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Deep learning techniques in image processing are gaining widespread application, with growing 
research in medical image analysis and diagnosis driven by advancements in image recognition 
technology. This study aimed to addresses the challenges of lung nodule recognition and classification 
using convolutional neural networks (CNN) and proposes a novel multiscale convolutional neural 
network (MCNN) model. The MCNN model integrates Gaussian Pyramid Decomposition (GPD) to 
enhance CNN-based image recognition for lung nodule detection. A practical study was conducted 
to apply the MCNN model, and its performance was compared with various algorithmic models and 
classifiers. Experimental results show that the MCNN model outperforms traditional CNN methods, 
particularly in detecting solid nodules and pure ground-glass nodules, with an improvement in F1 
values of over 2.0%. Furthermore, the MCNN model demonstrated superior overall accuracy in lung 
nodule detection. These findings underline the practical implications of deep learning in advancing 
medical image analysis and diagnosis, offering new possibilities for improving the prognosis of lung 
nodule-relate diseases.
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Recent advances in deep learning for medical image analysis have demonstrated significant progress in oncology 
applications, particularly in lung cancer detection and classification1–4. For example, one method involves the 
dynamic inspection of casting defect images using the deep learning feature matching method5,6. Another 
method extracts features from the region of interest in test images and subsequently constructs a multilayer 
neural network for product defect detection7–9. A study proposed a learning-based framework for automatically 
detecting fabric defects10. Feng et al. proposed a deep active learning system to maximize the model recognition 
performance. Ren et al. proposed a general surface defect detection method based on deep learning which was 
innovative because only a small dataset was required11. These research on computer vision–based inspection 
techniques are increasingly carried out in different industries.

Image recognition is an essential subfield of computer vision technology and a vital application direction of 
deep learning. The development of deep learning technology has facilitated the use of image recognition in many 
fields, including object recognition12,13, facial recognition14, automatic driving15, agricultural intelligence16, 
aerospace17, and other fields18,19. In recent years, image recognition technology based on deep learning has 
provided a broader space for medical and health research, and scholars have used this technology to conduct 
in-depth research in the field of medical imaging and achieved remarkable research results. Examples of future 
research topics may include the following aspects:
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	(1)	 Detection and diagnosis: Various studies have used image recognition for automatic detection and diagno-
sis of medical images20, such as lung nodules21, breast cancer22, and diabetic lesions23. These studies showed 
that image recognition im-proved the early diagnosis rate and accuracy of diseases.

	(2)	 Medical image segmentation: This process separates different tissues or organs in medical images. Many 
studies used image recognition for medical image segmentation, such as tumor segmentation24, blood ves-
sel segmentation25, and so forth. These studies revealed that image recognition could improve the accuracy 
and efficiency of medical image segmentation.

	(3)	 Medical image alignment: This process aligns medical images at different times or in different scanning 
directions. Several studies used image recognition for medical image alignment, such as brain image align-
ment26, heart image alignment27, and so forth. These studies demonstrated that image recognition could 
improve the accuracy and efficiency of medical image alignment.

	(4)	 Medical image reconstruction: This process recovers medical images from low-resolution or low-quality 
data. Several studies have used image recognition for medical image reconstruction, such as computed 
tomography (CT) image reconstruction28, reconstruction of magnetic resonance imaging images29, and 
so forth. The results showed that image recognition could improve the accuracy and efficiency of medical 
image reconstruction.

In general, image recognition is widely used in medical imaging. As new research results continue to emerge, 
its significance is expected to play an increasingly important role in clinical diagnosis and treatment. In recent 
years, lung diseases have become diversified and complicated, especially since the new coronary epidemic. Some 
achievements have been made in medical imaging, especially in diagnosing lung diseases. Researchers have used 
the convolutional neural network (CNN) technique to classify and segment lung CT images to identify diseases 
such as lung cancer, tuberculosis, and emphysema. Unlike other studies, this study focused on identifying and 
classifying pulmonary ground glass nodules to provide a basis for seeking a further diagnosis of diseases and 
to enhance the efficiency of automatic diagnosis. Therefore, this study designed a multiscale convolution neural 
network (MCNN) model based on the traditional CNN model technique with the help of image Gaussian 
differential pyramidal decomposition. The model was applied to recognize multiple categories of lung nodules 
to achieve automatic labeling of lesion nodule locations and nodule categories. Moreover, the model was used to 
automatically mark the location of lesion nodules and identify nodule categories. Meanwhile, the feasibility and 
effectiveness of the model and method were verified by performing experiments with hospital-specific clinical 
lung nodule lesion detection imaging data to explore the search for a scientific and intelligent diagnosis method 
for lung nodule identification.

Methods
Related theory and model elaboration
Convolutional neural network
CNN is a classical deep learning algorithm (Alzubaidi et al. 2021), mainly used in image processing, speech 
processing, natural language processing, and other deep learning fields. CNNs are the first successfully trained 
deep neural networks. They are feed-forward neural networks. The basic architecture of a general CNN (shown 
in Fig. 1) contains an input layer, a convolutional layer, a pooling layer, a fully connected (FC) layer, and an 
output layer.

CNNs are made displacement, scaling, and distortion invariant for image recognition through three features: 
local receptive fields, weight sharing, and downsampling30.

Fig. 1.  Architecture of a convolutional neural network.
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	(1)	 Local receptive field: The area of input neurons connected to each hidden layer neuron, as illustrated in 
Fig. 2.

	(2)	 Weight sharing: Connected neurons share weights and biases within local receptive fields. The hidden neu-
ron output is calculated as:

	
f

(∑ 4

n=0

∑ 4

m=0
wn,maj+n,k+m + b

)
� (1)

where f is the activation function, wn,mis a 5 × 5 weight sharing array, aj+n,k+m denotes the input activation 
value at position j + n, k + m, and b is the shared bias value.

	(3)	 Down sampling: A downsampling layer (pooling layer) is connected behind the convolutional layer to solve 
this problem. Downsampling simplifies the information output from the convolutional layer and reduces 
the resolution of the features.

Gaussian pyramid decomposition
DOG (Difference of Gaussian) is a variant of an image pyramid that uses Gaussian smoothing and difference 
operations to extract the scale-space information of the image. The image can generate N different resolution 
images after Gaussian difference pyramid decomposition. The Gaussian difference pyramid is composed of 
multiple groups of pyramids, where each group contains several layers. The Gaussian difference pyramid is 
further constructed from the Gaussian pyramid based on m-layer n-1 order. The Gaussian difference pyramid 
decomposition process is as follows:

Step 1: initialize i = 0.
Step 2: Sampling on the standard image I(x, y) to obtain the first layer image g0,0 of the first group of the 

Gaussian pyramid.
Step 3: initialize j = 0, x = 0.
Step 4: Convolution of the Gaussian kernel Gx with the image gi,0.

	
Gx (x, y, σ x) = 1

2π σ 2
x

e
(x−x0)2+(y−y0)2

2σ 2 � (2)

	 gi,j+1 (x, y) = gi,j (x, y) ⊗ Gx (x, y, σ x)� (3)

where σ x is the smoothing parameter.
Step 5: Differentiate the Gaussian image gi,j(x, y) from the Gaussian image gi,j+1 (x, y) to obtain the 

Gaussian difference image di,x.

	 di,x (x, y) = gi,j (x, y) − gi,j+1 (x, y) .� (4)

Step 6: j = j + 1, x = x + 1, iterate Step4 and Step5, and when j > n − 1, and x > n − 2, execute Step7.
Step 7: Downsample the image gi,0 to get the Gaussian image gi+1,0 at layer i + 1. When i + 1, go to Step 

3, and the decomposition process ends when I > m − 1 is satisfied.

Fig. 2.  Localized sensory fields.
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Model elaboration
Considering that CNN can automatically learn features without the need for manually designing a feature 
extractor, the accuracy and robustness of the model are improved. CNNs also have features such as translational 
invariance and spatial hierarchy, which enable them to process data, particularly images. The Gaussian difference 
pyramid is an effective image-processing algorithm with the advantages of scale invariance, feature extraction, 
computational efficiency, visualization, and so forth. This study combined the CNN structure and GPD features 
and constructed an MCNN model based on the traditional CNN architecture with multipixel defective images 
as input (shown in Fig. 3).

The MCNN model designed in this study incorporates a sophisticated nine-layer architecture that processes 
multiscale inputs derived from Gaussian Pyramid Decomposition. The network begins with a slice layer that 
separates four multiscale images (the original 640 × 640 pixels image and three Gaussian difference pyramid 
levels) into independent channels for initial processing. The first convolutional layer (Conv1) applies 96 filters 
with 9 × 9 kernels and a stride of 4 to each multiscale input, generating feature maps of dimensions 158 × 158 × 96. 
Following max pooling with a 3 × 3 kernel and stride of 2, the resulting 78 × 78 × 96 feature maps from all four 
scales are concatenated using a concatenation layer, creating a unified multiscale feature representation with 384 
channels (96 × 4). This concatenated feature map then proceeds through the second convolutional layer (Conv2), 
which employs 256 filters with 6 × 6 kernels and stride of 1, producing 73 × 73 × 256 feature maps. After a second 
max pooling operation with 6 × 6 kernels and stride of 2, the 34 × 34 × 256 feature maps are processed by the third 
convolutional layer (Conv3) using 384 filters with 3 × 3 kernels and stride of 1, resulting in 32 × 32 × 384 feature 
maps. A final max pooling layer with 3 × 3 kernels and stride of 2 reduces the spatial dimensions to 15 × 15 × 384 
before the fully connected layers.

The activation function used in both the convolutional layers and the fully connected (FC) layers in this 
model was a rectified linear unit (ReLU). Compared with the hyperbolic tangent (Tanh) and S-type (Sigmoid) 
functions, the ReLU activation function is a nonlinear, nonsaturated function that trains faster than saturated 
functions. The ReLU not only has a nonlinear expression capability but also possesses a linear nature, which 
makes it possible to overcome the gradient vanishing problem of the Tanh and Sigmoid functions by not causing 
the network to be locally optimal due to the nonlinearity when the error is backpropagated.

The network architecture concludes with three fully connected layers: the first two FC layers each contain 
4096 neurons, while the final FC layer contains 5 neurons corresponding to the five classification categories (SN, 
PGGO, MGGO, special type, and normal type). A dropout operation with a rate of 0.5 was performed in the 
first two FC layers of the network to avoid overfitting problems31. Unlike the L1 and L2 normalization, Dropout 
does not rely on modifications to the cost function, but it changes the network itself. This multiscale processing 
approach enables the MCNN to capture both fine-grained textural details and broader contextual information, 
allowing it to effectively distinguish between different types of lung nodules while maintaining computational 
efficiency through the unified processing pipeline after initial multiscale feature extraction.

In this study, Softmax and support vector machine (SVM) classifiers suitable for processing 
multiple classification problems were used, respectively. Assuming that the training samples are 
{(x1, y1) , (x2, y2) , . . . . . . , (xk, yk)} , the hypothesis function will output a six-dimensional vector to 
represent the classification probability values of these six classes. The specific hypothesis function hθ (x) is as 
follows:
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Fig. 3.  Multiscale convolutional neural network model.
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where: x(i) denotes the input, y(i) denotes the output, p
(
y(i)) = k|x(i), θ  denotes the probability that y(i) 

belongs to category k given a known input sample y(i) with model parameters θ.
SVM can map multidimensional features to a high-dimensional kernel space, thus allowing otherwise 

indistinguishable data to acquire new features more conducive to classification. It is a machine learning 
classification method that relies on kernel functions. The radial basis of magnitude kernel function, with good 
classification performance, was chosen for our lung nodule recognition classification experiments. The kernel 
function is as follows: (where the default parameters C = 10 and σ = 0.038 were chosen)

	 K (x1, x2) = e

(
− ∥ x1−x2∥

2σ 2

)
� (6)

In CNNs, the size and number of convolutional kernels were set by themselves. Different convolutional kernels 
extract different features, making them suitable for diverse lung nodule image recognition applications. At the 
same time, the Gaussian difference pyramid can detect features in the image at different scales, achieving scale 
invariance. This means that objects in the image can be detected regardless of their size variations, which is 
beneficial for recognizing the same type of lung nodules of different sizes. This study validated the effectiveness 
of the MCNN model incorporating GPD in lung nodule image recognition using specific clinical experimental 
data.

Empirical analysis-lung nodule image recognition experiment as an example
Description of the process of identifying common lung nodules
The incidence of ground glass opacity (GGO) nodules in the lungs has been increasing in recent years, and many 
patients are found to have multiple GGOs. However, the management of multiple GGOs is still controversial. 
GGOs in the lungs are an imaging presentation, encompassing various pathological types, some of which are 
early-stage lung cancers. A pulmonary ground glass shadow is a focal nodular hyperdense shadow in the lung 
that is not dense enough to obscure the bronchial vascular bundles traveling within it. They are classified as pure 
ground-glass opacity (PGGO), solid nodule type (SN), mixed ground-glass opacity type (MGGO), special type 
(S), and normal type (N) (shown in Fig. 4), depending on whether they contain a solid component. Pulmonary 
GGO encompasses pathological types such as malignancy, benign tumors, inflammation, interstitial lung 
disease, and intrapulmonary lymph nodes. Several studies suggested a close relationship between the imaging 
presentation and the pathology of GGO32–34.

A prospective clinical trial led by the National Cancer Centre in Japan included GGO35 with nodules ≤ 3 
cm in maximum diameter and solid components ≤ 5 mm. The study showed that GGO progressed sequentially 
from PGGO to solid components visible in the lung window, to solid components visible in both the lung and 
mediastinal windows, and this progression was extremely slow. The Fleischner Society36 recommended that 
further positron emission tomography–CT for multiple GGOs should be performed if a prominent partially 
solid GGO lesion of 8–10 mm existed to facilitate a more accurate assessment of prognosis and optimize 
preoperative staging. The maximum diameter of the main multiple GGO lesion and the maximum diameter of 
the solid component/maximum diameter of the nodule ratio (C/T value) were references for the physician to 
determine the benignity and malignancy of the nodule and the timing of surgery. Kim et al. reviewed 40 cases of 
surgically resected PGGO and found that all PGGOs < 5 mm were benign nodules, while only 10.5% of PGGO 
5–10 mm were lung malignancies37.

In practice, most lung nodule images were determined through CT scans and visual inspection by physicians. 
Table 1 provides the common conditions and criteria for determining lung nodule images in a hospital38–40.

In this study, a multiscale CNN model was constructed to experimentally validate the classification and 
detection of lung nodule images based on common conditions and criteria. The main steps involved in the 
construction were as follows:

Fig. 4.  Image of the Criteria for Identifying a Lung Nodule.
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Step 1: The Caffe open-source framework for deep learning was selected as the experimental environment for 
building multiscale CNN models.

Step 2: During the construction of the experimental environment, raw lung nodule image data and publicly 
available machine learning image library data were collected using hospital CT detection equipment to form a 
sample dataset. The obtained lung nodule images were processed and displayed on the monitor.

Step 3: The obtained lung nodule images were intercepted, and the intact solid nodules, MGGO, PGGO, 
special types, and untreated normal types were selected. The detected “typical nodule images” were normalized, 
and the obtained image size was standardized to 640 × 640 pixels. A standard image dataset of nodules was 
created, and experimental samples were formed.

Step 4: The experimental samples were used to train and validate a multiscale CNN model using Softmax and 
SVM classifiers. Comparison experiments were conducted, and various nodal images were labeled.

Step 5: Test samples were randomly selected from each category in the standard sample image dataset, and 
the classification results and accuracy of the model in detecting lung nodule images were analyzed.

Data acquisition and pre-processing
Lung nodule images from hospital patients were acquired using a CT scan unit and an image acquisition card. 
This system obtained images of the patients’ lung nodules from the CT scan, received and transmitted image 
data, acquired lung nodule images, and displayed processed images on a monitor. The dataset was obtained from 
two primary sources: clinical lung nodule images from patients at Chongming Hospital, Shanghai University 
of Medicine & Health Sciences, and publicly available data from The Cancer Imaging Archive (TCIA) Public 
Access database. The dataset contained over 4000 raw images extracted from different categories of images 
across various detection periods and publicly available machine learning image libraries.

Disparities were noted in the images of lung nodules acquired in different orientations and individual patient 
physical conditions. Therefore, the raw nodule images were preprocessed for normalization. In this study, lung 
nodule images acquired from CT scans were selected to build a standard image dataset. Complete nodule images 
and normal-type images were chosen, resulting in more than 4000 standard sample images. The standard image 
dataset was artificially extended by rotating the images to improve model training quality, resulting in more 
than 10,000 standard sample image datasets. These included typical real type, MGGO type, PGGO type, special 
type I, and normal type. The obtained standard sample image dataset was divided into three parts in a certain 
proportion: training set, validation set, and test set (shown in Table 2).

In this study, the acquired standard sample images underwent multi-scale preprocessing using Gaussian 
Pyramid Decomposition. Specifically, we implemented the Gaussian pyramid construction and Difference of 
Gaussians computation components from the SIFT framework to generate multi-scale representations. This 
process, detailed in our Gaussian Pyramid Decomposition section, created four different scale versions of 
each input image: the original 640 × 640 image and three additional scales derived through iterative Gaussian 

Data set SN MGGO PGGO SP N Total

Training 1800 1800 1800 1800 1800 9000

Validation 200 200 200 200 200 1000

Test 200 200 200 200 200 1000

Table 2.  Image dataset of determination criteria.

 

type

Some criteria for identification

Sample Mediastinal septum(cm) Thickness of layer (mm) Allowed quantity CT value Irregular dense shadow(cm)

SN D < 0.3 < 1.25 / 50-70HU 0 < W < 1
0 < L < 1

PGGO 0 < D < 1 < 1.15 0–10 600-700HU N

MGGO 0.3 < D > 1.25 0–10 400-500HU W > 0.5

Special Y Y Y > 50 HU Y

Normal N N / < 50 HU N

Table 1.  Types of lung nodules and criteria for Identification. “Y” represents yes, “N” represents no, “S” 
represents special type, “D” represents diameter “W” represents width and “L” represents lengths.
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smoothing and difference operations (shown in Fig. 5). These multi-scale representations were then fed into 
our MCNN architecture to enable scale-invariant feature learning, without utilizing the subsequent keypoint 
detection and descriptor generation stages of the complete SIFT algorithm. The experiment focused on 
recognizing and classifying five types of lung nodule images, including SN type, MGGO type, PGGO type, 
special type, and normal type.

Model training and validation
The neural network model MCNN used in this study was implemented based on the Caffe deep learning open-
source framework. Two different classification approaches were employed to conduct comparative analysis: 
direct end-to-end training with Softmax classifier and feature extraction followed by SVM classification.

Unified training protocol
Both approaches share a common initial training pipeline. Lung nodule images were collected from CT 
scans and public databases, with complete nodule locations extracted and normalized to obtain standardized 
640 × 640 pixels images. Gaussian difference pyramid images were generated through the GPD technique to 
create multiscale datasets suitable for MCNN training. The multiresolution image training dataset was input into 
the network through a slice layer that separates the four multiscale images for independent initial processing. 
Network weights were initialized using the “Gaussian” method with biases set to “constant.” Training proceeded 
through iterative batch processing with forward propagation through network layers including concatenation for 
feature merging, error computation against ground truth labels, and backpropagation-based weight parameter 
tuning according to minimum error cost principles.

Classification-specific procedures
For the MCNN + Softmax approach, the model underwent direct end-to-end training where the final fully 
connected layer with 5 neurons directly outputs classification probabilities through the Softmax activation 
function. Training continued until convergence was achieved (approximately 1400 iterations) based on validation 
performance monitoring.

For the MCNN + SVM approach, the training process diverged after initial MCNN feature extraction. The 
pretrained MCNN + Softmax network (without the final classification layer) was used to extract feature vectors 
from the multiresolution training images. These feature vectors served as input for training five binary SVM 
classifiers using a one-versus-rest strategy, with each classifier distinguishing one nodule type from all others. 
During testing, the final prediction was determined by selecting the classifier with the highest confidence score 
among the five SVM outputs.

Training configuration
Both models utilized identical training parameters: batch size of 32, learning rate of 0.001 with stepwise learning 
policy, weight decay of 0.0005, momentum factor of 0.9, and maximum 2000 iterations with early stopping based 
on validation performance.

Supervised learning configuration
The multiscale pulmonary nodule recognition models were trained in a supervised manner using vector pairs 
consisting of normalized lung nodule images and their corresponding categorical labels representing the five 
classification categories (SN, MGGO, PGGO, special type, and normal type). During the training phase, RGB 
images underwent preprocessing by subtracting the mean RGB value from each pixel to normalize the input 

Fig. 5.  Original and preprocessed lung CT images.
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distribution. Table 3 provides the detailed parameter configurations used during systematic training, including 
the specific filter configurations and stride patterns described in the model architecture section.

The ultimate specification of network parameters for the formal training process was delineated as follows 
based on established best practices and literature validation: a weight decay coefficient of 0.0005 was implemented 
to mitigate overfitting, following the seminal work of Krizhevsky et al. who demonstrated that “this small amount 
of weight decay was important for the model to learn” in their ImageNet classification study41. A momentum 
factor of 0.9 was employed to enhance convergence, representing the widely adopted standard in deep learning 
optimization that provides optimal balance between convergence speed and stability42. The learning rate, set at 
0.001, governed the magnitude of parameter updates during optimization, chosen based on established practices 
for CNN-based medical image classification that ensure stable convergence while allowing adequate parameter 
updates43. The learning policy adopted a stepwise progression, proven effective for systematic learning rate 
reduction during training phases. A modest batch size of 32 instances was selected for mini-batch training to 
balance computational efficiency and model generalization, considering both hardware constraints and gradient 
estimation quality requirements for medical imaging datasets44. The scale normalization factor was adeptly 
used to expedite training iterations by harnessing the computational prowess of GPU (Graphics Processing 
Unit) acceleration. Notably, the training procedure was limited to a maximum of 2000 iterations, determined 
through empirical validation of our training convergence patterns as demonstrated in Fig. 6, ensuring optimal 
convergence within the imposed constraints while preventing over-training.

As depicted in Fig. 6, the accuracy curve, training loss curve, and validation loss curve showcase the training 
process of the MCNN + Softmax model. Figure 6 illustrates that as the number of iterations increased, the model 
exhibited a continuous improvement in accuracy on the validation set, accompanied by a steady decrease in loss. 
This trend indicated that the model converged effectively, with the accuracy reaching approximately 89% after 
around 1400 iterations.

By directly using the converged model file obtained after 1400 iterations, the multiscale image training data 
were fed into this trained model to obtain the corresponding feature vectors. These feature vectors were then 
used to create the training dataset for training the SVM classifiers. The training dataset was divided into five 
different extraction approaches, and each approach was used to train a binary SVM classifier.

Fig. 6.  Recognition accuracy and loss curves.

 

Name Form Field size/step length

Conv1 Convolution 9*9/4

pooling1 Maxpooling 3*3/2

Conv2 Convolution 6*6/1

pooling2 Max pooling 6*6/2

Conv3 Convolution 3*3/1

pooling3 Max pooling 3*3/2

FC7 Fully connection

FC8 Fully connection

FC9 Fully connection

Table 3.  Partial configuration of parameters for Training.
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Code availability
The custom Python code used to generate the results reported in this paper is available from the corresponding 
author upon reasonable request. Due to institutional data security policies and intellectual property 
considerations, the code cannot be made publicly available. Researchers interested in accessing the code for 
academic purposes should contact the corresponding author (Honglin Xiong, honyex@126.com) with a detailed 
description of the intended use and institutional affiliation for review and approval.

Results
Model testing and evaluation
To measure the overall performance of the proposed approach and evaluate the results of the statistical analyses, 
the commonly accepted confusion matrix45 was used. The metric calculations of the confusion matrix are 
provided in the equations below. The meanings of the abbreviations used in the equations are as follows: TP 
refers to True Positive, TN refers to True Negative, FP refers to False Positive, and FN refers to False Negative46.

	 Accuracy = (T P + T N)/(T P + T N + F P + F N)� (7)

	
Recall = T P

T P + F N
� (8)

	
F 1 = 2 × P × R

P + R
� (9)

	 P recision = T P/(T P + F P )� (10)

	 F − Score = (2 × P recision x Recall)/(P recision + Recall)� (11)

Regarding the MCNN + Softmax network model, the model file obtained after reaching convergence at 700 
iterations in training and validation was used for testing the samples. Subsequently, the model’s generalization 
performance was further assessed on the training dataset. A subset of 200 randomly selected images per class 
was extracted from the standardized sample image dataset to compose the test samples. The model’s classification 
outcomes on the test set, the corresponding actual classification instances, and the accuracy of the classification 
results were quantified using a confusion matrix, as presented in Table 4.

Comparing Table  4 with Table  5, a notable disparity was found in terms of pulmonary nodule image 
classification. The employment of the Softmax approach surpassed the efficacy of the SVM classifier. Specifically, 
the Softmax classification outperformed the SVM counterpart in terms of precision and recall measures across 
all nodule classes. Moreover, the overall accuracy of the Softmax model surpassed that of SVM, solidifying its 
superiority in the domain of pulmonary nodule image classification.

SN PGGO MGGO Special Normal Precision (%)

SN 189 7 4 2 0 92.42

PGGO 4 182 0 5 11 91.61

MGGO 0 0 179 3 2 89.60

Special 7 11 7 190 0 95.92

Normal 0 0 10 0 187 100.0

Recall 94.50% 90.10% 89.51% 95.11% 93.50% 94.21

Table 5.  MCNN + SVM classification test results.

 

SN PGGO MGGO Special Normal Precision (%)

SN 194 3 2 5 2 94.92

PGGO 3 193 5 2 7 96.16

MGGO 0 2 189 7 2 95.21

Special 2 2 4 186 0 96.30

Normal 0 0 0 0 189 100.00

recall 97.00% 96.50% 94.50% 96.40% 98.00% 96.48

Table 4.  MCNN + Softmax classification test results regarding the MCNN + SVM network model, the 
testing phase involved converting the image data from the test dataset into feature vectors. Subsequently, 
the well-trained ensemble of five binary SVM classifiers was used to perform predictive classification. The 
final predicted class was determined by selecting the maximum value among the five computed results. 
Furthermore, a meticulous analysis of the classification outcomes was conducted using a confusion matrix, 
thereby facilitating a comprehensive assessment of the model’s performance (shown in Table 5).
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Analysis of experimental results
This study also compared the MCNN with the traditional CNN for feature extraction. The process of training 
and testing CNN + Softmax was essentially the same as that for MCNN + Softmax, using the same Softmax 
classifier. Moreover, the dataset used for each convolutional neural network was also the same. This was only a 
comparison test, and, as a result, the network parameters were not repeated. Finally, the same confusion matrix 
was used to analyze the classification results (shown in Table 6).

As shown in Table 7, MCNN + SVM was compared with MCNN + Softmax; essentially, two different classifiers 
were used with MCNN. The F1 values of each node was improved when using the MCNN + Softmax model, and 
the overall classification accuracy improved by more than 1%. This showed that using different classifiers had some 
influence on the recognition accuracy, and the Softmax classifier was more effective. Our experimental results 
reveal systematic performance differences attributable to the fundamental approaches of these classification 
methods. SVM’s limitations stem from its one-vs-rest decomposition strategy, where the multi-class problem is 
divided into five binary classifications, each potentially experiencing different class distributions during training. 
Softmax’s advantages derive from its integrated multi-class probabilistic framework that simultaneously 
optimizes all classes, providing more stable and consistent classification boundaries across all nodule types. 
Examination of per-class performance reveals distinct patterns: PGGO nodules show the largest improvement 
with Softmax (+ 5.28% F1-score), followed by MGGO (+ 5.18%) and other nodule types showing consistent 
gains (+ 3.23% to + 3.48%). This pattern suggests that complex or subtle nodule features benefit significantly 
from Softmax’s unified learning approach compared to SVM’s binary decomposition. The probabilistic outputs 
of Softmax also provide confidence measures crucial for medical applications, while its computational efficiency 
(single model vs. five binary models) offers practical advantages for clinical deployment.

Subsequently, the two models, MCNN + Softmax and CNN + Softmax, were compared. The MCNN used in 
this study was more accurate than the traditional CNN in terms of both F1 values of a certain class of nodules and 
the overall classification accuracy. In particular, the improvement in classification accuracy for SN types, PGGO 
types, and untreated normal types of image recognition was relatively large, with the F1 values improving by 
more than 2.27%. The main reason was the use of multiresolution and multiscale image sampling preprocessing 
enabled the features of the images to be better extracted.

Compared to similar methods, some researchers have used 3D Faster R-CNN and CMixNet47, the 3D Faster 
R-CNN-like architecture was used for lung nodule detection, CMixNet with U-Net-like encoder–decoder 
architecture was used for learning nodules’ features, model achieves accuracy of 96.33%, but only to classify the 
nodule as benign or malignant. Meanwhile, some scholars have done researcher conducted comparative studies 
on the effectiveness of lung nodule detection using different deep CNN model48–50, these methods such as 
TLbasedCNN, Ensem2DCNN, Multi-cropCNN, MMEL-3DCNN and so on., better performance was achieved 
in the results, in terms of accuracy, the highest reached 95.5%, in terms of F1-score, the proposed model obtains 
the highest reached a score of 95.24%. In comparison with their results, the accuracy and F1-score are close to 
our study. However, previous studies did not conduct a more fine-grained classification of different lung nodule 
types. In contrast, our MCNN approach in this study targets five common lung nodule types for classification. It 
demonstrates practical applicability and outperforms previous methods in terms of both accuracy and F1-score.

In summary, MCNN combined with the Gaussian difference pyramidal difference technique was feasible in 
applying lung nodal shadow recognition and classification scenarios.

Discussion
In this study, the proposed new Multiscale Convolutional Neural Network model offers several advantages over 
traditional methods for lung nodule classification. The advantages of CNNs are mainly in their powerful feature 
capture, automatic feature learning, parallel computing, scalability, robustness, and generalization, which give 
CNNs a significant advantage in processing complex image and vision tasks51. By integrating Gaussian Pyramid 

Model SN PGGO MGGO Special Normal Precision

MCNN + SVM 93.08 92.12 97.02 92.42 94.37 94.21

MCNN + Softmax 96.31 97.40 94.78 95.90 97.06 96.48

CNN + Softmax 90.30 95.50 89.66 91.38 92.04 92.34

Table 7.  Comparison of F1 values (%).

 

SN PGGO MGGO Special Normal Precision (%)

SN 185 12 0 4 0 91.71

PGGO 9 183 0 3 12 90.50

MGGO 2 2 188 9 7 94.10

Special 4 5 12 184 0 92.10

Normal 0 0 0 0 181 100.00

Recall 92.50% 91.50% 94.00% 92.00% 90.05% 92.34

Table 6.  CNN + Softmax classification test results.

 

Scientific Reports |        (2025) 15:37632 10| https://doi.org/10.1038/s41598-025-21582-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Decomposition, the MCNN can better exclude noise and invalid points, improving the accuracy of the matching. 
This multi-scale approach enhances the model’s ability to detect subtle differences between nodule types, which 
leads to improved classification accuracy. As demonstrated in our experiments, the MCNN achieved an overall 
accuracy of 96.48%, significantly outperforming the traditional CNN model, which had an accuracy of 92.34%. 
Specifically, the MCNN showed significant improvements in classifying solid nodules and pure ground-glass 
opacity nodules, with F1 scores increasing by over 2.0%.

Another advantage of the MCNN is reduced reliance on complex preprocessing and manual feature 
extraction. Traditional methods often require extensive image processing steps and handcrafted features, which 
can be time-consuming and prone to errors. In contrast, the MCNN leverages the automatic feature learning 
capabilities of deep learning, streamlining the classification process and minimizing potential sources of error.

Positioning MCNN within deep learning architectures
To contextualize our MCNN performance within contemporary deep learning architectures, our GPD-based 
approach offers a fundamentally different paradigm compared to established state-of-the-art models. While 
EfficientNetV252 achieves high performance through compound scaling and architectural optimization, 
ConvNeXt53 demonstrates competitive results by modernizing convolutional designs, and Swin Transformers54 
utilize hierarchical feature representation with sophisticated attention mechanisms, our method prioritizes 
preprocessing-based multiscale feature enhancement through deterministic mathematical decomposition. This 
distinction provides significant computational advantages over transformer-based models that typically require 
substantial resources for attention computations, enabling our approach to be integrated with lightweight 
CNN architectures while maintaining effectiveness, a crucial consideration for resource-constrained clinical 
environments where deployment feasibility and computational transparency are critical factors.

Multiscale architecture comparison
Our MCNN approach occupies a unique position within the established taxonomy of multiscale CNN 
architectures for medical image analysis. The field has evolved through several paradigmatic approaches, each 
addressing multiscale feature extraction through distinct methodological frameworks. Architectural multiscale 
methods achieve scale diversity through network design modifications, where U-Net family approaches including 
the foundational U-Net55, UNet + +56, and UNet 3 +57 employ skip connections and nested architectures for 
multiscale feature integration. Similarly, Feature Pyramid Networks58 utilize bottom-up and top-down pathways 
with lateral connections, while the DeepLab series59,60 leverage dilated convolutions and Atrous Spatial Pyramid 
Pooling to build multiscale features within the network architecture itself.

Attention-based multiscale methods represent a more recent paradigm that combines scale processing with 
learned attention mechanisms. These approaches, including various attention U-Net variants and multi-scale 
attention networks, demonstrate high performance through sophisticated attention computations. However, 
these methods require complex attention parameter tuning and substantial computational resources for attention 
weight calculation during both training and inference phases.

In contrast, preprocessing-based multiscale methods, as exemplified by our approach, integrate classical 
pyramid techniques with CNN architecture at the data preparation stage. Our GPD-CNN combination offers 
several distinct advantages over existing paradigms: Firstly, it provides a mathematical foundation through 
Gaussian pyramids that deliver theoretically grounded scale-space representation. Secondly, it achieves 
computational efficiency by eliminating complex attention computations during training and inference. Thirdly, 
it ensures deterministic processing with consistent multiscale feature extraction across all inputs and finally, it 
maintains architectural simplicity by employing standard CNN structures with enhanced preprocessing rather 
than complex multi-branch designs. Performance evaluation demonstrates that our approach achieves 96.48% 
classification accuracy with F1 improvements exceeding 2.0% for solid and pure ground-glass nodules, delivering 
competitive results with significantly reduced computational complexity compared to attention-based methods.

Clinical workflow integration and practical implementation
The successful integration of our MCNN model into clinical practice requires careful consideration of existing 
radiological workflows and practical implementation challenges. In current clinical settings, lung nodule 
evaluation typically follows a structured approach where radiologists review CT scans, identify potential 
nodules, assess their characteristics, and make recommendations based on established guidelines such as the 
Fleischner Society recommendations or Lung-RADS criteria.

Our MCNN model can be seamlessly integrated into this workflow as a computer-aided detection and 
diagnosis (CAD) tool that operates in parallel with radiologist review. The proposed integration workflow would 
involve: (1) automatic preprocessing of incoming CT scans through our GPD-based multiscale decomposition, 
(2) real-time analysis and classification of detected nodules with confidence scores, (3) generation of structured 
reports highlighting nodules by risk category, and (4) presentation of results through the existing Picture 
Archiving and Communication System (PACS) interface familiar to radiologists.

Model limitations and future improvements
However, the MCNN model has limitations. One significant challenge is its dependence on large and diverse 
datasets for training. Although we utilized over 10,000 images with balanced representation across our five 
studied nodule types (SN, PGGO, MGGO, special-type, and normal), several categories of lung nodules were 
not specifically included in our classification framework. These include hamartomas, bronchial adenomas, and 
papillomas, which may limit the model’s applicability to the full spectrum of lung nodule pathology encountered 
in clinical practice. Additionally, 11% of images required additional preprocessing due to motion artifacts or 
suboptimal contrast enhancement, and our dataset included images from both hospital CT scanners and public 
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databases with potentially different scanner types and imaging protocols, which may introduce inter-scanner 
variability and limit generalizability across different clinical systems.

The model is computationally intensive, requiring approximately 18 h for training on NVIDIA GeForce RTX 
3080 with 10GB GDDR6X memory using 12 CPU cores and 32GB RAM. Inference time averages 0.3  s per 
image with memory requirements of 6GB GPU memory, which may exceed the capacity of standard clinical 
workstations and limit accessibility in resource-constrained clinical environments, particularly in smaller 
hospitals or developing regions.

Another limitation is the lack of longitudinal data, which restricts the model’s ability to track the evolution of 
lung nodules over time. Incorporating temporal information could enhance the model’s diagnostic capabilities 
and provide more insights into disease progression. Future work should focus on collecting more comprehensive 
datasets, employing techniques to address class imbalance such as data augmentation or weighted loss functions, 
and optimizing computational efficiency for broader clinical deployment.

Despite these challenges, the MCNN represents a significant advancement in automated lung nodule 
classification, offering higher accuracy and efficiency. Its ability to handle multi-scale features makes it a robust 
tool for clinical applications, potentially aiding radiologists in making more accurate and timely diagnoses.

Conclusion
This study aims to address the preliminary diagnosis of pulmonary nodules in clinical practice by proposing 
a novel lung nodule recognition and classification framework rooted in deep learning, specifically employing 
MCNN. The model is validated against clinical data obtained from public archive and Chongming Hospital, 
Shanghai University of Medicine & Health Sciences.

The novel MCNN model integrates Gaussian Pyramid Decomposition to enhance the classification of 
lung nodules in CT images. The innovative use of GPD allows the model to extract features at multiple scales, 
addressing the variability in nodule sizes and improving detection accuracy across different nodule types. This 
approach represents a significant advancement over traditional single-scale CNN models and other multi-scale 
methods that rely on attention mechanisms (Lung nodule detection). The experimental results reinforce this 
claim, demonstrating the MCNN’s superior performance and validating the methodological advancement.

The MCNN model offers positive opportunities for the field of medical imaging and lung cancer diagnosis. 
Its high classification accuracy can assist radiologists in making more precise diagnoses, potentially leading to 
earlier detection and better patient outcomes. By automating the classification process, the MCNN can reduce 
the workload on medical professionals, allowing them to focus on more complex cases and improving overall 
efficiency in clinical settings. Moreover, the methodology developed in this study can be extended to other 
medical imaging tasks where multi-scale feature extraction is beneficial, such as the detection of tumors in other 
organs or the analysis of different types of medical images, highlighting its broader impact and applicability.

To further enhance the performance and applicability of the MCNN model, several avenues for future 
research are proposed. First, expanding the dataset to include a larger and more diverse collection of lung nodule 
images will help improve the model’s generalizability and robustness. Incorporating longitudinal data will enable 
the model to track changes in nodules over time, providing valuable information on disease progression and 
response to treatment. Additionally, addressing class imbalance through advanced data augmentation techniques 
or modified loss functions will enable the model to perform better across all nodule types, including those less 
represented in the dataset. Furthermore, exploring the integration of other deep learning techniques, such as 
attention mechanisms or transfer learning, could further enhance the model’s feature extraction capabilities 
and classification accuracy. Finally, conducting clinical trials to validate the MCNN model’s performance 
will be crucial for its adoption in clinical practice, ensuring its reliability and effectiveness in diverse clinical 
environments.

Data availability
The datasets that support the findings of this study consist of two components:1. A hospital patient dataset was 
collected through institutional image acquisition systems. Due to privacy protection requirements and institu-
tional review board (IRB) regulations, these data are available from the corresponding author upon reasonable 
request and with appropriate ethical approvals.2.Public datasets are openly accessible in The Cancer Imaging 
Archive (TCIA) repository at: https:​​​//w​ww.cancerimagingarch​ive​.net/colle​c​tio​n/lidc-idri/.
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