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Modulation instability analysis and
deriving soliton solutions of new
nonlocal Lakshmanan-Porserzian-
Daniel equation

Wafaa B. Rabie!, W. Abbas?*?, M. Elsaid Ramadan? & Hamdy M. Ahmed*

This study presents a comprehensive analytical exploration of the coupled nonlocal Lakshmanan-
Porsezian-Daniel (LPD) equation, a seminal model for describing wave propagation in highly nonlocal
nonlinear media. By employing the powerful extended F-expansion technique, we derive arich
spectrum of exact analytical solutions. These include bright, dark, and singular solitons, alongside
singular periodic, periodic, Jacobi elliptic, exponential, hyperbolic, and Weierstrass elliptic wave
solutions. The diversity of these solutions elucidates the profound and intricate interplay between
strong nonlocality and nonlinearity in governing wave formation and evolution. Furthermore, we
perform a detailed linear stability analysis to investigate the modulation instability (MI) gain spectrum
within the system. This analysis identifies the critical parameters—most notably the degree of
nonlocality and coupling strength—that dictate the stability regimes and the dynamic evolution of the
solitons. Our analytical findings are vividly complemented by graphical representations that illustrate
the distinctive structures of the obtained solutions and the precise conditions for the onset of MI. This
research provides crucial insights into the robust propagation of localized waves in integrable nonlocal
systems, with direct potential applications in pioneering fields such as nonlinear optics, Bose-Einstein
condensates, and photonic lattice design, where precise control over wave dynamics is paramount.

Keywords Nonlocal LPD model, Wave propagation in complex media, Extended F-expansion method,
Soliton, Stability analysis.

Numerous physical phenomena, including those in solid mechanics, fluid dynamics, plasma physics, chemical
processes, and atmospheric science, are represented by nonlinear partial differential equations (NPDEs).
By applying various analytical techniques, it is possible to obtain exact solutions to these NPDEs'~®. Recent
advancements in analytical methods, including Lie symmetry analysis’, bifurcation theory®, and stochastic
analysis®, have significantly expanded our ability to solve complex nonlinear models across various scientific
domains. In the past two decades, there have been numerous successful applications of nonlinear optical
solitons in various fields of science and engineering!*-'°. The study of solitons has become a cornerstone in the
examination of nonlinear wave phenomena across multiple scientific disciplines, ranging from fluid dynamics
to optics. Solitons are unique in that they maintain their shape while propagating at constant speeds over long
distances due to a precise balance between nonlinearity and dispersion'’.

Localized pulses of light with a unique intensity, width, and shape are called optical solitons. These powerful
beams retain their shape while propagating in material because their spreading due to three nonlinear effects
can exactly balance each other. The first of these effects involves a direct distortion of the pulse, which usually
leads to broadening; the second is self-phase modulation, where the phase acquired by the pulse is determined
by its intensity; and the third is the Kerr-nonlinearity-induced change in the refractive index of the propagation
medium that is either self-focusing or self-defocusing, further amplifying or attenuating the pulse itself. In optical
contexts, the stability and propagation of these waveforms are crucial for advancements in telecommunications
and data transfer technologies. Researchers have dedicated significant efforts to unpack the complexities
of soliton dynamics, particularly in the presence of modulation instability (MI), which can lead to a marked
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change in the behavior of wave packets'!. Among the models examining soliton interactions, the Lakshmanan-
Porserzian-Daniel (LPD) system stands out due to its incorporation of nonlocal interactions, allowing for a
rich tapestry of solitonic structures, including breather solutions and rogue waves!2. Introduced to describe
magnetic interactions in nonlinear systems, the LPD model has found applications in optical fiber analysis,
where both the spatial and temporal dispersion of waves is of paramount importance'. Modulation instability
plays a pivotal role in the evolution of solitons within nonlinear systems. MI occurs when a stationary solution
becomes unstable under perturbation, leading to the formation of new wave structures, often characterized by
significant amplitude fluctuations. It is particularly noteworthy in optical systems where external conditions can
precipitate such instabilities, potentially resulting in phenomena such as soliton explosions!®. Understanding
and controlling MI is therefore of critical importance, particularly in contexts like optical communications,
where signal integrity relies on the predictable behavior of solitonic waves'”. Inspecting the dynamics of optical
solitons through optical fibers is essential in the development of telecommunications industry (see'®-2%). In
this research, we delve into the dynamics of the coupled nonlocal LPD system by employing the Extended
F-Expansion technique, which proves advantageous in deriving exact solutions for a variety of nonlinear partial
differential equations. This analytical method has emerged as a powerful tool for exploring and characterizing
complex solitonic solutions, offering insight into their stability and interaction properties?. Recent advances
in soliton research have further expanded our understanding of nonlinear wave dynamics in optical fibers.
Various studies have explored shape-changing solitons, chirped dark solitons, and W-shaped solitons in different
nonlinear Schrodinger equation frameworks®*-32. Additionally, investigations into dark and singular solitons
using extended rational methods have provided new insights into soliton behavior in nonlinear optical systems*.
The exploration of W and M shaped solitons in eighth-order nonlinear Schrodinger equations has revealed
complex soliton structures®, while studies on inhomogeneous vector optical rogue waves have demonstrated
deformation effects in coupled cubic-quintic nonlinear Schrodinger equations®. Research on instabilities and
solitons in systems with spatio-temporal dispersions has enhanced our understanding of modulational instability
phenomena’®. Complementary studies on energy localization in tubulin systems*” and modulational instability
in spin-orbit-coupled Bose-Einstein condensates®® have provided additional perspectives on nonlinear wave
dynamics. Furthermore, investigations into the impact of fourth-order dispersion on modulational instability
spectra have contributed to our understanding of wave propagation in glass fibers with saturable nonlinearity™.
In our study, we treat the coupled system described by the new nonlocal Lakshmanan-Porserzian-Daniel

equations as*’:

iGy + Gazza +4 (|G + QL) Gaw +2Cs [2(G2G" +QuQ") + (IG +1Q) ]

126 [wmc* + oG+ GGy +2Q00@ + QuQ + QQly + 3 (IGP + \Q\z)z] —0, (1)
iQt + Quaze +4 (|G + Q1) Qua +2Qx [2(G2G™ + Q.Q") + (IGI* +1Q1%) ]

+2Q [2GMG* + GGy + GGy +2Q2:Q° + Q:Q% + QQi, + 3 (1G] + |Q\2)2} =0, )

where G(x, t), Q(x, t) are the wave profiles and ¢, x are time and space variables.

In the current study, the extended F-expansion technique is employed to derive multiple exact solutions—
including bright, dark, and singular solitons, as well as singular periodic, periodic, Jacobi elliptic, exponential,
hyperbolic, and Weierstrass elliptic solutions—for the proposed coupled nonlocal Lakshmanan-Porsezian-Daniel
(LPD) model. This work addresses a significant research gap in the current literature, where comprehensive
studies on exact soliton solutions for the coupled nonlocal LPD system remain limited. The novelty of this study
lies in the systematic exploration of both coherent structures (solitons) and modulation instability in the same
framework, offering a unified view of nonlinear wave dynamics in nonlocal media. Furthermore, we extend
the application of the extended F-expansion method to a coupled system with nonlocal interactions, yielding a
richer variety of solutions than previously reported. These findings provide new insights into the propagation and
stability of optical solitons in settings with spatially nonlocal nonlinearities, which have potential implications for
advanced telecommunications and optical computing. To illustrate the physical characteristics of the obtained
solutions, three-dimensional and two-dimensional graphical representations of selected results are presented.

The paper is structured into the following sections: “Summary method” presents the proposed method
in detail. It provides a comprehensive framework for understanding the methodologies used throughout the
study, focusing on the technical aspects and rationale behind the approach used. The results derived from the
application of the proposed method are discussed in “Soliton dynamics for LPD system”. It explains the results
and their implications, supported by the data and analyses conducted during the research. Section “Soliton
dynamics for LPD system” discusses the modulation instability analysis of the model. Section “Modulation
instability” uses both 3D simulations and 2D graphs to illustrate the different dynamic wave patterns across
different insulation solutions. This visual representation enhances the readers’ understanding of the results and
their practical applications. The final section concludes the work. It summarizes the main findings, discusses
their significance and potential applications, and suggests future research directions.

Summary method
The F-Expansion method is a powerful mathematical technique for deriving exact solutions to NLPDEs?.
Step 1: Assume that an NLPDE is displayed as follows:
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R (G, Gy, Ge, Gaa,...) = 0. (3)
Step 2: Eq. (3) is transformed into an ODE using the traveling wave transformation shown below:
Gz, t) =PI, d=x+0¢t, (4)
where ¢ represents the soliton’s propagation speed. Thus, Eq.(3) can be expressed as follows:
AP, P ,P",..)=0. (5)
Step 3: The general solution is expressed as a polynomial in terms of a function (%) as follows:
N
Pl =no+ > [m i) +x n ()], (6)
i=1

wheren; and A; (i = 1,2, ..., N) represent constants in the solution equation that need to be determined, while
the function p(¥) achieves the following constrain:

L) =a/ro+7p + 72 p2 + 1 pd + 1apd (7)

and o = *£1.

Step 4: In order to assess the positive integer N, the balancing principle (BP) is employed to Eq.(5).

Step 5: Substituting Eqs. (6) and (7) into Eq. (5) generates a polynomial in terms of j. Setting the coeflicients
of 1 to zero through algebraic polynomial operations results in a nonlinear system of algebraic equations. This
system can be solved using various computational tools, such as Wolfram Mathematica, leading to multiple exact
solutions for Eq. (3).

Soliton dynamics for LPD system
To generate the exact solutions for Egs.(1) and (2), we apply the transformation displayed below:

Gz, t) = Py [0] e Tortette), (8)
Q(z,t) = Py [0] e'Tmrtette) ©)

where
d=z+pt, (10)

Here, P; (where j = 1, 2) denotes the amplitude parameters, ¢ stands for the soliton’s propagation speed, while
w and & correspond to its angular frequency and wave number, respectively. The term ( represents the phase of
the wave. By inserting Eqgs. (8), (9), and (10) into Egs. (1) and (2), and then separating the resulting expression
into their real and imaginary components, we arrive at the following system:
P 4 (k" —w) P — 1267 P] + 6P — 126° P P2 + 12P7 P} + 6P} P,
+10P;(P})? + 8P; PP, + 2P; P — 6x>P}' + 10P? P} + 4P2P} 4 6P;P;P!' =0, (11)
(45° + @) P — 24k P} Pj — 125P2 P — 126P; P; P} — 4sP\”) = 0. (12)
We presume that:

P; =h Pj, (13)

with the condition h # 0, 1.
Accordingly, Egs. (11) and (12) take the form:

PY 4 (k" —w)Pj — 126> P} + 6P) — 12 h* k° P} +12h* P} + 6h* P} + 10P;(P})* + 8h> P; (P})°
+2h°P; (P))® — 6 k*P}' +10 P} P;' +4h*P; P;' +6h*> P} P}’ =0,

h(4K® + @) P — 24k P} P — 12h*Kk P} P — 12h°xP} P} — 4xP\> = 0 (15)
Therefore, the above equations can be formulated as:
P® 110 (B> +1) PP} —6x2P) + 10 (h2 +1) P; (P})° + (v* —w) P; + (—120%2 — 12+%) P} +

(6h" +120° +6) P} =0, (16)
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— (4% + p) P} + 65 (1+h*) P} P] + kP\¥ = 0. (17)

By performing integration of Eq. (17) with respect to ¥ and assuming the constant of integration is zero, we
obtain:

— (45° 4 p) P+ 26 (14 h*) P} + kP}' = 0. (18)
Through Eq.(18), then Eq.(16) can be formulated as:
kP 410 (h% +1) kP; (P}) 2 = 14 (h* +1)° P} +10 (A + 1) (4x° + p) P}

4 (19)
—&(23& —|—6I<Jp—|—w) P; =0.

By applying the Balancing Principle (BP) between the highest order derivative Pj(4) and the highest nonlinear
term Pj5 in Eq.(17), we find m + 4 = 5m, then m = 1. The resulting exact solution of Eq. (17) takes the form:

A

Pl =mno+m H[ﬂ]+m~

(20)

Inserting Eq. (20) into Eq. (19) while incorporating Eq. (7), and equating the coefficients of identical powers
to zero, results in a system of nonlinear algebraic equations. This system is formed by grouping terms with the
same powers and setting them equal to zero. The resulting equations can be solved using Wolfram Mathematica
to provide the following results:

Casel: 7y =79 =73 =0,

2 3
_ _ /T4 _ _ 4P _4r"+p
(1.1) mo=0, m = h2+17)\1—07w— Tk +ﬁ2+2np772_7n .
374 3311k° + 726x°p — 36p° 6 (45° + p)
1.2 =0 =2,/ ——m X1 =0 = — - @@/
( ) o » 7 (h2 + 1)7 1 ; W 16952 y T2 13k
Through the case (1.1), we can get all possible results as follows:
(1.1, 1) When p = —4x®, and 74 = —1, we get bright solitons as:
1 i(—xkK w
Gii= e sech (z — 4k’t) gllmmntitte) (21)
Qii=nh %ﬂ sech (:r - 45315) ellmontttw) (22)

Through the case (1.12 , we can get all possible results as follows:
(1.2,1) Forp = T'i —4k”, and T4 = 1, the singular periodic solutions take the forms:

— 3 13k 3 i(—zr+(+tw)
G1'271 =2 m Csc |:.Z' + (T — 4K ) t:| e y (23)
3 13k 3 i(—zh+CHtw)
=2 s = 24
@raa =2 hy [ ogay o {H < 6 " )t} c ) @4
or
— 3 13k 3 i(—zr+{+tw)
G1,272 =2 m sec |:fB + (7 — 4K ) t:| e y (25)
3 13k 3) } i(—zhtCttw)
=2 =5 1 S — -4 26
Q12,2 h AGEY sec [x + ( 5 k2 )t e , (26)
(1.2,2) Forp = _1%4 —4K®, and 74 = 1, the singular solitons of Egs.(1) and (2) are given as:
3 13k 3 i(—zr+(+tw)
G123 =2 T0EE0) csch [m — (T + 4k ) t] e , (27)
3 13k 3 i(—xr+(+tw)
=2 ————csch |z — — +4 t . 28
Q12,3 h T2 csc [1: ( 5 + 4K ) } e (28)
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(1.2,3) For 74 = land either p = —(£2= + 4x®), or p = (£2& — 4x®), we get hyperbolic or periodic solutions

as shown:
G124 =2 \/Tsmh - + Ak ) } ei(—acrwrCHw)7 (29)
Qi24=2h \/T_Hsmh :r — 13—” + 4K ) } ellartittn) (30)

Gia5 =2, / sm 1‘ + 3/-@ — 4&3) t} ei(fx'HcJ’tw), (31)
Qi2s5=2h 75— h2 D sin :v + — 4K ) } elHmmntitte) (32)

(1.2,4) When 72 = 0 and 74 > 0 hence, we derive rational solutions as:

or

Grop = — 203 gilentitt), (33)
' (pt+z) \/7(h?2+1)
2a h 3 i(—zk w
Qi.25 = — V3 elmmmhette), (34)

(pt+x) /7 (h%+1)
Case2: 71 =73 =0.

7S — 263 p + k2w — p?

4k +p
) T2 =
2K27y K

7 (3311k° + 726K p 4+ 1695w — 362 6 (4k> +
(22) 70=0, g =2 A =0, 0= ( P p),m:—(ip)
h2 + 7(h2 +1) 34476274 13k

2

(2.1) 17()—0 m = )\1—0 T0 =

TS — 2K3p + K2w — p? 78 — 263 + KPw — p 4k3 +p
2.3 =0 =0, \i =%4/— = =
( ) 7o > M ) 1 \/ 2 ((h2 ¥ 1) 527_4) , 70 20&4527'4 , T2 OCZH

Through the case (2.1), we can get all possible results as follows:
2.1,1) Whenmo =1—m°, me=m*“—1, 7y = —m?and 0 < m < 1, we derive Jacobi elliptic function
solutions as:

Gai = /hQle en [x + (QQH (mz . 1) . 4&3) t] ei(fzf-mLCthw)’ (35)
Q21,1 =" 4/ WL; cn [m + (a2f€ (m2 - 1) - 4/{3) t] gllmrtitie) (36)

When the parameter m = 1, Egs. (35) and (36) yields the following bright soliton solutions:

G2 =

W sech (3: - 4.‘4315) gllmantttw) (37)

Q212=nh sech (as - 4&325) eHmentittw) (38)

L
h?+1

(2.1,2) Whenmo=—-14+m? 7=2—-m? 74y=—landm € [0, 1], we derive Jacobi elliptic function
solutions as:

G213 = \/Edn [m — (a2H (72 +m2) +4K3) t] ei(—zn+§+tw)7 (39)
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Q213=h /%ﬂdn [w o (0[2’_i (_2 +m2> _’_453) t] ei(—xn-‘rC-Hw). (40)

When the parameter m = 1, Eqs. (39) and (40) yields the following bright soliton solutions:

G2.1,4 = \/E sech (l‘ =+ (a2 — 4,€2) :‘it) e’i(*szrC‘Hw)’ (41)
Q214=h \/7h21+1 sech (gg + (a2 _ 452) mt) (TRt Cttw) (42)

Through the case (2.2), we can get all possible results as follows:
2
2.2,1) When 7 <0, 74 > 0and 79 = 47724, we get dark solitons as:

3T 7'2} i(—xr+CHtw)
—= 43
Ga21 =24/ (2 +1) tanh [(pt+cc) A/ 5| € , (43)

3 T

Q2A2,1 =2h —m

tanh [(P t+ I) _% ei(—zn+€+tw). (44)

2
(2.2,2) When e >0, 74 > 0and 79 = 47724, we derive singular periodic solutions as:

3 T2 T2 i(—xk tw)
Gono =2 ]|—5T2 ¢ { t+) /7} (martCHtw) 45
2.2,2 T2 1) an |(p t + x) 5| ¢ (45)
3 T2 T2 i(—zht(ttw)

=2h — t t —= . 46

Q2.2,2 ’/14(h2+1) an {(p +x) 4/ 5| ¢ (46)
m27_2
2

(2.2,3) When 1o <0, 74 > 0,70 = and 0 < m < 1, we derive Jacobi elliptic function solu-

(m2+1)274

tions as:

3m? / T2 T2 | i(—wrtCttw)
G =24/— t — — 47
2.2,3 \/ 7(h2 + 1) (m2 + 1) sn {(P +z) mri Vo€ ) (47)
0 —_9ph _ 3m2 1y sn |(pt+a) /- T2 T2 | gi(—antittw) (48)
228 = 7T(h2+1) (m2 + 1) P m2+1 V2 ‘

When the parameter m = 1, Eqs. (47) and (48) yields the following dark soliton solutions:

-3 T2 T2 |  i(—zrt(ttw)
=24/——-—— tanh t —— 49
G224 Az + 1) an [(p + ) 3 } e , (49)
—3 7 { 72} i(—rtCHw)
=2h,/————= tanh t - . 50
Q22,4 4007 1) anh |(p t + x) 5| € (50)

Through the case (2.3), we can get all possible results as follows:

(2.3,1) When7e <0, 74 > 0,70 = ﬁ and 7k% — 2n3p + k2w — p2 < 0, hence, we obtain singular

T

soliton solutions of Eqgs.(1) and (2) as shown:

6 _ 3 2, — p2 .
Gogr = i\/7/<a (}12:+pl-; K2OJ P~ oth {(p t+ ) 7%2 gilmantiHte) (51)
KR“T2

76_23+2_2 i(—xk w
Q2A3,1=:th\/ al (hffl);:; P~ coth [(pt—i—a)) —%} gil-antott), (52)
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(2.3,2) When7e >0, 74 > 0,70 =

solutions as:

47 and 7S — 263p + k2w — p? < 0, we derive singular periodic

— (7% — 2K3p + K?w — p?) { /7'2} i(—zhCtw)
Gas2 i\/ (h? + 1) K272 cot |(p t + z) 5| ¢ ) (53)
—(Tk® — 2r3p + K2w — p?) { T2 i(—artCttw)
55 = = . 54
Q23,2 i\/ T2+ 1) nrs cot |[(pt+x) 4/ 5| ¢ (54)

m2(1—m2)r2 ) .
(2.3,3) When e >0, 74 < 0,70 = 27&%12);’, (2m2 — 1) (7/@6 — 2/1‘5p+ Klw — p2) > 0and

% < m < 1, we get Jacobi elliptic function solutions as:

(2m? — 1) (78 — 2k3p + k2w — p?) T2 (=R Ctw)
Gasa i\/ a2 (h? 4+ 1) k2m2?my ne | (pt+2) om2 —1]| ¢ ;59
@m® — 1) (75— 2p + P — ) | iconiciin
=+ T — . (56
@233 h\/ a? (h? + 1) k2m27m ne (pt+a) om2 —1]| © (56)

When the parameter m = 1, Egs. (55) and (56) yields the following hyperbolic solutions:

kS — 2Kr3p + k2w — p? i(—zhtCHtw)
G234 = i\/ o7 (2 + 1) r2ms cosh[(pt+z) /12| e , (57)

TkS — 2K3p + K2w — p? i(—zr w
Q234 = ih\/ a2 (h2p+ 1) K272 . cosh[(pt+z) /2] € ¢ Tt

(58)Case 3: 7o = 74 = 0.

24/3(4r%+0) 870/ 3(4r%+p) 4\/@ — 6857+ +3078r% p+1272p° T3
" \/ﬁml =0 M= 71\/91(h2+1)n T T Vs, YT 118352 T8 = T2

. Through this case, all attainable outcomes are derived as follows:

3
When 71 <0, 70 <0,and K (4“ + P) > 0, hence, we obtain Weierstrass elliptic function solutions as:

2[47’0—|—T1p(\/§(pt+13) —%,—%)]
/(B2 + 1)k o (/B (pt+ o), -2, -4

S 3@ £ 1) 2 [4r0 + g (/2 (pt + x), — 421, —470)] ) (60
‘ VL2 + )k [ ny/(R2+ 1)k o (\/Z(pt + ), -2, —4m0)

Case 4: T3 =74 =0.

6+/4r3+p =0 M\ = k71 V13 w = 6199x°49606x° p+2088p2 _
—— ,

o= \/91(R2+1)k P = 2\/7 K (h2+1)(4n3+p) N 11832 P
In this scenario, all attainable outcomes are derived as follows: When 72 > 0 and K (4"0 + P) >0, we
obtain exponential solutions as:

3 (4k3 + p)

GS.l -
VL (h2 + 1)k

) ] 6i(—xm+§+tw)7 (59)

13 w73 _ 12(4r%+p)
48(4K3+p)’7_2 = T13aZ s

o (453 + p) 6 (2 7o ellp th2) vT2] o (27— 1)) i(—wrACtw)
41 = € J (61)
91 (h2 + 1)k 71— 273 ell@te D) V72l
(4x3 + p) 6 (2 Ty elP ) VTRl (2 7y — 1)) (—mrtCtw)
Qi1 = — - e : (62)
91 (h2+ 1)k 71— 273 elletr D) V72l

Summary of solution types and physical interpretations

This section provides a comprehensive summary of the diverse exact solutions obtained for the coupled nonlocal
Lakshmanan-Porsezian-Daniel (LPD) equations through the extended F-expansion method. The rich variety
of solution types presented below demonstrates the complex nonlinear dynamics governed by the system.
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Table 1 categorizes these solutions, their mathematical forms, key parameter constraints, and detailed physical
interpretations in the context of wave propagation in nonlocal nonlinear media.
)

4r3 . X
3( +p) ez(—znﬁ»gﬁ»tw)’ and B(ZC,t) — _ ez(fzn+g+tw).

where A(z, t) = NV
91(h2+1)k \/91(h2+1)k
Modulation instability
Modulation instability (MI), a well-studied phenomenon in nonlinear physics, refers to the exponential growth
of minor perturbations superimposed on a continuous wave (CW) solution in nonlinear systems. This often leads
to the formation of localized structures, such as pulse trains, and is significant across various fields, including
hydrodynamics, engineering, fiber optics, and plasma physics. When nonlinear and dispersive effects interact,
many nonlinear processes exhibit instability in steady-state modulation. In the context of optical fibers, where
it is crucial for designing communication systems, modulation instability has been extensively researched, with
nonlinearity arising from the optical signal traveling through the fiber’s wave field.

The main goal of this section is to analyze the equation’s MI using the linear stability technique.

We consider that the system under study has the steady-state solutions as follows:

G= [f(x,t) + \/ﬂ et (63)
Q = [H(z,t) + VA] 7, (64)

The normalized power value is denoted by A, with disturbance terms represented by F(x,t) and H(z, t). By
substituting Eqgs. (63) and (64) into Egs. (1) and (2), and then applying linearization, we obtain:

Frooox + 144 Fux + 6A Huo +iF; + (7247 = A) (F* + F) + 48A% (H" +H) =0, (65)

Hsoox + 144 Huxe + 6A Foe + My + (1247 = A) (K" + H) + 48A% (F* + F) = 0. (66)

However, in mathematical notation, the conjugate of a complex function is represented by the symbol x. It is
significant to remember that the perturbation of 7 (z, t) will be derived. Furthermore, one may similarly obtain
the mutual information (MI) analysis associated with the perturbation 7{(z, t) by using the same approach that
we did for this derivation. By using this method, we establish a clear connection between the perturbations we
study and the ensuing MI inquiry, guaranteeing that both facets are fully covered and comprehended.

Presume the following can be used to express the solution for the system in Egs. (65) and (66):

F = fl ei(L T—w t) + f2 671(11 T—w t)’ (67)
and

H = fl ei(L T—w t) + f2 677L(L T—w t)’ (68)

where the normalized wave number is L and the perturbation frequency is w.

Substituting Eqs. (67) and (68) into the linearized system (65) and (66) yields expressions that must vanish
identically for all values of x and t. This fundamental requirement implies that the coefficients of the exponentially
varying terms e'(“* =% and e (L= =% must separately equal zero.

The condition of vanishing coefficients leads to a homogeneous system of equations for the amplitudes f1
and f2. For non-trivial solutions (f1, f2 # 0) to exist, the determinant of the system’s coefficient matrix must
vanish. This solvability condition yields the characteristic equation:

A A\
det (Bl BQ)—O,

where the matrix elements A1, A2, B1, B2 are functions of w, L, and .A. Solving this determinant condition
produces the dispersion relation:

w=+L /(L2 —20 A) (2 A(120 A — 1) + L4 — 20 A L?). (69)

Equation (69) provides a solid foundation for understanding the linear stability analysis of the system’s steady-
state conditions. A real value for the parameter w indicates stability, meaning the system can maintain its steady-
state response over time, even with minor perturbations. Conversely, an imaginary value of w signifies instability,
where disturbances will exponentially grow, leading to diverging behavior. To assess this instability, the following
techniques are employed to develop and determine the modulation instability gain spectrum, which quantifies
the level of instability.

G(A) =2 Im [iL V(L2 =20 A) (2 A(120 A—1) + L4 — 20 A L?)]. (70)

Figure 5 presents a detailed three-dimensional analysis of the gain spectrum |G (A, L)| as a function of both
wave number L and normalized power .A. This representation clearly demonstrates how the instability regions
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evolve across the parameter space, showing the expansion of unstable bands with increasing power levels. The
plot reveals maximum gain values reaching approximately 20,000 at specific parameter combinations, indicating
highly unstable regions where perturbations experience significant exponential growth. Also, this figure provides
a complementary two-dimensional cross-sectional view of the gain spectrum at A = 5.2, showing the precise
relationship between wave number L and gain magnitude |G|. The asymmetric shape of the gain spectrum
indicates different growth rates for various perturbation frequencies, with a rapid increase followed by a more
gradual decrease in gain magnitude. These additional graphical representations enhance our understanding of
the system’s stability characteristics and provide valuable insights for practical applications where controlling
modulation instability is crucial, such as in optical communication systems and nonlinear wave propagation
environments. The comprehensive graphical analysis confirms the theoretical predictions and offers complete
characterization of the instability properties across the parameter space, particularly highlighting the dangerous
parameter regions where extreme instability occurs.

Graphic representation of solutions

This section presents comprehensive graphical simulations of the obtained solutions to elucidate their physical
characteristics and dynamical behaviors. Each figure demonstrates distinct types of soliton solutions extracted
from the governing equations, with specific parameter selections to highlight their unique properties. The
physical interpretations of these solutions are discussed in the context of wave propagation in nonlinear
dispersive media. Figure 1 illustrates the bright soliton solution described by Egs. (21) and (22) with parameter
values K = —0.7, ¢ = 0.8, and h = 2. Bright solitons, characterized by a localized intensity peak on a zero
background, represent stable wave packets that maintain their shape during propagation through a balance
between nonlinearity and dispersion. These solutions are particularly significant in optical fibers and Bose-
Einstein condensates, where they describe self-trapped waves that propagate without distortion. The figure
clearly demonstrates the characteristic sech-shaped profile with amplitude modulation along the temporal
dimension. The singular periodic solutions governed by Egs. (23) and (24) are presented in Fig. 2 for parameter
values k = —0.87, ( = 0.8, and h = 6. These solutions exhibit periodic singularities with undefined points at
regular intervals, representing wave collapse phenomena in certain nonlinear media. Physically, such solutions
may describe extreme wave events or breakdown regions in plasma physics and nonlinear optics where the wave
amplitude becomes theoretically infinite at discrete points. The figure shows the periodic repetition of singular
points along the propagation direction. Figure 3 displays the singular soliton solution obtained from Equations
(27) and (28) with parameters kK = —0.7, { = 0.78, and h = 6. Singular solitons represent localized waves with
a point singularity, typically manifesting as a dip or cusp in the wave profile. These solutions are physically
relevant in describing rogue waves or critical phenomena in nonlinear systems where energy concentration
leads to singular behavior. The graphical representation clearly shows the localized nature of the singularity and
its spatial confinement. The dark soliton solution characterized by Equations (43) and (44) is depicted in Fig. 4
for parameter values kK = —0.8, p = 0.9, w = 0.8, 2 = —0.7, { = 0.78, and h = 3.6. Dark solitons appear as
intensity dips on a continuous wave background and represent regions of phase discontinuity. These solutions
are physically significant in describing void-like structures in nonlinear media and have been experimentally
observed in optical fibers and matter waves. The figure demonstrates the characteristic tanh-shaped profile with a
phase jump across the soliton center. The three-dimensional plots show the evolution of wave profiles along both
spatial and temporal dimensions, while the contour plots provide complementary information about intensity
distribution and gradient variations. The careful selection of parameter values enables the demonstration of both
qualitative features and quantitative relationships between various soliton types. These graphical representations
not only validate the analytical solutions but also provide physical insights into the behavior of nonlinear waves
in the considered system. The distinct characteristics of each solution type-whether bright, dark, or singular-
highlight the rich dynamical diversity achievable in nonlinear dispersive media under appropriate conditions.

Conclusion

This study primarily focused on the coupled system of the new nonlocal LPDE. The Extended F-Expansion
method was first applied to explore the solitons and other solutions of proposed model. Our analysis produced
a range of solutions, such as bright, dark, and singular solitons, as well as singular periodic wave solutions,
periodic wave solutions, Jacobi elliptic wave solutions, exponential wave solutions, hyperbolic wave solutions,
and Weierstrass elliptic solutions. We ensure the presence of the obtained soliton solutions by using the
constraints in the parameters. Graphic representations of such solutions were also introduced as a way to clarify
the physical nature of some solutions. The solutions extracted in our paper are novel, and this model hasn’t
studied using this technique before.

The investigation of MI indicates crucial insights into the solutions’ stability. A detailed analysis was
performed to determine the conditions under which MI occurs, demonstrating that certain parameters within
the system can lead to instabilities that enhance wave amplitude and alter wave shapes dynamically. These results
contribute significantly to the theoretical understanding of nonlinear wave propagation and can potentially
influence experimental designs in related fields. The findings are pertinent in various physical phenomena
wherein LPD model real-world applications, including optical fibers, plasmas, and hydrodynamics. The ability to
predict and control MI in these contexts opens new avenues for developing advanced materials and technologies,
particularly in optics and energy transmission systems. Future research should focus on extending these methods
to higher-dimensional cases and examining their applicability in more complex nonlinear systems. Moreover,
exploring numerical simulations to validate the analytical solutions will be a critical step in bridging theoretical
predictions with experimental results, fostering a more comprehensive understanding of dynamic instabilities
in various media.
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Figure 2. Singular periodic solutions of Eqgs. (23) and (24).
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