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Intelligent scheduling for
distributed-level island integrated
energy systems considering multi-
energy utilization and incentive-
penalty stepped carbon trading
mechanism
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Due to geographical constraints, island regions at edge distribution networks generally face challenges
of resource shortages and high carbon emissions. To enhance resource utilization efficiency, this paper
proposes a multi-energy utilization module (MEUM) for distributed-level island integrated energy
systems (IES). The module efficiently recovers and utilizes secondary resources generated during
system operation, thereby providing additional economic benefits for the system. Furthermore, to
incentivize system units to participate in carbon emission reduction, the incentive-penalty stepped
carbon trading mechanism (IPSCTM) is introduced in the system operation stage, which enhances

the willingness of units to engage in carbon trading and reduces carbon emissions. Meanwhile, the
scheduling problem of island IES that simultaneously considers efficient resource utilization and carbon
emission reduction involves numerous interrelated variables, where traditional optimization methods
rely on accurate models or predictive information. Therefore, to avoid modeling and prediction, this
paper proposes a model-free deep reinforcement learning (DRL) approach to deal with the island

IES scheduling problem. To validate the effectiveness of the proposed island IES model and solution
approach, simulations are conducted based on operational datas from a representative island in
northern China. The simulation results demonstrate that the proposed model can significantly reduce
both the total operational cost and carbon emissions. Moreover, the proposed solution approach
outperforms other methods in terms of optimization effectiveness and computational time.

Keywords Distribution network, Island integrated energy system, Multi-energy utilization module,
Incentive-penalty stepped carbon trading mechanism, Deep reinforcement learning

With the ongoing transition of power systems toward digitalization, decarbonization, and intelligence,
distribution networks are increasingly evolving into critical platforms for integrating diverse energy sources
and enabling flexible load management. In this context, island IES at the edge of distribution networks have
emerged as effective solutions for achieving energy self-sufficiency in offshore isolated regions. These systems
also serve as exemplary models for large-scale renewable energy integration and utilization in regional regions.
However, due to climatic fluctuations, the output power of renewable sources such as wind and solar exhibit
significant power output variability":2. Owing to their geographic isolation, island regions are unable to depend
on external power grids, which makes it more challenging to maintain the balance between energy supply and
demand?. Furthermore, island power systems typically exhibit low resource utilization efficiency in conventional
generation units, which consequently drives up the cost of energy supply. Additionally, these regions tend to
rely more heavily on fossil fuel generation, which further exacerbates carbon emissions*. Therefore, improving
the resource utilization efficiency, reducing carbon emissions, and enabling predictive operation and intelligent
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control of systems have become critical issues in the ongoing intelligent transformation of distribution-level
island IES.

In recent years, some researchers have conducted several creative studies on island IES. The authors in Ref?
proposed a resilience assessment framework for island city IES under extreme natural hazards. The framework’s
validity was demonstrated through comprehensive evaluations at both the system and component levels using
multiple benchmark test systems. Ref.® constructed a hydrothermal simultaneous transmission model to improve
resource transmission efficiency in island regions. It was specifically designed to enable the simultaneous
transmission of heat and freshwater. Ref.” developed an interconnected energy management system for island
clusters, while considering energy transmission constraints. The system allows for centralized management of
energy supply and demand across individual islands, thereby ensuring the operational stability of the island
cluster energy system. Some researchers proposed an island IES model integrating multiple energy forms,
including electricity, heat, and hydrogen. They also developed a two-stage scheduling strategy to meet the energy
demands of residential areas under plateau climate condition®. Ref.°proposed a bi-level optimization model
to assess the resilience and economic performance of island IES under fault conditions. The model optimizes
system configuration and scheduling strategies to achieve coordinated enhancements in resilience and cost
efficiency. However, the aforementioned studies on island IES primarily focus on system operational resilience
or economic dispatch strategies, with limited consideration for enhancing resource utilization. Specifically, the
studies do not consider the utilization of secondary resources generated during the system operation stage, such
as waste heat, water resources and biological by-products.

Modern energy systems are designed not only to improve the resource utilization efficiency but also to
advance environmental sustainability. In line with this objective, numerous studies have investigated carbon
emissions as a critical indicator of system operational performance. For limiting the system’s carbon emissions
within a reasonable range, the scholars in Ref.!® introduced global carbon constraints into the optimization
operation of multi-region IES. To achieve a balance between carbon emission reduction and system economic
efficiency, Ref.!! developed a multi-objective low-carbon economic dispatch model for electricity-gas coupled
IES. The model’s objectives included considerations for operational costs, carbon trading costs, and penalty costs.
The work in Ref.!? incorporated carbon emission factors into the home energy management system and imposed
certain penalties on household carbon emission behavior, thereby restricting household carbon emissions. Wang
etal.!’ integrated carbon capture technology into IES, incorporated carbon emissions into the operation index of
IES, and created a low-carbon IES economic dispatch model. Zhang et al.'* developed a supercritical CO2 cycle
system based on power-to-gas and carbon capture technologies, where the system was integrated into a power-
heat coupled IES, achieving a certain degree of CO2 recycling. The study in Ref.'” integrated electric vehicle
charging facilities as flexible energy storage units and developed a low-carbon economic dispatch model based
on a source-load collaborative optimization mechanism. However, most of the aforementioned studies primarily
focus on penalizing carbon emission behaviors, while neglecting incentives for carbon emission reduction. As a
result, there is a lack of a refined carbon trading mechanism that motivates system units to actively participate
in carbon trading.

The optimal scheduling problem of island IES aims to achieve both efficient resource utilization and low
carbon emission. It typically involves numerous variables and optimization objectives, which makes the solution
process highly complex. In recent years, several model-based solution methods have been proposed to address the
challenges associated with solving such energy management problems. To overcome the conservatism problem
in the planning stage of IES, a matrix affine model was presented in'® to model the behavior of distributed
generators, improving the accuracy of their output predictions. In Ref.!”, Gaussian and Beta distributions are
employed to model and forecast solar and wind power generation, thereby addressing the stochastic optimization
problem in IES. Using scenario analysis, Ref.!® predicted renewable energy output in IES and proposed an
optimization method based on uncertainty probability. Nevertheless, the optimization methods involved in the
aforementioned studies mainly rely on accurate models or forecasted information. In general, obtaining precise
models and reliable forecasted datas is extremely challenging, which makes model-based optimization methods
difficult to adapt to the dynamic real-world environment.

In response to the limitations in model-based solution methods, several scholars have proposed applying
DRL approaches to energy management problems. Model-free DRL methods refer to approaches where an agent
learns an optimal scheduling policy directly by interacting with the environment through trial and error, based
on observed states, actions, and rewards!>?’. This process does not rely on precise predictive models and is well-
suited for handling stochastic optimization problems. For the economic dispatch problem of microgrids, an
optimal strategy based on Q-learning was proposed by Ref.?!. Building on Q-learning, Ref.?? proposed applying
the deep Q-network (DQN) approach to the dynamic optimization operation of microgrids. The authors in
Ref.?? applied Bayesian reinforcement learning to microgrid energy management to compensate for the power
supply-demand imbalance during microgrid operation. However, the actions of DRL methods discussed above
are discrete, which usually leads to sub-optimal solutions for the optimization problems. Moreover, the action
space of the aforementioned methods increases substantially when they are applied to the optimization of large-
scale power grids. As a consequence, both the solution speed and the accuracy decline.

To address the computational challenges arising from discrete action spaces, several studies have used policy-
based DRL algorithms for continuous energy management problems. In Ref.?, the data-driven deep deterministic
policy gradient (DDPG)? algorithm was employed to address the optimal scheduling problem of hybrid energy
systems, achieving a balance among economic efficiency, power output fluctuations, and system stability. In
Ref.2°, the prioritized experience replay mechanism?” and the L2 regularization method?® were incorporated into
the DDPG algorithm. The enhanced algorithm was then applied to the dynamic scheduling problem of IES, and
comparative experiments demonstrated that it significantly outperforms the DDPG algorithm in computational
speed and data utilization efficiency. To enhance DRL agents’ exploration efficiency?**’, Zhang et al.’! developed
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an energy management scheme for electricity-heat-gas coupled energy systems based on the soft actor-critic
(SAC) algorithm, an off-policy algorithm derived from maximum entropy theory*2. A comparative analysis with
the traditional multi-objective optimization method showed that the proposed SAC-based scheduling method
handles the intermittency of new energy output more effectively. In addition, an energy management scheme
for electric vehicles based on the SAC algorithm was developed in Ref.*, which significantly improved the
energy utilization efficiency. Inspired by these works, this paper proposes a DRL-based energy management
approach for island IES. The economic dispatch problem in island IES constitutes a continuous control and
optimization challenge. Consequently, policy-based DRL algorithms offer a promising solution framework for
such problems. Among these, DDPG and twin delayed deep deterministic policy gradient (TD3) are two widely
adopted approaches. TD3 improves upon DDPG by introducing twin critic networks and a delayed policy
update mechanism, which collectively alleviate the overestimation bias of Q-values and contribute to improved
training stability and convergence performance. Due to the involvement of multiple variables in the scheduling
problem of low-carbon and resource-efficient island IES, the effectiveness of the scheduling strategy heavily
relies on the stability and convergence performance during the training process. Therefore, this paper adopts the
TD3 algorithm to solve the proposed optimization problem.

Summarizing the above studies, we can make the following conclusions: (1) In the context of energy
shortages, existing research rarely considers the full utilization of secondary resources generated during island
IES operation, which results in low resource utilization efficiency. (2) Existing carbon trading models for island
IES mostly consider the environmental penalty costs associated with carbon emissions, while ignoring the
system’s contributions to carbon emission reduction. Therefore, there is a lack of a refined carbon trading model
that both incentivizes and penalizes carbon emission behavior in island IES. (3) Existing research on handling
uncertainties in island IES mostly relies on accurate mathematical models or predictive information. However,
in real dynamic systems, it is very difficult or even unrealistic to obtain such information.

In light of the above research gaps in island IES, this paper explores the following aspects:

o In order to improve resource utilization, this paper constructs a distributed-level island IES model compris-
ing wind turbines (WT), combined heat and power (CHP) units, diesel generator sets (DGS), multi-energy
output hydrogen storage modules (MEO-HSM), carbon capture units (CCU), desalination units (DU) and
gas boilers (GB). The MEO-HSM in the model not only facilitates the sale of oxygen by-products generated
during charging stage but also utilizes the waste heat and water produced during discharging stage. Addi-
tionally, when considering the MEO-HSM, the MEUM also incorporates the trading of carbon by-products
generated by the CCU operation.

« This paper proposes the IPSCTM to further reduce carbon emissions during the island IES operation stage.
Compared with traditional carbon trading mechanisms, the proposed mechanism introduces incentive and
penalty factors, which greatly releases the carbon reduction potentials of system units.

« To avoid modeling or forecasting uncertain variables, a model-free TD3 approach is proposed to address the
island IES scheduling problem, which considers the coupling of electricity, heat, water, and storage systems,
as well as the interaction of the IPSCTM. Besides, the TD3-based method adapts to dynamic changes in
real-world systems and offers a new paradigm for intelligent optimization and predictive operation in distri-
bution network scenarios.

The rest of this paper is organized as follows: section 2 introduces the structure and mathematical description of
the island IES model. Section 3 formulates the dynamic scheduling problem of the island IES as a mathematical
problem. Section 4 presents the TD3-based dynamic scheduling approach for the island IES. Section 5 conducts
simulations and analyzes the results. Finally, section 6 provides the conclusion of this paper.

Island IES structure
In this paper, an island IES based on the MEUM and IPSCTM is proposed. The energy needs of the island’s
residents consist of electricity, heat and freshwater. Figure 1 is the schematic diagram of the system’s structure.

MEO-HSM

The MEO-HSM proposed in this paper produces hydrogen and oxygen in the electrolysis stage, where the oxygen
can be traded as by-products with system operators and exported to other regions. During the discharging stage,
the hydrogen fuel cell produces freshwater and waste heat, which are utilized to fulfill the islanders’ demands.
Most existing studies have concentrated on the energy storage role of hydrogen storage modules, with little
attention paid to the utilization of by-products generated during operation. Therefore, this paper applies the
proposed MEO-HSM to the island IES with the goal of maximizing resource utilization efficiency.

Electrolyzer model
The relationship between the electrolyzer’s input electrical power and its hydrogen and oxygen output is
represented as follows**:

ma(t) = k% - pa(t) - AT (1)

mo(t) = 8nome(t) (2)

where pei(t) denotes the input electric power of the electrolyzer, mei(t) denotes the amount of hydrogen
produced, k° is the hydrogen production coefficient, 7 is the oxygen recycling coefficient, mo(t) denotes the
mass of the generated oxygen, and AT is the duration of one time step.
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Fig. 1. The structure of the island IES.

Compressor model
Following electrolysis, the produced hydrogen is compressed into hydrogen storage tanks using a compressor,
which is modeled as follows:

Poo(t) - AT = k°° - me(t) (3)

where pco (t) represents the electric power consumption of the hydrogen compressor, and k°° denotes its power
consumption coefficient.

Hydrogen storage tank model
The model of the hydrogen storage tank is formulated as follows>*:

Min (t) = Ml (t) (4)

bin(t) + bout (t) < 1 (5)

0 < Mout(t) < bout(t) - Mmax (6)
Mso(t + 1) = Mao(t) + Min (£) — Mous (t) (7)

where min(t) denotes the input hydrogen of the storage tank; bin(t) and bout(t) denote the on/off state,
respectively; mous (t) denotes the output hydrogen mass; Mmax is the maximum storage capacity, and mso (t)
denotes the residual hydrogen mass in the tank.

MEO-HSM discharge model
The discharge process of MEO-HSM corresponds to the operation of a fuel cell, during which hydrogen is
consumed and freshwater as well as waste heat are produced. The model is formulated as follows:

mhsm(t) = gnlmfc(t) (8)
Dtc (t) AT = ,LLC © Mic (t) (9)
hie(t) = n2pic(t) (10)
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In Eq. (8), mnsm(t) denotes the freshwater output of the MEO-HSM; 1), is the freshwater output rate; msc(t)
represents the hydrogen consumption; psc(t) denotes the output electric power; p° is the conversion efficiency;
hic(t) represents the output heat power; 1)z is the thermoelectric ratio coefficient.

The equation for the input and output electric power of the MEO-HSM is shown as follows:

Phsm (t) = { z:fgz();)l,(?oj(i)ﬁog)l)’bi"(t) -1 .

where prsm (¢) is the charging/discharging power of the MEO-HSM.

Desalination units
The DU of the island IES is a crucial support for meeting the freshwater demand of the island’s residents. Its
model is formulated as follows®:

Pau(t) = Q@mau(t) (12)

where pau (t) denotes the input power of the DU, Q is the utility coefficient, and mau (¢) denotes the freshwater
output.

IPSCTM
In this study, the DGS, CHP, and GB generate carbon emissions during operation. The model describing their
carbon emissions is as follows:

Ee = 0. Zpdgs
tT[\l (13)
By =6 Z(hgb(t) + Penp (1))

=1

where E. and E; denote the actual carbon emission from diesel and natural gas production, respectively; é. and
0g represent the carbon emission factors for per unit power of diesel and natural gas production, with values of
0.639t/MWh and 0.252t/MWh, respectively.

The WT, CCU, DGS, CHP, and GB receive a certain carbon credit during operation, which is described as
follows:

Eeq = Ae ZT_I pdgi(t)

qu - A Z +pChP( )) (14)
Eyw = dw Zt—]Tth )

Eccu = dceu Y,y Pecu(t)

where Eeq, Egq and E\y, represent the carbon emission credits earned from diesel, natural gas and wind power
production, respectively; Fccu denotes the carbon emission credits earned from CCU. Ac, Ag, dw and decu
indicate the amount of carbon emission credits allocated per unit of power for diesel, natural gas, wind power
production and CCU operating, respectively. Their values are 0.228t/MWh, 0.102t/MWh, 0.908t/MWh, 0.695t/
MWh, respectively.

The actual carbon emission and carbon emission credits of the system are as follows:

ErY = Eo + B, (15)
Ecog = Eeq + qu + By + Fecu (16)
where E;gi;l denotes the actual carbon emissions of the system, and Ec., denotes the carbon emission credits.

The carbon trading cost of the constructed carbon trading mechanism is divided into the incentive and
penalty components, with the trading cost described as follows:

—&(3+6AN)AE — £(1 4+ 4)) (Eeop — B2 — 3AE Er < Eeo, — 3AE
—&(2+3N)AE — £(1 4 3)) (Beo, — BE3 —2AE), FEeo, — 3AE < EXY < Eoo, — 2AF
—E(1+ NAE — €1+ 2)) (Beop — EXS — AE), Emz 2AE < B < Eeoy — AE
76(1 + A)(E‘coz - E(l;ce)gl)7 (‘02 AE < E(I:ggl S E(‘og
Cira = (B — Eeoy), Beop < Bty < Fooy + AE (17)
EAE + (14 K)E(ESY — Beo, — AE), Beoy + AE < 5% < Eeo, + 2AF
(2 + K)EAE + (1 + 2k)E(ERA — Em2 —2AE), Eeoy + 2AE < E'% < Eeo, + 3AE
(84 3R)EAE + (1 4 3r)E(ES;! — Eco, — 3AE), Feoy +3AF < B8 < Eeo, + A
(4 +6K)EAE + (1 + 4r)E(EEY — Eoo, — 4AE), Eco, +4AE < EI2

where A and « denote the incentive and penalty factors, set as 0.14 and 0.11, respectively; £ denotes the carbon
trading price; AE denotes the length of the carbon emission interval, which is 0.4 ton.
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Economic scheduling model of island IES

Objective function

In order to reduce the power load fluctuation and fully utilize the peak shaving and valley filling effect of the
MEO-HSM, the proposed model incentivizes load fluctuation reduction in the MEO-HSM. The cost of this
system are the fuel cost and the carbon trading cost. The total profit consists of the incentive profit from peak
shaving and valley filling, and the profit from trading carbon and oxygen products. The objective function is
the fuel cost plus the carbon trading cost, minus the total profit. The optimization objective is to minimize the
objective function.

T
Pehp(t) | hen(t)
Cgas = Pgas(t + AT (18)
s g ()02 + 22 )

T
Coit = Y _ poil(t)pags () AT (19)

t=1

1 T T

Cre = il (Z Proaa(t) = Pigaa| = Z Prosa(t) = Phem (1) ~ Pioaa ) ) (20)
CVfu.el = Ogas + Ooil (21)
Ctotal = Cfuel + Ctra - CpC - Csc - C(so (22)

where Cgas denotes the fuel cost of consuming natural gas; pgas(t) denotes the price of natural gas, taken as
49.73$/MWHh; ncnpp is the electricity output efficiency coefficient of the CHP; ngy, is the heat output conversion
factor. Coi is the fuel cost of consuming diesel; poi is the price of diesel ,which is taken as 41.41$/MWh. Cp,c
denotes the incentive profit of peak shaving and valley filling, 1« represents the conversion factor of the incentive
profit, and p,_, 4 denotes the average electric load. Ctuc1 denotes the fuel cost; Ct.a represents the cost of carbon
trading; Cs. denotes the profit from carbon products trading; Cso denotes the profit from oxygen products
trading; Ciotal represents the total operation cost.

This study aims to maximize the utilization of by-products generated by the CCU, using them as raw materials
for trading with system operators and exporting to chemical plants in other regions. The corresponding trading
profit is expressed as follows:

T

Msc = nccuéccu chc“(t)AT (23)
t=1

Csc - chsc (24)

where M. denotes the amount of carbon products generated by the CCU; dccu represents the carbon product
conversion efficiency, set to 0.9; nccu denotes the carbon capture efficiency coefficient, which is 0.695t/MWh; &,
indicates the trading price of the carbon products.

The oxygen generated by the MEO-HSM during operation can be traded with system operators and further
exported to inland companies engaged in diving operations. The corresponding trading profit is formulated as
follows:

T
Coo = &o(D_ mo(t)AT) (25)
t=1

where &, denotes the trading price of oxygen products.

Constraints
The constraints of the island IES primarily consist of energy balance constraints and equipment operating
constraints.

Electrical power balance constraints
The electrical power balance constraint for residential loads is described as follows:

Penp (1) + Pdgs (t) + Phsm (t) + Dwt (t) — Pecu(t) — Pau(t) = Proaa(t) (26)

where penp(t) denotes the power output of the CHP; pags(t) denotes the power output of the DGS; pwt (t)
represents the power generated by the WT; pecu (¢) represents the power consumed by the CCUj pau (t) denotes
the power consumed by the DU; pioaa(t) denotes the electrical load of island residents.

Heat power balance constraints
The heat power balance constraint for the island residents is described as follows:
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hchp (t) + hgb (t) + hfc (t) = hload (t) (27)

where hcnp (t) refers to the thermal power output of the CHP; hgp () denotes the thermal power output of the
GB; hioad (t) denotes the thermal load of the island residents.

In this study, the back-pressure CHP is adopted, and the relationship between its thermal and electrical
power outputs is shown as follows?6:

(t) . Tchph

henp () = penp
Tlchpp

(28)

where 7chpn is the heat output efficiency coeflicient of the CHP.

Freshwater supply-demand balance constraints
In the island IES, the freshwater supply mainly comes from the DU and MEO-HSM. The relationship is expressed
as follows:

Mdu (t) + Mhsm (t) = Mload (t) (29)

where mues(t) denotes the freshwater from the MEO-HSM; may(t) denotes the freshwater supplied by the
DU; Mioad (t) refers to the freshwater demand of the island residents. It is worth mentioning that the electrical,
thermal and freshwater demands of the island residents exhibit dynamic variability.

Equipment operation constraints

The operations of the CHP, DGS, CCU, GB, and electrolyzer are subject to constraints (30)-(31) , (32)-(33)%,
(34), (35), and (36), respectively. The charging and discharging power of the MEO-HSM are subject to the
constraint (37). Additionally, the hydrogen storage tanks operate under the constraints (38)-(39).

PP < panp(t) < Pk (30)
—Renp AT < penp(t) — penp(t — 1) < Renp AT (31)
PgE < pags(t) < Poix (32)
—Rags AT < pags(t) — pags(t — 1) < Rags AT (33)
0 < pecu(t) < Prax (34)
0 < hgy(t) < HE, (35)
Pei(t) < Pax (36)
— Pk < phom(t) < 0,bin(t) =1
{ 0 < prom(t) < PES, bour (1) = 1 37)
Mo (t) + Min(t) < Mmax (38)
Mo (t) — Mout () > Mmin (39)

where Pncnl?f]) and PSP, denote the lower and upper limits of the output electrical power of the CHP, respectively;
Rcnp denotes the upper limit of the CHP’s climbing rate; Pi%j and P25 denote the lower and upper limits of
the DGS output electrical power, respectively; Rqgs denotes the upper limit of the climbing rate of the DGS;
Py denotes the maximum input electrical power to the CCU; HE,,,« denotes the maximum heat output power
of the GB; P¢L,. denotes the upper limit of the input power to the electrolyzer; P<ha and P38 denote the upper
limits of the charging and discharging power of the MEO-HSM, respectively; Mmax and Mmin denote the upper
and lower capacity limits of the hydrogen storage tanks, respectively.

Low-carbon economic scheduling framework based on TD3
In DRL, the agent continuously adjusts and optimizes its policy through interactions with the external
environment in order to maximize the cumulative reward. This interaction process between the agent and the
environment can be formulated as a standard Markov Decision Process (MDP). The key components of the
MDP include the state S, action A, policy 7, and reward R. The state represents the agent’s observation of the
current environment. The action refers to the response taken by the agent under a given state. The policy defines
the mapping from the agent’s state to its corresponding action. The reward represents the feedback received
by the agent after executing an action. Figure 2 illustrates the interaction process between the agent and the
environment: The agent first observes the environment to obtain the current state s; and selects an action a;
based on the policy , then transitioning to the next state s¢4.1. The environment subsequently provides a reward
r as feedback, which the agent uses to update its policy 7 accordingly.

The TD3 employed in this study is a DRL approach based on the actor-critic framework, which is well-
suited for solving continuous decision-making problems. It introduces two sets of critic networks built upon
the DDPG algorithm and mitigates Q-value overestimation by taking the minimum of the two estimated values.
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Fig. 2. Interaction process of DRL.

Meanwhile, TD3 incorporates a delayed policy update strategy, where the actor network is updated only after the
critic network has undergone multiple updates. This mechanism helps reduce policy oscillations during training.
Moreover, TD3 introduces noise into the target actions, which enhances the exploration ability of the policy and
improves both the stability and learning efficiency of the algorithm.

The action-value function Q(s, a) of the agent is derived as:

T
Q(s,a) = Ex <Z ’Vkrt+k(8t+k,at+k) | st = s,a¢ = CL) (40)
k=0

where E represents the expectation with respect to the policy 7, and v denotes the discount factor.
The policy that maximizes the action-value function is referred to as the optimal policy:

7" = argmax Q (s, a) (41)

TD3 employs a dual Q-value network architecture to estimate the value of the next state, which is implemented
as follows™:

Y1 = r+’YQ9’1(SI7M,(5,‘0L’)) (42)
y2 =1 +9Qq (s, 1/(5'10,))
y =7+ min Qg (s, 1 (s'0,)) (43)

TD3 updates the critic network’s parameters by minimizing the loss function through gradient descent, which
is calculated as follows:

1o 2.
Le, = (Qi (s, 1/ (s" [ 04)) —y) (1 =1,2) (44)
TD3 mitigates the risk of the algorithm being trapped in local optima by injecting noise into the target actions®.
@<« p/'(s')04) + €, ~ clip(N(0,0), —¢c,c),c >0 (45)

where € represents the added noise, and @ denotes the target action after noise injection.

The actor network in TD3 adopts a deterministic policy gradient approach, wherein updates are carried out
via backpropagation based on the gradients of the neural network. The gradient computation is expressed as
follows?>:

M
1
Vo, J % 02 > [VaQ(s5,0) limssamueston) Vour(s | 0,) 1] (46)

=1

Both the target actor and target critic networks adopt a soft update strategy. This mechanism enables the target
networks to be updated gradually, thereby improving the stability of the learning process. The update process is
formulated as follows>®:

9@/2 =70g, + (1 — 7')9@/2 (47)

Gur :7'9”4— (1 —7')0”/
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where 7 represents the soft update coefficient.

The wind power generation, electrical load, thermal load, and freshwater demand in the proposed island IES
scheduling model exhibit significant uncertainty. DRL methods are well-suited for addressing such uncertain
scheduling problems. Accordingly, the dynamic low-carbon economic scheduling problem in this study can be
formulated as a MDP and solved using the TD3 algorithm to obtain the optimal dynamic scheduling strategy
for the island IES.

The state of the proposed scheduling model comprises the user’s electricity demand, thermal demand,
freshwater demand, wind power generation, the state of charge (SOC) of the MEO-HSM, and the time step ¢.
Therefore, the state space can be defined as:

S = [pload,h hload,t» Wload,ty Pwt,t, SOCt, t} (48)

The action space is defined by the electrical power output of the CHP, the electrical power output of the MEO-
HSM, and the thermal power output of the GB. Therefore, the action space can be defined as:

A= [pChp,tvphsm,h hgb,t] (49)

DRL aims to maximize the cumulative reward, while the optimization objective is to minimize the total cost.
By defining the reward as the negative cost, we transform the cost minimization problem into an equivalent
reward maximization problem®”:*. In this way, as the agent seeks to maximize its own cumulative reward, it
simultaneously achieves the minimization of the system’s total cost. The reward function of the scheduling
framework is defined as:

R = —1/1000(Ctotal) (50)

Figure 3 illustrates the scheduling framework of the proposed model, which comprises two main stages: the
model training stage and the real-time dispatch stage. The pseudocode of the proposed framework is presented in
Table 1, which provides a comprehensive overview of the solution process for the proposed scheduling problem.

Case study

The simulation of the model proposed in this study is implemented on the TensorFlow 2.7.0 platform with a
Python 3.9 compilation environment, and training acceleration is provided using an NVIDIA GeForce RTX
2060 GPU.

Parameter settings and model training

The island IES model used in the simulation is shown in Fig. 1. The training and testing datas are based on
historical operational data from an island in northern China®. 80% of the dataset is used to train the agent to
learn the optimal dynamic scheduling strategy, while the remaining 20% serves as the test set to evaluate the
trained strategy’s performance. The scheduling period of the model is 24 hours, with a scheduling interval of 1
hour. The parameters involved in the island IES model are shown in Table 2. The proposed scheduling approach
first requires training the scheduling model, where the selection of training parameters is crucial for model
accuracy. In this study, the hyper-parameters are selected based on Ref.%. The learning rate of the actor network
is set to 5e-5, the learning rate of the critic network is set to 2e-4, the discount factor is 0.95, the soft update
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Fig. 3. Schematic diagram of the decision-making process.
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Step ‘ Description

Training stage

1 Initialization: weights of the critic networks (6, , 0q, ), actor network (6,,), target critic networks (6 5/ < 0q,,
Og1 < 0q,), target actor network (6,,/), experience replay buffer, mini-batch size, hyperparameters. L
2

2 for episode =1: N do

3 The agent observes the environment to obtain the initial state 51 of the island IES scheduling model,
51 = [Pload,1: Pload,1, Wioad, 1, Pwt,1, s0C1, 1]

4 Initialize a random exploration process N for action exploration

5 for time step =1: T do

6 The agent selects the current action a; based on the random exploration process N,
ar = [I)chp,u Phsm, t, hgb,t]

7 Execute action a+ and transit to the new state s¢4 1

8 Obtain the reward ¢

9 Store the transition in the experience replay buffer, transition = (s, a¢, ¢, S¢41)

10 Modify the target action using Eq. (45)

11 Update the weights of the critic network by minimizing the loss function (44)

12 ift mod update interval = 0 ort = T then

13 Update the weights of the actor network using the sampled gradient policy (46)

14 Update the weights of the target networks using the soft update strategy (47)

15 end if

16 end for

17 end for

18 Save the weights of the actor network

Scheduling Stage

19 | Load the weights of the actor network saved during the training stage

20 |fortimestept =1: 7T do

21 Input: real-time operational data of the island IES at time step ¢

22 Output: The scheduling strategy at time step ¢

23 Execute the scheduling strategy and input the real-time operational data of the next time step ¢ + 1
24 Obtain the reward r; and calculate the total operation cost

25 end for

Table 1. Pseudocode of the TD3-based dynamic low-carbon economic scheduling approach.

Parameter Value Parameter Value Parameter Value

HEP 4000 kW Pehe Prj)‘;f; 10000/ 0kW | no /M 0.85/0.83
keo 1000 kWh /¢ Peha j pdis 13000/3000 kKW | s, 0.875

ket 2.8719 x 107* | P2 1000 kW Neeu 0.695t/MWh
Mmax | Mmin | 8/2.51t Q 8 Nehph / Nehpp | 0.45/0.35
Pl 2000 kW Retu 2000 kW /h Ngb 0.76

Pefu  peft 110000 / 0 kKW Renp 2500 KW /h ue 2240 kWh/t

Table 2. The main equipment parameters of island IES.

coefficient is 0.001, and the batch size is 128. Both the actor and critic neural networks consist of two hidden
layers: the first hidden layer contains 300 neurons, and the second hidden layer consists of 100 neurons.

Comparisons and analysis with other algorithms

To demonstrate the superiority of the proposed scheduling approach, we compare it with a DDPG-based
scheduling approach, using parameter settings consistent with those of the proposed method. Figure 4 illustrates
the reward value variation curves of both approaches during the training process. It can be observed that the
TD3-based approach converges after approximately 14000 episodes, whereas the DDPG-based approach
converges after approximately 15600 episodes. The reward function curve of the TD3-based approach exhibits
significantly lower volatility compared to the DDPG-based approach, resulting in a more stable training process.
Moreover, the final convergence value of the TD3 reward function is higher than that of DDPG, indicating that
the TD3-based scheduling approach outperforms the DDPG-based approach during the training stage. It is
worth noting that, due to the different initial states of each episode, the reward values exhibit fluctuations.
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Fig. 4. Comparison of training curves.

Method | Ctota1/$ Cruel/8 | Cira/$ Cpe/$ Cysc/$ | Cso/$ | Computation time/s
DDPG 17477.69 19257.45 | 441.54 -735.55 | -933.25 -552.50 | 0.5647
PPO 18763.57 17182.12 | 3313.04 |-714.04 |-777.41 -240.14 | 2.2088
TD3 17335.69 19836.26 | 32.58 -763.09 | -1247.73 | -522.33 | 0.2090

Table 3. Simulation results of different algorithms.

To further demonstrate the superiority of the proposed scheduling approach in the real-time scheduling stage,
the typical daily data from real-time operational records is selected for testing. Table 3 presents the total system
operation costs of the TD3-based, DDPG-based, and proximal policy optimization (PPO)-based approaches. As
shown in Table 3, the proposed approach achieves the lowest total operation cost of $17335.69, while the PPO-
based approach results in the highest total operation cost of $18763.57. The total operation cost of the DDPG-
based approach is $17477.69. In comparison to the DDPG-based approach, the TD3-based approach reduces the
total operation cost by 0.819%. This indicates that the improvements made in the network structure and update
mechanism of the proposed approach enhance its scheduling performance. Additionally, compared to the PPO-
based approach, the TD3-based approach achieves an 8.237% reduction in total operation cost, indicating that
the proposed approach significantly outperforms the PPO-based approach in terms of data utilization efficiency
and computational effectiveness. In terms of computation time, the TD3-based approach achieves the shortest
computation time of 0.2090 s, while the PPO-based approach results in the longest computation time of 2.2088
s. The computation time of the DDPG-based approach falls in between, at 0.5647 s. In summary, the TD3-based
approach demonstrates the best optimization performance and the shortest computation time in the real-time
scheduling stage.

Analysis of scheduling results
After training, the scheduling model is deployed to execute the system dispatch. The results of electric scheduling,
heat scheduling, and freshwater scheduling are shown in Fig. 5 (a), Fig. 5 (b), and Fig. 5 (c), respectively.

As illustrated in Fig. 5 (a), the proposed scheduling model effectively ensures the electricity supply-demand
balance. Wind power generation is assigned higher priority, with the electricity generated primarily used to
satisfy the system’s demand. The remaining electricity demand is mainly met by the DGS and the CHP. To
achieve peak load shifting and valley load filling, as well as to reduce the output power fluctuations of each unit,
the MEO-HSM charge during off-peak periods and discharge during peak load periods. The CCU maintain a
stable operating state to reduce the system’s actual carbon emissions while simultaneously generating carbon
by-products. The DU consume relatively less electrical power to produce freshwater.

As shown in Fig. 5 (b), the system’s thermal load demand is primarily met by the MEO-HSM, GB, and CHP.
During peak electrical load periods, the MEO-HSM discharge and simultaneously generate a certain amount of
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Fig. 5. Dispatch results: (a) electric scheduling (b) heat scheduling (c) freshwater scheduling.

thermal energy to partially meet the thermal load. During other periods, the thermal demand is mainly fulfilled
by the CHP and GB.

As shown in Fig. 5 (c), the combined operation of the MEO-HSM and DU satisfies the system’s freshwater
demand. The freshwater generated during the MEO-HSM discharging process can alleviate the pressure on the
island’s freshwater supply, reduce the freshwater output of the DU, and enhance the overall energy efliciency of
the island IES.

The total operation cost of the island IES comprises five components: Cso , Csc, Cpe, Cira, and Chuel, as
shown in Fig. 6. During periods when the system’s electrical load deviates from the average load, the MEO-
HSM contributes to reducing such deviations, thereby enabling the system to receive incentive rewards. During
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Fig. 6. The cost of island IES.

Case | Crovat/8 | Cruar/8 [ Cura/8 [ Coc/8 [ (o [ oo | BESE, /2
1 19221.44 17668.76 | 2448.70 | -896.02 |0 0 131.80

2 18732.20 1951094 | 827.14 -920.34 | -685.54 |0 95.71

3 18515.64 17982.71 |1629.26 |-632.14 |0 -464.19 | 118.54

4 17335.69 19836.26 | 32.58 -763.09 | -1247.73 | -522.33 | 96.89

Table 4. Comparison of case simulation results.

peak load periods, the electrical demand is primarily supplied by the DGS and CHP, resulting in high fuel
consumption and increased carbon emissions. Consequently, the carbon trading cost is positive during these
periods. In contrast, during load valley periods, the output power of the DGS and CHP decreases, while the
CCU capture carbon to obtain carbon credit. This allows the system to possess surplus carbon credits for trading,
thereby generating additional revenue. In the electrolysis stage of the MEO-HSM, a certain amount of oxygen
by-products are generated, while the CCU produce carbon by-products during operation. The island IES gains
revenue by trading these by-products with system operators. Traditional island IES models typically account
only for Ctyel, overlooking the multi-level efficient utilization of resources and carbon mitigation potential. In
contrast, the proposed island IES fully integrates multi-level resource utilization and prioritizes carbon emission
minimization, thereby achieving enhanced environmental and economic performance.

Comparative analysis under different scenarios
To further validate the advantages of the proposed island IES over the conventional configuration, four
comparative cases are conducted in this work .

Case 1: Island IES without MEUM and with conventional carbon trading mechanism.

Case 2: Island IES without MEUM and with IPSCTM.

Case 3: Island IES with MEUM and conventional carbon trading mechanism.

Case 4: Island IES with MEUM and IPSCTM.

Table 4 presents the simulation results for various cases.

By comparing Case 1 with Case 3 and Case 2 with Case 4, it can be verified that the proposed MEUM
significantly enhances the utilization of secondary thermal and freshwater resources, and facilitates the trading
of carbon and oxygen by-products with system operators, thereby generating additional revenue. Specifically,
the total operation cost in Case 3 is reduced by 3.6719% compared to Case 1, while Case 4 achieves a 7.4551%
reduction relative to Case 2. This shows that in terms of improving resource utilization and minimizing the total
operation cost: the proposed MEUM is effective, and its coupling with IPSCTM yields superior performance
compared to applying MEUM alone. Under the influence of IPSCTM, both the carbon trading cost and carbon
emissions in Case 2 and Case 4 are lower than those in Case 1 and Case 3, respectively. In particular, Case 2
achieves reductions of 66.2213% in carbon trading cost and 27.3824% in carbon emissions compared to Case
1. Similarly, Case 4 achieves reductions of 98.0003% in carbon trading cost and 18.2639% in carbon emissions
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Fig. 7. The sensitivity analysis of carbon trading parameters: (a) carbon trading price (b) incentive factor (c)
penalty factor.

compared to Case 3. Overall, Case 4 achieves the lowest total operation cost and nearly the minimum carbon
emissions among all cases. This demonstrates that the proposed island IES can significantly improve resource
utilization efficiency, reduce carbon emissions, lower total operation costs, and improve the system’s economic
performance and low-carbon characteristics.

Sensitivity analysis

The carbon trading cost and carbon emissions of the island IES model proposed in this study exhibit sensitivity
to variations in carbon trading parameters. As shown in Fig. 7 (a), when the carbon trading price ranges from
0.5 to 1.2 times the base price, both the carbon trading cost and carbon emissions initially decline, followed by an
increase. Both the carbon trading cost and the carbon emissions reach their minimum at the base price. Figure 7
(b) presents the sensitivity analysis with respect to the incentive factor. As the incentive factor varies between
0.1 and 0.6, both the carbon trading cost and carbon emissions exhibit a non-monotonic trend. The minimum
carbon trading cost occurs at an incentive factor of 0.5, while the minimum carbon emissions are observed at
0.4. Figure 7 (c) illustrates the impact of the penalty factor. As the penalty factor varies between 0.05 and 0.6,
both the carbon trading cost and carbon emissions exhibit volatility. The lowest carbon trading cost is achieved
at a penalty factor of 0.11, whereas the minimum carbon emissions occur at 0.55.

The sensitivity analysis of the carbon trading price, incentive factor, and penalty factor presented above
reveals the impact of variations in carbon trading parameters on the system’s carbon trading cost and carbon
emissions. These findings can serve as a reference for system operators when determining appropriate carbon
trading parameters.

Conclusion

To ensure energy supply-demand balance in island regions, improve resource utilization efficiency from
multiple dimensions, reduce the total operation cost, and minimize carbon emissions, this paper develops a
novel distributed-level island IES model. To address the impact of multiple uncertainties on system scheduling,
a model-free scheduling approach based on TD3 is developed, which eliminates the need for explicit modeling
of uncertain variables. From the above analysis, the following conclusions can be reached:

« The proposed island IES model integrates the MEUM, which facilitates the trading of carbon and oxygen
by-products with the system operator, thereby generating additional revenue. Moreover, it maximizes the
utilization of waste heat and freshwater resources generated during system operation, alleviating freshwater
and thermal shortages in the island region. Simulation results indicate that under the conventional carbon
trading mechanism, incorporating the MEUM leads to a 3.6719% reduction in total operation cost compared
to the case without MEUM. When the IPSCTM is introduced, the total operation cost is further reduced by
7.4551% with the MEUM. These results demonstrate that the proposed model significantly improves resource
utilization efficiency and reduces overall operational costs during system operation.

o The proposed island IES model incorporates the IPSCTM. Simulation results indicate that, without the
MEUM, the system’s carbon emissions under the IPSCTM are reduced by 27.3824% compared to those under
the conventional carbon trading mechanism. When the MEUM is introduced, the carbon emissions are re-
duced by 18.2639% under the IPSCTM relative to the conventional mechanism. These results indicate that the
proposed IPSCTM effectively incentivizes system units to participate in carbon trading, thereby significantly
reducing overall carbon emissions.

o The TD3-based scheduling approach learns optimal scheduling strategies through the agent’s interaction with
the environment, thereby eliminating the need for modeling wind power generation and various loads. This
allows the method to adapt effectively to dynamic real-world conditions. Simulation results demonstrate that,
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compared to other approaches, it achieves the lowest total operation cost of $17,335.69 and the shortest com-
putation time of 0.2090 s.

o Furthermore, this paper investigates the sensitivity of system carbon trading costs and carbon emissions un-
der the IPSCTM. Specifically, it explores how variations in the carbon trading price, incentive factor, and
penalty factor affect these outcomes. Simulation results indicate that the proposed mechanism exhibits strong
adaptability across a variety of simulated environments, suggesting its potential for practical application. The
findings also provide valuable guidance for system operators.

However, this study also has certain limitations.The resilience and stability of the island IES under extreme
weather conditions were not considered. The current model primarily focuses on economic dispatch under
normal operating conditions and does not fully account for the severe impacts of extreme weather events, such
as typhoons, on the system’s secure and stable operation. Future research will focus on developing scheduling
and control strategies that incorporate resilience as a key operational metric. This will ensure that the system
can withstand disturbances and maintain critical functions to the greatest extent possible when faced with high-
impact, low-probability extreme events.

This work aims to explore low-carbon, economically efficient models and scheduling strategies for
distribution-level island IES. To further enhance scheduling accuracy, several refinements will be considered
in our future research. For the power system, transmission capacity limits of lines and voltage security ranges
of nodes will be considered to ensure that scheduling results do not lead to line overloads or voltage violations.
For the thermal system, we will incorporate dynamic characteristics such as pipeline heat loss, transmission
delays, and supply temperatures to make heat dispatch more realistic. Furthermore, the efficiency characteristics
of devices will be modeled in a nonlinear manner. These works are expected to further support the digital,
intelligent, and low-carbon transformation of distribution networks.

Data availability

Due to the institution’s data-sharing policy, the datasets generated and analyzed in this study are not publicly
accessible. Interested researchers can request access by contacting the corresponding author via email liangyou-
cai@scut.edu.cn.
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