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Due to geographical constraints, island regions at edge distribution networks generally face challenges 
of resource shortages and high carbon emissions. To enhance resource utilization efficiency, this paper 
proposes a multi-energy utilization module (MEUM) for distributed-level island integrated energy 
systems (IES). The module efficiently recovers and utilizes secondary resources generated during 
system operation, thereby providing additional economic benefits for the system. Furthermore, to 
incentivize system units to participate in carbon emission reduction, the incentive-penalty stepped 
carbon trading mechanism (IPSCTM) is introduced in the system operation stage, which enhances 
the willingness of units to engage in carbon trading and reduces carbon emissions. Meanwhile, the 
scheduling problem of island IES that simultaneously considers efficient resource utilization and carbon 
emission reduction involves numerous interrelated variables, where traditional optimization methods 
rely on accurate models or predictive information. Therefore, to avoid modeling and prediction, this 
paper proposes a model-free deep reinforcement learning (DRL) approach to deal with the island 
IES scheduling problem. To validate the effectiveness of the proposed island IES model and solution 
approach, simulations are conducted based on operational datas from a representative island in 
northern China. The simulation results demonstrate that the proposed model can significantly reduce 
both the total operational cost and carbon emissions. Moreover, the proposed solution approach 
outperforms other methods in terms of optimization effectiveness and computational time.
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With the ongoing transition of power systems toward digitalization, decarbonization, and intelligence, 
distribution networks are increasingly evolving into critical platforms for integrating diverse energy sources 
and enabling flexible load management. In this context, island IES at the edge of distribution networks have 
emerged as effective solutions for achieving energy self-sufficiency in offshore isolated regions. These systems 
also serve as exemplary models for large-scale renewable energy integration and utilization in regional regions. 
However, due to climatic fluctuations, the output power of renewable sources such as wind and solar exhibit 
significant power output variability1,2. Owing to their geographic isolation, island regions are unable to depend 
on external power grids, which makes it more challenging to maintain the balance between energy supply and 
demand3. Furthermore, island power systems typically exhibit low resource utilization efficiency in conventional 
generation units, which consequently drives up the cost of energy supply. Additionally, these regions tend to 
rely more heavily on fossil fuel generation, which further exacerbates carbon emissions4. Therefore, improving 
the resource utilization efficiency, reducing carbon emissions, and enabling predictive operation and intelligent 
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control of systems have become critical issues in the ongoing intelligent transformation of distribution-level 
island IES.

In recent years, some researchers have conducted several creative studies on island IES. The authors in Ref.5 
proposed a resilience assessment framework for island city IES under extreme natural hazards. The framework’s 
validity was demonstrated through comprehensive evaluations at both the system and component levels using 
multiple benchmark test systems. Ref.6 constructed a hydrothermal simultaneous transmission model to improve 
resource transmission efficiency in island regions. It was specifically designed to enable the simultaneous 
transmission of heat and freshwater. Ref.7 developed an interconnected energy management system for island 
clusters, while considering energy transmission constraints. The system allows for centralized management of 
energy supply and demand across individual islands, thereby ensuring the operational stability of the island 
cluster energy system. Some researchers proposed an island IES model integrating multiple energy forms, 
including electricity, heat, and hydrogen. They also developed a two-stage scheduling strategy to meet the energy 
demands of residential areas under plateau climate condition8. Ref.9proposed a bi-level optimization model 
to assess the resilience and economic performance of island IES under fault conditions. The model optimizes 
system configuration and scheduling strategies to achieve coordinated enhancements in resilience and cost 
efficiency. However, the aforementioned studies on island IES primarily focus on system operational resilience 
or economic dispatch strategies, with limited consideration for enhancing resource utilization. Specifically, the 
studies do not consider the utilization of secondary resources generated during the system operation stage, such 
as waste heat, water resources and biological by-products.

Modern energy systems are designed not only to improve the resource utilization efficiency but also to 
advance environmental sustainability. In line with this objective, numerous studies have investigated carbon 
emissions as a critical indicator of system operational performance. For limiting the system’s carbon emissions 
within a reasonable range, the scholars in Ref.10 introduced global carbon constraints into the optimization 
operation of multi-region IES. To achieve a balance between carbon emission reduction and system economic 
efficiency, Ref.11 developed a multi-objective low-carbon economic dispatch model for electricity-gas coupled 
IES. The model’s objectives included considerations for operational costs, carbon trading costs, and penalty costs. 
The work in Ref.12 incorporated carbon emission factors into the home energy management system and imposed 
certain penalties on household carbon emission behavior, thereby restricting household carbon emissions. Wang 
et al.13 integrated carbon capture technology into IES, incorporated carbon emissions into the operation index of 
IES, and created a low-carbon IES economic dispatch model. Zhang et al.14 developed a supercritical CO2 cycle 
system based on power-to-gas and carbon capture technologies, where the system was integrated into a power-
heat coupled IES, achieving a certain degree of CO2 recycling. The study in Ref.15 integrated electric vehicle 
charging facilities as flexible energy storage units and developed a low-carbon economic dispatch model based 
on a source-load collaborative optimization mechanism. However, most of the aforementioned studies primarily 
focus on penalizing carbon emission behaviors, while neglecting incentives for carbon emission reduction. As a 
result, there is a lack of a refined carbon trading mechanism that motivates system units to actively participate 
in carbon trading.

The optimal scheduling problem of island IES aims to achieve both efficient resource utilization and low 
carbon emission. It typically involves numerous variables and optimization objectives, which makes the solution 
process highly complex. In recent years, several model-based solution methods have been proposed to address the 
challenges associated with solving such energy management problems. To overcome the conservatism problem 
in the planning stage of IES, a matrix affine model was presented in16 to model the behavior of distributed 
generators, improving the accuracy of their output predictions. In Ref.17, Gaussian and Beta distributions are 
employed to model and forecast solar and wind power generation, thereby addressing the stochastic optimization 
problem in IES. Using scenario analysis, Ref.18 predicted renewable energy output in IES and proposed an 
optimization method based on uncertainty probability. Nevertheless, the optimization methods involved in the 
aforementioned studies mainly rely on accurate models or forecasted information. In general, obtaining precise 
models and reliable forecasted datas is extremely challenging, which makes model-based optimization methods 
difficult to adapt to the dynamic real-world environment.

In response to the limitations in model-based solution methods, several scholars have proposed applying 
DRL approaches to energy management problems. Model-free DRL methods refer to approaches where an agent 
learns an optimal scheduling policy directly by interacting with the environment through trial and error, based 
on observed states, actions, and rewards19,20. This process does not rely on precise predictive models and is well-
suited for handling stochastic optimization problems. For the economic dispatch problem of microgrids, an 
optimal strategy based on Q-learning was proposed by Ref.21. Building on Q-learning, Ref.22 proposed applying 
the deep Q-network (DQN) approach to the dynamic optimization operation of microgrids. The authors in 
Ref.23 applied Bayesian reinforcement learning to microgrid energy management to compensate for the power 
supply-demand imbalance during microgrid operation. However, the actions of DRL methods discussed above 
are discrete, which usually leads to sub-optimal solutions for the optimization problems. Moreover, the action 
space of the aforementioned methods increases substantially when they are applied to the optimization of large-
scale power grids. As a consequence, both the solution speed and the accuracy decline.

To address the computational challenges arising from discrete action spaces, several studies have used policy-
based DRL algorithms for continuous energy management problems. In Ref.24, the data-driven deep deterministic 
policy gradient (DDPG)25 algorithm was employed to address the optimal scheduling problem of hybrid energy 
systems, achieving a balance among economic efficiency, power output fluctuations, and system stability. In 
Ref.26, the prioritized experience replay mechanism27 and the L2 regularization method28 were incorporated into 
the DDPG algorithm. The enhanced algorithm was then applied to the dynamic scheduling problem of IES, and 
comparative experiments demonstrated that it significantly outperforms the DDPG algorithm in computational 
speed and data utilization efficiency. To enhance DRL agents’ exploration efficiency29,30, Zhang et al.31 developed 
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an energy management scheme for electricity-heat-gas coupled energy systems based on the soft actor-critic 
(SAC) algorithm, an off-policy algorithm derived from maximum entropy theory32. A comparative analysis with 
the traditional multi-objective optimization method showed that the proposed SAC-based scheduling method 
handles the intermittency of new energy output more effectively. In addition, an energy management scheme 
for electric vehicles based on the SAC algorithm was developed in Ref.33, which significantly improved the 
energy utilization efficiency. Inspired by these works, this paper proposes a DRL-based energy management 
approach for island IES. The economic dispatch problem in island IES constitutes a continuous control and 
optimization challenge. Consequently, policy-based DRL algorithms offer a promising solution framework for 
such problems. Among these, DDPG and twin delayed deep deterministic policy gradient (TD3) are two widely 
adopted approaches. TD3 improves upon DDPG by introducing twin critic networks and a delayed policy 
update mechanism, which collectively alleviate the overestimation bias of Q-values and contribute to improved 
training stability and convergence performance. Due to the involvement of multiple variables in the scheduling 
problem of low-carbon and resource-efficient island IES, the effectiveness of the scheduling strategy heavily 
relies on the stability and convergence performance during the training process. Therefore, this paper adopts the 
TD3 algorithm to solve the proposed optimization problem.

Summarizing the above studies, we can make the following conclusions: (1) In the context of energy 
shortages, existing research rarely considers the full utilization of secondary resources generated during island 
IES operation, which results in low resource utilization efficiency. (2) Existing carbon trading models for island 
IES mostly consider the environmental penalty costs associated with carbon emissions, while ignoring the 
system’s contributions to carbon emission reduction. Therefore, there is a lack of a refined carbon trading model 
that both incentivizes and penalizes carbon emission behavior in island IES. (3) Existing research on handling 
uncertainties in island IES mostly relies on accurate mathematical models or predictive information. However, 
in real dynamic systems, it is very difficult or even unrealistic to obtain such information.

In light of the above research gaps in island IES, this paper explores the following aspects:

•	 In order to improve resource utilization, this paper constructs a distributed-level island IES model compris-
ing wind turbines (WT), combined heat and power (CHP) units, diesel generator sets (DGS), multi-energy 
output hydrogen storage modules (MEO-HSM), carbon capture units (CCU), desalination units (DU) and 
gas boilers (GB). The MEO-HSM in the model not only facilitates the sale of oxygen by-products generated 
during charging stage but also utilizes the waste heat and water produced during discharging stage. Addi-
tionally, when considering the MEO-HSM, the MEUM also incorporates the trading of carbon by-products 
generated by the CCU operation.

•	 This paper proposes the IPSCTM to further reduce carbon emissions during the island IES operation stage. 
Compared with traditional carbon trading mechanisms, the proposed mechanism introduces incentive and 
penalty factors, which greatly releases the carbon reduction potentials of system units.

•	 To avoid modeling or forecasting uncertain variables, a model-free TD3 approach is proposed to address the 
island IES scheduling problem, which considers the coupling of electricity, heat, water, and storage systems, 
as well as the interaction of the IPSCTM. Besides, the TD3-based method adapts to dynamic changes in 
real-world systems and offers a new paradigm for intelligent optimization and predictive operation in distri-
bution network scenarios.

The rest of this paper is organized as follows: section 2 introduces the structure and mathematical description of 
the island IES model. Section 3 formulates the dynamic scheduling problem of the island IES as a mathematical 
problem. Section 4 presents the TD3-based dynamic scheduling approach for the island IES. Section 5 conducts 
simulations and analyzes the results. Finally, section 6 provides the conclusion of this paper.

Island IES structure
In this paper, an island IES based on the MEUM and IPSCTM is proposed. The energy needs of the island’s 
residents consist of electricity, heat and freshwater. Figure 1 is the schematic diagram of the system’s structure.

MEO-HSM
The MEO-HSM proposed in this paper produces hydrogen and oxygen in the electrolysis stage, where the oxygen 
can be traded as by-products with system operators and exported to other regions. During the discharging stage, 
the hydrogen fuel cell produces freshwater and waste heat, which are utilized to fulfill the islanders’ demands. 
Most existing studies have concentrated on the energy storage role of hydrogen storage modules, with little 
attention paid to the utilization of by-products generated during operation. Therefore, this paper applies the 
proposed MEO-HSM to the island IES with the goal of maximizing resource utilization efficiency.

Electrolyzer model
The relationship between the electrolyzer’s input electrical power and its hydrogen and oxygen output is 
represented as follows34:

	 mel(t) = kel · pel(t) · ∆T � (1)

	 mo(t) = 8η0mel(t)� (2)

where pel(t) denotes the input electric power of the electrolyzer, mel(t) denotes the amount of hydrogen 
produced, kel is the hydrogen production coefficient, η0 is the oxygen recycling coefficient, mo(t) denotes the 
mass of the generated oxygen, and ∆T  is the duration of one time step.
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Compressor model
Following electrolysis, the produced hydrogen is compressed into hydrogen storage tanks using a compressor, 
which is modeled as follows:

	 pco(t) · ∆T = kco · mel(t)� (3)

where pco(t) represents the electric power consumption of the hydrogen compressor, and kco denotes its power 
consumption coefficient.

Hydrogen storage tank model
The model of the hydrogen storage tank is formulated as follows34:

	 min(t) = mel(t)� (4)

	 bin(t) + bout(t) ≤ 1� (5)

	 0 ≤ mout(t) ≤ bout(t) · Mmax� (6)

	 mso(t + 1) = mso(t) + min(t) − mout(t)� (7)

where min(t) denotes the input hydrogen of the storage tank; bin(t) and bout(t) denote the on/off state, 
respectively; mout(t) denotes the output hydrogen mass; Mmax is the maximum storage capacity, and mso(t) 
denotes the residual hydrogen mass in the tank.

MEO-HSM discharge model
The discharge process of MEO-HSM corresponds to the operation of a fuel cell, during which hydrogen is 
consumed and freshwater as well as waste heat are produced. The model is formulated as follows:

	 mhsm(t) = 9η1mfc(t)� (8)

	 pfc(t) · ∆T = µe · mfc(t)� (9)

	 hfc(t) = η2pfc(t)� (10)
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Fig. 1.  The structure of the island IES.
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In Eq. (8), mhsm(t) denotes the freshwater output of the MEO-HSM; ηo is the freshwater output rate; mfc(t) 
represents the hydrogen consumption; pfc(t) denotes the output electric power; µe is the conversion efficiency; 
hfc(t) represents the output heat power; η2 is the thermoelectric ratio coefficient.

The equation for the input and output electric power of the MEO-HSM is shown as follows:

	
phsm(t) =

{ −(pel(t) + pco(t)), bin(t) = 1
pfc(t), bout(t) = 1 � (11)

where phsm(t) is the charging/discharging power of the MEO-HSM.

Desalination units
The DU of the island IES is a crucial support for meeting the freshwater demand of the island’s residents. Its 
model is formulated as follows6:

	 pdu(t) = Qmdu(t)� (12)

where pdu(t) denotes the input power of the DU, Q is the utility coefficient, and mdu(t) denotes the freshwater 
output.

IPSCTM
In this study, the DGS, CHP, and GB generate carbon emissions during operation. The model describing their 
carbon emissions is as follows:

	




Ee = δe

T∑
t=1

pdgs(t)

Eg = δg

T∑
t=1

(hgb(t) + pchp(t))
� (13)

where Ee and Eg denote the actual carbon emission from diesel and natural gas production, respectively; δe and 
δg represent the carbon emission factors for per unit power of diesel and natural gas production, with values of 
0.639t/MWh and 0.252t/MWh, respectively.

The WT, CCU, DGS, CHP, and GB receive a certain carbon credit during operation, which is described as 
follows:

	




Eeq = λe
∑T

t=1 pdgs(t)
Egq = λg

∑T
t=1(hgb(t) + pchp(t))

Ew = δw
∑T

t=1 pwt(t)
Eccu = δccu

∑T
t=1 pccu(t)

� (14)

where Eeq, Egq and Ew represent the carbon emission credits earned from diesel, natural gas and wind power 
production, respectively; Eccu denotes the carbon emission credits earned from CCU. λe, λg, δw and δccu 
indicate the amount of carbon emission credits allocated per unit of power for diesel, natural gas, wind power 
production and CCU operating, respectively. Their values are 0.228t/MWh, 0.102t/MWh, 0.908t/MWh, 0.695t/
MWh, respectively.

The actual carbon emission and carbon emission credits of the system are as follows:

	 Ereal
co2 = Ee + Eg� (15)

	 Eco2 = Eeq + Egq + Ew + Eccu� (16)

where Ereal
co2  denotes the actual carbon emissions of the system, and Eco2  denotes the carbon emission credits.

The carbon trading cost of the constructed carbon trading mechanism is divided into the incentive and 
penalty components, with the trading cost described as follows:

	

Ctra =




−ξ(3 + 6λ)∆E − ξ(1 + 4λ)
(
Eco2 − Ereal

co2 − 3∆E
)

, Ereal
co2 ≤ Eco2 − 3∆E

−ξ(2 + 3λ)∆E − ξ(1 + 3λ)
(
Eco2 − Ereal

co2 − 2∆E
)

, Eco2 − 3∆E < Ereal
co2 ≤ Eco2 − 2∆E

−ξ(1 + λ)∆E − ξ(1 + 2λ)
(
Eco2 − Ereal

co2 − ∆E
)

, Eco2 − 2∆E < Ereal
co2 ≤ Eco2 − ∆E

−ξ(1 + λ)(Eco2 − Ereal
co2 ), Eco2 − ∆E < Ereal

co2 ≤ Eco2

ξ(Ereal
co2 − Eco2 ), Eco2 < Ereal

co2 ≤ Eco2 + ∆E
ξ∆E + (1 + κ)ξ(Ereal

co2 − Eco2 − ∆E), Eco2 + ∆E < Ereal
co2 ≤ Eco2 + 2∆E

(2 + κ)ξ∆E + (1 + 2κ)ξ(Ereal
co2 − Eco2 − 2∆E), Eco2 + 2∆E < Ereal

co2 ≤ Eco2 + 3∆E
(3 + 3κ)ξ∆E + (1 + 3κ)ξ(Ereal

co2 − Eco2 − 3∆E), Eco2 + 3∆E < Ereal
co2 ≤ Eco2 + 4∆E

(4 + 6κ)ξ∆E + (1 + 4κ)ξ(Ereal
co2 − Eco2 − 4∆E), Eco2 + 4∆E < Ereal

co2

� (17)

where λ and κ denote the incentive and penalty factors, set as 0.14 and 0.11, respectively; ξ denotes the carbon 
trading price; ∆E denotes the length of the carbon emission interval, which is 0.4 ton.
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Economic scheduling model of island IES
Objective function
In order to reduce the power load fluctuation and fully utilize the peak shaving and valley filling effect of the 
MEO-HSM, the proposed model incentivizes load fluctuation reduction in the MEO-HSM. The cost of this 
system are the fuel cost and the carbon trading cost. The total profit consists of the incentive profit from peak 
shaving and valley filling, and the profit from trading carbon and oxygen products. The objective function is 
the fuel cost plus the carbon trading cost, minus the total profit. The optimization objective is to minimize the 
objective function.

	
Cgas =

T∑
t=1

ρgas(t)(
pchp(t)
ηchpp

+ hgb(t)
ηgb

)∆T � (18)

	
Coil =

T∑
t=1

ρoil(t)pdgs(t)∆T � (19)

	
Cpc = µ( 1

T

(
T∑

t=1

∣∣∣∣∣pload(t) − p−
load

∣∣∣∣∣ −
T∑

t=1

∣∣∣∣∣pload(t) − phsm(t) − p−
load

∣∣∣∣∣

)
)� (20)

	 Cfuel = Cgas + Coil� (21)

	 Ctotal = Cfuel + Ctra − Cpc − Csc − Cso� (22)

where Cgas denotes the fuel cost of consuming natural gas; ρgas(t) denotes the price of natural gas, taken as 
49.73$/MWh; ηchpp is the electricity output efficiency coefficient of the CHP; ηgb is the heat output conversion 
factor. Coil is the fuel cost of consuming diesel; ρoil is the price of diesel ,which is taken as 41.41$/MWh. Cpc 
denotes the incentive profit of peak shaving and valley filling, µ represents the conversion factor of the incentive 
profit, and p−

load denotes the average electric load. Cfuel denotes the fuel cost; Ctra represents the cost of carbon 
trading; Csc denotes the profit from carbon products trading; Cso denotes the profit from oxygen products 
trading; Ctotal represents the total operation cost.

This study aims to maximize the utilization of by-products generated by the CCU, using them as raw materials 
for trading with system operators and exporting to chemical plants in other regions. The corresponding trading 
profit is expressed as follows:

	
Msc = ηccuδccu

T∑
t=1

pccu(t)∆T � (23)

	 Csc = ξcMsc� (24)

where Msc denotes the amount of carbon products generated by the CCU; δccu represents the carbon product 
conversion efficiency, set to 0.9; ηccu denotes the carbon capture efficiency coefficient, which is 0.695t/MWh; ξc 
indicates the trading price of the carbon products.

The oxygen generated by the MEO-HSM during operation can be traded with system operators and further 
exported to inland companies engaged in diving operations. The corresponding trading profit is formulated as 
follows:

	
Cso = ξo(

T∑
t=1

mo(t)∆T )� (25)

where ξo denotes the trading price of oxygen products.

Constraints
The constraints of the island IES primarily consist of energy balance constraints and equipment operating 
constraints.

Electrical power balance constraints
The electrical power balance constraint for residential loads is described as follows:

	 pchp(t) + pdgs(t) + phsm(t) + pwt(t) − pccu(t) − pdu(t) = pload(t)� (26)

where pchp(t) denotes the power output of the CHP; pdgs(t) denotes the power output of the DGS; pwt(t) 
represents the power generated by the WT; pccu(t) represents the power consumed by the CCU; pdu(t) denotes 
the power consumed by the DU; pload(t) denotes the electrical load of island residents.

Heat power balance constraints
The heat power balance constraint for the island residents is described as follows:
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	 hchp(t) + hgb(t) + hfc(t) = hload(t)� (27)

where hchp(t) refers to the thermal power output of the CHP; hgb(t) denotes the thermal power output of the 
GB; hload(t) denotes the thermal load of the island residents.

In this study, the back-pressure CHP is adopted, and the relationship between its thermal and electrical 
power outputs is shown as follows26:

	
hchp(t) = pchp(t) · ηchph

ηchpp
� (28)

where ηchph is the heat output efficiency coefficient of the CHP.

Freshwater supply-demand balance constraints
In the island IES, the freshwater supply mainly comes from the DU and MEO-HSM. The relationship is expressed 
as follows:

	 mdu(t) + mhsm(t) = mload(t)� (29)

where mhes(t) denotes the freshwater from the MEO-HSM; mdu(t) denotes the freshwater supplied by the 
DU; mload(t) refers to the freshwater demand of the island residents. It is worth mentioning that the electrical, 
thermal and freshwater demands of the island residents exhibit dynamic variability.

Equipment operation constraints
The operations of the CHP, DGS, CCU, GB, and electrolyzer are subject to constraints (30)-(31) , (32)-(33)26, 
(34), (35), and (36), respectively. The charging and discharging power of the MEO-HSM are subject to the 
constraint (37). Additionally, the hydrogen storage tanks operate under the constraints (38)-(39).

	 P chp
min ≤ pchp(t) ≤ P chp

max� (30)

	 −Rchp∆T ≤ pchp(t) − pchp(t − 1) ≤ Rchp∆T � (31)

	 P dgs
min ≤ pdgs(t) ≤ P dgs

max� (32)

	 −Rdgs∆T ≤ pdgs(t) − pdgs(t − 1) ≤ Rdgs∆T � (33)

	 0 ≤ pccu(t) ≤ P ccu
max� (34)

	 0 ≤ hgb(t) ≤ Hgb
max� (35)

	 pel(t) ≤ P el
max� (36)

	

{
−P cha

max ≤ phsm(t) ≤ 0, bin(t) = 1
0 ≤ phsm(t) ≤ P dis

max, bout(t) = 1 � (37)

	 mso(t) + min(t) ≤ Mmax� (38)

	 mso(t) − mout(t) ≥ Mmin� (39)

where P chp
min  and P chp

max denote the lower and upper limits of the output electrical power of the CHP, respectively; 
Rchp denotes the upper limit of the CHP’s climbing rate; P dgs

min and P dgs
max denote the lower and upper limits of 

the DGS output electrical power, respectively; Rdgs denotes the upper limit of the climbing rate of the DGS; 
P ccu

max denotes the maximum input electrical power to the CCU; Hgb
max denotes the maximum heat output power 

of the GB; P el
max denotes the upper limit of the input power to the electrolyzer; P cha

max and P dis
max denote the upper 

limits of the charging and discharging power of the MEO-HSM, respectively; Mmax and Mmin denote the upper 
and lower capacity limits of the hydrogen storage tanks, respectively.

Low-carbon economic scheduling framework based on TD3
In DRL, the agent continuously adjusts and optimizes its policy through interactions with the external 
environment in order to maximize the cumulative reward. This interaction process between the agent and the 
environment can be formulated as a standard Markov Decision Process (MDP). The key components of the 
MDP include the state S, action A, policy π, and reward R. The state represents the agent’s observation of the 
current environment. The action refers to the response taken by the agent under a given state. The policy defines 
the mapping from the agent’s state to its corresponding action. The reward represents the feedback received 
by the agent after executing an action. Figure 2 illustrates the interaction process between the agent and the 
environment: The agent first observes the environment to obtain the current state st and selects an action at 
based on the policy π, then transitioning to the next state st+1. The environment subsequently provides a reward 
r as feedback, which the agent uses to update its policy π accordingly.

The TD3 employed in this study is a DRL approach based on the actor-critic framework, which is well-
suited for solving continuous decision-making problems. It introduces two sets of critic networks built upon 
the DDPG algorithm and mitigates Q-value overestimation by taking the minimum of the two estimated values. 
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Meanwhile, TD3 incorporates a delayed policy update strategy, where the actor network is updated only after the 
critic network has undergone multiple updates. This mechanism helps reduce policy oscillations during training. 
Moreover, TD3 introduces noise into the target actions, which enhances the exploration ability of the policy and 
improves both the stability and learning efficiency of the algorithm.

The action-value function Q(s, a) of the agent is derived as:

	
Q(s, a) = Eπ

(
T∑

k=0

γkrt+k(st+k, at+k) | st = s, at = a

)
� (40)

where Eπ  represents the expectation with respect to the policy π, and γ denotes the discount factor.
The policy that maximizes the action-value function is referred to as the optimal policy:

	 π∗ = argmax Q (s, a)� (41)

TD3 employs a dual Q-value network architecture to estimate the value of the next state, which is implemented 
as follows35:

	

{
y1 = r + γQθ′

1
(s′, µ′(s′|θ′

µ′ ))
y2 = r + γQθ′

2
(s′, µ′(s′|θ′

µ′ )) � (42)

	
y = r + γ min

i=1,2
Qθ′

i
(s′, µ′(s′|θµ′ ))� (43)

TD3 updates the critic network’s parameters by minimizing the loss function through gradient descent, which 
is calculated as follows:

	 Lci =
(
Qi

(
s, µ′(s′ | θµ′ )

)
− y

)2 (i = 1, 2)� (44)

TD3 mitigates the risk of the algorithm being trapped in local optima by injecting noise into the target actions35.

	 ã ← µ′(s′|θµ′ ) + ε, ε ∼ clip(N(0, σ), −c, c), c > 0� (45)

where ε represents the added noise, and ã denotes the target action after noise injection.
The actor network in TD3 adopts a deterministic policy gradient approach, wherein updates are carried out 

via backpropagation based on the gradients of the neural network. The gradient computation is expressed as 
follows25:

	
∇θµ J ≈ 1

M

M∑
i=1

[
∇aQ(s, a) |s=si,a=µ(si|θµ) ∇θµµ(s | θµ) |si

]
� (46)

Both the target actor and target critic networks adopt a soft update strategy. This mechanism enables the target 
networks to be updated gradually, thereby improving the stability of the learning process. The update process is 
formulated as follows36:

	

{
θQ′

1
= τθQ1 + (1 − τ)θQ′

1
θQ′

2
= τθQ2 + (1 − τ)θQ′

2
θµ′ = τθµ + (1 − τ)θµ′

� (47)

Fig. 2.  Interaction process of DRL.
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where τ  represents the soft update coefficient.
The wind power generation, electrical load, thermal load, and freshwater demand in the proposed island IES 

scheduling model exhibit significant uncertainty. DRL methods are well-suited for addressing such uncertain 
scheduling problems. Accordingly, the dynamic low-carbon economic scheduling problem in this study can be 
formulated as a MDP and solved using the TD3 algorithm to obtain the optimal dynamic scheduling strategy 
for the island IES.

The state of the proposed scheduling model comprises the user’s electricity demand, thermal demand, 
freshwater demand, wind power generation, the state of charge (SOC) of the MEO-HSM, and the time step t. 
Therefore, the state space can be defined as:

	 S = [pload,t, hload,t, wload,t, pwt,t, soct, t]� (48)

The action space is defined by the electrical power output of the CHP, the electrical power output of the MEO-
HSM, and the thermal power output of the GB. Therefore, the action space can be defined as:

	 A = [pchp,t, phsm,t, hgb,t]� (49)

DRL aims to maximize the cumulative reward, while the optimization objective is to minimize the total cost. 
By defining the reward as the negative cost, we transform the cost minimization problem into an equivalent 
reward maximization problem37,38. In this way, as the agent seeks to maximize its own cumulative reward, it 
simultaneously achieves the minimization of the system’s total cost. The reward function of the scheduling 
framework is defined as:

	 R = −1/1000(Ctotal)� (50)

Figure 3 illustrates the scheduling framework of the proposed model, which comprises two main stages: the 
model training stage and the real-time dispatch stage. The pseudocode of the proposed framework is presented in 
Table 1, which provides a comprehensive overview of the solution process for the proposed scheduling problem.

Case study
The simulation of the model proposed in this study is implemented on the TensorFlow 2.7.0 platform with a 
Python 3.9 compilation environment, and training acceleration is provided using an NVIDIA GeForce RTX 
2060 GPU.

Parameter settings and model training
The island IES model used in the simulation is shown in Fig. 1. The training and testing datas are based on 
historical operational data from an island in northern China39. 80% of the dataset is used to train the agent to 
learn the optimal dynamic scheduling strategy, while the remaining 20% serves as the test set to evaluate the 
trained strategy’s performance. The scheduling period of the model is 24 hours, with a scheduling interval of 1 
hour. The parameters involved in the island IES model are shown in Table 2. The proposed scheduling approach 
first requires training the scheduling model, where the selection of training parameters is crucial for model 
accuracy. In this study, the hyper-parameters are selected based on Ref.40. The learning rate of the actor network 
is set to 5e-5, the learning rate of the critic network is set to 2e-4, the discount factor is 0.95, the soft update 

Fig. 3.  Schematic diagram of the decision-making process.
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coefficient is 0.001, and the batch size is 128. Both the actor and critic neural networks consist of two hidden 
layers: the first hidden layer contains 300 neurons, and the second hidden layer consists of 100 neurons.

Comparisons and analysis with other algorithms
To demonstrate the superiority of the proposed scheduling approach, we compare it with a DDPG-based 
scheduling approach, using parameter settings consistent with those of the proposed method. Figure 4 illustrates 
the reward value variation curves of both approaches during the training process. It can be observed that the 
TD3-based approach converges after approximately 14000 episodes, whereas the DDPG-based approach 
converges after approximately 15600 episodes. The reward function curve of the TD3-based approach exhibits 
significantly lower volatility compared to the DDPG-based approach, resulting in a more stable training process. 
Moreover, the final convergence value of the TD3 reward function is higher than that of DDPG, indicating that 
the TD3-based scheduling approach outperforms the DDPG-based approach during the training stage. It is 
worth noting that, due to the different initial states of each episode, the reward values exhibit fluctuations.

Parameter Value Parameter Value Parameter Value

Hgb
max 4000 kW P chp

max  / P chp
min 10000 / 0 kW ηo  / η1 0.85 / 0.83

kco 1000 kWh/t P cha
max  / P dis

max 3000 / 3000 kW η2 0.875

kel 2.8719 × 10−4 P el
max 1000 kW ηccu 0.695t/MWh

Mmax  / Mmin 8/2.5 t Q 8 ηchph  / ηchpp 0.45 / 0.35

P ccu
max 2000 kW Rcfu 2000 kW/h ηgb 0.76

P cfu
max  / P cfu

min 10000 / 0 kW Rchp 2500 kW/h µe 2240 kWh/t

Table 2.  The main equipment parameters of island IES.

 

Step Description

Training stage

1  Initialization: weights of the critic networks (θQ1 , θQ2 ), actor network (θµ), target critic networks (θQ′
1

← θQ1 , 
θQ′

2
← θQ2 ), target actor network (θµ′ ), experience replay buffer, mini-batch size, hyperparameters.

2  for episode = 1 : N do

3     The agent observes the environment to obtain the initial state s1  of the island IES scheduling model, 
s1 = [pload,1, hload,1, wload,1, pwt,1, soc1, 1]

4     Initialize a random exploration process N for action exploration

5     for time step = 1 : T do

6        The agent selects the current action at  based on the random exploration process N, 
at = [pchp,t, phsm,t, hgb,t]

7        Execute action at  and transit to the new state st+1

8        Obtain the reward rt

9        Store the transition in the experience replay buffer, transition = (st, at, rt, st+1)

10        Modify the target action using Eq. (45)

11        Update the weights of the critic network by minimizing the loss function (44)

12        ift mod update interval = 0 or t = T then

13           Update the weights of the actor network using the sampled gradient policy (46)

14           Update the weights of the target networks using the soft update strategy (47)

15        end if

16     end for

17  end for

18  Save the weights of the actor network

Scheduling Stage

19  Load the weights of the actor network saved during the training stage

20  for time step t = 1 : T do

21     Input: real-time operational data of the island IES at time step t

22     Output: The scheduling strategy at time step t

23     Execute the scheduling strategy and input the real-time operational data of the next time step t + 1

24     Obtain the reward rt  and calculate the total operation cost

25  end for

Table 1.  Pseudocode of the TD3-based dynamic low-carbon economic scheduling approach.
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To further demonstrate the superiority of the proposed scheduling approach in the real-time scheduling stage, 
the typical daily data from real-time operational records is selected for testing. Table 3 presents the total system 
operation costs of the TD3-based, DDPG-based, and proximal policy optimization (PPO)-based approaches. As 
shown in Table 3, the proposed approach achieves the lowest total operation cost of $17335.69, while the PPO-
based approach results in the highest total operation cost of $18763.57. The total operation cost of the DDPG-
based approach is $17477.69. In comparison to the DDPG-based approach, the TD3-based approach reduces the 
total operation cost by 0.819%. This indicates that the improvements made in the network structure and update 
mechanism of the proposed approach enhance its scheduling performance. Additionally, compared to the PPO-
based approach, the TD3-based approach achieves an 8.237% reduction in total operation cost, indicating that 
the proposed approach significantly outperforms the PPO-based approach in terms of data utilization efficiency 
and computational effectiveness. In terms of computation time, the TD3-based approach achieves the shortest 
computation time of 0.2090 s, while the PPO-based approach results in the longest computation time of 2.2088 
s. The computation time of the DDPG-based approach falls in between, at 0.5647 s. In summary, the TD3-based 
approach demonstrates the best optimization performance and the shortest computation time in the real-time 
scheduling stage.

Analysis of scheduling results
After training, the scheduling model is deployed to execute the system dispatch. The results of electric scheduling, 
heat scheduling, and freshwater scheduling are shown in Fig. 5 (a), Fig. 5 (b), and Fig. 5 (c), respectively.

As illustrated in Fig. 5 (a), the proposed scheduling model effectively ensures the electricity supply-demand 
balance. Wind power generation is assigned higher priority, with the electricity generated primarily used to 
satisfy the system’s demand. The remaining electricity demand is mainly met by the DGS and the CHP. To 
achieve peak load shifting and valley load filling, as well as to reduce the output power fluctuations of each unit, 
the MEO-HSM charge during off-peak periods and discharge during peak load periods. The CCU maintain a 
stable operating state to reduce the system’s actual carbon emissions while simultaneously generating carbon 
by-products. The DU consume relatively less electrical power to produce freshwater.

As shown in Fig. 5 (b), the system’s thermal load demand is primarily met by the MEO-HSM, GB, and CHP. 
During peak electrical load periods, the MEO-HSM discharge and simultaneously generate a certain amount of 

Method Ctotal/$ Cfuel/$ Ctra/$ Cpc/$ Csc/$ Cso/$ Computation time/s

DDPG 17477.69 19257.45 441.54 -735.55 -933.25 -552.50 0.5647

PPO 18763.57 17182.12 3313.04 -714.04 -777.41 -240.14 2.2088

TD3 17335.69 19836.26 32.58 -763.09 -1247.73 -522.33 0.2090

Table 3.  Simulation results of different algorithms.
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Fig. 4.  Comparison of training curves.
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thermal energy to partially meet the thermal load. During other periods, the thermal demand is mainly fulfilled 
by the CHP and GB.

As shown in Fig. 5 (c), the combined operation of the MEO-HSM and DU satisfies the system’s freshwater 
demand. The freshwater generated during the MEO-HSM discharging process can alleviate the pressure on the 
island’s freshwater supply, reduce the freshwater output of the DU, and enhance the overall energy efficiency of 
the island IES.

The total operation cost of the island IES comprises five components: Cso , Csc, Cpc, Ctra, and Cfuel, as 
shown in Fig. 6. During periods when the system’s electrical load deviates from the average load, the MEO-
HSM contributes to reducing such deviations, thereby enabling the system to receive incentive rewards. During 
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Fig. 5.  Dispatch results: (a) electric scheduling (b) heat scheduling (c) freshwater scheduling.
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peak load periods, the electrical demand is primarily supplied by the DGS and CHP, resulting in high fuel 
consumption and increased carbon emissions. Consequently, the carbon trading cost is positive during these 
periods. In contrast, during load valley periods, the output power of the DGS and CHP decreases, while the 
CCU capture carbon to obtain carbon credit. This allows the system to possess surplus carbon credits for trading, 
thereby generating additional revenue. In the electrolysis stage of the MEO-HSM, a certain amount of oxygen 
by-products are generated, while the CCU produce carbon by-products during operation. The island IES gains 
revenue by trading these by-products with system operators. Traditional island IES models typically account 
only for Cfuel, overlooking the multi-level efficient utilization of resources and carbon mitigation potential. In 
contrast, the proposed island IES fully integrates multi-level resource utilization and prioritizes carbon emission 
minimization, thereby achieving enhanced environmental and economic performance.

Comparative analysis under different scenarios
To further validate the advantages of the proposed island IES over the conventional configuration, four 
comparative cases are conducted in this work .

Case 1: Island IES without MEUM and with conventional carbon trading mechanism.
Case 2: Island IES without MEUM and with IPSCTM.
Case 3: Island IES with MEUM and conventional carbon trading mechanism.
Case 4: Island IES with MEUM and IPSCTM.
Table 4 presents the simulation results for various cases.
By comparing Case 1 with Case 3 and Case 2 with Case 4, it can be verified that the proposed MEUM 

significantly enhances the utilization of secondary thermal and freshwater resources, and facilitates the trading 
of carbon and oxygen by-products with system operators, thereby generating additional revenue. Specifically, 
the total operation cost in Case 3 is reduced by 3.6719% compared to Case 1, while Case 4 achieves a 7.4551% 
reduction relative to Case 2. This shows that in terms of improving resource utilization and minimizing the total 
operation cost: the proposed MEUM is effective, and its coupling with IPSCTM yields superior performance 
compared to applying MEUM alone. Under the influence of IPSCTM, both the carbon trading cost and carbon 
emissions in Case 2 and Case 4 are lower than those in Case 1 and Case 3, respectively. In particular, Case 2 
achieves reductions of 66.2213% in carbon trading cost and 27.3824% in carbon emissions compared to Case 
1. Similarly, Case 4 achieves reductions of 98.0003% in carbon trading cost and 18.2639% in carbon emissions 

Case
Ctotal/$ Cfuel/$ Ctra/$ Cpc/$

Csc/$ Cso/$ Ereal
CO2

/t

1 19221.44 17668.76 2448.70 -896.02 0 0 131.80

2 18732.20 19510.94 827.14 -920.34 -685.54 0 95.71

3 18515.64 17982.71 1629.26 -632.14 0 -464.19 118.54

4 17335.69 19836.26 32.58 -763.09 -1247.73 -522.33 96.89

Table 4.  Comparison of case simulation results.
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compared to Case 3. Overall, Case 4 achieves the lowest total operation cost and nearly the minimum carbon 
emissions among all cases. This demonstrates that the proposed island IES can significantly improve resource 
utilization efficiency, reduce carbon emissions, lower total operation costs, and improve the system’s economic 
performance and low-carbon characteristics.

Sensitivity analysis
The carbon trading cost and carbon emissions of the island IES model proposed in this study exhibit sensitivity 
to variations in carbon trading parameters. As shown in Fig. 7 (a), when the carbon trading price ranges from 
0.5 to 1.2 times the base price, both the carbon trading cost and carbon emissions initially decline, followed by an 
increase. Both the carbon trading cost and the carbon emissions reach their minimum at the base price. Figure 7 
(b) presents the sensitivity analysis with respect to the incentive factor. As the incentive factor varies between 
0.1 and 0.6, both the carbon trading cost and carbon emissions exhibit a non-monotonic trend. The minimum 
carbon trading cost occurs at an incentive factor of 0.5, while the minimum carbon emissions are observed at 
0.4. Figure 7 (c) illustrates the impact of the penalty factor. As the penalty factor varies between 0.05 and 0.6, 
both the carbon trading cost and carbon emissions exhibit volatility. The lowest carbon trading cost is achieved 
at a penalty factor of 0.11, whereas the minimum carbon emissions occur at 0.55.

The sensitivity analysis of the carbon trading price, incentive factor, and penalty factor presented above 
reveals the impact of variations in carbon trading parameters on the system’s carbon trading cost and carbon 
emissions. These findings can serve as a reference for system operators when determining appropriate carbon 
trading parameters.

Conclusion
To ensure energy supply-demand balance in island regions, improve resource utilization efficiency from 
multiple dimensions, reduce the total operation cost, and minimize carbon emissions, this paper develops a 
novel distributed-level island IES model. To address the impact of multiple uncertainties on system scheduling, 
a model-free scheduling approach based on TD3 is developed, which eliminates the need for explicit modeling 
of uncertain variables. From the above analysis, the following conclusions can be reached:

•	 The proposed island IES model integrates the MEUM, which facilitates the trading of carbon and oxygen 
by-products with the system operator, thereby generating additional revenue. Moreover, it maximizes the 
utilization of waste heat and freshwater resources generated during system operation, alleviating freshwater 
and thermal shortages in the island region. Simulation results indicate that under the conventional carbon 
trading mechanism, incorporating the MEUM leads to a 3.6719% reduction in total operation cost compared 
to the case without MEUM. When the IPSCTM is introduced, the total operation cost is further reduced by 
7.4551% with the MEUM. These results demonstrate that the proposed model significantly improves resource 
utilization efficiency and reduces overall operational costs during system operation.

•	 The proposed island IES model incorporates the IPSCTM. Simulation results indicate that, without the 
MEUM, the system’s carbon emissions under the IPSCTM are reduced by 27.3824% compared to those under 
the conventional carbon trading mechanism. When the MEUM is introduced, the carbon emissions are re-
duced by 18.2639% under the IPSCTM relative to the conventional mechanism. These results indicate that the 
proposed IPSCTM effectively incentivizes system units to participate in carbon trading, thereby significantly 
reducing overall carbon emissions.

•	 The TD3-based scheduling approach learns optimal scheduling strategies through the agent’s interaction with 
the environment, thereby eliminating the need for modeling wind power generation and various loads. This 
allows the method to adapt effectively to dynamic real-world conditions. Simulation results demonstrate that, 
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compared to other approaches, it achieves the lowest total operation cost of $17,335.69 and the shortest com-
putation time of 0.2090 s.

•	 Furthermore, this paper investigates the sensitivity of system carbon trading costs and carbon emissions un-
der the IPSCTM. Specifically, it explores how variations in the carbon trading price, incentive factor, and 
penalty factor affect these outcomes. Simulation results indicate that the proposed mechanism exhibits strong 
adaptability across a variety of simulated environments, suggesting its potential for practical application. The 
findings also provide valuable guidance for system operators.

However, this study also has certain limitations.The resilience and stability of the island IES under extreme 
weather conditions were not considered. The current model primarily focuses on economic dispatch under 
normal operating conditions and does not fully account for the severe impacts of extreme weather events, such 
as typhoons, on the system’s secure and stable operation. Future research will focus on developing scheduling 
and control strategies that incorporate resilience as a key operational metric. This will ensure that the system 
can withstand disturbances and maintain critical functions to the greatest extent possible when faced with high-
impact, low-probability extreme events.

This work aims to explore low-carbon, economically efficient models and scheduling strategies for 
distribution-level island IES. To further enhance scheduling accuracy, several refinements will be considered 
in our future research. For the power system, transmission capacity limits of lines and voltage security ranges 
of nodes will be considered to ensure that scheduling results do not lead to line overloads or voltage violations. 
For the thermal system, we will incorporate dynamic characteristics such as pipeline heat loss, transmission 
delays, and supply temperatures to make heat dispatch more realistic. Furthermore, the efficiency characteristics 
of devices will be modeled in a nonlinear manner. These works are expected to further support the digital, 
intelligent, and low-carbon transformation of distribution networks.

Data availability
Due to the institution’s data-sharing policy, the datasets generated and analyzed in this study are not publicly 
accessible. Interested researchers can request access by contacting the corresponding author via email liangyou-
cai@scut.edu.cn.
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