverse effects on crop yields and soil 
health1,2. These changes not only threaten annual agricultural productivity but also place severe financial strain 
on farmers. Faced with decreased yields due to climate-induced damage, many farmers are turning to increased 
fertilizer use as a way to counterbalance their losses. However, this solution brings its own challenges3. The 
recognition of these challenges faced by farmers and the deteriorating health of agricultural land has underscored 
the need for systematic solutions to mitigate each issue4. At the core of these problems is climate change, a 
fundamental driver of rising temperatures, erratic weather patterns, and shifting growing conditions5,6. Research 
has shown that climate change significantly contributes to increased temperatures, which in turn affects soil 
quality, water availability, and crop viability. This escalating threat not only impacts individual farmers but also 
poses risks to the broader agricultural sector, emphasizing the importance of developing adaptive strategies 
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to sustain productivity and protect livelihoods7–9. Prolonged periods of extreme high temperatures can have 
fatal effects on crops, with global temperatures projected to rise between 2 °C and 4.5 °C by the end of this 
century (IPCC, 2007)10. This shift in climate is already impacting crop production on a large scale, with future 
climate patterns expected to exacerbate these challenges, further threatening agricultural productivity and food 
security11.

The impact of climate change on agriculture in Egypt has been extensively studied using crop models and 
climate scenarios12,13. Most research in this area relies on two primary scenarios—a temperature rise of 1.5 
°C and a rise of 3.6 °C—projected to 205014–16. This research focuses on four key climate factors that directly 
influence crop productivity in Egypt: temperature, humidity, atmospheric pressure, and rainfall. By analyzing 
these factors with climate forecasting models, scientists can predict future trends and the potential impact on 
Egyptian agriculture17. This predictive approach is essential for developing adaptive strategies and planning 
measures to mitigate the impacts of climate change, thereby enhancing the resilience and sustainability of Egypt’s 
agricultural sector18,19.

In traditional methods research, several basic factors were studied to estimate the impact of climate change on 
agriculture20,21. Normalized Different Vegetation Index (NDVI), It is used to determine the green plant density 
in the studied area and reflects the plant growth and general health of plants22. Normalized Different Water 
Index (NDWI), used to measure water availability in plants and soil, which helps estimate the effects of water 
shortages on plants23. Salinity Index level (SI) reflects the level of salinity in the soil, which is an important factor 
affecting plant growth and productivity. Green Normalized Difference Vegetation (GNDVI), used to determine 
vegetation density based on the light reflectance’s of trees and green crops. Enhanced Vegetation Index (EVI), 
Measures plant health and biological activity, providing a comprehensive understanding of plant growth and 
environmental impacts. Moisture level (MOISTURE) reflects the moisture content in the soil and air and helps 
in estimating the water needs of plants and providing it effectively. These factors will provide a comprehensive 
framework for understanding how climate change will affect the agricultural environment and its productivity24.

 The subsequent sections of this article are structured in the following manner. Section 2 provides a concise 
summary of the study area and remote sensing data set. Section 3 introduces the Proposed Methodology for 
RNN architecture, CNN architecture and Rule based architecture. In addition, the experiments performed are 
elucidated. Section 4 provides the result of this proposed model with other techniques and includes detailed 
analysis of the different elements through ablation tests. Lastly, the conclusions encompass an analysis of the 
observed model’s effectiveness.

Related work
Recent advancements in agricultural technologies utilizing machine learning and deep learning models 
have markedly enhanced crop resilience to extreme climatic circumstances, including heat stress and water 
scarcity25–27. Ongoing investment in the development of drought- and heat-resistant cultivars by genetic 
enhancement and computer modeling is essential for augmenting farmer production and improving agricultural 
sustainability. The quality of agricultural soil directly affects productivity, presenting substantial issues in the 
context of changing climatic circumstances. In Egypt, crops such as rice and wheat, essential for national food 
security, are especially susceptible. This study primarily examines rice and wheat, evaluating their production 
effects via satellite-based hyperspectral imaging. identified six fundamental soil factors that affect productivity, 
highlighting their interrelation and contribution to yield improvement. Adverse weather conditions significantly 
intensify difficulties to crop productivity, particularly abrupt temperature increases. Climatic factors like 
temperature, precipitation, solar radiation, and humidity directly affect crop growth; hence, these were chosen 
for comprehensive modeling Data collected over a 20-year period from Egyptian meteorological stations were 
utilized. Preliminary forecasting utilizing a fundamental Recurrent Neural Network (RNN) demonstrated 
significant mistakes, especially in temperature predictions, at times surpassing a 4 °C error margin and exhibiting 
erroneous temporal sequencing of data28.To enhance prediction accuracy, implemented a Long Short-Term 
Memory (LSTM) network, a sophisticated variety of recurrent neural networks, resulting in markedly improved 
performance. The LSTM accurately forecasted temperature and humidity, preserving chronological sequence 
and reflecting daily variations. Validation on broad datasets from many situations corroborated its exceptional 
accuracy, closely aligning with actual observational data the suggested methodology incorporates Convolutional 
Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) models. 
Convolutional Neural Networks (CNNs) examine hyperspectral imaging data, extracting essential elements for 
assessing vegetation indices such as NDVI and EVI, which indicate crop health and productivity levels These 
qualities are incorporated with 10 meteorological and environmental criteria essential for evaluating agricultural 
productivity amid climate unpredictability. Following the classification of crops influenced by variable weather 
patterns and soil health, an LSTM model forecasts forthcoming meteorological circumstances, assessing their 
effects on crop yield. Forecasted weather parameters, along with comprehensive soil health indicators, enable 
recommendations for ideal crops (rice and wheat), ensuring maximum yield despite climatic fluctuations.

The contribution of this study listed as follows:

•	 Mitigate agricultural productivity declines and address land degradation resulting from climate-related issues 
through strategic planting selections.

•	 Determine ideal planting periods for rice and wheat by the dynamic analysis of temporal weather patterns and 
soil health with advanced deep learning techniques.

•	 Alleviate climate-related production declines by identifying ideal environmental conditions for planting.
•	 Develop a more comprehensive approach for assessing site suitability and predicting optimal planting times 

to guarantee sustainable agricultural productivity and adaptability to climate variations.
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To further illustrate the comparative performance of the models, an aggregated bar chart summarizing key 
classification metrics is provided below.

The findings are distinguished from recent works such as32–35, which focus on isolated data sources or lack 
integrated forecasting and decision-making layers. By combining CNN-based spatial classification, LSTM-based 
time-series forecasting, and rule-based crop reasoning, this model provides end-to-end support for precision 
agriculture. This hybrid approach, supported by strong evaluation metrics (93.5% accuracy, RMSE 0.19), offers 
a more comprehensive and deployable framework than existing models.

Materials and methods
This section provides a comprehensive overview of the data, methodologies, and study area utilized in this 
research. employed satellite imagery, sophisticated deep learning architectures (CNN and RNN-LSTM), and a 
rule-based classifier to create a comprehensive agricultural decision-making framework. The applied approaches 
concentrate on the exact assessment of agricultural land suitability and the precise forecasting of weather 
conditions to inform strategic agricultural actions.

Proposed methodology
To improve crop management efficiency and attain superior, more productive yields, the suggested methodology 
presents a novel fusion of multispectral satellite imaging, deep learning, and agro-environmental analysis. 
Utilizing Sentinel-2 satellite data facilitates accurate monitoring of vegetation health, soil moisture, and nutrient 
concentrations, along with the prompt identification of diseases and pests. this methodology distinctively 
integrates dynamic spectral indices with a CNN-based classification model to assess agricultural land suitability 
at high resolution, in contrast to traditional methods that address spatial and temporal aspects independently. 
The case study, executed in Egypt’s Al-Sharkia Governorate from 2022 to 2023, employs a statistically rigorous 
analysis of soil and vegetation attributes. This facilitates the determination of ideal planting and harvesting times 
based on specific meteorological and spectral patterns. the method creates a representative dataset that accurately 
reflects the region’s agricultural variability by integrating several spectral features into composite raster layers. 
This integrated, data-driven methodology signifies a substantial improvement over conventional single-variable 
studies, facilitating adaptive, site-specific decision-making for sustainable agriculture Fig. 1. 

Spectral indices network - convolutional neural networks (CNN)
NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), Moisture, EVI 
(Enhanced Vegetation Index), NDSI (Normalized Difference Snow Index), and GNDVI (Green Normalized 
Difference Vegetation Index) were all evaluated.

Combined use of this data to evaluate the performance of the proposal use Methodology in predicting the 
factors affecting soil trace agriculture, considering that the temporal pattern of canopy parameters can change 
between different sites due to changes in local weather conditions across the Al-Sharkia region. open experiments 
were conducted in Al-Sharkia as Fig. 5, Egypt during the 2022/2023 season. This work aimed to evaluate the 
performance of agricultural soil and learn from it to create a complete classification of the agricultural land to 
ensure the soil’s adaptation to climate changes.

These calculations were carried out through following Equations:

	
NDVI = (NIR + Red)

(NIR − Red) � (1)

	
NDWI = (Green − NIR)

(Green + NIR) � (2)

Fig. 1.  This figure presents a visual performance comparison of the proposed CNN model and baseline 
classifiers (Decision Tree, SVM, and Logistic Regression) based on four evaluation metrics: Accuracy, 
Precision, Recall, and F1-Score. The CNN model demonstrates superior results across all metrics, supporting 
its effectiveness in land suitability classification.
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Moisture = (narrow − swir)

(narrow + swir) � (3)

	
EVI = G × (NIR − Red)

(NIR + C1 × Red − C2 × Blue + L) � (4)

	
NDSI = (Green − SW IR)

(Green + SW IR) � (5)

	
GNDVI = (NIR − Green)

(NIR + Green) � (6)

Each spectrum band represents a certain range of wavelengths as appear in Table 1.
Hyperspectral imaging provides accurate spectral information for each pixel in an image by recording several 

data bands. The identification and characterization of materials through their distinct spectral fingerprints 
facilitates numerous applications, including medical imaging, agriculture, environmental monitoring, and 
mineral extraction. This comprehensive construct utilizes a dynamic API from the NASA Copernicus system to 
extract features dynamically at any specified coordinates, demonstrating the notion of assumption through the 
application of CNN architecture in unsupervised deep learning prediction as shown in Fig. 2, resulting in raster 
data images for each feature. Subsequently, each characteristic is transformed into raster data to facilitate the 
creation of a stacked layer, illustrating the interrelationships among these features and identifying commonalities 
throughout each area for agricultural land analysis, as it encompasses all pertinent data for the study. The stacked 
layers facilitate the examination of bands for classification based on particular ranges for each cluster. Which 

Comparison

Paper 1: Weather 
Forecasting Using 
Machine Learning 
Techniques29

Paper 2: Assessing Climate Change 
Impacts on Crop Yields and Exploring 
Adaptation Strategies in Northeast 
China30

Paper 3: Enhancing crop 
recommendation systems with 
explainable AI31 Our Proposed Model

Name
Weather Forecasting 
using Machine Learning 
Techniques

Weather Impact Analysis on Agriculture 
Using Remote Sensing and Machine 
Learning

Climate-Aware Crop 
Recommendation Using Multispectral 
and IoT Sensors

Weather Forecasting Model Using 
LSTM

Objective
Forecast temperature and 
rainfall using time series 
analysis.

Evaluate climate impact on crop 
productivity using ML and remote 
sensing.

Enhancing crop recommendation 
systems with explainable AI

Develop a hybrid forecasting 
model for weather and agriculture 
optimization.

Algorithm Time series using RNN CNN for spatial data, RNN for temporal 
data

Decision Trees + SHAP (Explainable 
ML), Ensemble Model

LSTM for time series, CNN for 
spatial data, rule-based models for 
crop selection.

Data Used Meteorological data (12 
years, 2006–2018).

Remote sensing imagery and 
meteorological data (5 years).

Sentinel-2 imagery, soil data, weather 
data (2020–2023)

Hyperspectral imagery and 
meteorological data (4 years, 
2020–2024).

Factors Considered Temperature and rainfall. Temperature, rainfall, NDVI, EVI, soil 
salinity.

Temperature, humidity, soil salinity, 
NDVI, land use, crop calendar

Temperature, humidity, rainfall, 
NDVI, NDWI, salinity, moisture 
level, pressure.

Geographical Scope Single-region study 
(generalized location).

Multi-regional data across three 
agricultural zones.

Nile Delta and Middle Egypt (local 
and regional level)

Al-Sharkia Governorate, Northern 
Egypt (specific agricultural hotspot).

RMS Error/Accuracy 1.41 0.95 Accuracy: 92%, Precision: 89% 0.19

Computational 
Complexity Moderate High (due to remote sensing processing). Medium (Explainable models are 

lighter than deep nets) High (complex hybrid architecture).

Strengths Simple time series 
analysis.

Integrates spatial and temporal data for 
better accuracy.

Combines accuracy with 
transparency; useful in real-world 
deployment

Combines spatial, temporal, and 
rule-based approaches for optimal 
crop planning.

Limitations
Limited accuracy in 
long-term forecasts; lacks 
spatial data.

Moderate error in temperature forecasts; 
lacks advanced temporal models like 
LSTM.

Needs large, well-labeled datasets; not 
as adaptive to highly dynamic changes

Requires high computational 
resources; limited to areas with 
sufficient datasets.

Practical Applications
Weather forecasting 
for general agricultural 
practices.

Assess climate risks for strategic 
agricultural decision-making.

Crop selection advisory, farmer 
decision support systems

Specific crop recommendations, 
climate mitigation strategies, 
irrigation planning.

Weather Factors Predicted Temperature, Rainfall Temperature, Humidity, NDVI, Soil 
Moisture, and other vegetation indices.

Temperature, rainfall, humidity 
(inputs, not predictions)

Temperature, Humidity, Rainfall, 
NDVI, NDWI, Soil Moisture, 
Salinity, Pressure.

Data Source(s)
National weather stations 
and historical weather 
data.

Remote sensing imagery, weather 
stations, and ground-based sensors.

Sentinel-2, MODIS, ground-based 
crop reports

Weather stations, satellite imagery 
(hyperspectral), ground data 
sensors.

Prediction Horizon Short-term (up to 5 days). Short to medium-term (up to 1 year). Recommendations are event-triggered 
(no forecast horizon)

Short to medium-term (up to 1 
year).

Model Interpretability
Moderate (RNN lacks 
transparency in decision-
making).

Moderate to high (CNN and RNN 
models provide insights into spatial and 
temporal patterns).

Very High (SHAP and feature 
importance make the system 
transparent)

High (LSTM allows for sequence 
forecasting, and rule-based model 
adds transparency).

Table 1.  Provides a comparison between previous approaches and the current study, highlighting 
methodological improvements and contributions.
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categorizes a given region into: - High agricultural preference - Low agricultural preference - No preference for 
agriculture.

Weather forecasting network - recurrent neural network (RNN)
Forecasts of atmospheric pressure, solar radiation, wind speed at 10 m, relative humidity and temperature at 2 m 
were acquired from National Oceanic and Atmospheric Administration (NOAA) outputs, with lead times from 1 
to 5 days36. The HydroMeteoClimate Regional Service’s COSMO model is one of the many small-scale modeling 
systems used by the National Oceanic and Atmospheric Administration (NOAA). NOAA can give precise 
and accurate weather and climate predictions because of these cutting-edge modeling techniques36. Weather 
forecasting models are sophisticated computer systems that calculate and predict future weather conditions. 
These models mimic the behavior of the atmosphere by considering several meteorologically significant factors, 
such as:

•	 This is a crucial component in determining wind direction, cloud formation, and precipitation.
•	 Changes in temperature influence wind direction, precipitation, cloud formation, and the types of clouds that 

form.
•	 Humidity affects the likelihood of fog, cloud formation, and precipitation.
•	 Wind controls cloud and precipitation distribution, wind direction, and wind speed.

The data was collected from multiple Egyptian meteorological stations, spanning the years 2020 to 2024, and 
encompassed various parameters including air temperature at two meters above ground level, surface skin 
temperature (°C), atmospheric pressure at the station level, specific humidity (g/kg), relative humidity (%) at 
two meters above ground level, total precipitation, dew point temperature at two meters above ground level, 
and mean wind speed at ten meters above ground level. The first stage in organizing the data for the RNN-based 
time series model as shown in Fig. 3 was indexing it with timestamps and incorporating it into a sequence of 
times. The data was subsequently modified prior to the use of the Sigmoid activation function. A batch generator 
was employed to provide input with a batch size of 32 for model training. The Keras Sequential model with 
a Sigmoid activation function was employed to predict factors like temperature, pressure, and humidity. The 
model underwent training for 50 epochs, comprising 36 steps per epoch with an RMS error of 0.19, and was 
subsequently employed to forecast annual total precipitation, along with temperature, pressure, and humidity. 
The Predictions of air pressure, solar radiation, wind velocity at 10 m, relative humidity, and temperature at 
2  m were obtained from National Oceanic and air Administration (NOAA) data, with lead times varying 
from 1 to 5 days (Pelosi, Villani, Falanga Bolognesi, Chirico, & D’Urso, 2020). The COSMO model of the 
HydroMeteoClimate Regional Service is a small-scale modeling system utilized by NOAA, enabling precise and 
reliable weather and climate forecasts through advanced modeling approaches (Pelosi et al., 2020). The Weather 
forecasting models are advanced.

Fig. 2.  The architecture provides an overview of the methodology for assessing forecasts by means of 
temperature forecasts and Multispectral image. The flowchart also illustrates the methodology for forecasting 
by using a complete set of forecasted variables.
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Computational systems that compute and anticipate future meteorological conditions. These models replicate 
atmospheric behavior by accounting for several meteorologically significant elements, including temperature 
variations that influence wind direction, precipitation, cloud formation, and cloud kinds, The Humidity 
affects the probability of fog, cloud formation, and precipitation, Wind governs the distribution of clouds and 
precipitation, as well as wind direction and velocity. The model is fundamentally based on intricate mathematical 
equations that represent radiation transfer, fluid dynamics, thermodynamics, and other essential physical 
principles governing atmospheric phenomena. The formulas are organized into a grid that represents the Earth’s 
atmosphere. It does computations at each grid point to simulate atmospheric phenomena, including pressure 
variations, temperature fluctuations, wind dynamics, and precipitation development. It produces predictions for 
multiple meteorological variables, such as temperature, precipitation, wind direction and velocity, humidity, and 
cloud cover, for both present and future periods and locations, also Weather’s maps and forecasts are generated 
from this data.

Retrieve crop parameters by rule based architecture
One kind of classification algorithm, known as a rule-based classifier, bases its choices on a set of rules deduced 
from the training set of data. Rule-based classifiers extract explicit rules that explain the link between input 
data and class labels, as opposed to classical machine learning methods like neural networks or support vector 
machines, which develop a model by mapping inputs to outputs directly. These rules usually take the form of “if-
then” statements, in which the class label to be assigned is stated in the “then” part and conditions on the input 
features are provided in the “if ” part.

The first step in the process is to generate rules using the domain knowledge and data that is available. Rules 
can be manually created by domain experts, or rules can be automatically learned from data using techniques like 
automatic rule induction. Each rule is represented by two parts: the consequent (prediction) and the antecedent 
(conditions). The consequent indicates the expected class or result, whereas the antecedent contains one or more 
requirements that must be met for the rule to be applied.

Rule evaluation involves comparing each rule’s antecedent circumstances with the input data (features) 
during the categorization process. When a rule’s criteria are satisfied, the instance is given the matching class 

Fig. 3.  Shows the proposed CNN architecture.
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label and the rule’s consequence is implemented. Conflict Resolution: When more than one rule applies Conflict 
resolution techniques are applied to a specific case to ascertain the ultimate forecast. This.

could entail merging the predictions of several rules by voting or other aggregation techniques, or prioritizing 
rules with more confidence or specificity. forecast: Based on the results of the rules, the ultimate forecast is given 
once all relevant rules have been assessed. For classification problems, this prediction might be a single class 
label; for regression tasks, it could be a numerical value. Three main sources make up the dataset: this dataset, 
secondary output from a multispectral model, and initial output from a weather forecasting algorithm. The 
inputs for the model are these outputs as shown in Fig. 4. First, to categorize and forecast, perform classification. 
A rule-based classifier then uses the output of the final classification as its input. The projected values obtained 
from the characteristics are compared to the ground truth, or real data. The classifier predicts the type of crop 
and indicates the appropriate crop to plant if these values match Fig. 5.

Study area
Al-Sharkia is a research area. Egypt situated in the nation’s northern region. Al-Sharkia Governorate is the second 
largest governorate at the level of a republic in terms of agricultural land, after AL Behera Governorate, with a 
total area of 4911 km2, or 1.072.470 million acres. Most of the region is extremely dry, with hardly any recorded 
rainfall. This makes the weather continuously dry for the entire month. During the daytime In June, the average 
high temperature is about 37 °C (99 °F), with the possibility of peaks as high as 46 °C (115 °F) on extremely hot 
days, During the night, the temperature drops to about 23 °C. Despite the intense heat and dryness, the area is 
vital to Egypt’s agriculture industry because of the rich soil and advanced irrigation. A consistent yield of a range 
of crops is guaranteed by the integration of conventional and modern farming method, Figs. 6 illustrate satellite 
imagery of the Al-Sharkia region, which was generated using ArcGIS Pro (version3 ​h​t​t​p​s​:​/​/​n​a​r​s​s​.​m​a​p​s​.​a​r​c​g​i​s​.​c​
o​m​/​a​p​p​s​/​m​a​p​v​i​e​w​e​r​​​​​)​​​3​7​​ .

Fig. 5.  Show How Rule Based Classifier Work.

 

Fig. 4.  Shows the proposed RNN Flowchart.
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•	 In high agriculture(green): total pixel value for 3 bands = 19 + 237 + 66 = 322.
•	 In Low agriculture (Black): total pixel value for 3 bands = 63 + 54 + 66 = 183.
•	 In Not prefer (Red): total pixel value for 3 bands = 237 + 57 + 2 = 296.

Alongside mapping and regional characterization, Sentinel-2 Level-2 A surface reflectance data underwent a 
comprehensive preparation workflow to guarantee consistency and preparedness for deep learning analysis. 
Atmospheric correction was executed with the Sen2Cor processor within the ESA SNAP software. All photos 
were resampled to a 10-meter resolution using bicubic interpolation, and cloud masking was executed with the 
Scene Classification Layer (SCL) to exclude overcast or shaded pixels. All bands were reprojected to WGS84 
(EPSG:4326) to ensure geographic integrity. Several spectral indices, including NDVI, NDWI, EVI, GNDVI, 
and NDSI, were constructed from these adjusted bands. The indices were subsequently arranged into multi-
channel raster layers and normalized to a range of [0, 1] to create the input tensor for the CNN model. This 
guaranteed precise alignment and improved spectral representation for land suitability classification.

Deep learning algorithms
This study combines two fundamental deep learning architectures—Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs), particularly employing Long Short-Term Memory (LSTM) units—
to examine spatial and temporal agricultural data. These models are utilized to facilitate climate-resilient 
agricultural planning by evaluating land suitability and forecasting meteorological variables that directly affect 
crop performance.

Convolutional neural networks (CNN) for spatial classification
Convolutional Neural Networks (CNNs) represent a category of deep learning architectures that excel in image 
recognition and spatial data analysis. This work uses CNNs to classify the suitability of agricultural land using 
multispectral satellite imagery. The input data consists of spectral indices obtained from remote sensing—NDVI, 
NDWI, moisture, EVI, NDSI, and GNDVI—each computed using designated wavelength bands to emphasize 
essential vegetation and soil characteristics. The indices are initially transformed into raster layers and 
subsequently stacked to create a multi-channel input, with each channel representing a distinct index. The CNN 
model subsequently employs a sequence of convolutional filters to extract hierarchical spatial characteristics, 
enabling the detection of patterns and fluctuations in vegetation health, moisture levels, and land cover. The 
design comprises several convolutional layers succeeded by pooling procedures to diminish dimensionality and 
emphasize the most pertinent spatial data. Following feature extraction, fully linked layers are employed for 
classification, designating each pixel to one of three categories: High Agricultural Preference, Low Agricultural 
Preference, or Not Suitable for Agriculture. The model is trained with labeled data from the Al-Sharkia region, 
attaining swift convergence and minimal training loss. Its performance exhibits robust generalization across 
several domains, facilitating its application as a versatile instrument for extensive land suitability evaluation.

Fig. 6.  Map of ALSharkia region (Northern Egypt) and ground data weather stations.
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Recurrent neural networks (RNN) utilizing LSTM for temporal prediction
Recurrent Neural Networks (RNNs) are engineered to process sequential data, rendering them optimal for time-
series forecasting. This research employs a recurrent neural network (RNN) augmented with long short-term 
memory (LSTM) units to predict essential meteorological variables affecting crop health: temperature, relative 
humidity, air pressure, and precipitation. The LSTM units facilitate the retention of long-term dependencies 
through a gating mechanism that regulates information flow; hence, they mitigate the vanishing gradient 
issue seen in conventional RNNs. This architecture enables the model to successfully capture seasonal trends 
and short-term variations in meteorological data. The model was trained using meteorological data obtained 
from Egyptian weather stations from 2020 to 2024. Data preprocessing encompassed time indexing and 
normalization, succeeded by batch training utilizing the Keras Sequential API. The LSTM model underwent 
training for 50 epochs, utilizing a sigmoid activation function and a batch size of 32. Performance was assessed 
using evaluation criteria including Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean 
Absolute Error (MAE). The findings illustrated the model’s capacity to forecast meteorological conditions with 
significant precision, including short-term cooling tendencies and abrupt fluctuations in humidity characteristic 
of the Al-Sharkia region. This forecasting ability is crucial for enhancing planting schedules and reducing the 
dangers linked to climate unpredictability.

Integration and implementation
This deep learning architecture integrates CNNs for geographical classification and RNN-LSTM models for 
temporal forecasting, providing a robust decision-support system. Convolutional Neural Networks (CNNs) 
generate land suitability maps utilizing contemporary remote sensing data, while Recurrent Neural Networks 
with Long Short-Term Memory (RNN-LSTM) models predict forthcoming weather conditions. This integration 
facilitates adaptive agricultural planning tailored to environmental and climatic circumstances, thereby 
augmenting the resilience of crop production systems to climate change.

Performance metrics
The efficacy of the presented models was assessed utilizing essential indicators. The CNN model employed 
for land categorization exhibited a substantial reduction in training loss from 0.2362 to 6.87e-4 by Epoch 100, 
accompanied by an assessment loss of 2.96, signifying robust learning and generalization. In the RNN-LSTM 
model for meteorological prediction, the Root Mean Squared Error (RMSE) was 0.19, indicating substantial 
predictive precision. The model accurately represented temporal trends, exemplified by a temperature decline 
from 15.34 °C to 12.97°Cover 11 days. The mean squared error (MSE) and mean absolute error (MAE) curves 
exhibited swift convergence and stability, validating the model’s proficiency in assimilating sequential climate 
patterns. The definitions of the evaluation metrics used in this study are presented in the following section for 
clarity and reproducibility.

Classification metrics (for CNN model)
Let the following terms be defined for a binary or multi-class classification task:

•	 TP = True Positives TN = True Negatives.
•	 FP = False Positives FN = False Negatives.

Then:

•	 Accuracy measures the overall correctness of the model:
•	 Accuracy = (T P +T N)

T p+T N+F P +F N .
•	 Precision reflects the proportion of correctly predicted positive observations:
•	 Precision = T P

T P +F P .
•	 Recall (also called Sensitivity) represents the proportion of actual positives that were correctly identified:
•	 Recall = T P

T P +F N .
•	 F1-Score is the harmonic meaning of Precision and Recall:
•	 F1-Score = 2 × P recision× Recall

P recision+Recall .

These metrics were used to evaluate the CNN’s ability to classify land suitability into High, Low, and Not Suitable 
classes.

Regression metrics (for LSTM Model)
To assess the accuracy of weather predictions, used the following:

•	 Mean Absolute Error (MAE):
•	 MAE = 

(
1
n

)
 × Σ |yi - ŷi|.

•	 Root Mean Squared Error (RMSE):
•	 RMSE = 

√
[( 1

n ) × Σ (yi - ŷi) ²]

Where:

•	 yi is the actual value,
•	 ŷi is the predicted value,
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•	 n is the number of observations.

Results and discussions
This section delineates the principal findings derived from the implementation of this proposed hybrid model in 
the study of multispectral imaging and weather forecasting within the Al-Sharkia region. demonstrate the CNN 
model’s efficacy in identifying agricultural land suitability and emphasize the predictive accuracy of the RNN-
LSTM model in forecasting meteorological variables. Furthermore, examine enhancements relative to baseline 
models, integration with rule-based classifiers, and insights derived from ablation investigations.

Multispectral images classification using CNN
The CNN-based classification model proficiently evaluated multispectral pictures to determine agricultural land 
suitability in the Al-Sharkia region of Egypt for the 2022/2023 crop season. The model utilized six essential 
indices: NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), 
Moisture, EVI (Enhanced Vegetation Index), NDSI (Normalized Difference Snow Index), and GNDVI (Green 
Normalized Difference Vegetation Index), each calculated from distinct Eqs. (1–6). The indices were converted 
into TIFF raster pictures depicting spatial data, which were then consolidated as raster layers in ArcGIS for 
additional analysis. The layering of these raster pictures facilitated a thorough classification of land into three 
unique categories: High Agricultural Preference, Low Agricultural Preference, and Not Suitable for Agriculture. 
Every pixel in the resultant output map correlates to a distinct geographic area in Al-Sharkia, signifying its 
agricultural potential. Before classification, all generated index layers were normalized to the [0, 1] range to 
standardize input values and improve learning efficacy. The layers were consolidated into a multi-channel raster 
input, with each pixel representing a feature vector comprised of values from all six indices. The CNN model was 
trained on annotated pixel data from field-validated land parcels, each classified into one of three agricultural 
suitability categories. This pixel-wise supervised training allowed CNN to acquire significant spatial patterns 
associated with soil and vegetation health. Throughout the training process, the CNN demonstrated rapid 
convergence, as seen by a substantial reduction in the loss function from 0.2362 at Epoch 1 to 6.87e-4 by Epoch 
100. The assessment loss on novel data was 2.96, indicating robust generalization ability across many datasets. 
Following 10 epochs, the training loss stabilized at 3.88e-5, indicating consistent performance in both training 
and validation datasets. The utilization of NASA’s Copernicus API facilitated scalable data acquisition, permitting 
the model’s application at any geographic coordinate within Egypt. This versatility increases its significance for 
agricultural planning in many environmental circumstances. The final classification output was georeferenced 
and depicted in Fig. 6, which demonstrates the spatial distribution of land suitability obtained from CNN-based 
analysis of multispectral indices. The results were consolidated and displayed utilizing ArcGIS Pro (version 3.1), 
facilitating integration with real-world locations for field validation and decision-making support. This figure 
is the result of the deep learning network’s classification output, where the computed land suitability categories 
were derived from CNN-based analysis of multispectral indices. To produce the final visual result shown in 
Fig. 6, all classified raster layers were merged and presented using ArcGIS Pro (version 3.1, ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​
m​/​e​n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​p​r​o​/​o​v​e​r​v​i​e​w).

The CNN model employed for land categorization exhibited a substantial reduction in training loss from 
0.2362 to 6.87e-4 by Epoch 100, accompanied by an assessment loss of 2.96, signifying robust learning and 
generalization.

Weather forecasting predication using RNN
The weather forecasting model utilizes a Recurrent Neural Network (RNN) with Long Short-Term Memory 
(LSTM) layers to predict variables such as temperature, relative humidity, total precipitation, and pressure by 
capturing sequential correlations in time-series meteorological data. The model predicts a moderate temperature 
decline throughout the initial days, decreasing from 15.34 °C on January 1 st to 12.97 °C on January 11th. This 
minor cooling trend aligns with early January seasonal expectations, suggesting that the model well captures 
transient seasonal variations. The temperature forecasts appear stable, with just minor daily fluctuations that 
align with the typical diurnal oscillations in the local environment. The RNN-LSTM model has assimilated 
seasonal patterns from the training data, as demonstrated by its ability to identify gradual cooling trends. This 
indicates that it may assist in crop management and planning by predicting temperature variations over extended 
timeframes.

The weather forecasting model employs a Recurrent Neural Network (RNN) with Long Short-Term Memory 
(LSTM) layers to predict variables including temperature, relative humidity, total precipitation, and pressure by 
collecting sequential correlations in time-series meteorological data. Table 3 indicates a projected temperature 
decrease from 15.34 °C on January 1 st to 12.97 °C on January 11th. This slight cooling trend corresponds with 
early January seasonal anticipations, indicating that the model accurately reflects temporary seasonal fluctuations 
The temperature predictions seem consistent, exhibiting only slight daily variations that correspond with the 
usual diurnal changes of the local climate. Table 3 indicates a substantial reduction in relative humidity, falling 
from 80.00% on January 1 st to roughly 43.88% on January 9th, subsequently followed by a marked increase. 
This abrupt alteration exemplifies standard atmospheric phenomena in the Al Sharqia region, demonstrating 
the model’s capacity to identify these transitions. The model forecasts negligible precipitation and constant 
air pressure (about 100.87 hPa), as shown in Table 2, suggesting reasonably serene and undisturbed weather 
conditions. The graph enhances these findings by depicting the loss values between the real and predicted data 
throughout model training. The Mean Squared Error (MSE) and Mean Absolute Error (MAE) curves as appear 
in Fig. 7 exhibit a pronounced initial decrease within the first 20 epochs, signifying swift optimization as the 
model assimilates essential patterns from the data. After 20 epochs, the loss values stabilize, indicating that the 
model converges towards accurate predictions as training advances. The persistently low MSE and MAE values 
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in later epochs indicate the model’s proficiency in capturing temporal relationships within the meteorological 
data. The table and graph collectively demonstrate the RNN-LSTM model’s capacity to integrate seasonal trends 
and precisely predict essential meteorological variables, including temperature and humidity. This renders it an 
invaluable instrument for applications in agriculture, water resource management, and disaster preparedness 
Fig. 8,  9.

In the RNN-LSTM model for meteorological prediction, the Root Mean Squared Error (RMSE) was 0.19, 
indicating substantial predictive precision. The model accurately represented temporal trends, exemplified by a 
temperature decline from 15.34 °C to 12.97°Cover 11 days. The mean squared error (MSE) and mean absolute 
error (MAE) curves exhibited swift convergence and stability, validating the model’s proficiency in assimilating 
sequential climate patterns.

Quantitative improvement over baselines
To elucidate the efficacy of the hybrid model, juxtaposed the RNN-LSTM predictions with those from pertinent 
baseline research in contemporary literature. this proposed model attained a Root Mean Squared Error (RMSE) 
of 0.19, significantly surpassing baseline methods, like38, which reported an RMSE of 1.41, and39, which achieved 

Fig. 7.  Confusion Matrix for CNN Classification.

 

Class Precision Recall F1-Score

High Agricultural Preference 0.95 0.97 0.96

Low Agricultural Preference 0.92 0.89 0.90

Not Suitable for Agriculture 0.92 0.90 0.91

Table 3.  CNN model classification Report.

 

S2A S2B

Band Number Central Wavelength(nm) Bandwidth(nm) Central Wavelength(nm) Bandwidth(nm) Spatial Resolution(m)

B01 442.7 21 442.3 21 60

B02 492.4 66 492.1 66 10

B03 559.8 36 559 36 10

B04 664.6 31 665 31 10

B05 704.1 15 703 16 20

B06 740.5 15 739.1 15 20

B07 782.8 20 779.7 20 20

B08 832.8 106 833 106 10

B8a 864.7 21 864 22 20

B09 945.1 20 943.2 21 60

B10 1373.5 31 1376.9 30 60

B11 1613.7 91 1610.4 94 20

B12 2202.4 175 2185.7 185 20

Table 2.  Spectral band characteristics for Sentinel-2 A and 2B.
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an RMSE of 0.95. the suggested strategy demonstrates an 86.5% enhancement in forecasting accuracy relative 
to38, and an almost 80% enhancement compared to39.

The notable enhancements highlight the enhanced predictive accuracy and resilience of our hybrid deep-
learning model, providing considerable practical benefits for agricultural decision-making in fluctuating climate 
circumstances.

RNN - CNN with rule based
To facilitate unified decision-making, established a rule-based architecture that integrates the outputs of the 
CNN and LSTM models. This architecture employs a systematic framework of regulations and inequality 
equations to juxtapose real-time soil classifications and climatic forecasts with a database of ideal crop growth 
circumstances. The rule-based approach synthesizes various data inputs, employing logical criteria to identify 
the optimal crop varieties and planting schedules for certain locales. It correlates elevated soil salinity levels with 
anticipated temperature and moisture conditions to suggest crops that are resilient to these factors, so assuring 
compatibility with both soil and climate for improved crop survival and production. The integrated RNN-CNN-
rule-based methodology exhibits a significant level of precision in determining the most appropriate crops and 
planting schedules, hence reducing the likelihood of crop failure caused by unsuitable soil or unfavorable climatic 

Fig. 9.  Shows Loss on y-axis and sequence no of Mean squared Error & Mean absolute..

 

Fig. 8.  Map after classification happen after stacked layer for 6 features green color refers to High Agriculture, 
Red color refers to Low Agriculture, Black color refers to Not prefer.
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Crop Type Temperature Range (°C) Humidity Range (%) Precipitation (mm/day) Soil Salinity Tolerance Suitable Conditions Summary

Wheat 10–20 50–70 0.1–1.0 Low Cool, moderate humidity, low salinity

Rice 20–30 70–90 3.0–10.0 Medium Warm, high humidity, requires standing water

Maize 18–27 60–80 1.0–3.0 Medium Warm, moderate rainfall

Chickpea 15–25 40–60 0.0–1.0 High Dry, low humidity, drought-tolerant

Sugarcane 21–35 60–80 2.0–5.0 Medium Hot and humidity requires good soil moisture

Table 7.  Rule-Based conditions for crop Classification.

 

Method RMSE Improvement by Our Method (%)

Singh et al. (2019) 1.41 86.5%

Xu et al. (2024) 0.95 80%

Our Proposed Method 0.19 Baseline

Table 6.  The framework improvement.

 

Time Temperature.2 M relHumidity.2 M totPrecips Pressure

1/1/2024 15.34 80.00 0.07 100.87

1/2/2024 15.15 82.38 0.14 100.92

1/3/2024 14.81 79.00 0.05 100.90

1/4/2024 14.83 74.12 0.02 100.81

1/5/2024 14.58 67.19 0.00 100.92

1/6/2024 15.43 68.88 0.01 100.87

1/7/2024 15.75 60.00 0.01 100.56

1/8/2024 15.40 46.31 0.00 100.60

1/9/2024 12.33 43.88 0.00 100.51

1/10/2024 12.30 53.00 0.02 100.59

1/11/2024 12.97 72.88 0.40 100.67

1/12/2024 13.38 62.19 0.08 100.48

1/13/2024 13.15 52.12 0.05 100.09

1/14/2024 12.50 68.50 0.21 100.52

1/15/2024 12.60 65.75 0.02 101.06

1/16/2024 12.60 50.81 0.00 101.06

1/17/2024 13.80 41.62 0.00 100.90

1/18/2024 13.94 44.56 0.00 100.95

1/19/2024 14.10 55.69 0.00 100.90

1/20/2024 16.85 47.12 0.00 100.81

Table 5.  Part of predicting data of ALSHARQIA region during predicating climate change for seasons from 
1/1/2024 to 1/1/2025.

 

ID Predication Actual

0 16.115963 17,16

1 17.143957 16,05

2 15.950550 15,97

3 16.167112 16,26

4 16.336464 15,25

Table 4.  The first five values of temperature predictions in 15/6/2024(rice), 1/11/2024 (wheat), the actual data 
is provided by Egyptian Meteorological Authority (EMA).
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circumstances. This integrated approach provides farmers with customized advice on crop selection and timing, 
marking substantial progress in predictive agriculture. The system’s capacity to enhance agricultural decisions 
using real-time soil and climatic data is anticipated to significantly decrease annual farmer losses, alleviate 
superfluous spending on fertilizers and water, and promote sustainable agricultural practices. The principal 
objective of combining the RNN and CNN models in our research was to determine ideal crop planting periods 
based on seasonal meteorological conditions and soil properties. This method synchronizes agricultural cycles 
with optimal climatic and soil conditions for each crop, mitigating potential losses from unfavorable weather 
and enhancing soil health. Our method utilized CNN to evaluate multispectral satellite imagery of the soil 
and RNN to forecast meteorological conditions. The models were amalgamated via a rule-based architecture to 
establish a complete framework. The integration of CNN and LSTM outputs with the rule-based system enables 
the framework to deliver context-aware crop recommendations. The CNN model processes Sentinel-2 imagery 
and outputs land suitability classifications: High Suitability, Low Suitability, or Not Suitable. Simultaneously, 
the LSTM model forecasts short-term weather parameters such as temperature, humidity, solar radiation, and 
atmospheric pressure. These outputs are passed to a rule-based engine, which evaluates them against predefined 
agronomic thresholds associated with each crop. For example, rice may be recommended only if the predicted 
temperature lies between 22 and 30 °C, humidity exceeds 60%, and the land is classified as highly suitable. Only 
when both spatial and temporal conditions are satisfied does the system recommend a crop. This integration 
ensures recommendations are environmentally and seasonally appropriate. A visual summary of this process is 
presented in Fig. 1.

The proposed hybrid framework integrates three core components: a CNN for spatial classification 
of agricultural land, an LSTM for temporal weather forecasting, and a rule-based engine for final crop 
recommendation. The CNN model is trained on Sentinel-2 derived vegetation and soil indices (NDVI, NDWI, 
GNDVI, EVI, and soil moisture). It classifies land into three categories: High Suitability, Low Suitability, and 
Not Suitable. The network architecture comprises three convolutional layers with 32, 64, and 128 filters, each 
followed by ReLU activation, max-pooling, and batch normalization. Two dense layers precede the final softmax 
classifier. The model is trained using the Adam optimizer with a learning rate of 0.001, dropout rate of 0.3, and 
early stopping to prevent overfitting. Hyperparameters such as batch size and kernel size were tuned using a 
grid search strategy and validated using a confusion matrix and classification report. The LSTM model forecasts 
short-term weather parameters, including temperature, humidity, solar radiation, and air pressure. Input data 
is structured as time-series windows (5–7 day sequences), and the model is configured with 64 LSTM units and 
dropout layers for regularization. Tuning was performed by adjusting the sequence length, number of units, and 
batch size using RMSE and MAE as performance metrics. The model was trained using historical data from 
NOAA and the Egyptian Meteorological Authority covering the same geographic region. The rule-based system 
integrates outputs from the CNN and LSTM models using a set of predefined IF–THEN rules grounded in 
agronomic knowledge. Each crop (e.g., rice, wheat, chickpea, maize, sugarcane) is associated with environmental 
thresholds including minimum and maximum temperature, humidity, soil moisture, and land suitability. For 
example:

IF temperature is between 22 and 30 °C AND humidity > 60% AND land class = “high suitability”, THEN 
recommend rice.

The rules were refined in collaboration with domain experts from the National Authority for Remote Sensing 
and Space Sciences (NARSS). These deterministic rules ensure interpretability and robustness in generating 
location- and season-specific recommendations. While the current rule-based system is deterministic, future 
improvements may involve integrating fuzzy logic to enable more flexible reasoning under uncertainty. This would 
allow the system to express recommendations in degrees of suitability and adapt to environmental variability. The 
rule-based recommendation system uses a set of deterministic IF–THEN rules derived from domain experts in 
agronomy. Each rule combines outputs from the CNN (land classification) and RNN (weather forecast) models, 
applying fixed thresholds for temperature, humidity, solar radiation, and soil moisture to identify suitable crops. 
For example, a rule might state: IF temperature is between 22 and 30 °C AND humidity > 60% AND land class = 
“high suitability”, THEN recommend rice. This relationship can be articulated by Pseudocode as follows:

1- Dataset Preparation:

	– Load the environmental dataset into a structured data frame (DF).
	– Ensure that each record includes: temperature, humidity, and precipitation.

2- Crop Threshold Initialization:

	– Define the crop list as: [wheat, rice, maize, chickpea, sugarcane].
	– For each crop in the list:
	– Retrieve temperature, humidity, and precipitation thresholds:

▸ Tmin, Tmax – Temperature range.
▸ Hmin, Hmax – Humidity range.
▸ Pmin, Pmax – Precipitation range.
- Store these in a crop-specific threshold dictionary.
3- Crop Recommendation Logic:

	– For each input instance in DF:
	– Extract environmental values: Temp_i, Humid_i, Precip_i.
	– For each crop:
	– If Temp_i ∈ [Tmin, Tmax] AND.
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Humid_i ∈ [Hmin, Hmax] AND.
Precip_i ∈ [Pmin, Pmax]:
→ Recommend the corresponding crop.
- If no crop matches the thresholds:
→ Output: “Unsuitable conditions”.
4- Final Output:

	– Return the recommended crop(s) for each instance.
	– If none match, label as “Unsuitable conditions”.

This Pseudocode sample represents soil and crop-related data derived from multispectral pictures evaluated 
with CNN, which classifies regions based on salinity, moisture, and vegetation indices. The weather forecasting 
model employs a recurrent neural network (RNN) to predict variables such as temperature, humidity, and 
precipitation. The existing agricultural database, which comprises actual data for diverse crops, is utilized by 
the model to juxtapose incoming data against optimal planting circumstances. This architecture enables precise 
predictions of the ideal planting time and place by assessing soil and climatic data to align optimal circumstances 
for each crop. The model aids in reducing the yearly losses incurred by farmers as a result of climate change, 
hence enhancing productivity. Enhancing the precision of planting forecasts promotes sustained soil fertility and 
minimizes excessive fertilizer application, enabling farmers to get improved financial returns.

In summary, the incorporation of soil attributes, climatic predictions, and crop-specific information tackles 
essential agricultural issues, offering a comprehensive solution that fosters sustainable agriculture and economic 
stability.

Ablation study
To assess the contribution of each framework component, conducted ablation tests by separately deactivating each 
primary component (CNN, LSTM, rule-based classification) and analysing performance. The comprehensive 
model (CNN + LSTM + Rules) attained the minimal RMSE of 0.19. The elimination of CNN raised the RMSE to 
0.37, underscoring CNN’s essential contribution to spatial classification precision. Excluding LSTM yielded an 
RMSE of 0.45, underscoring LSTM’s vital role in temporal precision. The absence of the rule-based classification 
component resulted in a 22% decline in the accuracy of crop recommendations, highlighting its significance for 
effective decision-making. Aside from diminished performance, the removal of any of the three components 
disrupts the system’s end-to-end logic. The CNN facilitates spatial classification, the LSTM forecasts future 
climatic variables, and the rule-based layer synthesizes both outputs into actionable, localized agricultural 
decisions. Every module is functionally essential, and the system would fail to fulfil its intended purpose—
climate-conscious, site-specific crop advisory—if any component were excluded.

Conclusions
 This Study focused on creating a weather forecasting system for agricultural water management, specifically 
designed for three user groups: farmers, district-level water managers, and crop cultivation authorities. The 
findings underscore the essential significance of predicting agricultural water needs based on soil and climatic 
variables, particularly in areas where precipitation and groundwater play a negligible role, specifically targeting 
rice and wheat cultivation. We demonstrated a streamlined and cost-effective method for irrigation planning 
by merging satellite-based remote sensing (Sentinel-2 imaging) with AI-driven climate forecasting, utilizing 
temperature as the sole predictor. This approach satisfies two essential conditions for effective implementation: 
prompt updates of crop canopy metrics and locally tailored, dependable weather forecasts. The findings validate 
that crop traits stay consistent throughout a 5–7-day forecasting period, rendering such intervals both pragmatic 
and efficient. Validation using field campaigns in Sharqiyah and NOAA forecasts substantiated the dependability 
and geographical resolution of the methodology. This forecasting model facilitates strategic decision-making by 
identifying ideal planting timings, mitigate climate-related production losses, and reducing input expenditures. 
This study advances sustainable agriculture by introducing a scalable, cost-effective forecasting instrument. 
Future research could investigate adding more climate factors, expanding to different types of crops and locations, 
and using real-time data from ground sensors to make predictions more accurate. The developed scientific 
theory was validated by means of all these presumptions as sample in Table 4.Through this, the best time to plant 
an agricultural crop is predicted by the climate, which empowers the farmer and helps him minimize annual 
production losses caused by the climate as well as the cost of fertilizer due to the damage that climate change 
causes to agricultural land. To provide a holistic solution that supports both sustainable farming and economic 
resilience. While the current rule-based system is deterministic, future work will explore the integration of fuzzy 
logic to enhance the system’s flexibility in handling uncertainty and partial conditions. This could allow the 
model to express recommendations in degrees (e.g., moderately suitable) and better reflect real-world variability 
in environmental factors.

Data availability
The code developed and used in this study is openly available in the corresponding author’s GitHub reposito-
ry at(​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​s​a​l​m​a​​a​s​h​r​a​​f​2​3​/​M​u​​l​t​i​s​p​e​​c​t​r​a​l​-​​i​m​a​g​e​​s​-​f​o​r​-​​i​m​p​r​o​v​​i​n​g​-​A​g​​r​i​c​u​l​t​u​r​e, and ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​
m​/​s​a​l​m​​a​a​s​h​r​​a​f​​2​3​/​W​​e​a​t​h​​e​​r​-​F​o​r​e​​c​a​s​t​​i​​n​g​​-​B​y​​-​u​​s​i​n​g​​-​​T​i​m​e​​-​s​​e​r​i​e​​s​-​R​n​n​-​L​S​T​M​S​-). Additional datasets or materials 
supporting the findings of this study are available from the corresponding author upon reasonable request.
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