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This study presents a comprehensive analytical exploration of the coupled nonlocal Lakshmanan-
Porsezian-Daniel (LPD) equation, a seminal model for describing wave propagation in highly nonlocal 
nonlinear media. By employing the powerful extended F-expansion technique, we derive a rich 
spectrum of exact analytical solutions. These include bright, dark, and singular solitons, alongside 
singular periodic, periodic, Jacobi elliptic, exponential, hyperbolic, and Weierstrass elliptic wave 
solutions. The diversity of these solutions elucidates the profound and intricate interplay between 
strong nonlocality and nonlinearity in governing wave formation and evolution. Furthermore, we 
perform a detailed linear stability analysis to investigate the modulation instability (MI) gain spectrum 
within the system. This analysis identifies the critical parameters—most notably the degree of 
nonlocality and coupling strength—that dictate the stability regimes and the dynamic evolution of the 
solitons. Our analytical findings are vividly complemented by graphical representations that illustrate 
the distinctive structures of the obtained solutions and the precise conditions for the onset of MI. This 
research provides crucial insights into the robust propagation of localized waves in integrable nonlocal 
systems, with direct potential applications in pioneering fields such as nonlinear optics, Bose-Einstein 
condensates, and photonic lattice design, where precise control over wave dynamics is paramount.

Keywords  Nonlocal LPD model, Wave propagation in complex media, Extended F-expansion method, 
Soliton, Stability analysis.

Numerous physical phenomena, including those in solid mechanics, fluid dynamics, plasma physics, chemical 
processes, and atmospheric science, are represented by nonlinear partial differential equations (NPDEs). 
By applying various analytical techniques, it is possible to obtain exact solutions to these NPDEs1–6. Recent 
advancements in analytical methods, including Lie symmetry analysis7, bifurcation theory8, and stochastic 
analysis9, have significantly expanded our ability to solve complex nonlinear models across various scientific 
domains. In the past two decades, there have been numerous successful applications of nonlinear optical 
solitons in various fields of science and engineering10–15. The study of solitons has become a cornerstone in the 
examination of nonlinear wave phenomena across multiple scientific disciplines, ranging from fluid dynamics 
to optics. Solitons are unique in that they maintain their shape while propagating at constant speeds over long 
distances due to a precise balance between nonlinearity and dispersion10.

Localized pulses of light with a unique intensity, width, and shape are called optical solitons. These powerful 
beams retain their shape while propagating in material because their spreading due to three nonlinear effects 
can exactly balance each other. The first of these effects involves a direct distortion of the pulse, which usually 
leads to broadening; the second is self-phase modulation, where the phase acquired by the pulse is determined 
by its intensity; and the third is the Kerr-nonlinearity-induced change in the refractive index of the propagation 
medium that is either self-focusing or self-defocusing, further amplifying or attenuating the pulse itself. In optical 
contexts, the stability and propagation of these waveforms are crucial for advancements in telecommunications 
and data transfer technologies. Researchers have dedicated significant efforts to unpack the complexities 
of soliton dynamics, particularly in the presence of modulation instability (MI), which can lead to a marked 
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change in the behavior of wave packets11. Among the models examining soliton interactions, the Lakshmanan-
Porserzian-Daniel (LPD) system stands out due to its incorporation of nonlocal interactions, allowing for a 
rich tapestry of solitonic structures, including breather solutions and rogue waves12. Introduced to describe 
magnetic interactions in nonlinear systems, the LPD model has found applications in optical fiber analysis, 
where both the spatial and temporal dispersion of waves is of paramount importance13. Modulation instability 
plays a pivotal role in the evolution of solitons within nonlinear systems. MI occurs when a stationary solution 
becomes unstable under perturbation, leading to the formation of new wave structures, often characterized by 
significant amplitude fluctuations. It is particularly noteworthy in optical systems where external conditions can 
precipitate such instabilities, potentially resulting in phenomena such as soliton explosions14. Understanding 
and controlling MI is therefore of critical importance, particularly in contexts like optical communications, 
where signal integrity relies on the predictable behavior of solitonic waves15. Inspecting the dynamics of optical 
solitons through optical fibers is essential in the development of telecommunications industry (see16–28). In 
this research, we delve into the dynamics of the coupled nonlocal LPD system by employing the Extended 
F-Expansion technique, which proves advantageous in deriving exact solutions for a variety of nonlinear partial 
differential equations. This analytical method has emerged as a powerful tool for exploring and characterizing 
complex solitonic solutions, offering insight into their stability and interaction properties29. Recent advances 
in soliton research have further expanded our understanding of nonlinear wave dynamics in optical fibers. 
Various studies have explored shape-changing solitons, chirped dark solitons, and W-shaped solitons in different 
nonlinear Schrödinger equation frameworks30–32. Additionally, investigations into dark and singular solitons 
using extended rational methods have provided new insights into soliton behavior in nonlinear optical systems33. 
The exploration of W and M shaped solitons in eighth-order nonlinear Schrödinger equations has revealed 
complex soliton structures34, while studies on inhomogeneous vector optical rogue waves have demonstrated 
deformation effects in coupled cubic-quintic nonlinear Schrödinger equations35. Research on instabilities and 
solitons in systems with spatio-temporal dispersions has enhanced our understanding of modulational instability 
phenomena36. Complementary studies on energy localization in tubulin systems37 and modulational instability 
in spin-orbit-coupled Bose-Einstein condensates38 have provided additional perspectives on nonlinear wave 
dynamics. Furthermore, investigations into the impact of fourth-order dispersion on modulational instability 
spectra have contributed to our understanding of wave propagation in glass fibers with saturable nonlinearity39. 
In our study, we treat the coupled system described by the new nonlocal Lakshmanan-Porserzian-Daniel 
equations as40:

	 iGt + Gxxxx + 4
(
|G|2 + |Q|2

)
Gxx + 2Gx

[
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(
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)
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+2G
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)2
]

= 0,� (1)
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(
|G|2 + |Q|2

)
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[
2 (GxG∗ + QxQ∗) +

(
|G|2 + |Q|2

)
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]

	
+2Q

[
2GxxG∗ + GxG∗

x + GG∗
xx + 2QxxQ∗ + QxQ∗

x + QQ∗
xx + 3

(
|G|2 + |Q|2

)2
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= 0,� (2)

where G(x, t),  Q(x, t) are the wave profiles and t,  x are time and space variables.
In the current study, the extended F-expansion technique is employed to derive multiple exact solutions–

including bright, dark, and singular solitons, as well as singular periodic, periodic, Jacobi elliptic, exponential, 
hyperbolic, and Weierstrass elliptic solutions–for the proposed coupled nonlocal Lakshmanan–Porsezian–Daniel 
(LPD) model. This work addresses a significant research gap in the current literature, where comprehensive 
studies on exact soliton solutions for the coupled nonlocal LPD system remain limited. The novelty of this study 
lies in the systematic exploration of both coherent structures (solitons) and modulation instability in the same 
framework, offering a unified view of nonlinear wave dynamics in nonlocal media. Furthermore, we extend 
the application of the extended F-expansion method to a coupled system with nonlocal interactions, yielding a 
richer variety of solutions than previously reported. These findings provide new insights into the propagation and 
stability of optical solitons in settings with spatially nonlocal nonlinearities, which have potential implications for 
advanced telecommunications and optical computing. To illustrate the physical characteristics of the obtained 
solutions, three-dimensional and two-dimensional graphical representations of selected results are presented.

The paper is structured into the following sections: “Summary method” presents the proposed method 
in detail. It provides a comprehensive framework for understanding the methodologies used throughout the 
study, focusing on the technical aspects and rationale behind the approach used. The results derived from the 
application of the proposed method are discussed in “Soliton dynamics for LPD system”. It explains the results 
and their implications, supported by the data and analyses conducted during the research. Section  “Soliton 
dynamics for LPD system” discusses the modulation instability analysis of the model. Section “Modulation 
instability” uses both 3D simulations and 2D graphs to illustrate the different dynamic wave patterns across 
different insulation solutions. This visual representation enhances the readers’ understanding of the results and 
their practical applications. The final section concludes the work. It summarizes the main findings, discusses 
their significance and potential applications, and suggests future research directions.

 Summary method
The F-Expansion method is a powerful mathematical technique for deriving exact solutions to NLPDEs28.

Step 1: Assume that an NLPDE is displayed as follows:
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	 R (G, Gt, Gx, Gxx, ...) = 0.� (3)

Step 2: Eq. (3) is transformed into an ODE using the traveling wave transformation shown below:

	 G(x, t) = P [ϑ], ϑ = x + φ t,� (4)

where φ represents the soliton’s propagation speed. Thus, Eq.(3) can be expressed as follows:

	 K(P, P ′, P ′′, . . .) = 0.� (5)

Step 3: The general solution is expressed as a polynomial in terms of a function µ(ϑ) as follows:

	
P [ϑ] = η0 +

N∑
i=1

[
ηi µi(ϑ) + λi µ−i(ϑ)

]
,� (6)

where ηi and λi (i = 1, 2, ..., N) represent constants in the solution equation that need to be determined, while 
the function µ(ϑ)  achieves the following constrain:

	 µ′(ϑ) = α
√

τ0 + τ1 µ + τ2 µ2 + τ3 µ3 + τ4 µ4, � (7)

and α = ±1.
Step 4: In order to assess the positive integer N, the balancing principle (BP) is employed to Eq.(5).
Step 5: Substituting Eqs. (6) and (7) into Eq. (5) generates a polynomial in terms of µ. Setting the coefficients 

of µ to zero through algebraic polynomial operations results in a nonlinear system of algebraic equations. This 
system can be solved using various computational tools, such as Wolfram Mathematica, leading to multiple exact 
solutions for Eq. (3).

Soliton dynamics for LPD system
To generate the exact solutions for Eqs.(1) and (2), we apply the transformation displayed below:

	 G(x, t) = P1 [ϑ] ei(−xκ+ζ+tω),� (8)

	 Q(x, t) = P2 [ϑ] ei(−xκ+ζ+tω),� (9)

where

	 ϑ = x + φ t,� (10)

Here, Pj  ( where j = 1, 2 ) denotes the amplitude parameters, φ stands for the soliton’s propagation speed, while 
ω and κ correspond to its angular frequency and wave number, respectively. The term ζ  represents the phase of 
the wave. By inserting Eqs. (8), (9), and (10) into Eqs. (1) and (2), and then separating the resulting expression 
into their real and imaginary components, we arrive at the following system:

	 P
(4)
j +

(
κ4 − ω

)
Pj − 12κ2P 3

j + 6P 5
j − 12κ2PjP 2

j̃ + 12P 2
j̃ P 3

j + 6P 4
j̃ Pj

	 +10Pj(P ′
j)2 + 8Pj̃P ′

jP ′
j̃ + 2PjP ′2

j̃ − 6κ2P ′′
j + 10P 2

j P ′′
j + 4P 2

j̃ P ′′
j + 6PjPj̃P ′′

j̃ = 0,� (11)

	
(
4κ3 + φ

)
P ′

j̃ − 24κP 2
j P ′

j − 12κP 2
j̃ P ′

j − 12κPjPj̃P ′
j̃ − 4κP

(3)
j = 0.� (12)

We presume that:

	 Pj̃ = h Pj ,� (13)

with the condition h ̸= 0, 1.
Accordingly, Eqs. (11) and (12) take the form:

	

P
(4)
j + (κ4 − ω)Pj − 12κ2P 3

j + 6P 5
j − 12 h2 κ2 P 3

j + 12h2 P 5
j + 6h4 P 5

j + 10Pj(P ′
j)2 + 8h2 Pj (P ′

j)2

+ 2h2Pj (P ′
j)2 − 6 κ2P ′′

j + 10 P 2
j P ′′

j + 4h2P 2
j P ′′

j + 6h2 P 2
j P ′′

j = 0,
� (14)

	 h(4κ3 + φ)P ′
j − 24κP 2

j P ′
j − 12h2κP 2

j P ′
j − 12h2κP 2

j P ′
j − 4κP

(3)
j = 0 � (15)

 Therefore, the above equations can be formulated as:

	P
(4)
j + 10

(
h2 + 1

)
P 2

j P ′′
j − 6κ2P ′′

j + 10
(
h2 + 1

)
Pj

(
P ′

j

)2 +
(
κ4 − ω

)
Pj +

(
−12h2κ2 − 12κ2)

P 3
j +

	
(
6h4 + 12h2 + 6

)
P 5

j = 0,� (16)
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	 −
(
4κ3 + ρ

)
P ′

j + 6κ
(
1 + h2)

P 2
j P ′

j + κP
(3)
j = 0.� (17)

By performing integration of Eq. (17) with respect to ϑ and assuming the constant of integration is zero, we 
obtain:

	 −
(
4κ3 + ρ

)
Pj + 2κ

(
1 + h2)

P 3
j + κP ′′

j = 0.� (18)

Through Eq.(18), then Eq.(16) can be formulated as:

	

κP
(4)
j + 10

(
h2 + 1

)
κPj

(
P ′

j

) 2 − 14
(
h2 + 1

)2
κP 5

j + 10
(
h2 + 1

) (
4κ3 + ρ

)
P 3

j

− κ
(
23κ4 + 6κρ + ω

)
Pj = 0.

� (19)

By applying the Balancing Principle (BP) between the highest order derivative P (4)
j  and the highest nonlinear 

term P 5
j  in Eq.(17), we find m + 4 = 5m, then m = 1. The resulting exact solution of Eq. (17) takes the form:

	
P [ϑ] = η0 + η1 µ[ϑ] + λ1

µ[ϑ] .� (20)

Inserting Eq. (20) into Eq. (19) while incorporating Eq. (7), and equating the coefficients of identical powers 
to zero, results in a system of nonlinear algebraic equations. This system is formed by grouping terms with the 
same powers and setting them equal to zero. The resulting equations can be solved using Wolfram Mathematica 
to provide the following results:

Case 1:   τ1 = τ0 = τ3 = 0,

	
(1.1) η0 = 0, η1 =

√
− τ4

h2 + 1 , λ1 = 0, ω = −7κ4 + ρ2

κ2 + 2κρ, τ2 = 4κ3 + ρ

κ
.

	
(1.2) η0 = 0, η1 = 2

√
3τ4

7 (h2 + 1) , λ1 = 0, ω = −3311κ6 + 726κ3ρ − 36ρ2

169κ2 , τ2 = −
6

(
4κ3 + ρ

)
13κ

 Through the case (1.1), we can get all possible results as follows: 
(1.1, 1) When ρ = −4κ3, and τ4 = −1, we get bright solitons as:

	
G1.1 =

√
1

h2 + 1 sech
(
x − 4κ3t

)
ei(−xκ+ζ+tω),� (21)

	
Q1.1 = h

√
1

h2 + 1 sech
(
x − 4κ3t

)
ei(−xκ+ζ+tω).� (22)

Through the case (1.2), we can get all possible results as follows:
(1.2, 1) For ρ = 13κ

6 − 4κ3, and τ4 = 1, the singular periodic solutions take the forms:

	
G1.2,1 = 2

√
3

7 (h2 + 1) csc
[
x +

(13κ

6 − 4κ3
)

t
]

ei(−xκ+ζ+tω),� (23)

	
Q1.2,1 = 2 h

√
3

7 (h2 + 1) csc
[
x +

(13κ

6 − 4κ3
)

t
]

ei(−xκ+ζ+tω),� (24)

or

	
G1.2,2 = 2

√
3

7 (h2 + 1) sec
[
x +

(13κ

6 − 4κ3
)

t
]

ei(−xκ+ζ+tω),� (25)

	
Q1.2,2 = 2 h

√
3

7 (h2 + 1) sec
[
x +

(13κ

6 − 4κ3
)

t
]

ei(−xκ+ζ+tω),� (26)

(1.2, 2) For ρ = − 13κ
6 − 4κ3, and τ4 = 1, the singular solitons of Eqs.(1) and (2) are given as:

	
G1.2,3 = 2

√
3

7 (h2 + 1) csch
[
x −

(13κ

6 + 4κ3
)

t
]

ei(−xκ+ζ+tω),� (27)

	
Q1.2,3 = 2 h

√
3

7 (h2 + 1) csch
[
x −

(13κ

6 + 4κ3
)

t
]

ei(−xκ+ζ+tω).� (28)
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(1.2, 3) For τ4 = 1 and either ρ = −( 13κ
6 + 4κ3), or ρ = ( 13κ

6 − 4κ3), we get hyperbolic or periodic solutions 
as shown:

	
G1.2,4 = 2

√
3

7 (h2 + 1) sinh
[
x −

(13κ

6 + 4κ3
)

t
]

ei(−xκ+ζ+tω),� (29)

	
Q1.2,4 = 2 h

√
3

7 (h2 + 1) sinh
[
x −

(13κ

6 + 4κ3
)

t
]

ei(−xκ+ζ+tω),� (30)

or

	
G1.2,5 = 2

√
3

7 (h2 + 1) sin
[
x +

(13κ

6 − 4κ3
)

t
]

ei(−xκ+ζ+tω),� (31)

	
Q1.2,5 = 2 h

√
3

7 (h2 + 1) sin
[
x +

(13κ

6 − 4κ3
)

t
]

ei(−xκ+ζ+tω).� (32)

(1.2, 4) When τ2 = 0 and τ4 > 0 hence, we derive rational solutions as:

	
G1.2,6 = − 2α

√
3

(ρt + x)
√

7 (h2 + 1)
ei(−xκ+ζ+tω),� (33)

	
Q1.2,5 = − 2α h

√
3

(ρt + x)
√

7 (h2 + 1)
ei(−xκ+ζ+tω).� (34)

Case 2:  τ1 = τ3 = 0.

	
(2.1) η0 = 0, η1 =

√
− τ4

h2 + 1 , λ1 = 0, τ0 = 7κ6 − 2κ3ρ + κ2ω − ρ2

2κ2τ4
, τ2 = 4κ3 + ρ

κ

	
(2.2) η0 = 0, η1 = 2

√
3τ4

7 (h2 + 1) , λ1 = 0, τ0 =
7

(
3311κ6 + 726κ3ρ + 169κ2ω − 36ρ2)

34476κ2τ4
, τ2 = −

6
(
4κ3 + ρ

)
13κ

	
(2.3) η0 = 0, η1 = 0, λ1 = ±

√
−7κ6 − 2κ3ρ + κ2ω − ρ2

2 ((h2 + 1) κ2τ4) , τ0 = 7κ6 − 2κ3ρ + κ2ω − ρ2

2α4κ2τ4
, τ2 = 4κ3 + ρ

α2κ

 Through the case (2.1), we can get all possible results as follows: 
(2.1, 1)	 When τ0 = 1 − m2, τ2 = m2 − 1, τ4 = −m2 and 0 < m ≤ 1, we derive Jacobi elliptic function 

solutions as:

	
G2.1,1 =

√
m2

h2 + 1 cn
[
x +

(
α2κ

(
m2 − 1

)
− 4κ3)

t
]

ei(−xκ+ζ+tω),� (35)

	
Q2.1,1 = h

√
m2

h2 + 1 cn
[
x +

(
α2κ

(
m2 − 1

)
− 4κ3)

t
]

ei(−xκ+ζ+tω).� (36)

When the parameter m = 1, Eqs. (35) and (36) yields the following bright soliton solutions:

	
G2.1,2 =

√
1

h2 + 1 sech
(
x − 4κ3t

)
ei(−xκ+ζ+tω),� (37)

	
Q2.1,2 = h

√
1

h2 + 1 sech
(
x − 4κ3t

)
ei(−xκ+ζ+tω).� (38)

 
(2.1, 2)	 When τ0 = −1 + m2, τ2 = 2 − m2, τ4 = −1 and m ∈ [0, 1], we derive Jacobi elliptic function 

solutions as:

	
G2.1,3 =

√
1

h2 + 1 dn
[
x −

(
α2κ

(
−2 + m2)

+ 4κ3)
t
]

ei(−xκ+ζ+tω),� (39)
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Q2.1,3 = h

√
1

h2 + 1 dn
[
x −

(
α2κ

(
−2 + m2)

+ 4κ3)
t
]

ei(−xκ+ζ+tω).� (40)

When the parameter m = 1, Eqs. (39) and (40) yields the following bright soliton solutions:

	
G2.1,4 =

√
1

h2 + 1 sech
(
x +

(
α2 − 4κ2)

κt
)

ei(−xκ+ζ+tω),� (41)

	
Q2.1,4 = h

√
1

h2 + 1 sech
(
x +

(
α2 − 4κ2)

κt
)

ei(−xκ+ζ+tω).� (42)

Through the case (2.2), we can get all possible results as follows: 
(2.2, 1)	 When τ2 < 0, τ4 > 0 and τ0 = τ2

2
4τ4

, we get dark solitons as:

	
G2.2,1 = 2

√
− 3 τ2

14 (h2 + 1) tanh
[
(ρ t + x)

√
−τ2

2

]
ei(−xκ+ζ+tω),� (43)

	
Q2.2,1 = 2 h

√
− 3 τ2

14 (h2 + 1) tanh
[
(ρ t + x)

√
−τ2

2

]
ei(−xκ+ζ+tω).� (44)

 
(2.2, 2)	 When τ2 > 0, τ4 > 0 and τ0 = τ2

2
4τ4

, we derive singular periodic solutions as:

	
G2.2,2 = 2

√
3 τ2

14 (h2 + 1) tan
[
(ρ t + x)

√
τ2

2

]
ei(−xκ+ζ+tω),� (45)

	
Q2.2,2 = 2 h

√
3 τ2

14 (h2 + 1) tan
[
(ρ t + x)

√
τ2

2

]
ei(−xκ+ζ+tω).� (46)

 

(2.2, 3)	 When τ2 < 0, τ4 > 0, τ0 = m2τ2
2

(m2+1)2
τ4

 and 0 < m ≤ 1, we derive Jacobi elliptic function solu-

tions as:

	
G2.2,3 = 2

√
− 3 m2 τ2

7 (h2 + 1) (m2 + 1) sn
[

(ρ t + x)
√

− τ2

m2 + 1

√
τ2

2

]
ei(−xκ+ζ+tω),� (47)

	
Q2.2,3 = 2 h

√
− 3 m2 τ2

7 (h2 + 1) (m2 + 1) sn
[

(ρ t + x)
√

− τ2

m2 + 1

√
τ2

2

]
ei(−xκ+ζ+tω).� (48)

When the parameter m = 1, Eqs. (47) and (48) yields the following dark soliton solutions:

	
G2.2,4 = 2

√
−3 τ2

14(h2 + 1) tanh
[
(ρ t + x)

√
−τ2

2

]
ei(−xκ+ζ+tω),� (49)

	
Q2.2,4 = 2 h

√
−3 τ2

14(h2 + 1) tanh
[
(ρ t + x)

√
−τ2

2

]
ei(−xκ+ζ+tω).� (50)

Through the case (2.3), we can get all possible results as follows: 
(2.3, 1)	 When τ2 < 0, τ4 > 0, τ0 = τ2

2
4τ4

 and 7κ6 − 2κ3ρ + κ2ω − ρ2 < 0, hence, we obtain singular 
soliton solutions of Eqs.(1) and (2) as shown:

	
G2.3,1 = ±

√
7κ6 − 2κ3ρ + κ2ω − ρ2

(h2 + 1) κ2τ2
coth

[
(ρ t + x)

√
−τ2

2

]
ei(−xκ+ζ+tω),� (51)

	
Q2.3,1 = ±h

√
7κ6 − 2κ3ρ + κ2ω − ρ2

(h2 + 1) κ2τ2
coth

[
(ρ t + x)

√
−τ2

2

]
ei(−xκ+ζ+tω).� (52)
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(2.3, 2)	 When τ2 > 0, τ4 > 0, τ0 = τ2

2
4τ4

 and 7κ6 − 2κ3ρ + κ2ω − ρ2 < 0, we derive singular periodic 
solutions as:

	
G2.3,2 = ±

√
−(7κ6 − 2κ3ρ + κ2ω − ρ2)

(h2 + 1) κ2τ2
cot

[
(ρ t + x)

√
τ2

2

]
ei(−xκ+ζ+tω),� (53)

	
Q2.3,2 = ±

√
−(7κ6 − 2κ3ρ + κ2ω − ρ2)

(h2 + 1) κ2τ2
cot

[
(ρ t + x)

√
τ2

2

]
ei(−xκ+ζ+tω).� (54)

 
(2.3, 3)	 When τ2 > 0, τ4 < 0, τ0 = m2(1−m2)τ2

2

(2m2−1)2
τ4

, 
(
2m2 − 1

) (
7κ6 − 2κ3ρ + κ2ω − ρ2)

> 0 and 
1√
2 < m ≤ 1, we get Jacobi elliptic function solutions as:

	
G2.3,3 = ±

√
(2m2 − 1) (7κ6 − 2κ3ρ + κ2ω − ρ2)

α2 (h2 + 1) κ2m2τ2
nc

[
(ρ t + x)

√
τ2

2m2 − 1

]
ei(−xκ+ζ+tω),� (55)

	
Q2.3,3 = ±h

√
(2m2 − 1) (7κ6 − 2κ3ρ + κ2ω − ρ2)

α2 (h2 + 1) κ2m2τ2
nc

[
(ρ t + x)

√
τ2

2m2 − 1

]
ei(−xκ+ζ+tω).� (56)

When the parameter m = 1, Eqs. (55) and (56) yields the following hyperbolic solutions:

	
G2.3,4 = ±

√
7κ6 − 2κ3ρ + κ2ω − ρ2

α2 (h2 + 1) κ2τ2
cosh [(ρ t + x)

√
τ2] ei(−xκ+ζ+tω),� (57)

	
Q2.3,4 = ±h

√
7κ6 − 2κ3ρ + κ2ω − ρ2

α2 (h2 + 1) κ2τ2
cosh [(ρ t + x)

√
τ2] ei(−xκ+ζ+tω).

� (58)Case 3: τ2 = τ4 = 0. 

η0 =
2
√

3(4κ3+ρ)√
91(h2+1)κ

, η1 = 0, λ1 =
8τ0

√
3(4κ3+ρ)

τ1

√
91(h2+1)κ

, α = −
4
√

τ0(4κ3+ρ)
√

13κτ1
, ω = −6857κ6+3078κ3ρ+1272ρ2

1183κ2 , τ3 = − τ3
1

8τ2
0

. Through this case, all attainable outcomes are derived as follows:

When τ1 < 0, τ0 < 0, and κ
(
4κ3 + ρ

)
> 0, hence, we obtain Weierstrass elliptic function solutions as:

	
G3.1 = ±

√
3 (4κ3 + ρ)√

91 (h2 + 1) κ

[
2

[
4τ0 + τ1℘

(√
τ3
4 (ρt + x), − 4τ1

τ3
, − 4τ0

τ3

)]

τ1
√

(h2 + 1) κ ℘
(√

τ3
4 (ρt + x), − 4τ1

τ3
, − 4τ0

τ3

)
]

ei(−xκ+ζ+tω),� (59)

	
Q3.1 = ±h

√
3 (4κ3 + ρ)√

91 (h2 + 1) κ

[
2

[
4τ0 + τ1℘

(√
τ3
4 (ρt + x), − 4τ1

τ3
, − 4τ0

τ3

)]

τ1
√

(h2 + 1) κ ℘
(√

τ3
4 (ρt + x), − 4τ1

τ3
, − 4τ0

τ3

)
]

ei(−xκ+ζ+tω).� (60)

Case 4: τ3 = τ4 = 0. 

η0 = 6
√

4κ3+ρ√
91(h2+1)κ

, η1 = 0, λ1 = κ τ1
√

13

2
√

7 κ (h2+1)(4κ3+ρ)
, ω = 6199κ6+9606κ3ρ+2088ρ2

1183κ2 , τ0 = 13 κ τ2
1

48(4κ3+ρ) , τ2 = 12(4κ3+ρ)
13 α2 κ

.

In this scenario, all attainable outcomes are derived as follows: When τ2 > 0 and κ
(
4κ3 + ρ

)
> 0, we 

obtain exponential solutions as:

	
G4.1 = −

√
(4κ3 + ρ)√

91 (h2 + 1) κ

[
6

(
2 τ2 e[(ρ t+x) √

τ2] + τ1 (2 τ2 − 1)
)

τ1 − 2τ2 e[(x+ρ t) √
τ2]

]
ei(−xκ+ζ+tω),� (61)

	
Q4.1 = −h

√
(4κ3 + ρ)√

91 (h2 + 1) κ

[
6

(
2 τ2 e[(ρ t+x) √

τ2] + τ1 (2 τ2 − 1)
)

τ1 − 2τ2 e[(x+ρ t) √
τ2]

]
ei(−xκ+ζ+tω).� (62)

Summary of solution types and physical interpretations
This section provides a comprehensive summary of the diverse exact solutions obtained for the coupled nonlocal 
Lakshmanan-Porsezian-Daniel (LPD) equations through the extended F-expansion method. The rich variety 
of solution types presented below demonstrates the complex nonlinear dynamics governed by the system. 
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Table 1 categorizes these solutions, their mathematical forms, key parameter constraints, and detailed physical 
interpretations in the context of wave propagation in nonlocal nonlinear media.

where A(x, t) =
√

3(4κ3+ρ)√
91(h2+1)κ

ei(−xκ+ζ+tω), and B(x, t) = −
√

(4κ3+ρ)√
91(h2+1)κ

ei(−xκ+ζ+tω).

Modulation instability
Modulation instability (MI), a well-studied phenomenon in nonlinear physics, refers to the exponential growth 
of minor perturbations superimposed on a continuous wave (CW) solution in nonlinear systems. This often leads 
to the formation of localized structures, such as pulse trains, and is significant across various fields, including 
hydrodynamics, engineering, fiber optics, and plasma physics. When nonlinear and dispersive effects interact, 
many nonlinear processes exhibit instability in steady-state modulation. In the context of optical fibers, where 
it is crucial for designing communication systems, modulation instability has been extensively researched, with 
nonlinearity arising from the optical signal traveling through the fiber’s wave field.

The main goal of this section is to analyze the equation’s MI using the linear stability technique.
We consider that the system under study has the steady-state solutions as follows:

	 G =
[
F(x, t) +

√
A

]
eiAt,� (63)

	 Q =
[
H(x, t) +

√
A

]
eiAt,� (64)

The normalized power value is denoted by A, with disturbance terms represented by F(x, t) and H(x, t). By 
substituting Eqs. (63) and (64) into Eqs. (1) and (2), and then applying linearization, we obtain:

	 Fxxxx + 14A Fxx + 6A Hxx + iFt +
(
72A2 − A

)
(F∗ + F) + 48A2 (H∗ + H) = 0,� (65)

	 Hxxxx + 14A Hxx + 6A Fxx + iHt +
(
72A2 − A

)
(H∗ + H) + 48A2 (F∗ + F) = 0.� (66)

However, in mathematical notation, the conjugate of a complex function is represented by the symbol ∗. It is 
significant to remember that the perturbation of F(x, t) will be derived. Furthermore, one may similarly obtain 
the mutual information (MI) analysis associated with the perturbation H(x, t) by using the same approach that 
we did for this derivation. By using this method, we establish a clear connection between the perturbations we 
study and the ensuing MI inquiry, guaranteeing that both facets are fully covered and comprehended.

Presume the following can be used to express the solution for the system in Eqs. (65) and (66):

	 F = f1 ei(L x−ω t) + f2 e−i(L x−ω t),� (67)

and

	 H = f1 ei(L x−ω t) + f2 e−i(L x−ω t),� (68)

where the normalized wave number is L and the perturbation frequency is ω.
Substituting Eqs. (67) and (68) into the linearized system (65) and (66) yields expressions that must vanish 

identically for all values of x and t. This fundamental requirement implies that the coefficients of the exponentially 
varying terms ei(Lx−ωt) and e−i(Lx−ωt) must separately equal zero.

The condition of vanishing coefficients leads to a homogeneous system of equations for the amplitudes f1 
and f2. For non-trivial solutions (f1, f2 ̸= 0) to exist, the determinant of the system’s coefficient matrix must 
vanish. This solvability condition yields the characteristic equation:

	
det

(
A1 A2
B1 B2

)
= 0,

where the matrix elements A1, A2, B1, B2 are functions of ω, L, and A. Solving this determinant condition 
produces the dispersion relation:

	 ω = ±L
√

(L2 − 20 A) (2 A(120 A − 1) + L4 − 20 A L2).� (69)

Equation (69) provides a solid foundation for understanding the linear stability analysis of the system’s steady-
state conditions. A real value for the parameter ω indicates stability, meaning the system can maintain its steady-
state response over time, even with minor perturbations. Conversely, an imaginary value of ω signifies instability, 
where disturbances will exponentially grow, leading to diverging behavior. To assess this instability, the following 
techniques are employed to develop and determine the modulation instability gain spectrum, which quantifies 
the level of instability.

	
G(A) = 2 Im

[
±L

√
(L2 − 20 A) (2 A(120 A − 1) + L4 − 20 A L2)

]
.� (70)

Figure 5 presents a detailed three-dimensional analysis of the gain spectrum |G(A, L)| as a function of both 
wave number L and normalized power A. This representation clearly demonstrates how the instability regions 

Scientific Reports |        (2025) 15:39219 9| https://doi.org/10.1038/s41598-025-21579-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


evolve across the parameter space, showing the expansion of unstable bands with increasing power levels. The 
plot reveals maximum gain values reaching approximately 20,000 at specific parameter combinations, indicating 
highly unstable regions where perturbations experience significant exponential growth. Also, this figure provides 
a complementary two-dimensional cross-sectional view of the gain spectrum at A = 5.2, showing the precise 
relationship between wave number L and gain magnitude |G|. The asymmetric shape of the gain spectrum 
indicates different growth rates for various perturbation frequencies, with a rapid increase followed by a more 
gradual decrease in gain magnitude. These additional graphical representations enhance our understanding of 
the system’s stability characteristics and provide valuable insights for practical applications where controlling 
modulation instability is crucial, such as in optical communication systems and nonlinear wave propagation 
environments. The comprehensive graphical analysis confirms the theoretical predictions and offers complete 
characterization of the instability properties across the parameter space, particularly highlighting the dangerous 
parameter regions where extreme instability occurs.

Graphic representation of solutions
This section presents comprehensive graphical simulations of the obtained solutions to elucidate their physical 
characteristics and dynamical behaviors. Each figure demonstrates distinct types of soliton solutions extracted 
from the governing equations, with specific parameter selections to highlight their unique properties. The 
physical interpretations of these solutions are discussed in the context of wave propagation in nonlinear 
dispersive media. Figure 1 illustrates the bright soliton solution described by Eqs. (21) and (22) with parameter 
values κ = −0.7, ζ = 0.8, and h = 2. Bright solitons, characterized by a localized intensity peak on a zero 
background, represent stable wave packets that maintain their shape during propagation through a balance 
between nonlinearity and dispersion. These solutions are particularly significant in optical fibers and Bose-
Einstein condensates, where they describe self-trapped waves that propagate without distortion. The figure 
clearly demonstrates the characteristic sech-shaped profile with amplitude modulation along the temporal 
dimension. The singular periodic solutions governed by Eqs. (23) and (24) are presented in Fig. 2 for parameter 
values κ = −0.87, ζ = 0.8, and h = 6. These solutions exhibit periodic singularities with undefined points at 
regular intervals, representing wave collapse phenomena in certain nonlinear media. Physically, such solutions 
may describe extreme wave events or breakdown regions in plasma physics and nonlinear optics where the wave 
amplitude becomes theoretically infinite at discrete points. The figure shows the periodic repetition of singular 
points along the propagation direction. Figure 3 displays the singular soliton solution obtained from Equations 
(27) and (28) with parameters κ = −0.7, ζ = 0.78, and h = 6. Singular solitons represent localized waves with 
a point singularity, typically manifesting as a dip or cusp in the wave profile. These solutions are physically 
relevant in describing rogue waves or critical phenomena in nonlinear systems where energy concentration 
leads to singular behavior. The graphical representation clearly shows the localized nature of the singularity and 
its spatial confinement. The dark soliton solution characterized by Equations (43) and (44) is depicted in Fig. 4 
for parameter values κ = −0.8, ρ = 0.9, ω = 0.8, τ2 = −0.7, ζ = 0.78, and h = 3.6. Dark solitons appear as 
intensity dips on a continuous wave background and represent regions of phase discontinuity. These solutions 
are physically significant in describing void-like structures in nonlinear media and have been experimentally 
observed in optical fibers and matter waves. The figure demonstrates the characteristic tanh-shaped profile with a 
phase jump across the soliton center. The three-dimensional plots show the evolution of wave profiles along both 
spatial and temporal dimensions, while the contour plots provide complementary information about intensity 
distribution and gradient variations. The careful selection of parameter values enables the demonstration of both 
qualitative features and quantitative relationships between various soliton types. These graphical representations 
not only validate the analytical solutions but also provide physical insights into the behavior of nonlinear waves 
in the considered system. The distinct characteristics of each solution type–whether bright, dark, or singular–
highlight the rich dynamical diversity achievable in nonlinear dispersive media under appropriate conditions.

Conclusion
This study primarily focused on the coupled system of the new nonlocal LPDE. The Extended F-Expansion 
method was first applied to explore the solitons and other solutions of proposed model. Our analysis produced 
a range of solutions, such as bright, dark, and singular solitons, as well as singular periodic wave solutions, 
periodic wave solutions, Jacobi elliptic wave solutions, exponential wave solutions, hyperbolic wave solutions, 
and Weierstrass elliptic solutions. We ensure the presence of the obtained soliton solutions by using the 
constraints in the parameters. Graphic representations of such solutions were also introduced as a way to clarify 
the physical nature of some solutions. The solutions extracted in our paper are novel, and this model hasn’t 
studied using this technique before.

The investigation of MI indicates crucial insights into the solutions’ stability. A detailed analysis was 
performed to determine the conditions under which MI occurs, demonstrating that certain parameters within 
the system can lead to instabilities that enhance wave amplitude and alter wave shapes dynamically. These results 
contribute significantly to the theoretical understanding of nonlinear wave propagation and can potentially 
influence experimental designs in related fields. The findings are pertinent in various physical phenomena 
wherein LPD model real-world applications, including optical fibers, plasmas, and hydrodynamics. The ability to 
predict and control MI in these contexts opens new avenues for developing advanced materials and technologies, 
particularly in optics and energy transmission systems. Future research should focus on extending these methods 
to higher-dimensional cases and examining their applicability in more complex nonlinear systems. Moreover, 
exploring numerical simulations to validate the analytical solutions will be a critical step in bridging theoretical 
predictions with experimental results, fostering a more comprehensive understanding of dynamic instabilities 
in various media.
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Figure 1.  Bright solitons of Eqs. (21) and (22).
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Figure 2.  Singular periodic solutions of Eqs. (23) and (24).
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Figure 3.  Singular solitons of Eqs. (27) and (28).

 

Scientific Reports |        (2025) 15:39219 13| https://doi.org/10.1038/s41598-025-21579-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


(a)

Abs[G2.2,1[x,0.3]]

–4 –2 2 4 x

0.05

0.10

0.15

0.20

(b)

(c)

Abs[Q2.2,1[x,0.3]]& h=3.6

–4 –2 2 4 x

0.2

0.4

0.6

(d)

(e)

Abs[G2.2,1[x,0.3]] Abs[Q2.2,1[x,0.3]]& h=3.6

–4 –2 2 4 x

0.2

0.4

0.6

(f)

Figure 4.  Dark solitons of Eqs. (43) and (44).
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