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Single-cell and single-nuclei RNA-sequencing (scRNA-seq and snRNA-seq) analyze cell-specific 
transcriptomes. However, only snRNA-seq applies to frozen biobanked samples. For human pancreatic 
islets, marker genes and reference-based cell type annotation methods are mainly from scRNA-
seq datasets and may not be suitable for snRNA-seq. We compared human islet scRNA-seq and 
snRNA-seq data from the same donors (N = 4) and evaluated annotation methods by studying cell 
type composition and gene detection, and identified novel marker genes. We compared cell type 
annotations: (1) manual annotation based on identified marker genes, (2) reference-based annotation 
using Azimuth’s scRNA-seq pancreasref dataset, or (3) Seurat’s label transfer from the Human 
Pancreas Analysis Program (HPAP) scRNA-seq dataset. ScRNA-seq and snRNA-seq identified the 
same cell types, but predicted cell type proportions differed. Cell type proportion-differences between 
annotation methods were larger for snRNA-seq. Reference-based annotations generated higher cell 
type prediction and mapping scores for scRNA-seq than snRNA-seq. Manual annotation identified the 
novel snRNA-seq markers DOCK10, KIRREL3 (beta cells), STK32B (alpha cells), MECOM, AC007368.1 
(acinar cells), LAMC2 and SLC28A3 (ductal cells), which improve snRNA-seq-based annotation. We 
confirmed ZNF385D as a snRNA-seq beta cell marker and ZNF385D silencing reduced insulin secretion. 
In conclusion, this study discovered novel snRNA-seq cell type marker genes in human pancreatic 
islets, and highlights the need for tailored snRNA-seq annotation strategies.
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T2D	� Type 2 diabetes
UMAP	� Uniform manifold approximation and projection
UMI	� Unique molecular identifier 

Type 2 diabetes (T2D), a disease characterized by chronic hyperglycemia, is increasing at an alarming rate 
worldwide. Glucose homeostasis is achieved by secretion of glucose-lowering insulin and glucose-elevating 
glucagon from pancreatic beta and alpha cells, respectively. In healthy individuals, insulin secretion is balanced 
against insulin sensitivity in peripheral tissues1. Somatostatin, secreted from pancreatic delta cells, also impacts 
glycemia by inhibiting insulin and glucagon release2. Other cell types in pancreatic islets that influence glucose 
levels include gamma cells, which produce pancreatic polypeptide, and epsilon cells, which produce ghrelin3,4. 
People with T2D are unable to maintain normoglycemia mainly due to insufficient insulin release from the beta 
cells5. To dissect the molecular mechanisms that underlie both hyperglycemia and normoglycemia in people 
with and without T2D, it is essential to study gene regulation in all islet cell types.

Earlier studies from our group and others used RNA-sequencing and microarray-based methods to identify 
alterations in the transcriptome and epigenome in whole human islets from donors with T2D versus non-
diabetic controls6–12. Although many results in those studies have been technically and biologically replicated 
and functionally validated, they are limited in that they did not allow for cell type-specific analyses.

Single-cell RNA-sequencing (scRNA-seq) analyses gene expression of individual cells and can thus help us 
understand the pancreatic islet transcriptome at cell-specific resolution. Several studies have used scRNA-seq 
to investigate alterations in the transcriptome in human islet cells from donors with T2D versus non-diabetic 
controls13–16. However, the overlap in shared differentially expressed genes (DEGs) between these studies was 
modest17–19. This may be due to smaller sample sizes or to the inherent drawbacks of studying single cells, 
such as the potential for stress-induced transcriptional artifacts introduced by single-cell dissociation and the 
incompatibility of scRNA-seq with frozen archived material from biobanks, where most human islet samples are 
typically deposited. One solution is to perform single-nuclei RNA-sequencing (snRNA-seq), which can be done 
on frozen samples, allowing analysis of available larger biobanks20,21, and showing fewer technical issues due 
to cell dissociations. However, the transcripts analyzed by scRNA-seq and snRNA-seq are different: scRNA-seq 
analyses both nuclear and cytoplasmic transcripts, whereas snRNA-seq analyses primarily nuclear transcripts, 
leading to a bias towards nascent or incompletely spliced transcripts. A few studies have performed snRNA-seq 
in human pancreatic islets from donors with T2D versus non-diabetic controls22,23 and recent studies compared 
scRNA-seq and snRNA-seq in islets from one to three donors24–26. These studies found that snRNA-seq identified 
most human islet cell populations and thus could be a good alternative to scRNA-seq.

A significant challenge in scRNA/snRNA-seq studies is the correct annotation of cell types, which can be 
performed using, e.g., manual or reference-based approaches. Manual annotation is based on a library of marker 
genes, whose expression is higher in, and therefore characteristic of, a particular cell type. Reference-based 
annotation compares a generated expression profile to published reference datasets, where each individual cell 
or nucleus (barcode) has already been annotated with a predicted cell type. Inferred cell types are assigned to 
each barcode in a query dataset based on the most similar reference sample(s). This process depends on the 
reference data set’s quality and annotation; most marker genes and published reference data sets for human 
pancreatic islets are from scRNA-seq and not snRNA-seq studies13–15,27–30. Comparative studies have observed 
that snRNA‐seq better preserves the in situ molecular state, particularly for markers that are altered upon cell 
isolation21. The dissociation process for scRNA‐seq can introduce stress responses where scRNA‐seq might not 
fully recover specific cell populations; thus, these cell populations would not be found in snRNA-seq data when 
using a scRNA-seq dataset as a reference. This has frequently been seen among neuronal cell types, where some 
cell types are more vulnerable to dissociation31, but also in kidney and liver cells, where certain rare cell types 
identified by snRNA-seq were missing in scRNA-seq32,33. Thus, snRNA‐seq may yield more consistent cell-type 
profiles and better replicate the in vivo transcript distribution compared to scRNA‐seq. Kang et al.25 identified 
new snRNA-seq marker genes in human islets that may enable more accurate cell type annotation when analysing 
nuclear transcripts compared with the marker genes previously identified by scRNA-seq, indicating that marker 
gene selection and annotation should be performed using specific snRNA-seq cell-type markers for nuclei data.

Based on this, we aimed to compare scRNA-seq and snRNA-seq data generated from pancreatic islets of the 
same human donors (Fig. 1a). We compared manual annotation and two reference-based cell type annotation 
methods using scRNA-seq reference datasets25,30 on our scRNA-seq and snRNA-seq data. We then assessed 
differences in predicted cell type composition and gene detection between scRNA-seq and snRNA-seq. We also 
searched for potential novel snRNA-seq-specific marker genes for pancreatic islet cell populations that may 
be used to improve the annotation of cell types in snRNA-seq data. Finally, we studied insulin secretion after 
knockdown of the beta cell marker gene ZNF385D in INS-1 832/13 cells.

Materials and methods
Human pancreatic islets
Human pancreatic islets from four male non-diabetic multiorgan donors (Fig. 1b) were isolated at The Nordic 
Network for Islet Transplantation in Uppsala, Sweden, and were then sent to the Human Tissue Laboratory 
at Lund University Diabetes Center (LUDC). The islets were prepared by enzymatic digestion and density 
gradient separation, and islet preparation culture, purity, and count determinations were performed as described 
previously34. Islets were used fresh or after freezing at − 80 °C for scRNA-seq and snRNA-seq analysis, respectively.

Dispersion of fresh islets into single cells
Freshly cultured (CMRL-1066 + 10% human serum) human islets were dissociated into single cells by Accutase 
(L0950; Biowest, USA). Briefly, 1000–2000 islet equivalents (IEQs)) were washed once in 5 ml Accutase. After 
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removing the Accutase, 5 ml pre-warmed Accutase was added, and islets were incubated at 37 °C for 10 min 
with mixing every 2 min. Next, 5 ml of cold RPMI media was added, and a single-cell suspension was made 
by pipetting up and down. The suspension was passed through a 40 µm cell strainer and washed twice with 
PBS with 0.04% BSA (Merck, USA). Dead cells were removed using a Dead Cell Removal Kit (Miltenyi Biotec, 
Germany). A fraction of the cells was then stained with Trypan Blue and counted with a Bürker chamber.

Single nuclei isolation from frozen islets
Single nuclei were isolated from frozen human islets using the Chromium Nuclei Isolation Kit (1000494; 
10x Genomics, USA) with the whole process performed on ice and in 4  °C centrifuges. Briefly, frozen islets 
(1000–2000 IEQs) were transferred to a Dissociation Tube with cold Lysis Buffer (diluted 1:2 with PBS) and 
homogenized with a pestle. Additional diluted Lysis Buffer was added, and samples were incubated for 7 min 
on ice. The dissociated islets were transferred to a column assembled with a collection tube and centrifuged at 
16,000g for 20 s. The flowthrough containing the nuclei was centrifuged for 3 min at 500g. The nuclei pellet was 
then resuspended in Debris Removal Buffer and centrifuged at 700g for 10 min. The supernatant was discarded, 
and the nuclei were washed twice in Wash Buffer and passed through a 40 µm cell strainer. The nuclei were 
centrifuged at 500g for 5 min, and the pellet was resuspended in Resuspension Buffer. A fraction of the nuclei 
was mixed with AO/PI (DeNovix, USA) at a 1:1 ratio and counted with the CellDrop Automated Cell Counter 
(DeNovix, USA).

Generation of single-cell and single-nuclei RNA-sequencing data
Cells and nuclei were prepared following Chromium Next GEM Single Cell 3ʹ Reagent Kit v3.1 protocols and 
Chromium Next GEM Single Cell Multiome ATAC + Gene Expression Kit (10x Genomics, USA), respectively. 
Briefly, 9000–16,000 cells or nuclei were loaded into the Chromium Controller to generate Gel Beads-in-
Emulsion (GEMs) with barcoded gel beads (one unique barcode is used for each cell/nucleus), a master mix, 
and partitioning oil on a chromium chip. A barcode is a unique nucleotide sequence assigned to each cell or 
nucleus during sample preparation, and the word barcode is used when referring to a cell or nucleus. Following 
GEM formation, cDNA with a 16nt 10x barcode and a 12nt Unique molecular identifier (UMI) was produced 
with reverse transcription. The cDNA was purified using Dynabeads and amplified via PCR.

Quality control and cDNA quantification were performed using High Sensitivity D5000 ScreenTapes (Agilent, 
USA). The library construction was then carried out, including fragmentation, adapter ligation, and sample 
index PCR. Final quality control and quantification of the libraries were performed using High Sensitivity D5000 
ScreenTapes (Agilent, USA) and the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, USA). The libraries 
were sequenced by the NovaSeq 6000 system (Illumina, USA) at the Center for Translational Genomics (CTG), 
Lund, Sweden.

Preprocessing of sequencing data
The raw sequencing data were processed using the 10x Genomics Cellranger v.7.1.0 pipeline. Introns were 
included for both scRNA-seq and snRNA-seq. The GRCh38-2020-A library was used. Automatic cell calling 

Fig. 1.  Study design and donor characteristics. (a) A schematic picture of the study design, including four 
non-diabetic donors, while (b) shows donor characteristics for age, body mass index (BMI), and HbA1c (a 
measure of average blood glucose levels over the past months, used to diagnose prediabetes and diabetes, one 
missing value).
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was done in Cellranger, automatically or, when appropriate, via manual inspection of the inflection point in the 
barcode-rank plot.

Quality control, ambient RNA correction, and doublet removal
Each sample was analyzed separately until after ambient correction, doublet removal, quality control (QC), and 
filtering away of barcodes with low quality. The R package SoupX35 was used to estimate and remove ambient 
RNA contamination. The SoupX corrected feature-barcode matrices were further processed using the R package 
Seurat (v5.1.0)36, where features present in fewer than 10 barcodes per sample and barcodes with fewer than 
200 features were removed as an initial step. A feature is a measurable entity in the dataset, most commonly 
nuclear transcripts, but it also includes mitochondrial transcripts and ribosomal RNA. Predicted doublets were 
removed using the R package scDBlfinder37. Low-quality barcodes were further filtered away if they met any of 
the following criteria: fewer than 500 features detected in each cell/nucleus, fewer than 500 molecules (counts) 
detected within a cell/nucleus, a log10Genes per Unique Molecular Identifier (UMI) below 0.80 (denoting the 
complexity), a fraction of mitochondrial genes above 5%, or a fraction of ribosomal genes above 35%. To avoid 
modality (snRNA-seq or scRNA-seq)-specific bias, identical cut-offs were applied to both scRNA-seq and snRNA-
seq datasets. The nuclear lncRNA gene metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) can 
dominate sequencing reads, introduce bias, and potentially obscure the detection of less abundant transcripts. 
In studies where MALAT1 is not of primary interest it can therefore be wise to remove it from the dataset before 
further analysis38. Thus, we removed MALAT1 transcripts from the dataset. The function Seurat LogNormalize 
was then used for normalization.

Integration and unsupervised clustering
We selected a subset of 2000 features that exhibit high barcode-to-barcode variation (i.e., highly expressed in 
some barcodes and lowly expressed in others), and the individual datasets were then integrated using Seurat 
Canonical Correlation Analysis (CCA)36. Focusing on these highly variable features in downstream analysis 
helps to highlight biologically relevant signals in single-cell/nuclei datasets39. The integrated dataset was further 
processed by scaling the data and regressing the number of features and fractions of mitochondrial genes. 
Principal component analysis (PCA) was then performed. The FindClusters function in Seurat, a Louvain 
graph-based approach, using the top 30 principal components with the resolution parameter set to 1, was 
used to identify distinct cell populations within our dataset, where the barcodes were clustered based on their 
transcriptomic profiles. Clusters were further evaluated for technical variables, including mitochondrial content, 
cells representing a single donor, extreme number of features, and high doublet score, and low-quality clusters 
were removed before re-clustering of the data.

Cell type annotation
To annotate cell types, we compared three different approaches as described in more detail below: (1) manual 
annotation of clusters based on marker genes identified using Seurat’s FindAllMarkers function, (2) reference-
based annotation using Azimuth with Azimuth’s scRNA-seq pancreasref dataset36, and (3) reference-based 
annotation with Seurat’s label transfer using CCA integration with the Human Pancreas Analysis Program 
(HPAP) non-diabetic scRNA-seq dataset30. To assess the agreement between these three annotation methods, 
we compared the distribution of predicted cell types and visualized the results using Uniform Manifold 
Approximation and Projection (UMAP). Additionally, for the reference-based annotations, we calculated 
median prediction scores (both) and mapping scores (only available for Azimuth) across all barcodes and per 
cell type.

(1) Manual annotation: We first performed a marker gene analysis to identify cluster-specific differentially 
expressed genes (DEGs). Using the FindAllMarkers function in Seurat, we applied the Wilcoxon rank-sum test 
to compare each cluster against all others, separately for the snRNA-seq and scRNA-seq datasets. Genes were 
classified as marker genes if they exhibited a log₂ fold change (FC) > 1 in one cluster compared to the cells of 
all other clusters and were expressed in at least 25% of barcodes within a given cluster and false discovery rate 
(FDR) < 0.05. Cell types were then assigned cluster-wise by comparing our identified cluster-specific marker 
genes with canonical markers for pancreatic cell types reported in the literature14,25,27,29: INS (beta cells); 
glucagon (GCG) (alpha cells); SST (delta cells); PPY (gamma cells); PRSS1 and REG1A (acinar cells); KRT19 
(ductal cells); PTPRC (immune cells); PECAM1 (endothelial cells); COL1A1 (activated stellate cells); PRKG1 
(quiescent stellate cells); and SOX10 and S100B (Schwann cells). We also used marker genes identified by Kang 
et al.25 in snRNA-seq data; ZNF385D, TRPM3, LRFN2, and PLUT for beta cells; PTPRT, FAP, PDK4, and LOXL4 
for alpha cells; LRFN5, ADARB2, ERBB4, and KCNT2 for delta cells; CACNA2D3, THSD7A, CNTNAP5, and 
RBFOX3 for gamma cells. (2-3) Azimuth and HPAP reference-based annotation: The publicly available Azimuth 
Human Pancreas reference (pancreasref) comprises six scRNA-seq pancreas datasets13–15,27–29 integrated into 
a single reference by Seurat’s integration framework. Our query dataset was mapped to pancreasref using the 
Azimuth R package (version 0.4.6) and the core function RunAzimuth, following the workflow outlined in the 
official tutorial (​h​t​t​p​s​:​​/​/​s​a​t​i​​j​a​l​a​b​.​​g​i​t​h​u​b​​.​i​o​/​a​​z​i​m​u​t​h​​/​a​r​t​i​c​​l​e​s​/​r​u​​n​_​a​z​i​m​u​t​h​_​t​u​t​o​r​i​a​l​.​h​t​m​l). This pipeline included 
dimensionality reduction and automated cell type annotation, and utilized the unnormalized expression data 
in the ‘counts’ slot of the ‘RNA’ assay. The HPAP dataset30 contains scRNA-seq profiles from non-diabetic 
donors and is publicly available at ​h​t​t​p​:​/​​/​w​w​w​.​g​​a​u​l​t​o​n​​l​a​b​.​o​r​​g​/​p​a​g​​e​s​/​I​s​l​​e​t​_​e​x​p​​r​e​s​s​i​o​​n​_​H​P​A​P​.​h​t​m​l. Seurat’s 
FindTransferAnchors() and TransferData() functions were used for annotation, enabling label transfer from the 
reference to our dataset. For both references, cell identities were transferred onto our query based on anchor 
correspondence in a shared low-dimensional space. In the case of Azimuth, SCTransform normalization was 
applied internally to harmonize the query data with the SCTransformed reference. For the HPAP reference, 
both query and reference datasets were normalized using LogNormalize before integration, and anchors were 
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identified using CCA. Anchors are pairs of cells across datasets that are identified as biologically similar based 
on the transcriptome, forming “guideposts” for how to align the reference and query datasets.

The pair-wise overlaps between the annotated cell types were visualized by bar plots, and fractions annotated 
to the same cell type when comparing two annotation methods were calculated to compare these three 
annotations. We examined the prediction scores (Azimuth and HPAP) to assess annotation confidence and 
compared them between annotation methods and scRNA-seq and snRNA-seq. Cell prediction scores range 
from 0 to 1 and reflect the confidence associated with each annotation, and a high prediction score reflects 
predictions supported by multiple consistent anchors. For Azimuth, we also examined mapping scores. The 
mapping score ranges from 0 to 1 and reflects the confidence that a barcode is well represented by the reference 
and how well the unique structure of a cell’s local neighbourhood is preserved during reference mapping. To 
assess the consistency between cell type annotation methods, we calculated the Jaccard similarity index for each 
pair of annotation methods. First, cell type labels were harmonized to ensure comparability across methods:

	1.	 ductal and MUC5B+ ductal (HPAP) were combined as ductal,
	2.	 gamma + epsilon (HPAP) was compared to gamma for azimuth and manual annotation,
	3.	 mast and macrophage (Azimuth) were combined as immune, and
	4.	 activated stellate, quiescent stellate, and Schwann were combined as mesenchymal.

However, the alpha + beta category was not collapsed. We are aware that this can influence the values for 
comparisons with Azimuth annotation, since Azimuth does not have an alpha + beta category as manual and 
HPAP annotation do. For each cell type, we calculated the Jaccard index as the number of cells assigned to 
that cell type by both annotation methods in a pair-wise comparison (intersection) divided by the number 
of cells assigned to that cell type by at least one of the methods (union). Values range from 0 (no overlap) 
to 1 (perfect agreement). Cell type–specific Jaccard scores were then averaged to obtain an overall similarity 
matrix between annotation methods. To assess annotation consistency between scRNA-seq and snRNA-seq, 
we calculated weighted Jaccard indices per donor and annotation method, which accounts for both shared cell 
types and their relative proportions. In addition, we used paired Wilcoxon signed-rank test (further described 
in the methods section) to 1) assess whether the predicted cell type proportions differed between scRNA-seq 
and snRNA-seq within the three annotation approaches, and 2) whether cell type proportions differed between 
annotation methods within the same modality.

Identification of more robust cell type-specific marker genes
To identify novel cell type-specific marker genes that characterize each cell type and are low-frequent in other cell 
types, we conducted a second FindAllMarkers analysis by applying stricter criteria and comparing the annotated 
cell types derived from the manual annotation of the original clusters. Here, we required marker genes to have 
a log₂ FC > 1 and to be expressed in at least 50% of barcodes within a given cell type. To identify genes that are 
differently expressed between scRNA-seq and snRNA-seq in the same cell type, we conducted a FindAllMarkers 
analysis. We considered genes with a log₂ FC > 1, expressed in at least 25% of barcodes within a given cell type, 
and with FDR < 0.05 to be differently expressed between scRNA-seq and snRNA-seq.

Comparison of genes expressed in scRNA-seq and snRNA-seq
A gene was considered expressed if it had a UMI count ≥ 3 for at least one barcode. We evaluated the number of 
genes expressed in at least one barcode, as well as in at least 10% of the barcodes, and the overlap in expressed 
features between the scRNA-seq and snRNA-seq data. We evaluated the number of features expressed per cell 
type (based on cell type prediction from manual annotation) and how the expression per cell type overlapped 
and differed between cells and nuclei. To compare the marker gene detection rate (defined as the fraction of cells 
a gene is considered expressed in) between scRNA-seq and snRNA-seq for the same donor, we performed paired 
statistical analyses as further described in the statistics section.

siRNA-mediated knockdown and insulin secretion
The rat beta cell line 832/13 INS140, a kind gift from Professor Christopher Newgard (Duke University, Durham, 
NC, USA), was transfected with 25 nM negative control siRNA (Silencer Select Negative Control No. 2 siRNA, 
Thermo Fisher Scientific), or one of two siRNAs targeting Zfp385d, the rat homologue of human ZNF385D 
(s156987 and s156988, Thermo Fisher Scientific), by using Lipofectamine RNAiMAX (Thermo Fisher Scientific). 
RNA was isolated 72 h after transfection with miRNeasy (Qiagen, Hilden, Germany) and converted to cDNA 
with RevertAid cDNA synthesis kit (Thermo Fisher Scientific). Knockdown was analysed by qPCR with TaqMan 
assays (Thermo Fisher Scientific) for Zfp385d (assay id Rn01772858_m1) and Hprt1 (Rn01527840_m1), and 
Ppia (Rn00690933_m1, data not shown) as endogenous controls. Quantification was done with the ΔΔCt 
method. For secretion experiments, transfected cells were washed once in secretion assay buffer (SAB: 114 mM 
NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.16 mM MgSO4, 20 mM HEPES, 2.5 mM CaCl2, 25.5 mM NaHCO3, 0.2% 
bovine serum albumin, pH 7.2) containing 2.8 mM glucose and then preincubated for 2 h at 37 °C in the same 
buffer. Insulin secretion was then stimulated for 1 h with SAB containing either 2.8 or 16.7 mM glucose. Secreted 
insulin was measured with High range rat insulin ELISA (Mercodia, Uppsala, Sweden) and normalised to total 
protein as determined by BCA assay (Themo Fisher Scientific).

Statistics
Summary data are presented as median (quartile 1; quartile 3) unless stated otherwise. We compared QC 
metrics, cell-type proportions, and marker gene detection between snRNA-seq and scRNA-seq on a per-donor 
basis by using the paired Wilcoxon signed-rank test. All tests were two-sided unless otherwise stated. We first 
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aggregated per-cell measurements (such as percent fraction of mitochondrial genes) as per-donor average for 
snRNA-seq and scRNA-seq separately, to avoid pseudo-replication. Effect sizes and confidence intervals are 
reported alongside p-values to account for the limited statistical power inherent to the sample size (n = 4 paired 
donors). Effect sizes are shown as Hodges–Lehmann (HL) location shift (the median of paired differences 
(snRNA-seq–scRNA-seq)). Thus, negative estimates indicate lower values in snRNA-seq relative to scRNA-
seq, and vice versa. To provide stable uncertainty quantification with small n, 95% confidence intervals for the 
HL shift were obtained via nonparametric bootstrap (percentile method; 10,000 resamples). Where an exact 
Wilcoxon confidence level was not achievable, the bootstrap CI was reported. Multiple p-values were adjusted 
using the Benjamini–Hochberg method, applied separately within each analysis. All statistical analyses were 
implemented in R (version 4.3) using the dplyr and stats packages.

Results
RNA-seq analysis of single cells and nuclei from human pancreatic islets
Fresh and frozen pancreatic islets from four male donors were used for scRNA-seq and snRNA-seq profiling, 
respectively. The study design and the characteristics of the islet donors are presented in Fig. 1a,b. Descriptive 
quality metrics and barcode summary data per sample are shown in Table 1 and Supplementary Fig. 1. The 
median ambient RNA fraction per sample was estimated to be 1.9% (range 1–2.4) for cells and 3.2% (range 
1.9–7.4) for nuclei (HL shift = 1.3%, 95% CI 0.8–5.0, FDR = 0.12, when comparing cells and nuclei), with INS 
(encoding insulin) being the most abundant transcript (median INS of the total ambient RNA in cell and nuclei 
samples were 28 and 27%, respectively). The median doublet fraction was estimated to be 9.5% (range 3.2–11) 
for cells and 7.6% (range 6.6–14) for nuclei (HL shift = 0.6%, 95% CI − 3.4 to 4.5, FDR = 0.58). The median 
fraction of intronic reads per sample was 19% (range 14–22) for cells and 54% (range 50–56) for nuclei (HL 
shift = 35%, 95% C.I 33.4–36.6, FDR = 0.12).

After pooling cells and nuclei from the four donors, the initial datasets from Cellranger included 23,432 
cells and 24,310 nuclei. In the pooled data, the median number of features (i.e., transcripts) was 4361 per cell 
(quartile 1[Q1]: 1434; quartile 3[Q3]: 6428) and 2120 (Q1: 1613; Q3: 2746) per nucleus (HL shift = 2478, 95% 
C.I 1562–3440, FDR = 0.12) The fractions of mitochondrial encoded genes and ribosomal RNAs per sample 
were, as expected, very low in nuclei (median < 0.001%, Q1: < 0.001; Q3: 0.048, and median 0.18%, Q1: 0.28; 
Q3: 0.45, respectively), while it was higher in cells (median 3.4%, Q1: 1.6; Q3: 5.9, and median 8.6%, Q1; 
5.8; Q3: 13, respectively), HL shift = 3.5%, 95% C.I 2.8–3.7, FDR = 0.12 for fractions of mitochondrial genes, 
and HL shift = 9.1%, CI 6.5–10.9, FDR = 0.12 for fractions of ribosomal genes. Applying the same cut-offs for 
mitochondrial and ribosomal transcript fractions in scRNA-seq and snRNA-seq did not impact the results, as 
nuclei contained very low levels of these transcripts.

After ambient correction, doublet removal, and filtering, 11,871 cells and 20,284 nuclei remained, which were 
included in the downstream analysis. The lower number of retained cells vs. nuclei after QC was partly explained 
by low-quality cells (7045 cells) filtered away due to high mitochondrial RNA gene content. The corresponding 
number of filtered nuclei was 1084. Additionally, more cells than nuclei were filtered away due to the cutoffs for 
number of features (1270 cells; 570 nuclei) and complexity (2507 cells; 163 nuclei).

Unsupervised clustering to identify distinct cell populations
To identify distinct cell populations, we integrated the scRNA-seq and snRNA-seq datasets and performed 
unsupervised Louvain clustering, initially identifying 24 clusters. We then assessed the quality control metrics 
for these 24 clusters, including detected features per cell/nucleus, UMI counts, and mitochondrial and ribosomal 
gene percentages. Subsequently, four clusters were removed due to the following technical artifacts: (1) consisted 
mainly of nuclei with high mitochondrial content (mean 2.9% vs. 0.40% for all nuclei), (2) contained only cells 
from a single donor, (3) included mainly nuclei with an exceptionally high number of features (mean 5771 vs. 
2223 for all nuclei), likely representing doublets missed by ScDblFinder (doublet score: 0.26 vs. 0.090 for all 
nuclei), and (4) consisted of mainly low-complexity cells with fewer features (mean 1731 vs. 4701 for all cells) 
and UMI counts (mean 6698 vs. 20,752 for all cells). After removing these clusters, re-clustering yielded 20 
clusters (Fig. 2a) containing 30,954 barcodes (11,207 cells and 19,747 nuclei). The distribution of cells and nuclei 
in the UMAP and the clusters is shown in Supplementary Fig. 2.

Cell type annotation
To annotate the cell types for the clusters presented in Fig.  2a, we used three different approaches: manual 
annotation based on known marker genes (Fig. 2b), and reference-based annotation using Azimuth and the 
pancreasref dataset (Fig. 2c)36, or cell type label transfer with CCA integration in Seurat with the HPAP non-
diabetic dataset30 (Fig. 2d), as reference.

The manual annotation method identified clusters corresponding to the endocrine cell types alpha, beta, 
delta, and gamma, a cluster with a mixture of alpha and beta cells, as well as acinar, ductal, and non-parenchymal 
endothelial, immune, and stellate cells (Fig. 2b). Four clusters were annotated as alpha cells (clusters 4, 6, 7, and 
13), and seven as beta cells (clusters 0, 1, 3, 8, 10, 14, and 18) (Fig. 2a,b). One intermediate cluster (cluster 9) 
was annotated as alpha + beta cells, as high expression of both INS and GCG was evident in the cluster. Beta cell 
clusters closer to the alpha clusters in the UMAP (clusters 1, 14, and 18) showed fewer beta cell-specific marker 
genes25 and were enriched for stress-related genes, including heat shock proteins (HSPs), suggesting that these 
clusters may represent stressed, dying, or transitioning beta cells. These cells were labelled “stressed beta cells” 
(Supplementary Table 1). For the four alpha cell clusters identified, marker genes were broadly consistent across 
clusters (Supplementary Table 1).

Both reference-based annotations identified all cell types from the reference datasets in our scRNA-seq and 
snRNA-seq datasets, except for epsilon cells present in the Azimuth reference dataset, pancreasref, but not in our 
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dataset. For Azimuth, the cell types identified were the endocrine cell types alpha, beta, delta, and gamma; the 
exocrine cell types acinar and ductal; and non-parenchymal cell types endothelial, immune, activated stellate, 
quiescent stellate, and Schwann, as well as cycling cells (the latter only present in scRNA-seq) (Fig. 2c).

For HPAP, the cell types identified were alpha, cycling alpha, alpha + beta, beta, delta, gamma + epsilon, 
ductal, MUC5B+ ductal, endothelial, macrophage, mast, activated stellate, quiescent stellate, Schwann, as well as 
cycling cells (Fig. 2d).

Comparison of predicted cell type composition between snRNA-seq and scRNA-seq
A comparison of the predicted cell type composition between the snRNA-seq and scRNA-seq data is shown 
in Table 2 and Supplementary Fig. 3. The predicted beta cell fractions were consistently higher in snRNA-seq 
(40–44%, depending on annotation method) than in scRNA-seq (29–40%, FDR=0.62 for manual annotation, 
0.14 for Azimuth, and 0.21 for HPAP), while the predicted alpha cell fractions were consistently lower in nuclei 
(17–19%) than in cells (29–44%, FDR=0.62 for manual annotation, 0.14 for Azimuth, and 0.21 for HPAP). For 
all annotation methods, the predicted fractions of immune, endothelial, and stellate cell types were higher in 
cells (4.6–7.6%) than in nuclei (0.1–0.6%, FDR=0.14–0.21, depending on annotation method). For the manual 
annotation and HPAP, the predicted fractions of acinar cells were also substantially higher in nuclei (12.3–
13.3%) than in cells (2.3–2.6%, FDR = 0.21), while the opposite was seen for Azimuth (0.3% in nuclei and 1.9% in 
cells, FDR = 0.14). We quantified the concordance of predicted cell type composition for scRNA-seq and snRNA-
seq, per annotation method, by using the weighted Jaccard index. The manual annotation showed the highest 
concordance between scRNA-seq and snRNA-seq (Supplementary Fig. 3), although no pairwise comparisons 
were statistically significant (all had FDR = 0.38).

Fig. 2.  Uniform Manifold Approximation and Projection (UMAP) showing cell types identified through 
different annotation methods. The panels show (a) clusters from unsupervised clustering, (b) manually 
annotated cell types, (c) annotation according to Azimuth and its pancreasref, and (d) annotation according to 
label transfer using CCA integration with scRNA-seq data from Human Pancreas Analysis Program (HPAP) as 
reference. The figures are split by scRNA-seq (left) and snRNA-seq (right).
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Comparison of cell type predictions for the different annotation methods
Next, we compared the predicted cell type composition between the three annotation methods and found that 
cell type fractions differed (Table 2, Supplementary Fig. 4 and Supplementary Table 2). Although we collapsed 
the cell types to be as comparable as possible between the annotation methods, some annotation differences 
were influenced by differences in cell type annotations in the reference datasets, e.g., while HPAP included an 
alpha + beta cell type, Azimuth did not.

For scRNA-seq, the fractions of predicted cell types were relatively consistent between the annotation 
methods. However, we found larger differences in predicted cell type fractions between annotation methods 
for the snRNA-seq data, for example, Azimuth annotated a relatively large fraction of nuclei as delta (8.8%) 
or gamma (14%), and these predicted delta or gamma nuclei were present among nuclei predicted as several 
other cell types in the other annotation methods (Supplementary Fig.  4). These fractions were substantially 
higher than for the manual annotation and HPAP, where the fractions of delta and gamma cells in the snRNA-
seq data, were predicted to be 3.7% (FDR = 0.16 compared to Azimuth) and 3.7% (FDR = 0.16), respectively, 
for the manual annotation, and 2.2% and 1.6%), respectively, for HPAP (FDR = 0.16 for both comparisons). 
Additionally, Azimuth classified a substantially smaller fraction of nuclei as acinar (0.3%) compared to manual 
annotation and HPAP (12%, FDR = 0.16, and 13%, FDR = 0.16), while a larger fraction was predicted to be 
ductal (19%) compared to manual annotation and HPAP (11%, FDR = 0.16, and 10%, FDR = 0.16). For scRNA-
seq, the correspondence between pair-wise predicted cell types for the different annotation methods was high 
(Supplementary Fig. 4), and pair-wise comparisons showed that over 75% of the cell type predictions could be 
replicated when using another annotation method (excluding the alpha + beta cell type) (Table 3). However, for 
some pair-wise comparisons, the overlap fraction between predicted gamma cells was lower than for the other 
cell types (< 75% for four out of six comparisons). For snRNA-seq, the overlap was very low for acinar cells 
in the pair-wise comparisons where the Azimuth annotation was one of the annotations compared (Table 3, 
Supplementary Fig. 4). Four cell types (acinar, alpha + beta, gamma, and endothelial) showed an overlap below 
50% among at least two pair-wise comparisons for snRNA-seq. In total, when excluding the alpha + beta cell 
type, one pair-wise comparison (gamma, HPAP/Azimuth) showed an overlap below 50% in scRNA-seq (Table 
3, Supplementary Fig. 4), while eleven pair-wise comparisons showed an overlap below < 50% in snRNA-seq. We 
also performed Jaccard similarity analyses between annotation methods and for scRNA-seq this revealed a good 
concordance between annotation approaches in the pair-wise comparisons (manual vs. Azimuth = 0.81, manual 
vs. HPAP = 0.85, HPAP vs. Azimuth = 0.84). For snRNA-seq, the concordance was slightly lower (manual vs. 
Azimuth = 0.70, manual vs. HPAP = 0.83, HPAP vs. Azimuth = 0.63).

Cell type prediction and mapping scores for reference-based annotations
We proceeded by evaluating annotation confidence and reference mapping quality. Prediction scores assess the 
confidence in the cell type label assigned to each barcode, based on similarity to the reference. Mapping scores 
assess the confidence in how well a query barcode’s (i.e., barcodes from our scRNA-seq or snRNA-seq dataset) 
overall transcriptome aligns with the reference embedding. Cell type prediction scores (0–1) were calculated 
for both reference-based annotation methods, while mapping scores (0–1) were only calculated for Azimuth 
(this was not available for HPAP). These metrics differed between scRNA-seq and snRNA-seq, and between cell 

Predicted Celltypea

Dataset (scRNA/snRNA) and annotation method

scRNA, snRNA, scRNA, snRNA, scRNA, snRNA,

Manual annotation Manual annotation Azimuth Azimuth HPAP HPAP

Acinar 2.30 12.00 1.90 0.30 2.60 13.00

Alpha 29.00 19.00 44.00 17.00 35.00 18.00

Alpha + Beta 3.60 4.70 3.80 11.00

Beta (of which % stressed beta cells) 40 (8.6) 44 (9.1) 29.00 40.00 33.00 42.00

Cycling NA NA 0.02 0.03 0.03

Delta 3.00 3.70 3.10 8.80 2.50 2.20

Ductal (incl MUC5B+ Ductal) 7.60 11.00 7.40 19 7.10 10

Endothelial 5.10 0.20 4.60 0.10 6.10 0.30

Gamma (Gamma + Epsilon for HPAP) 0.80 3.70 1.50 14.10 0.70 1.60

Immune total 1.50 0.60 2.10 0.40 1.50 0.70

 Macrophage NA NA 0.60 0.40

 Mast NA NA 0.90 0.30

Mesenchymal cells total 6.90 0.60 6.80 0.10 7.60 0.60

 Schwann NA NA 0.50 0.02 NA NA

 Activated_stellate NA NA 4.50 0.10 4.70 0.30

 Quiescent_stellate NA NA 1.80 2.90 0.30

Table 2.  Percentages of cell types annotated using manual or reference-based (Azimuth and HPAP) 
annotation. aIn HPAP, there was also a “cycling alpha” cell type. However, these were very few and were not 
included in the summary. bNA = not available using the current annotation method.
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types and annotation methods (Supplementary Tables 3 and 4). The prediction scores were relatively high for 
scRNA-seq (median: 1, Q1: 0.92; Q3: 1 for Azimuth and median 1, Q1: 0.88; Q3: 1 for HPAP), while the scores 
were lower for snRNA-seq (median 0.67, Q1: 0.48; Q3: 0.88 for Azimuth and median 0.90, Q1: 0.73; Q3: 0.98 for 
HPAP). Additionally, for the scRNA-seq data, Azimuth generated median prediction scores above 0.9 for seven 
of twelve cell types (acinar, alpha, beta, delta, ductal, endothelial, and immune cells), while HPAP had prediction 
scores above 0.9 for eight of fourteen cell types (acinar, activated stellate, alpha, beta, endothelial, macrophage, 
mast, and quiescent stellate cells). However, for snRNA-seq, only one of the cell types had a prediction score 
above 0.9 for Azimuth (ductal cells) while six cell types had a prediction score above 0.9 for HPAP (acinar, 
activated stellate, beta, cycling alpha, ductal, and quiescent stellate cells), respectively. The Azimuth mapping 
scores also differed between scRNA-seq and snRNA-seq (Supplementary Table 4). While the median mapping 
scores were relatively high for scRNA-seq, (median: 0.79, Q1: 0.66, Q3: 0.89), they were considerably lower for 
snRNA-seq, (median 0.27, Q1: 0.16, Q3: 0.40). For snRNA-seq, beta cells had the lowest mapping score (median 
0.15, Q1: 0.11, Q3: 0.25).

Together, these data highlight that the reference-based annotations using scRNA-seq references were suitable 
for scRNA-seq data, but not for snRNA-seq data. HPAP had higher prediction scores than Azimuth for more cell 
types when annotating snRNA-seq data.

Comparison of detected genes in scRNA-seq and snRNA-seq data
A total of 23,149 genes were detected using either scRNA-seq or snRNA-seq at a threshold of UMI ≥ 3, with 18,649 
genes (81%) identified using both methods. 3529 genes (15%) were exclusively detected in scRNA-seq, and 971 
genes (4%) were unique to snRNA-seq (Supplementary Fig. 5). Considering genes expressed in at least 10% of 
the cells/nuclei, 4332 genes were detected overall, with 1251 genes (29%) in both datasets. Most (3014 genes, 
70%) were exclusive to scRNA-seq, whereas only 67 genes (1.5%) were unique to snRNA-seq (Supplementary 
Fig. 5). The number of genes detected per annotated cell type (UMI ≥ 3) in each dataset (snRNA-seq or scRNA-
seq) and the fraction of barcodes each gene was detected in are provided in Supplementary Table 5. The number 
of detected genes varied by cell type, ranging from 10,722 to 17,137 genes per cell type in scRNA-seq and 5275 

qes-ANRnsqes-ANRcs

Annotation methods 
compared (right)b Azimuth/ 

Manual 
HPAP/ 
Manual 

Manual/ 
Azimuth 

HPAP/ 
Azimuth 

Manual/ 
HPAP 

Azimuth/ 
HPAP 

Azimuth/ 
Manual 

HPAP/ 
Manual 

Manual/ 
Azimuth 

HPAP/ 
Azimuth 

Manua/ 
HPAP 

Azimuth/ 
HPAP 

Cell type (below) 

Acinar 80 96 100 100 87 72 2 99 100 98 91 2 
Alpha 99 97 66 78 82 98 75 77 84 81 79 75 
Alpha+Beta NA 2 NA NA  2 NA NA 25 NA NA 11  NA 
Beta 69 80 95 91 96 80 84 91 91 88 95 85 
Delta 87 74 81 70 87 89 88 55 37 52 92 93 
Ductalc 91 90 94 92 98 97 95 88 57 100 100 98 
Endothelial 85 98 95 99 82 74 35 100 94 9 96 35 
Gamma 
(Gamma+epsilon) 92 59 50 38 68 81 97 35 25 86 82 86 

Immuned 92 99 67 67 NA NA 53 97 86 100 NA NA 
Stellatee 87 96 NA NA NA NA 24 98 NA NA NA NA 

Activated Stellate NA NA NA 92 NA 87 NA NA NA 100 NA 42 

Quiescent Stellate NA NA NA 97 NA 61 NA NA NA 100 NA 9 

Table 3.  Pair-wise comparison table showing similarity of cell type annotations between two methods, 
expressed as percentage.
aThe cells are coded according to the fraction overlap. Dark green>90%, bright green=75–90%, 
Orange=50–75%, Red<50%
bThe pair-wise comparison values indicate the percentage of barcodes annotated as a given cell type by one 
method that is also annotated as the same cell type by the comparison method. For example, in the HPAP/
Manual column, the percentage reflects the proportion of cells labeled as a specific cell type in the manual 
annotation that are also labeled the same in the HPAP annotation. If 260 cells are annotated as acinar in 
the manual annotation, and 250 of those are also labeled as acinar in HPAP, the overlap is calculated as 
(250/260)×100=96%. Conversely, the Manual–HPAP column reflects the proportion of cells labeled as a 
specific type in the HPAP annotation that are also labeled as such in the manual annotation. If 287 cells 
are annotated as acinar in HPAP, and 250 of those are also annotated as acinar manually, the overlap is 
(250/287)×100=87%. Percentages are, therefore, not necessarily symmetric between methods.
cThe HPAP Ductal and MUC5B+Ductal cell types are merged into a Ductal cell type.
dThe HPAP Macrophage and Mast cell types are merged into an Immune cell type.
eThe Activated and Quiescent stellate cell types in Azimuth and HPAP are merged as a Stellate cell type when 
compared to the manual annotation.
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to 16,235 for snRNA-seq (Supplementary Table 6). For example, while scRNA-seq detected 17,096 genes in beta 
cells, snRNA-seq detected 16,235.

Robust and novel marker genes in the annotated scRNA-seq and snRNA-seq datasets
Next, to identify robust and novel cell-type-specific markers, we performed a second FindAllMarkers analysis 
using stricter criteria (log₂FC > 1, expressed in ≥ 50% of barcodes), comparing the ten annotated cell types from 
the manual annotation (Fig. 2b). As a sensitivity analysis, we excluded clusters 1, 14, and 18 (Fig. 2a), which were 
likely stressed beta cells, in the beta cell annotation (Supplementary Fig. 6). However, since removing these cell 
clusters had minimal influence on the marker gene list for beta cells (85% overlap in the marker gene lists; data 
not shown), we kept them as being annotated as beta cells. The top 10 marker genes for each cell type for scRNA-
seq and snRNA-seq are shown in Table 4, while the complete lists are shown in Supplementary Table 7. When 
comparing the identified marker genes presented in Supplementary Table 7 for scRNA-seq and snRNA-seq for 
the endocrine cells, the overlap was 8% for beta cells (among the top ten based on adjusted p-values, the following 
genes were overlapping; INS, ZNF385D, HADH, MEG3), 17% for alpha cells (among top ten; MMP16, FASTL5, 
GP6, and PPP2R2B), 21% for delta cells (among top ten; LRFN5, KCTN2, DPYSL3, ERBB4, SST, ADGRL2, and 
THSD7A), and 14% for gamma cells (among top ten; CACNA2D3, CHRM, and KCNT2). Canonical endocrine 
markers (INS, GCG, SST, PPY) were expressed in nearly all annotated beta, alpha, delta, and gamma cells (99%, 
99%, 99%, and 90%, respectively, expressed defined as UMI ≥ 3)) but at lower levels in nuclei (59%, 58%, 86%, 
and 46%, respectively (FDR 0.14, Supplementary Fig. 7). However, the canonical endocrine marker genes also 
had a higher expression in other cell types than their primary cell type for scRNA-seq compared to snRNA-seq, 
and these canonical marker genes were higher up in the marker gene lists for the “correct” nuclei than for cells 
(Supplementary Table 6). Interestingly, ZNF385D was the top beta cell marker in snRNA-seq and second-ranked 
in scRNA-seq, with higher expression in beta nuclei than in beta cells (Table 4). INS was detected in 99% of beta 
cells (based on a gene being expressed in a barcode if it had a UMI ≥ 3; the pct.1 column in Table 4 is based on 
being expressed in a barcode if it had a UMI ≥ 1 as is default in the FindAllMarkers function) but only 59% of 
beta nuclei (FDR 0.14, Supplementary Fig. 7), whereas ZNF385D was detected in 39% of beta cells and 82% 
of beta nuclei (FDR 0.14, Supplementary Fig. 7). Of note, nuclear transcripts may reflect a snapshot of active 
transcription, while transcripts in the cytosol may be accumulated over a longer time.

For exocrine cells, the overlap in marker genes for snRNA-seq and scRNA-seq was only 4% for acinar cells 
(none in the top 10) and 26% for ductal cells (among the top ten; MYOF). The canonical marker for acinar 
cells, PRSS1, was the second-ranked marker for acinar cells in scRNA-seq but absent in the snRNA-seq marker 
gene list and was detected in 76% of acinar cells but only in 18% of nuclei (FDR 0.14, Supplementary Fig. 7). 
Another canonical acinar marker, REG1A, was in the marker gene list for both cells and nuclei but was detected 
at different fractions; 94% of the cells and 39% of the nuclei (FDR 0.25, Supplementary Fig. 7). MECOM and 
CD44 were the top marker genes for acinar cells.

Similarly, the canonical marker for ductal cells, KRT19, was the top marker for ductal cells in scRNA-seq but 
not present in the snRNA-seq marker gene list. KRT19 was detected in 63% of the annotated duct cells and 2.5% 
of the annotated duct cell nuclei (FDR 0.14, Supplementary Fig. 7). ABCC3 and THSD4 were the top marker 
genes for ductal cells.

The overlap in marker genes was 15% for endothelial cells (among the top ten; FLT1, ADGRL4, LAMA4, 
CALCRL, PLVAP), 24% for immune cells (among the top ten; DOCK2, ARHGAP15, PTPRC), and 21% for 
stellate cells (among the top ten; COL6A2).

To further explore the robustness of marker genes for snRNA-seq, we compared our snRNA-seq marker gene 
lists (Supplementary Table 7) with the marker genes identified in snRNA-seq data from human islets by Kang 
et al.25. Despite some differences in selection criteria—our study applied cutoffs on log2FC > 1 and expression 
in ≥ 50% of barcodes, UMI > 1 per gene (Seurat FindAllMarkers), while Kang et al. used log₂FC > 1.5, p ≈ 0, 
and no minimum expression frequency—a substantial proportion, of their marker genes were also present in 
our dataset. For beta cells, ZNF385D and TRPM3, two of the four top marker genes from Kang et al., were also 
present among our marker genes, whereas their remaining top markers, LRFN2 and PLUT, were expressed in 
less than 50% of beta nuclei and were therefore excluded from our analysis. However, LRFN2 was identified in 
our initial cluster-based marker analysis, applying a less strict cutoff, and was associated with most clusters later 
annotated as beta cells (Supplementary Table 1). In total, 103 (94%) beta cell marker genes overlapped between 
our study and the study by Kang et al. (Supplementary Table 8).

For alpha cells, none of the four top marker genes from Kang et al. (PTPRT, FAP, PDK4, LOXL4) were 
identified in our snRNA-seq marker gene list, likely due to an expression frequency < 50% in nuclei and our 
stringent cut off criteria. However, PTPRT, FAP, and PDK4 were identified as snRNA-seq marker genes in our 
initial cluster-based marker analysis requiring expression in a lower fraction of nuclei and were associated with 
most clusters later annotated as alpha cells. In total, 60 (61%)  alpha cell marker genes overlapped between our 
study and the study by Kang et al. (Supplementary Table 8).

For delta cells, marker genes LRFN5, KCNT2, and ERBB4 from Kang et al.25 were among the top 10 markers 
in our dataset. The fourth marker gene from Kang et al., ADARB2, had an expression frequency below 50%, but 
it was detected as a delta marker in our initial analysis with a lower threshold. In total, 28 (54%) delta cell marker 
genes overlapped between our study and the study by Kang et al. (Supplementary Table 8).

For gamma cells, CACNA2D3, THSD7A, and CNTNAP5, three top markers from Kang et al. were identified 
in our marker gene list. In total, 16 (20%) gamma cell marker genes overlapped between our study and the study 
by Kang et al. (Supplementary Table 8).

Overall, the relatively high overlap between cell-type-specific genes in our data set and those of Kang et al. 
supports using specific marker genes for snRNA-seq data rather than marker genes from scRNA-seq analyses. 
Additionally, we propose a set of additional, novel snRNA-seq marker genes, to further improve cell type 
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Gene

ScRNA-seq

Gene

SnRNA-seq

Full gene name

Average

pct.1a pct.2a Full gene name

Average

pct.1 pct.2log2FCa log2FC

Acinar

 CTRB2 Chymotrypsinogen B2 8.5 0.97 0.05 MECOM MDS1 And EVI1 Complex Locus 6.8 0.79 0.02

 PRSS1 Protease. Serine 1 (Trypsin 1) 7.9 0.92 0.04 CD44 CD44 Molecule (Indian Blood Group) 4.4 0.96 0.23

 CTRB1 Chymotrypsinogen B1 8.2 0.90 0.03 AC007368.1 Uncharacterized LOC101927285 7.5 0.75 0.01

 CELA3A Chymotrypsin-Like Elastase Family 
Member 3A 7.7 0.85 0.04 NIBAN1 Niban Apoptosis Regulator 1 5.3 0.78 0.06

 PLA2G1B Phospholipase A2 Group IB 7.9 0.83 0.04 ZFP36L1 ZFP36 Ring Finger Protein Like 1 5.0 0.77 0.08

 CTRC Chymotrypsin C (Caldecrin) 7.7 0.78 0.02 CHRM3 Cholinergic Receptor Muscarinic 3 3.2 0.78 0.14

 CPA2 Carboxypeptidase A2 8.2 0.74 0.01 ZNF704 Zinc Finger Protein 704 4.2 0.71 0.07

 CPA1 Carboxypeptidase A1 8.2 0.74 0.01 SLC25A37 Solute Carrier Family 25 Member 37 3.7 0.73 0.11

 CPB1 Carboxypeptidase B1 7.6 0.75 0.02 TC2N Tandem C2 Domains. Nuclear 3.9 0.73 0.12

 SYCN Syncollin 8.1 0.66 0.01 GULP1 GULP. Engulfment Adaptor PTB Domain 
Containing 1 2.2 0.82 0.21

Alpha

 GC Group-Specific Component 2.4 0.88 0.14 GCG Glucagon 3.9 0.72 0.03

 IRX2 Iroquois Homeobox 2 3.7 0.77 0.06 DSCAM Down Syndrome Cell Adhesion Molecule 3.1 0.81 0.18

 F10 Coagulation Factor X 2.5 0.79 0.08 MMP16 Matrix Metallopeptidase 16 4.2 0.71 0.08

 TMEM176B Transmembrane Protein 176B 2.7 0.86 0.19 TTR Transthyretin 3.5 0.69 0.08

 FSTL5 Follistatin-Like 5 3.1 0.76 0.09 GPC6 Glypican 6 2.4 0.81 0.21

 TMEM176A Transmembrane Protein 176A 2.7 0.82 0.15 FSTL5 Follistatin Like 5 3.9 0.66 0.06

 GPC6 Glypican 6 2.9 0.86 0.19 SAMD5 Sterile Alpha Motif Domain Containing 5 2.1 0.84 0.28

 C5orf38 Chromosome 5 Open Reading Frame 38 3.6 0.70 0.05 PPP2R2B Protein Phosphatase 2 Regulatory Subunit 
Bbeta 4.4 0.64 0.07

 MMP16 Matrix Metallopeptidase 16 3.6 0.73 0.09 SLC35F4 Solute Carrier Family 35 Member F4 2.7 0.73 0.17

 PPP2R2B Protein Phosphatase 2 Regulatory Subunit 
Bbeta 4.3 0.71 0.07 AL033504.1 Uncharacterized LOC101927506 2.2 0.79 0.25

Alpha + beta

 LINC01482 Long Intergenic Non-Protein Coding RNA 
1482 5.9 0.70 0.05 PDE4C Phosphodiesterase 4C 4.9 0.80 0.08

 AL163541.1 Uncharacterized LOC101927759 6.1 0.67 0.03 LINC02245 Long Intergenic Non-Protein Coding RNA 
2245 4.2 0.75 0.15

 DNAH2 Dynein Axonemal Heavy Chain 2 6.5 0.65 0.02 DNAH12 Dynein Axonemal Heavy Chain 12 4.3 0.74 0.15

 EGLN3 Egl-9 Family Hypoxia Inducible Factor 3 5.3 0.75 0.13 NUP210L Nucleoporin 210 Like 4.6 0.63 0.06

 NUP210L Nucleoporin 210 Like 4.4 0.73 0.12 AP000446.1 Uncharacterized LOC101927759 4.1 0.67 0.12

 AP000446.1 Uncharacterized LOC101928267 5.3 0.71 0.10 SGO1-AS1 SGO1 Antisense RNA 1 4.5 0.68 0.13

 TULP2 Tubby Like Protein 2 4.8 0.62 0.04 TPH2 Tryptophan Hydroxylase 2 5.9 0.57 0.03

 SNX31 Sorting Nexin 31 5.4 0.58 0.03 LINC01482 Long Intergenic Non-Protein Coding RNA 
1482 5.3 0.58 0.04

 PDE4C Phosphodiesterase 4C 5.7 0.59 0.04 AL138828.1 Uncharacterized LOC101927867 4.0 0.64 0.10

 AC092422.1 Uncharacterized LOC101928546 6.6 0.56 0.03 NLRC5 NLR Family CARD Domain Containing 5 4.8 0.67 0.14

Beta

 INS Insulin 4.3 0.99 0.51 ZNF385D Zinc Finger Protein 385D 5.8 0.91 0.05

 ZNF385D Zinc Finger Protein 385D 4.3 0.55 0.12 TRPM3 Transient Receptor Potential Cation Channel 
Subfamily M Member 3 3.1 0.82 0.13

 IAPP Islet Amyloid Polypeptide 4.3 0.80 0.37 NRG1 Neuregulin 1 2.7 0.81 0.13

 HADH Hydroxyacyl-CoA Dehydrogenase 2.9 0.63 0.26 CASR Calcium-Sensing Receptor 3.1 0.82 0.15

 MEG3 Maternally Expressed 3 (non-protein 
coding) 2.4 0.58 0.25 MEG3 Maternally Expressed 3 (non-protein coding) 1.3 0.88 0.24

 UCHL1 Ubiquitin C-Terminal Hydrolase L1 1.9 0.70 0.45 HDAC9 Histone Deacetylase 9 2.6 0.91 0.31

 PKIB Protein Kinase (cAMP-Dependent. 
Catalytic) Inhibitor Beta 1.8 0.55 0.23 PPM1E Protein Phosphatase. Mg2+/Mn2+Dependent 

1E 3.5 0.71 0.11

 FXYD2 FXYD Domain Containing Ion Transport 
Regulator 2 2.5 0.62 0.41 DOCK10 Dedicator of Cytokinesis 10 4.0 0.66 0.06

 HDAC9 Histone Deacetylase 9 1.5 0.51 0.25 MEG8 Maternally Expressed 8 (non-protein coding) 1.8 0.78 0.20

 ERO1B ERO1-Like Beta Oxidase 1.3 0.66 0.63 INS Insulin 3.1 0.61 0.06

Delta

 LRFN5 Leucine Rich Repeat And Fibronectin Type 
III Domain Containing 5 5.9 0.81 0.06 SST Somatostatin 7.7 0.89 0.00

Continued
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Gene

ScRNA-seq

Gene

SnRNA-seq

Full gene name

Average

pct.1a pct.2a Full gene name

Average

pct.1 pct.2log2FCa log2FC

 KCNT2 Potassium Sodium-Activated Channel 
Subfamily T Member 2 4.9 0.57 0.04 LRFN5 Leucine Rich Repeat And Fibronectin Type III 

Domain Containing 5 6.2 0.90 0.04

 DPYSL3 Dihydropyrimidinase Like 3 3.6 0.59 0.08 KCNT2 Potassium Sodium-Activated Channel 
Subfamily T Member 2 5.0 0.82 0.06

 ERBB4 Erb-B2 Receptor Tyrosine Kinase 4 4.8 0.57 0.08 ADGRL2 Adhesion G Protein-Coupled Receptor L2 3.5 0.63 0.09

 SST Somatostatin 6.4 1.00 0.73 DPYSL3 Dihydropyrimidinase Like 3 3.2 0.58 0.09

 ADGRL2 Adhesion G Protein-Coupled Receptor L2 2.6 0.66 0.14 ERBB4 Erb-B2 Receptor Tyrosine Kinase 4 4.6 0.54 0.06

 RBP4 Retinol Binding Protein 4 4.5 0.88 0.27 KCTD8 Potassium Channel Tetramerization Domain 
Containing 8 2.5 0.78 0.27

 SLC38A1 Solute Carrier Family 38 Member 1 2.1 0.64 0.13 TENM3 Teneurin Transmembrane Protein 3 2.6 0.82 0.35

 KCTD8 Potassium Channel Tetramerization 
Domain Containing 8 3.8 0.71 0.18 RALYL RALY RNA Binding Protein Like 2.2 0.75 0.25

 THSD7A Thrombospondin Type 1 Domain 
Containing 7A 3.5 0.64 0.14 THSD7A Thrombospondin Type 1 Domain Containing 

7A 2.4 0.60 0.17

Ductal

 KRT19 Keratin 19 6.9 0.79 0.04 ABCC3 ATP Binding Cassette Subfamily C Member 3 4.8 0.81 0.06

 ANXA3 Annexin A3 5.7 0.77 0.04 THSD4 Thrombospondin Type 1 Domain Containing 
4 5.2 0.77 0.05

 KRT7 Keratin 7 5.3 0.75 0.03 SVIL Supervillin 4.0 0.91 0.19

 LGALS3 Galectin 3 3.9 0.84 0.14 SMAD3 SMAD Family Member 3 3.6 0.90 0.21

 MET MET Proto-Oncogene. Receptor Tyrosine 
Kinase 4.7 0.74 0.06 MYO1E Myosin IE 3.5 0.78 0.13

 LCN2 Lipocalin 2 6.2 0.72 0.03 ARHGAP26 Rho GTPase Activating Protein 26 3.7 0.83 0.20

 MYOF Myoferlin 4.6 0.78 0.10 LAMC2 Laminin Subunit Gamma 2 5.2 0.69 0.06

 S100A14 S100 Calcium Binding Protein A14 7.5 0.68 0.01 YAP1 Yes Associated Protein 1 3.5 0.70 0.09

 TINAGL1 Tubulointerstitial Nephritis Antigen Like 1 5.3 0.73 0.06 MYOF Myoferlin 5.4 0.63 0.03

 EPS8 Epidermal Growth Factor Receptor Pathway 
Substrate 8 3.7 0.81 0.16 PMEPA1 Prostate Transmembrane Protein. Androgen 

Induced 1 6.4 0.62 0.02

Endothelial

 PCAT19 Prostate Cancer Associated Transcript 19 
(non-protein coding) 6.4 0.90 0.01 ADGRL4 Adhesion G Protein-Coupled Receptor L4 9.9 0.74 0.00

 FLT1 Fms Related Receptor Tyrosine Kinase 1 7.8 0.89 0.02 PTPRB Protein Tyrosine Phosphatase Receptor Type 
B 9.1 0.69 0.00

 ADGRL4 Adhesion G Protein-Coupled Receptor L4 8.0 0.87 0.01 FLT1 Fms Related Receptor Tyrosine Kinase 1 8.5 0.63 0.01

 IFI27 Interferon Alpha Inducible Protein 27 5.4 0.88 0.04 ERG ETS Transcription Factor ERG 8.3 0.57 0.01

 PODXL Podocalyxin Like 7.2 0.87 0.03 PLVAP Plasmalemma Vesicle Associated Protein 8.9 0.55 0.00

 LAMA4 Laminin Subunit Alpha 4 6.3 0.84 0.03 CD93 CD93 Molecule 10.7 0.53 0.00

 CALCRL Calcitonin Receptor Like Receptor 7.0 0.83 0.02 CALCRL Calcitonin Receptor Like Receptor 8.0 0.61 0.01

 PLVAP Plasmalemma Vesicle Associated Protein 7.8 0.83 0.02 LAMA4 Laminin Subunit Alpha 4 6.7 0.57 0.01

 GNG111 G Protein Subunit Gamma 11 4.3 0.89 0.08 PXDN Peroxidasin 6.4 0.55 0.01

 PECAM1 Platelet And Endothelial Cell Adhesion 
Molecule 1 6.3 0.83 0.04 EMP1 Epithelial Membrane Protein 1 6.4 0.61 0.02

Gamma

 NPFFR2 Neuropeptide FF Receptor 2 6.1 0.51 0.01 CACNA2D3 Calcium Voltage-Gated Channel Auxiliary 
Subunit Alpha2delta 3 4.6 0.77 0.06

 CACNA2D3 Calcium Voltage-Gated Channel Auxiliary 
Subunit Alpha2delta 3 5.0 0.80 0.05 CHRM3 Cholinergic Receptor Muscarinic 3 2.8 0.86 0.19

 EYA4 EYA Transcriptional Coactivator And 
Phosphatase 4 5.4 0.54 0.03 THSD7A Thrombospondin Type-1 Domain-Containing 

Protein 7A 2.8 0.82 0.17

 GPC5-AS1 GPC5 Antisense RNA 1 (non-protein 
coding) 4.4 0.52 0.03 PPY Pancreatic Polypeptide 7.1 0.64 0.00

 CHRM3 Cholinergic Receptor Muscarinic 3 4.9 0.90 0.14 GPC6 Glypican 6 2.8 0.93 0.30

 DPYSL31 Dihydropyrimidinase Like 3 4.1 0.74 0.09 SNTG1 Syntrophin Gamma 1 3.0 0.86 0.26

 SERTM1 Serine Rich And Transmembrane Domain 
Containing 1 3.8 0.51 0.04 TENM2 Teneurin Transmembrane Protein 2 4.2 0.66 0.08

 KCNC2 Potassium Voltage-Gated Channel 
Subfamily C Member 2 3.7 0.63 0.07 KCTD16 Potassium Channel Tetramerization Domain 

Containing 16 3.7 0.69 0.12

 KCNT21 Potassium Sodium-Activated Channel 
Subfamily T Member 2 3.7 0.55 0.05 RALYL RALY RNA Binding Protein Like 2.7 0.80 0.25

 AC092691.1 Uncharacterized LOC101927506 (non-
protein coding) 4.0 0.58 0.06 KCNT2 Potassium Sodium-Activated Channel 

Subfamily T Member 2 2.9 0.61 0.07

Continued
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prediction in snRNA-seq. Some novel snRNA-seq marker genes are shown in Fig. 3 together with the canonical 
marker genes for that cell type: DOCK10 and KIRREL3 for beta cells, STK32B for alpha cells, MECOM and 
AC007368.1 for acinar cells, and LAMC2 and SLC28A3 for ductal cells. We did not find specific snRNA-seq 
marker genes for delta or gamma cells. Expression levels of selected canonical marker genes and snRNA-seq 
markers per cell type at the donor level are visualized in Supplementary Fig.  8. In addition, to compare the 
expression of canonical marker genes and snRNA-seq markers at different annotation methods for snRNA-seq, 
dotplots are shown in Supplementary Fig. 9.

In addition, Lee et al.41 recently identified two clusters of nuclei potentially transitioning from alpha to beta, 
which they called c11 and c13. We further investigated whether our alpha + beta cell cluster had similarities with 
these c11 and c13 clusters. In Lee et al.41, it was found that at the cluster level, c11 cells exhibited high expression 
of both GCG and INS, but when looking at per-cell expression, most cells expressed high levels of GCG, while 
a subset exhibited elevated INS, but none was double-positive for INS and GCG. We found a similar pattern in 
our snRNA-seq data, where nuclei in the alpha + beta cluster expressed high levels of GCG or INS, but very few 
nuclei expressed both GCG and INS at high levels (Supplementary Fig. 9). A tendency to a similar pattern was 
seen for scRNA-seq, although many cells expressed both GCG and INS at high levels. Lee et al.41 also identified 
Tryptophan hydroxylase 2 (TPH2) as a marker gene for c11 cells in all donors analyzed, and we also found TPH2 
to be a marker gene in both scRNA-seq and snRNA-seq (Table 3, Supplementary Table 7).

To discover genes that are differently expressed between scRNA-seq and snRNA-seq in a cell type, we 
performed a FindAllMarkers analysis. A list of genes, with higher expression in scRNA-seq compared to snRNA-
seq, is shown in Supplementary Table 9, while a list of genes, with higher expression in snRNA-seq compared to 

Gene

ScRNA-seq

Gene

SnRNA-seq

Full gene name

Average

pct.1a pct.2a Full gene name

Average

pct.1 pct.2log2FCa log2FC

Immune

 JUN Jun Proto-Oncogene. AP-1 Transcription 
Factor Subunit 5.7 0.89 0.07 ITGAX Integrin Subunit Alpha X 10.2 0.76 0.00

 SRGN Serglycin 8.7 0.79 0.01 ZEB21 Zinc Finger E-Box Binding Homeobox 2 7.7 0.74 0.01

 LAPTM5 Lysosomal Protein Transmembrane 5 7.7 0.67 0.01 CSF2RA Colony Stimulating Factor 2 Receptor Alpha 
Subunit 8.9 0.62 0.01

 LCP1 Lymphocyte Cytosolic Protein 1 6.8 0.67 0.03 DOCK2 Dedicator of Cytokinesis 2 8.5 0.61 0.01

 SAMSN1 SAM Domain. SH3 Domain And Nuclear 
Localization Signals 1 8.6 0.65 0.01 KYNU Kynureninase 5.8 0.62 0.02

 DOCK2 Dedicator of Cytokinesis 2 8.3 0.63 0.01 FAM49A Family With Sequence Similarity 49 Member 
A 7.6 0.60 0.01

 PRKCB Protein Kinase C Beta 7.2 0.63 0.01 PIK3R5 Phosphoinositide-3-Kinase Regulatory 
Subunit 5 10.4 0.58 0.00

 ARHGAP15 Rho GTPase Activating Protein 15 6.4 0.65 0.04 PTPRC Protein Tyrosine Phosphatase Receptor Type 
C 11.5 0.54 0.00

 DOCK8 Dedicator of Cytokinesis 8 9.6 0.62 0.01 CD109 CD109 Molecule 7.6 0.53 0.01

 PTPRC Protein Tyrosine Phosphatase Receptor 
Type C 9.4 0.62 0.01 ARHGAP15 Rho GTPase Activating Protein 15 8.4 0.52 0.01

Stellate

 COL6A2 Collagen Type VI Alpha 2 Chain 6.5 0.89 0.05 COL4A2 Collagen Type IV Alpha 2 Chain 7.4 0.77 0.02

 BGN Biglycan 6.2 0.80 0.01 COL6A2 Collagen Type VI Alpha 2 Chain 9.4 0.76 0.01

 LGALS1 Galectin 1 4.0 0.86 0.09 COL4A1 Collagen Type IV Alpha 1 Chain 7.1 0.74 0.03

 C11orf96 Chromosome 11 Open Reading Frame 96 5.7 0.74 0.02 CDH11 Cadherin 11 10.0 0.66 0.00

 MFGE8 Milk Fat Globule-EGF Factor 8 Protein 4.8 0.76 0.05 ZEB2 Zinc Finger E-Box Binding Homeobox 2 6.2 0.63 0.01

 BASP1 Brain Abundant Membrane Attached Signal 
Protein 1 4.4 0.75 0.05 ADAMTS12 ADAM Metallopeptidase With 

Thrombospondin Type 1 Motif 12 7.2 0.63 0.02

 RND3 Rho Family GTPase 3 4.7 0.83 0.13 GLI2 GLI Family Zinc Finger 2 9.8 0.58 0.00

 COL6A1 Collagen Type VI Alpha 1 Chain 5.8 0.79 0.10 EBF1 Early B Cell Factor 1 5.7 0.59 0.02

 SPARC Secreted Protein Acidic And Cysteine Rich 3.4 0.75 0.06 ZFPM2 Zinc Finger Protein. FOG Family Member 2 7.1 0.57 0.01

 YBX3 Y-Box Binding Protein 3 2.9 0.81 0.15 EDNRA Endothelin Receptor Type A 9.1 0.55 0.00

Table 4.  Top 10 marker genes (ranked according to adjusted p-value) identified by the Seurat FindAllMarkers 
function for scRNA-seq and snRNA-seq separately. The table lists marker genes per cell type, along with 
associated statistics (p-value, average log₂ fold change, the percentage of cells/nuclei where the gene is detected 
(UMI ≥ 1) in the cell type of interest, the percentage of cells/nuclei where the gene is detected in the second 
group (average across all other cell types than the target cell type). FDR-values are not presented in the table 
since all are very low – the highest p-value in the list is 6.54 × 10−61. Significant values are in bold. alog2FC: log 
fold-change of the average expression between the two groups. Pct.1: The percentage of cells where the feature 
is detected in the cell type of interest. Pct.2: The percentage of cells where the feature is detected in the second 
group (average across all other genes, not for a specific cell type).
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scRNA-seq, is shown in Supplementary Table 10. The novel snRNA-seq marker genes DOCK10 and KIRREL3 
for beta cells, STK32B for alpha cells, MECOM and AC007368.1 for acinar cells, and LAMC2 and SLC28A3 
for ductal cells, were all also in the list of DEGs positively expressed in snRNA-seq compared to scRNA-seq, 
indicating that these marker genes may be specific for snRNA-seq, possibly due to detection bias. Expression 
levels of these marker genes per cell type at the donor level and per modality are visualized in Supplementary 
Fig. 8. For genes that were higher expressed in scRNA-seq compared to snRNA-seq there were, as expected, 
a large amount of ribosomal (RPL) and mitochondrial (MT−) genes, but also well-known canonical marker 
genes such as INS (beta), GCG (alpha), SST (delta), PPY (gamma), PSSR1 (acinar), REG1A (acinar) and KRT19 
(ductal).

ZNF385D is needed for normal insulin secretion
We identified ZNF385D as the top- and second-ranked beta cell marker in snRNA-seq and scRNA-seq, 
respectively. Genes that are selectively expressed in a specific cell type are strong candidates for having important 
functional roles in said cell type. For beta cells, the main function is glucose-stimulated insulin secretion. Hence, 
to examine whether ZNF385D has a role in insulin secretion, we used two different siRNAs to knock down its 
rat homologue Zfp385d in 832/13 INS1 cells. This resulted in ~ 70% knockdown of Zfp385d with either siRNA 
(Fig. 4a). Importantly, loss of Zfp385d perturbed insulin secretion at both basal and high glucose (Fig. 4b).

Discussion
This study systematically compared scRNA-seq and snRNA-seq datasets from fresh and frozen human pancreatic 
islets obtained from the same organ donors. Our findings provide insight into differences in predicted cell type 
composition, reference-based annotation accuracy, gene detection, and marker gene identification between these 

Fig. 3.  Uniform Manifold Approximation and Projection (UMAP) feature plots showing the expression of 
selected canonical marker genes and novel snRNA-seq marker genes for the snRNA-seq data. Each panel 
displays a single gene, along with its corresponding target cell type within brackets. Expression intensity is 
indicated by color with a gradient shown on the right side of the panel. Cell types are labeled in the UMAP for 
reference.
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two RNA sequencing protocols. Importantly, our analysis shows that scRNA-seq references are insufficient for 
cell type annotation of snRNA-seq data. We identified novel snRNA-seq markers, which can improve snRNA-
seq-based annotation and can be used for future studies.

While the expected pancreatic cell populations were identified with both methods, epsilon cells were 
undetected (as previously reported in 10x-based studies)19 for all annotation methods; however, it was unclear 
whether there were any epsilon cells according to the HPAP annotation, since the HPAP annotation had a 
combined gamma and epsilon cell type. Although scRNA-seq and snRNA-seq samples originated from the 
same donors, we found rather large differences in predicted cell type proportions between the two methods, 
particularly for acinar, stellate, immune, and endothelial cell types, but also for beta cells. These discrepancies 
may reflect differences in RNA recovery due to transcriptional changes during dissociation and freezing20. It 
has previously been reported that snRNA-seq recovers more attached cell types, whereas scRNA-seq is biased 
towards immune cell types20,21,33,42. Additionally, previous studies demonstrated that islets obtained from 
the same donor are heterogenous and show differences in cell composition43,44. Subsequently, although it is a 
strength that we used a paired analysis, where islets from the same four donors were used for scRNA-seq and 
snRNA-seq, we cannot exclude that differences in cell composition in the islets used for the two methods affect 
our results. Hence, although the large number of islets analysed should minimize this risk, it is possible that the 
differences seen between the two methods may partly be due to differences in cell composition in islets obtained 
from the same donor.

scRNA-seq and snRNA-seq differed in the number of detected genes, probably due to lower nuclear mRNA 
content and the absence of cytoplasmic transcripts21,24,25. Across cell types, gene detection was notably lower 
in immune, endothelial, and stellate cells in snRNA-seq, leading to a lower overlap between genes detected 
in nuclei and whole cells compared to other cell types. Additional factors that may contribute to differences 
in detected transcripts between the two methods include transcriptional degradation and nuclear transcript 
localization19,31. Furthermore, Xie et al. compared five different nuclei-isolation methods prior to snRNA-seq, 
and showed that there were differential enrichment of transcripts belonging to different functional classes in 
snRNA-seq compared to scRNA-seq26. It should also be noted that, e.g., INS, GCG, SST, and PPY, were not the 
top detected genes in the snRNA-seq data. Previously, Kang et al.25 discussed the fact that the most abundant 
mRNAs in human endocrine cells do not reflect the most profused pre-RNAs in those cells, potentially because 
a large proportion of steady-state cytoplasmic mRNA in beta cells is relatively stable, e.g., INS mRNA awaiting 
translation in response to glucose25,45. These technical and biological differences highlight the importance of 
identifying snRNA-seq-specific markers, as we report here, rather than relying solely on canonical scRNA-seq 
markers. To evaluate the performance of existing scRNA-seq-based annotation tools on snRNA-seq data, we 
applied reference-based annotation using Azimuth and Seurat’s label transfer with CCA integration. Several 
annotation methods are available for scRNA-seq. However, the Seurat label transfer, which was used for HPAP 
and on which Azimuth is also based, is often more robust across modalities36,46. Thus, we hypothesized this is 
one of the more accurate methods for annotating snRNA-seq data. The annotation quality is also dependent 
on the quality of the reference dataset. The HPAP dataset is relatively new and deeply sequenced30, while the 
datasets in Azimuth’s pancreasref13–15,27–29 are older and less deeply sequenced, which could influence the results.

The three annotation methods showed substantial variation for the snRNA-seq compared to the scRNA-
seq data, based on predicted cell type proportions, pair-wise overlap of cell types, and prediction and mapping 
scores. This was especially valid for the Azimuth annotation and its annotation of acinar, delta, and gamma 
cells. The predicted fractions of delta and gamma cells were around 2 (delta) and 4 (gamma) times higher for 
Azimuth compared to the manual annotation and 4 (delta) and 9 (gamma) times higher for Azimuth compared 
to HPAP, while the predicted fractions of acinar cells were around 40 times higher for manual annotation and 
HPAP compared to Azimuth. The HPAP annotation was generally more concordant with the manual annotation 
than Azimuth was. However, a limitation is that the different annotations differ in their cell type definitions—for 
example, HPAP includes an alpha + beta category, while Azimuth does not—which can bias the classification of 
transitional clusters and partly explain the lower concordance observed for snRNA-seq for Azimuth. Some pair-

Fig. 4.  Loss of Zfp385d results in perturbed insulin secretion in 832/13 INS1 cells. The panels show (a) qPCR 
quantification of siRNA-mediated knockdown of Zfp385d (n = 5) (siZfp385d:1) and 6 (siZfp385d:2)). (b) Beta 
cells deficient for Zfp385d exhibit perturbed glucose-stimulated insulin secretion (n = 6). siNC: negative control 
siRNA. *p < 0.05 and **p < 0.01, based on one-tailed (a) and two-tailed (b) paired t-tests.
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wise comparisons (gamma and delta) showed a low agreement in annotated cell type, also when comparing the 
manual annotation and the HPAP annotation, and the prediction scores for these cell types were low. Together, 
this highlights that reference-based annotations using scRNA-seq references are suitable for scRNA-seq data 
but not for snRNA-seq data, suggesting that scRNA-seq-derived reference datasets may not fully capture the 
transcriptional landscape of nuclei. These findings underscore the need for snRNA-seq-specific reference 
datasets and improved annotation strategies to enhance cell type classification accuracy in snRNA-seq.

Given the challenges in applying scRNA-seq reference-based annotations to snRNA-seq data, we sought 
to identify snRNA-seq-specific marker genes for improving cell type annotation in human pancreatic islets. 
By applying stringent criteria, we identified novel specific marker genes. The overlap between marker genes 
for scRNA-seq and snRNA-seq was relatively low, which further merits the identification of novel snRNA-seq-
specific marker genes for improving cell type annotation in human pancreatic islets. Our findings confirm that 
many of the marker genes from Kang et al.25 are also marker genes for our snRNA-seq analysis, though some 
were below our expression frequency threshold (50%). Overall, the relatively high overlap between cell-type-
specific genes in our data set, which included four donors, and the study by Kang et al., which included three 
donors, supports using specific marker genes for snRNA-seq data. Importantly, we also found a set of novel 
marker genes for different cell types using snRNA-seq islet data, such as, e.g., DOCK10 and KIRREL3 (beta), 
STK32B (alpha), MECOM and AC007368.1 (acinar), and LAMC2 and SLC28A3 (ductal). These genes exhibited 
higher expression in snRNA-seq compared to scRNA-seq, indicating that these marker genes may be selective 
for snRNA-seq, possibly due to detection bias. Additionally, Kang et al. found the scRNA-seq canonical markers 
for acinar and ductal cells to be specific marker genes also for snRNA-seq, which we could not confirm in the 
present study since the canonical marker genes were lowly expressed in our snRNA-seq dataset. Other novel 
marker genes, such as those mentioned above, were stronger snRNA-seq markers. Lee et al.41 recently identified 
two clusters of nuclei potentially transitioning from alpha to beta. For the alpha + beta annotation in nuclei, we 
saw some similar results as in Lee et al.41, and further studies are merited to investigate this type of cells and its 
potential transition from alpha to beta.

We confirm that ZNF385D is a highly specific marker gene for beta cells and its expression is needed for 
normal insulin secretion.

This study has some strengths and limitations. It is mainly an exploratory study with a limited number of 
donors (n = 4) and no experimental validation data set, although we compared our results to data from three islet 
donors in a previous study, supporting the robustness of our results25. However, future validations of the marker 
genes found in our snRNA-seq data-sets should be performed using the same as well as orthogonal methods. 
Strengths of the study are that we compared scRNA-seq and snRNA-seq data from fresh and frozen islets from 
the same human donors. Additionally, we thoroughly compared three annotation methods for islet cell types, 
supporting the need for different methods for the analysis of sc- and snRNA-seq data.

Conclusions
Our findings highlight differences in scRNA-seq and snRNA-seq protocols regarding identification of cell type 
composition, reference-based annotation accuracy, gene detection, and marker gene identification. We conclude 
that existing scRNA-seq-based references and annotation tools are suboptimal for snRNA-seq, and annotation 
of snRNA-seq datasets should thus be based on snRNA-seq reference datasets or snRNA-seq-specific marker 
genes, including the novel marker genes discovered in our study.

Data availability
The datasets (genome-wide raw sequencing and individual-level clinical data) generated and/or analysed during 
the current study are not publicly available due to EU and national legislation, but meta-data and look-ups are 
available upon reasonable request from the corresponding author. To request access, use the form at ​h​t​t​p​s​:​/​/​w​
w​w​.​l​u​d​c​.​l​u​.​s​e​/​r​e​s​o​u​r​c​e​s​/​r​e​p​o​s​i​t​o​r​y​​​​​. Sc- and sn-RNA sequencing data from human pancreatic islets (accession 
number LUDC2025.03.1) are deposited in the Lund University Diabetes Centre repository ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​l​u​d​c​.​l​u​
.​s​e​/​r​e​s​o​u​r​c​e​s​/​r​e​p​o​s​i​t​o​r​y​​​​​)​. No custom code was generated for this study. All analyses were performed using ​p​u​b​
l​i​c​l​y available R packages, including Seurat (v4.4.0) and other standard tools, with only minor modifications to 
default parameters. The analysis was conducted following established workflows described in the package docu-
mentation. Because no original code was created, scripts are not shared. Any additional information required to 
reanalyze the data reported in this paper is available from the lead contact upon request.
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