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Groundwater is an essential resource for global drinking and agricultural practices, but it is increasingly 
threatened by contamination. A comprehensive study was conducted for groundwater quality at 23 
different locations in Kasganj, Uttar Pradesh, India, utilizing state-of-the-art Water Quality Indexing 
(WQI) and Irrigation Water Quality Indexing (IWQI) techniques. A total of one hundred fifteen 
groundwater samples were analyzed for twelve water quality aspects: pH, total dissolved solids 
(TDS), total alkalinity, total hardness, calcium (Ca2⁺), magnesium (Mg2⁺), sodium (Na⁺), potassium 
(K⁺), chloride (Cl−), bicarbonate (HCO₃−), Sulphate (SO4

2−), Nitrate (NO3
−), and fluoride (F−). The results 

revealed that the TDS levels were alarmingly high, spanning 252 to 2054 ppm with an average of 
942 ppm. Similarly, fluoride levels, ranging from 0.21 to 3.80 ppm (average 1.55 ppm), exceeded the 
World Health Organization’s permissible limit of 1.5 ppm. Strong correlations among fluoride levels, 
alkalinity, pH, Na⁺, and HCO₃⁻ point to geochemical interactions causing pollution. Piper diagram 
analysis divided most samples into Ca–Mg–Cl hydrochemical facies, a classification indicating the 
dominant ions in the water. Mineral saturation indices indicated dolomite, calcite, and aragonite 
oversaturation, which means these minerals are present in excess, potentially due to the water’s high 
TDS levels. With WQI scores ranging from 63.64 to 221.18, WQI results were concerning: 60.87% of 
samples were judged unfit for drinking, and 26.08% were relatively poor. These findings raise serious 
health concerns for the affected populations. Variations in IWQI indicators—Na%, SAR, MH, and 
KL ratio—informed irrigation fit for different sites. The use of advanced machine learning models 
(ANN, RF, XGB) for hydrochemical facies analysis, geochemical modeling, and predictive WQI in 
the sampled area makes the current study unique. To enhance forecast accuracy and support water 
management, Machine Learning models (Random Forest (RF), Artificial Neural Network (ANN), and 
Extreme Gradient Boosting (XGB), were used. The outcomes are indicated by better performance by 
RF with minimum error values (RMSE: 5.97, MSE: 35.69, MAE: 5.49) and a high R2 value of 0.951. ANN 
followed closely with an R2 of 0.957, while XGB achieved an R2 of 0.831. The performance by RF was 
the best in WQI prediction among the models tested. The results reveal critical groundwater pollution 
in the Kasganj area, emphasizing the immediate requirement of focused remedial action and effective 
water management plans.
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Groundwater is a plentiful asset that millions of people throughout the world rely on for their water to consume. 
The rising prevalence of contaminants in groundwater makes it all the more important to evaluate its quality for 
human consumption1. Groundwater is a vital and significant source of potable and irrigation water in regions 
that experience arid and semi-arid environments. Pollution of ground water has become a global problem due to 
the increasing human population and the accompanying fast urbanization and industrialization2. Over the past 
few decades, groundwater quality has fallen due to a disruption in chemical processes caused by an increase in 
human activity3,4. The level of solids and soluble salts determines the irrigation water quality. Evaluating the level 
of quality is vital for the long-term usage of these natural assets for crop irrigation2. The quantity and quality of 
groundwater are both negatively affected by changes to an areas local terrain and drainage systems5. Evaluating 
the quality and quantity of groundwater is a crucial factor in establishing its viability for drinking and irrigation 
purposes6–8. The importance of supplying freshwater for industrial, agro-industrial, and household uses has 
grown in tandem with the expansion of industrialization. A large portion of groundwater, around 65%, is utilized 
for human consumption, with a smaller percentage going toward irrigation and domesticated animals using 20% 
and industrial uses and quarries using 15%9–11. A major global problem now is the gradual deterioration of 
groundwater quality. The rising scarcity of groundwater poses a health hazard to humans, as billions of people 
around the world are forced to drink polluted water because there is not sufficient potable water. It is now 
generally known that the cleanliness of groundwater is a greater concern 12–15. Approximately eighty percent of 
worldwide water-related illnesses are caused by water that is not fit for human consumption. But water-related 
illnesses are killing millions in a number of African, Asian, and Indian states16,17,6. Hypertension, hypocalcaemia, 
kidney stones, gastro-renal pain, arterial calcification, thrombosis, and other major human health problems 
have been linked to pollution such heavy metals, pesticides, and organic and inorganic pollutants, according to 
previous studies17,18,6. Usually, the Water Quality Index (WQI) is one of the simplest, comprehensive calculative 
tools for evaluating water quality19–21. The WQI is calculated using a variety of methods, one of which is the 
water’s mathematical single-scoring number6. WQI is a method applied to measure the quality of water. It is 
generally determined by measuring electrical conductivity (EC), pH, sodium ions (Na+), chloride ions (Cl−), and 
bicarbonate ions (HCO3

−)22,23–26. The quality of groundwater for irrigation is evaluated by sodium percentage 
(Na٪), sodium absorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), chlorine index 
(KI), and magnesium hazard (MH)2,26–28. The indices used in this research, including the Water Quality Index 
(WQI) and Irrigation Water Quality Index (IWQI), are well-known and effective tools for simplifying complex 
water quality data. By integrating multiple physicochemical parameters into a single score, these indices provide 
a clear and comprehensive assessment of overall water quality for both drinking and agricultural purposes. The 
study uses these standardized methods to give a clear and comparative picture of the quality of the groundwater. 
This is important for making good decisions about how to manage and fix the water.

Machine learning algorithms enhance and supplement the Water quality index and evaluation. Numerous 
studies related to gene expression programming (GEP), support vector machines (SVM), artificial neural 
networks (ANN), and adaptive neuro-fuzzy inference systems (ANFIS) have been employed to assess water 
quality characteristics. The Automatic Linear Model (ALM) has been utilized to determine the interconnections 
and key elements that affect structure behavior in many industries in recent studies. This investigation employs 
indices and the automatic linear model to assess groundwater and identify contaminated sources8. The 
constructed ANN model in this work, with its precise estimation of the proportion of variance in recorded Water 
Quality Index values, is resilient. Its exceptional concordance with the testing subset deviations and lowest cross-
valuation measurements indicates this excellent performance. Moreover, the model shows the best R2 value and 
a strong connection between projected and absolute WQI values, reassuring its dependability in water quality 
prediction. A noteworthy scarcity of studies has been identified on the utilization of XGBoost, ANN, and RF 
models for the prediction of groundwater WQI despite their widespread use in evaluating groundwater quality. 
A thorough risk assessment will help us comprehend the non-carcinogenic and carcinogenic health implications 
of polluted water, and these models show promise. The present state of WQI prediction research is insufficient, 
but these models’ predictive ability for water quality parameters gives hope for the future295,30,31.

The aims of this research are as follows:
(a) To investigate the physicochemical characteristics of groundwater in 23 sites at Kasganj, U.P., India, 

115 samples were examined for key variables such as pH, alkalinity, total dissolved solids (TDS), fluoride, and 
different ionic components. (b) This study aims to determine the suitability of groundwater for potable and 
irrigation purposes using the Water Quality Index (WQI) and Irrigation Water Quality Index (IWQI), which 
provide a comprehensive classification of water quality across the sampled sites. (c) We aim to evaluate the 
efficacy of three machine learning models—Random Forest (RF), Artificial Neural Networks (ANN), and 
Extreme Gradient Boosting (XGB)—in predicting WQI from physicochemical characteristics. (d) To identify 
contamination areas of concern and group areas by their risk of contamination, which will provide scientific 
evidence for urgent water management and cleanup plans in the study area.

Methods and materials
Hydrology of study area
The mean annual rainfall is 722.4 mm. The sub-humid climate has a lovely winter season and hot summers. 
The mean daily maximum temperature in May is 41 °C, the mean daily minimum is 27 °C, and the maximum 
temperature can reach over 46 °C. The monsoon, with its rapid drop in day temperatures, is a significant factor 
in the region’s climate. January is the coldest, with a mean daily high of 22 °C and a mean daily low of 8 °C. 
Groundwater occurs in unconsolidated alluvial sediment pore spaces in the sedimentation zone. The top silty, 
sandy clay beds with kankar support dugwells where groundwater occurs. Deeper aquifers have semi-confined 
groundwater. Our research, conducted in the Kasganj area, located in the northern portion of the Etah district, 
has provided precise data on the water levels. During the pre- and post-monsoon periods, the depth of the water 
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level ranges from 3.11 to 10.24 mbgl and 2.58 to 9.79 mbgl, with a variation of 0.17 to 1.50 m. The water table 
height ranges from 168 to 157 m above mean sea level (m.a.s.l.), indicating a southeasterly regional groundwater 
flow32.

Analysis of water quality parameters
To understand the study, which was carried out from August 2023 to July 2024 and is shown on the map in Fig. 1, 
researchers collected underground water samples from 23 neighboring sites with contaminated water. The study 
involved the systematic collection of water samples from the tube wells, submersibles, and hand pumps, ensuring 
that stale water was first evacuated and the samples were then stored in prewashed, high-thickness polypropylene 
(HDPP) bottles in accordance with standard protocols across various locations in the study area. The analytical 
methods, including advanced techniques such as titration to measure alkalinity, hardness, and chloride, Ca2⁺, and 
Mg2⁺ concentrations, were used. A multi-parameter kit calculated pH and TDS; a flame photometer measured 
Na⁺ and K⁺ concentrations. Finally, a Shimadzu UV-1800 spectrophotometer analyzed nitrate, sulfate, and 
fluoride. This advanced method resulted in comprehensive groundwater chemical characterization, therefore 
providing the scientific quality of the research33,34. The estimated error was less than ± 5%. The flowchart depicts 
the methodology of the study region (Figs. 2 and 3).

Geochemical modelling
The PHREEQC geochemical modelling was used to accomplish thermodynamic computations of the SI 
(saturation indices) of the different minerals phases that are common in groundwater (Eq. 1)35.

	 SI = Log (IAP/Ksp)� (1)

In the above equation, IAP stands for solution ion activity, and since carbonate rocks predominate the aquifer 
materials in the study region according to estimates of thermodynamic saturation, carbonates have shown to 

Fig. 1.  GIS Location of Kasganj district, Uttar Pradesh, Agra.
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be the most significant minerals in this investigation, Ksp is the solubility constant at a given temperature. A 
groundwater system in an aquifer system, where there is a little amount of the mineral in solution, is represented 
by a SI level below zero, which indicates that the groundwater is under-saturated with respect to the specific 
mineral. It also suggests that groundwater has shorter residence spans36. When the saturation index value is 
greater than zero, it means that the groundwater has reached complete saturation in reaction to the particular 
mineral present in the solution, meaning that the water can no longer dissolve the mineral.

Estimation of the water quality index (WQI) and irrigational water quality index (IWQI) of 
the samples
The guidelines given by WHO and BIS standard for drinking water are illustrated in (Table  1) TDS means 
Total dissolve solids; Na+ is for Sodium; K+ stands for Potassium; TH refers for Total hardness; Ca2+ stands 
for Calcium; Mg2+ means for Magnesium; TA refers for Total Alkalinity; pH (unitless); F−term for Fluoride; 

Fig. 3.  Flow chart of the methodology implemented for WQI and IWQI analysis of water samples collected 
from several locations of Kasganj area.

 

Fig. 2.  Flowchart of calculation of water quality indexing (weighted arithmetic index method) and irrigation 
water quality indexing (SAR, Na%, MH and KR)39–41,6.
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Cl− stands for Chloride; NO3
− means Nitrate; (SO4

2−) refers for Sulphate. The estimation of WQI and IWQI are 
shown in Fig. 2. With this calculation, the water samples have been classified into five different categories of WQI 
as shown in Table 2

Calculation of the water quality and irrigation water quality indexing (WQI and IWQI)
According to Table  3, IWQI could be classified into five different groups from excellent to unsuitable for 
irrigation purposes. Based on the results, it was concluded that water available from different sources in this 
region is not fit for irrigation.

Machine learning models
A wide variety of machine learning classification and prediction techniques have been documented in the 
literature. Three noteworthy approaches that have demonstrated significant efficacy in a range of applications are 
examined in this study: Extreme Gradient Boosting (XGBoost), Artificial Neural Networks (ANN), and Random 
Forest (RF)42. Extreme gradient boosting, a novel algorithm gaining popularity for water quality forecasting, is 
paired with the adaptability of neural networks in handling a large number of inputs and learning nonlinear 
complex relationships. The three models used in this study are all capable of classification and regression, 
showcasing their versatility43.

S. No Variables Range Water type References

1 Na%
> 60 Unfit

Wilcox (1955)
< 60 Suitable

2 SAR

> 26 Unfit

Rechards (1954)
18–26 Doubtful

10–18 Good

< 10 Excellent

3 MH
> 50 Unfit

Szaboles and Darab (1964)
< 50 Suitable

4 KL
> 1 Unfit

Kelley (1940)
< 1 Suitable

Table 3.  The groundwater samples classification for irrigation purposes by ranges of Na%, SAR, MH and 
KL27,25,2.

 

WQI Range Water quality (Type)

> 100 Unfit

76–100 Very poor

51–75 Moderately poor

26–50 Good

0–25 Excellent

Table 2.  A classification of drinking water according to the Water Quality Index ranges6,39–41.

 

Parameter (ppm) WHO standards IS 10,500 standards Unit weight

TDS 1000 500–2,000 0.001

Na+ 200 – 0.005

K+ 12 – 0.078

TH 500 200–600 0.019

Ca2+ 200 75–200 0.005

Mg2+ 50 30–100 0.019

TA 500 200–600 0.002

pH (unitless) 8.5 6.5–8.5 0.109

F− 1.5 1–1.5 0.62

Cl− 250 250–1,000 0.004

NO3
− 50 45 0.019

SO4
2− 250 200–400 0.004

Table 1.  Prescribed water quality and unit weight standards37,38.
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The high-accuracy gradient boost algorithm XGBoost creates a series of decision trees one after the other, 
allowing every tree to learn and fix the errors of its predecessors. XGBoost broad acceptance is largely due to 
its strong focus on avoiding overfitting, which maximizes its generalizability. This is made possible by using 
regularization in input parameters. XGBoost has become a common choice for data science and applied machine 
learning contexts is great part to its dependability, strong supervised learning algorithm, and efficiency of 
gradient-boosted models. This method works for regression and classification. Experts recommend XGBoost 
for its fast execution and out-of-core computation management for small data set. XGBoost has been used in 
many studies to measure air and water pollution. Gradient-boosted trees combine weak classifiers to form a 
robust classifier44–48. The boosting process highlights the deficiencies of prior weak classifiers by augmenting the 
weights or oversampling particular data points. This method instructs the subsequent classifier to concentrate 
on samples with more significant classification challenges, allowing the model to learn from its prior mistakes. 
XGBoost, applied in an ensemble learning context, was used to predict regions with elevated lead contamination 
risk and to determine significant features strongly associated with increased lead levels in Flint, Michigan49–52.

The ANN is the next ML model applied, it composed of interconnected neurons that collaborate to execute 
particular tasks, taking signals from the biological neural networks observed in nature. The output produced 
by a neuron arises from a defined process: the neuron takes in input, which is subsequently integrated with 
coefficients like bias and weights, subsequently, it undergoes processing via a non-linear activation function. 
Neurons are generally organized in layers, enabling the flow of information from the input layer to the output 
layer through one or more hidden layers of neurons53. The difference between anticipated and actual results 
for different input data points is utilized to assess the performance of the network. The loss is utilized to adjust 
the weights of the network through the application of backpropagation and gradient descent algorithms. 
This enhances the prediction accuracy and consequently minimizes the losses in subsequent iterations54. The 
essential steps in developing ANN models include selecting suitable inputs and target variable , defining the 
network’s architecture, pre-processing and partitioning the input data, choosing a network design, establishing 
performance metrics, and performing training, testing, and validation31,55–57,5.

An advanced neural network-based regression model, a significant departure from the traditional non-linear 
regression model, is employed to accurately predict the Water Quality Index (WQI). This model, which operates 
on a well-connected parallel with feed-forwarding, is a testament to the innovative strides in our field. The WQI 
is calculating using F−, pH, TDS, Cl, Ca, Mg, Na, K, NO3, SO4, TH and TA. The main steps in building this model 
were choosing the network architecture and structure.

Our model is not only robust and reliable, but also highly adaptable. It uses twelve dimensions (fluoride, pH, 
TDS, Cl, Ca, Mg, Na, K, NO3, SO4, TH, and TA), hidden layers with various configurations, Rectified Linear Unit 
(ReLU) activation function, and L2 regularization, K-fold validation, and a ‘Linear’ output layer targeting WQI. 
The 5-fold cross-validation tests many hidden layers, learning rates, and regularization strength configurations, 
showcasing the model’s adaptability. Early stopping prevents overfitting, and the second stage chooses optimal 
training parameters. In parallel with the iteration count, the model is trained using the entire training set and 
evaluated using the test set. The learning rate and multi-retrain training method ensure the model’s robustness 
and performance58,59.

Random forest makes advantage of an ensemble of classification and regression trees. Every tree is built from 
the original data set using a distinct bootstrap sample (with replacement) is used to construct each tree from 
the data set. RF introduces a layer of randomity to the process unlike conventional trees that split each node 
using the best split among all variables. RF splits a node using just a randomly chosen subset of the variables 
while building a tree. This fascinating randomness helps, RF resist overfitting in contrast to other techniques. 
Our model is trained and tested using a large number of trees, which typically improves stability and reduces 
variance. We have implemented using Random Forest Regressor, hyper-parameters up to 1000 trees with 
maximum depth to 6, 42 random states, and K-fold cross validation. These techniques efficiently retrain the 
Model for each fold during cross-validation as a good practice, used to standardized data in each fold, and 
avoiding data leakage.60,61,30.

The current research work, three ML models (1) RF, (2) ANN, and (3) XGBoost were used to predict and 
analyze groundwater quality indices. Each model had certain strengths and limitations applicable to groundwater 
quality evaluation:

Random forest (RF)
Advantages: 1. Resistant to overfitting because of ensemble learning. Handles high-dimensional data and 
nonlinear relationships well. 2. Offers feature importance for understanding and the Disadvantages: 1. May be 
computationally expensive with big data. 2. Interpretability is relatively lower compared to linear models.

Artificial neural network (ANN)
Advantages: 1. Able to model intricate, nonlinear interactions between water quality parameters. 2. High 
predictive accuracy when well-trained and tuned. Disadvantages: (1) Needs great computer power and big data. 
(2) Functions as a “black box,” providing low interpretability of internal processes.

Extreme gradient boosting (XGBoost)
Advantages: (1) High performance and accuracy due to optimized gradient boosting. (2) Effective handling of 
missing values and overfitting through regularization, and the disadvantage of being more sensitive to parameter 
tuning.
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Results
Comprehensive hydrogeochemistry of groundwater of Ganga Basin Kasganj area, Uttar 
Pradesh, India
Table 4 displays the physico-chemical water quality characteristics of the sampled area. The alkalinity of the 
water sample was found to be in the range from 94 to 456 ppm. However, the TDS of the samples was alarmingly 
high, ranging from 252 to 2054 ppm, with an average of 942 ppm (Fig. 5 a–d). The values of chloride, sodium, 
potassium, sulphate, nitrate, magnesium, calcium ions, and total hardness were within acceptable limits. The 
mean pH level was 7.36, with a range from 6.99 to 7.81. The concentrations of fluoride in the water samples 
ranged from 0.21 to 3.80 ppm, with an average of 1.55 ppm, as shown in Fig. 4a–d. These results indicate that the 
fluoride ion concentration exceeded the World Health Organization acceptable limit of 1.5 ppm (Fig. 5 a–d)37.

Table 5 illustrates the statistical SI values for each mineral in groundwater during the year 2024 Fluorite 
(CaF2), Gypsum (CaSO4), Halite (NaCl), and Sylvite (KCl) were found to be dissolved in the groundwater in 
mostly wells. The study area is characterized by a shallow aquifer system, exhibiting a transition from unconfined 
to semi-confined groundwater conditions. The proximity of the water table to the surface has facilitated the 
formation of clay lenses, which have subsequently introduced an inter-fringing phenomenon within the sandy 

Fig. 5.  (a–d) Special distribution of hydrogeochemistry (a) TDS, (b) Calcium (c) Sodium, (d) Magnesium of 
groundwater of sampled area.

 

Variables Min Max Mean STDEV

F− 0.21 3.80 1.55 1.11

PH 6.99 7.81 7.36 0.20

TDS 252.00 2054.00 942.00 436.19

TA 94.00 456.00 330.13 70.98

Cl− 24.00 290.00 173.13 73.74

Ca2+ 24.00 232.00 157.70 52.56

Mg2+ 11.60 82.60 54.36 16.87

Na+ 20.00 112.00 50.83 28.95

K+ 3.00 65.00 17.17 17.53

NO3
− 2.80 40.00 17.99 10.98

SO4
2− 14.00 121.00 67.21 36.76

TH 108.00 860.00 452.70 168.74

HCO3
− 118.80 553.20 400.33 85.25

Table 4.  Physical and chemical characteristics (minimum, maximum, mean and standard daviation values) of 
groundwater samples of groundwater of Ganga Basin Kasganj area, Uttar Pradesh, India.
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aquifer, effectively rendering it impermeable. This impermeable layer significantly restricts groundwater 
recharge. Furthermore, the presence of gravel nodules composed of calcium carbonate within the sandy 
aquifer influences the pH of the groundwater, thereby enabling the dissolution of minerals. The variance of the 
saturation index value of a few dissolved minerals in water samples of different wells, such as anhydrite (CaSO4), 

S No Anhydrite Aragonite Calcite Dolomite Fluorite Gypsum Halite Sylvite

SN1 − 2.43 0.22 0.36 0.6 − 1.26 − 2.14 − 6.59 − 7.05

SN2 − 2.63 0.4 0.55 0.97 − 0.65 − 2.33 − 6.47 − 7.11

SN3 − 1.63 0.49 0.64 1.15 − 0.25 − 1.34 − 6.54 − 7.11

SN4 − 2.42 0.29 0.43 0.75 − 0.29 − 2.13 − 6.46 − 7.03

SN5 − 1.89 0.54 0.69 1.24 − 0.27 − 1.6 − 6.62 − 7.22

SN6 − 1.62 0.26 0.41 0.68 − 0.01 − 1.33 − 6.57 − 7.11

SN7 − 1.61 0.47 0.62 1.1 − 0.25 − 1.32 − 6.52 − 7.16

SN8 − 2.03 0.51 0.66 1.19 0.01 − 1.74 − 6.53 − 7.32

SN9 − 1.84 0.27 0.41 0.7 0.03 − 1.55 − 6.51 − 7.04

SN10 − 2.09 0.81 0.95 1.77 0.17 − 1.8 − 6.44 − 7.31

SN11 − 2.55 0.22 0.37 0.61 − 0.21 − 2.26 − 6.4 − 7.37

SN12 − 1.59 0.73 0.87 1.61 0.42 − 1.3 − 6.49 − 7.17

SN13 − 1.78 0.27 0.41 0.7 0.06 − 1.49 − 6.61 − 7.17

SN14 − 1.72 0.55 0.7 1.26 0.09 − 1.42 − 6.46 − 7.07

SN15 − 2.39 0.32 0.47 0.96 − 1.87 − 2.1 − 7.46 − 7.43

SN16 − 2.43 0.41 0.56 1.03 − 1.61 − 2.14 − 7.34 − 7.05

SN17 − 2.02 0.44 0.59 1.07 − 2.31 − 1.73 − 7.05 − 6.79

SN18 − 1.82 0.52 0.67 1.23 − 1.64 − 1.53 − 6.48 − 6.21

SN19 − 1.69 0.86 1 1.81 − 1.22 − 1.4 − 6.26 − 5.91

SN20 − 1.92 0.38 0.52 0.93 − 1.68 − 1.63 − 6.84 − 6.65

SN21 − 1.85 0.5 0.65 1.2 − 1.48 − 1.56 − 6.6 − 6.48

SN22 − 1.74 0.44 0.58 1.11 − 0.99 − 1.45 − 6.23 − 6.08

SN23 − 3.08 − 0.9 − 0.75 − 1.48 − 2.46 − 2.79 − 7.56 − 7.31

Table 5.  Illustrates the statistical saturation index values for each mineral in groundwater in sampled area.

 

Fig. 4.  (a–d) Special distribution of hydrogeochemistry (a) Chloride, (b) Nitrate, (c) Sulphate, (d) Fluoride of 
groundwater of sampled area.
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gypsum (CaSO4), halite (NaCl), sylvite (KCl), was found to be under saturated. The chemical composition of 
these minerals, which mainly include SO4 and Cl, shows high value in the study area that is due to anthropogenic 
contamination (Table 6). SI values that are negative suggest that the water sample exhibits greater aggressiveness 
towards corrosion.

Table 6 shows the mineralogical analysis of sediment samples from the semi-arid Kasganj area reveals that 
carbonate minerals—especially Dolomite and Calcite—are the most abundant, as indicated by their relatively 
high mean values and moderate variability, reflecting favorable alkaline and evaporative conditions typical of 
such climates. Aragonite also shows stable but lesser presence. In contrast, evaporite minerals like Halite and 
Sylvite are scarce, displaying very low mean values and limited variability, suggesting that conditions required 
for their widespread deposition are rare and localized. Sulphate minerals Anhydrite and Gypsum appear in 
low quantities, possibly due to seasonal hydrological fluctuations that inhibit extensive precipitation. Fluorite 
exhibits the highest variability, likely linked to local groundwater chemistry differences. Environmentally, 
this distribution pattern underscores the influence of high evaporation, intermittent water availability, and 
geochemical processes in shaping mineral assemblages in the region. In conclusion, the data indicates that 
Kasganj semi-arid environment primarily supports carbonate formation, with evaporite and sulphate minerals 
occurring only under specialized, occasionally met conditions.

Geochemical characterization of Kasganj, U.P., India
The hydrochemical characterization with the Piper diagram indicates that most groundwater samples adhere to 
the Ca–Mg–Cl facies (Fig. 6). In the cation triangle, samples predominantly belong to the no dominating type 
(Field D). Still, they appear to be calcium-rich, indicating mixed cationic contributions from silicate weathering 
and limited ion exchange processes. The anion triangle exhibits most chloride (Field G), reflecting the influence 
of evaporite dissolution, anthropogenic causes, or salty water incursion. The center diamond field verifies the 
categorization inside the Ca–Mg–Cl + SO₄ hydrochemical zone. This zone is often linked with mineralized, hard 
water and indicates prolonged residence durations or pollution from agricultural and residential activities. The 
close clustering of sample points implies an incredibly similar hydrogeochemical signature across the research 
area. Furthermore, the minimal prevalence of bicarbonate-rich facies indicates that recent recharge or carbonate 
lithology had a limited impact. Overall, the findings provide insight into how a groundwater system is impacted 
by natural geological processes and perhaps anthropogenic pressures.

By concentrating on the relationship between the concentrations of cations (Na+, Ca2+), anions (Cl−, 
HCO3

−), and TDS (Total Dissolved Solid), the Gibbs diagram is a technique for determining the origin of ions 
in groundwater. To comprehend the relationship between the chemical components of water, the Gibbs diagram 
was devised (Gibbs 1970, Eqs. (10, 11) Three separate fields of the Gibbs diagram—precipitation dominance, 
evaporation dominance, and rock–water interaction dominance—are used to identify the quality features of 
water. All ions are represented in mg/L.

	
Gibbs ratio I (for anion) = Cl−(

Cl− + HCO−
3

) � (10)

	
Gibbs ratio II (for cation) = Na+ + K+

(
Na+ + K+ + Ca2+

) � (11)

Each cation and anion in groundwater has a rock-dominance origin, according to the Gibbs diagram based on 
TDS and the concentration of cations and anions in Fig. 7. This trait shows that groundwater ion dissolution 
from interactions with rock or soil is more prevalent than precipitation or other natural sources.

Correlation analysis of Ganga basin area of Kasganj, U.P, Northern India
The present study investigates the correlation of fluoride concentration with other physicochemical 
characteristics in groundwater samples from the Ganga basin area of Kasganj, Uttar Pradesh, India. Table  7 
shows that fluoride has a minimal connection with pH, TA, and HCO3

−. We discovered a strong positive 
correlation between fluoride (F−) ions and bicarbonate (HCO3

−), sodium (Na+), and hydrogen (H+) ions, which 
is in line with earlier research. This could be because fluoride-containing minerals like fluorite dissolve more 

Variable Minimum Maximum Mean STDEV

Anhydrite − 3.08 − 1.59 − 2.03 0.40

Aragonite − 0.9 0.86 0.39 0.33

Calcite − 0.75 1 0.54 0.33

Dolomite − 1.48 1.81 0.97 0.63

Fluorite − 2.46 0.42 − 0.77 0.87

Gypsum − 2.79 − 1.3 − 1.74 0.40

Halite − 7.56 − 6.23 − 6.65 0.36

Sylvite − 7.43 − 5.91 − 6.96 0.42

Table 6.  Depicts the minimum, maximum, mean and standard daviation values of saturation index in the 
sampled area62–64.
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readily in alkaline environments (pH > 7.5). However, we discovered a 0.03 correlation value between pH, TA, 
and HCO3

− in our instance. Localized geochemical control, such as weathering of calcium and fluoride minerals, 
or human influence, such as phosphate fertilizers (which include both Ca and F), could be the cause of this. The 
modest connection between calcium and fluoride (0.48) supports mobilization based on minerals, potentially 
from complex fluorapatite or mixed silicates instead of pure CaF₂ routes. Low correlations with bicarbonate 
and pH indicate that local lithology and mineral composition are more important drivers than ion exchange 
or alkalinity processes. Because our water type is rock dominating, as shown by the Gibbs diagram, fluoride 
exhibits a significant negative correlation of − 0.69 with potassium (K+). This suggests that fluoride solubility 
may be influenced by a reverse ion exchange involving Na⁺, Ca2⁺, and K⁺65,66.

Spatial distribution of WQI
As illustrated in Fig. 8 a, b, the distribution trend in water quality indexing presents a relatively clear picture. Of 
the water examined in the Kasganj area, 60.87 percent was deemed unsuitable for human consumption. None 
were as good, 13.04 percent were classed as moderately poor, and 26.08 percent as extremely poor. Table  8 
demonstrates the % distribution of numerous groundwater types in the research geographical area, therefore 
stressing the serious and alarming character of the problem. The water fluoride and TDS exceed World Health 
Organization standards and IS1050037,38, indicating a serious issue that demands a swift and effective response 
and treatment. Experimental results confirmed a high fluoride concentration in water samples of Ganga basin 
area of Kasganj, U.P, India, which might be due to its geological conditions. It was concluded that water available 
from different sources in this region is not fit for drinking.

Table  8 comprehensively shows the Kasganj WQI, demonstrating the highest and lowest values across 
different sampled areas. The range of potential values, a key aspect of our research, is presented, with 63.64 
(Saiyad Nagla) representing the water quality index. After a thorough examination, it becomes clear that the 
maximum value of WQI is in Tarora (221.18).

Table 9 demonstrated that the WQI of the study region, ranging from (233.16, 185.86, 1588, 221.18), reflects 
water quality influenced by both geogenic and anthropogenic sources, with fluorite rock playing a pivotal role by 
contributing minerals that significantly impact water chemistry and overall quality.

Irrigation water quality
Irrigation water of low quality may affect crop yields and quality68. In the study by69, salinity is the primary 
determinant of irrigation water quality. In the present investigation, we assessed the water’s potential for 
agricultural use by calculating its Na, SAR, MH, and KR percentages.

Fig. 6.  Piper diagram for samples of groundwater at Kasganj, U.P., India.
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Percentage of sodium, sodium absorption ratio, MH and KR
The percentage of sodium, SAR, MH, and KL were calculated using Eq.  5, 6, 7, and 8 to determine all the 
collected samples. The results indicated that the average values Na%, SAR, MH, and KL in the above samples 
were 25.30%, 7.45%, 26.07%, and 0.29% meq/L, respectively (Figs. 9 and 10a–d). These numbers not only 
show the suitability of quality of water for irrigation and agricultural uses (Table 10) but also convey possible 
advantages, such the decrease of soil permeability and the reasons of soil hardness, which could result in better 
agricultural practices68–71

Variable F− PH TDS TA Cl− Ca2+ Mg2+ Na+ K+ NO3
− SO4

2− TH HCO3
−

F− 1.00

PH 0.03 1.00

TDS − 0.33 0.29 1.00

TA 0.03 0.32 0.46 1.00

Cl− 0.44 0.00 0.47 0.33 1.00

Ca2+ 0.48 − 0.11 0.41 0.32 0.78 1.00

Mg2+ 0.43 − 0.16 0.44 0.33 0.73 0.97 1.00

Na+ 0.22 0.12 0.47 0.29 0.47 0.36 0.35 1.00

K+ − 0.69 0.32 0.84 0.23 0.02 − 0.05 − 0.03 0.19 1.00

NO3
− 0.35 0.13 0.32 0.14 0.34 0.59 0.60 0.39 0.02 1.00

SO4
2− 0.27 0.11 0.53 0.20 0.48 0.79 0.78 0.19 0.20 0.64 1.00

TH − 0.11 0.09 0.91 0.43 0.61 0.71 0.75 0.43 0.62 0.49 0.73 1.00

HCO3
− 0.03 0.33 0.46 1.00 0.32 0.31 0.33 0.29 0.24 0.14 0.20 0.43 1.00

Table 7.  Correlation analysis of Ganga basin area of Kasganj, U.P, India.

 

Fig. 7.  Gibbs diagram for samples of groundwater at Kasganj, U.P., India.
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Fig. 8.  (a, b) Special graphical and distribution representation of the WQI of the Ganga basin area of Kasganj, 
U.P, India.
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Application of XGBoost (XGB), artificial neural network (ANN), and random forest (RF), 
models to predict the quality of water in Kasganj areas
This present research used a data partitioning technique, designating 80% of the dataset for training and 10% 
each for validation and testing. The predictive performance of three machine learning models—XGBoost (XGB), 
Artificial Neural Network (ANN), and Random Forest (RF)—in forecasting the Water Quality Index (WQI) over 
23 monitored sites is assessed in this work. These discoveries could significantly influence machine learning, 
environmental science and engineering, and other fields, opening new avenues of exploration. Cross-validation 
split the dataset with 18 sites set aside for training and 5 for testing every iteration. With R2 values of 0.9568 for 
XGB, 0.9994 for ANN, and 0.9368 for RF, the models showed great accuracy throughout the training phase, 
suggesting strong positive correlations between anticipated and absolute WQI values. The models kept strong 
performance during the test, producing R2 values of 0.8427 (XGB), 0.8738 (ANN), and 0.9034 (RF). Via visual 
regression analysis in Figs. 11a–d, 12a–d, 13a–d, these results confirm the models’ efficacy in WQI prediction; 
RF shows the best generalizing capacity on unseen data.

Performance of comparative analysis of XGBoost (XGB), artificial neural network (ANN), and random forest 
(RF), for regression
As detailed in Table 11, the current research assesses the performance of Water Quality Index (WQI) prediction 
by utilizing three popular machine learning algorithms: XGB, ANN, and RF, Utilizing basic evaluation 
parameters—Root Mean Square Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and 
R-squared (R2)—theoretical foundations, forecasting accuracy, and overall efficacy of each model were rigorously 
investigated. The outcomes are indicated by better performance by RF with minimum error values (RMSE: 5.97, 
MSE: 35.69, MAE: 5.49) and a high R2 value of 0.951. ANN followed closely with an R2 of 0.957, while XGB 
achieved an R2 of 0.831. The performance by RF was the best in WQI prediction among these models tested.

Areas WQI ranges References

Barauli Ahir block, Agra district 233.16 Ali et al., 2022

Achhnera block, Agra region, North India 185.86 Ali et al., 2024

Mathura district, Northern India 1588 Salman et al., 2020

Kasganj, Uttar Pradesh, North India 221.18 Present study

Table 9.  Illustrated the compared of WQI with previous studies1,6,67.

 

S.NO WQI Water quality

SN1 75.46 Very poor

SN2 103.18 Unfit

SN3 120.49 Unfit

SN4 107.52 Unfit

SN5 121.40 Unfit

SN6 132.33 Unfit

SN7 116.75 Unfit

SN8 161.31 Unfit

SN9 135.94 Unfit

SN10 221.18 Unfit

SN11 136.35 Unfit

SN12 202.03 Unfit

SN13 146.57 Unfit

SN14 162.04 Unfit

SN15 66.45 Moderate poor

SN16 66.82 Moderate poor

SN17 63.64 Moderate poor

SN18 82.02 Very poor

SN19 121.65 Unfit

SN20 85.84 Very poor

SN21 94.84 Very poor

SN22 93.89 Very poor

SN23 85.24 Very poor

Table 8.  Illustrates the water quality indexing in Kasganj region, North India.
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Discussions
The models of machine learning perform well in predicting WQI, with RF showing the highest accuracy. The 
RF model efficacy for the fluoride and sulfate contaminated of groundwater quality assessment is confirmed 
by its excellent R2 value of 0.951 and its low error values. Although other models such as ANN and XGBoost 
also showed strong performance, RF consistent accuracy across training and validation sets underscores its 
dependability as a predictive tool. The present research investigation reveals how traditional WQI techniques 

Fig. 10.  (a–d) Spatial distribution of IWQI (SAR, Mg Hazard, Na% and Kelly ratio) in the sampled area.

 

Fig. 9.  Special graphical representation of the IWQI of the Ganga basin area of Kasganj, U.P, India.
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can be improved by integrating machine learning, offering a more reliable and effective means of water quality 
monitoring. The spatial distribution maps and statistical analysis clearly indicate significant hydrogeochemical 
heterogeneity within the study area, with certain parameters like fluoride, chloride, and sulfate showing 
concentrated zones of high values.

When considered in the context of recent related works, the results of this study are further supported. In 
Kerala, Aju et al.72 used machine learning models to predict groundwater quality and discovered that RF was the 
most successful, with an R2 of 0.92272. Similarly, for groundwater forecasting, Hussein et al.73 emphasized the 
superior predictive stability of RF and XGBoost over traditional models. The usefulness of ANN-based hybrid 
approaches for probabilistic risk assessment in fluoride-endemic areas was further illustrated by Islam et al.31. 
By combining WQI-based evaluation with spatial distribution analysis, the proposed work not only validates 
the effectiveness of RF in managing hydrogeochemical heterogeneity but also advances the field in comparison 
to these studies. This thorough approach highlights our methodology’s contribution to sustainable groundwater 
monitoring and emphasizes its dependability and practical applicability.

Conclusion
The groundwater quality has been deteriorating from the geogenic and anthropogenic sources. However, the 
115 water samples of twenty-three different locations of Kasganj reveal that the study region is under a serious 

Fig. 11.  (a–d) Regression of XGBoost model during training, testing and validation.

 

S.No Variables Range Water type Samples %

1 Na%
> 60 Unfit Nil

< 60 Suitable 100

2 SAR

> 26 Unfit Nil

18–26 Doubtful Nil

10–18 Good 39.13

< 10 Excellent 60.87

3 MH
> 50 Unfit Nil

< 50 Suitable 100

4 KR
> 1 Unfit Nil

< 1 Suitable 100

Table 10.  The groundwater samples classification in the Kasganj, Uttar Pradesh, North India for irrigation 
purposes27,25,2.
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Fig. 13.  (a–d) Regression of RF model during training, testing and validation.

 

Fig. 12.  (a–d) Regression of ANN model during training, testing and validation.
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threat to groundwater. Water Quality Indexing (WQI) and Irrigation Water Quality Indexing (IWQI) have also 
been utilized to distinguish the suitability and quality of water sites in the study area for affordable drinking and 
agricultural purposes. It has also been noticed that Total Dissolved Solids (TDS) and fluoride (F⁻) concentrations 
exceed WHO guidelines, posing significant health risks. Although pH and hardness were above permissible 
limits, which indicates the consistently elevated fluoride levels, in correlation with pH, alkalinity, and ion 
interactions (notably with hydrogen, sodium, and bicarbonate) and the geochemical mechanisms influencing 
groundwater chemistry in the region. Notably, 60.87% of the samples were classified as unsuitable for human 
consumption, with several falling into the “extremely poor” category. This highlights both the health risks and 
the urgent need for sustainable groundwater management. The predictive models used for assessing the water 
quality include Random Forest (RF), Artificial Neural Network (ANN), and XGBoost (XGB), and affirm that 
the RF model demonstrated the most balanced and reliable performance, achieving the lowest error metrics 
(RMSE: 5.97, MSE: 35.69, MAE: 5.49) and a strong coefficient of determination (R2 = 0.951). While ANN slightly 
outperformed RF in R2 (0.957), its higher error rates rendered RF the more robust choice overall. These machine 
learning models highlight the strong potential of accurately predicting and monitoring groundwater quality 
and offering valuable support for water resource management and public health strategies. The wide variation 
in water quality across the study area suggests it is influenced by both natural geological conditions and human 
activities. Additionally, the negative saturation index values for minerals like fluoride indicate undersaturation, 
which may increase fluoride mobility and contribute to its elevated levels in groundwater. Overall, this research 
reveals serious groundwater quality issues in the study region, which demonstrates how data-driven approaches, 
especially machine learning, can offer practical solutions for better groundwater monitoring. However, the 
effectiveness of these models depends heavily on the quality and representativeness of the input data, and the 
complexity of some algorithms may pose challenges in terms of transparency and interpretability for stakeholders 
and decision-makers.

Data availability
The data will be provided on a request from the corresponding author.
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