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Electric Vehicles (EVs) are increasingly recognized as a fundamental component of intelligent 
transportation systems within smart city frameworks. Therefore, several studies in recent decades 
have been trying to improve the performance of EVs to maximize the benefits from their connection 
to the network. Machine Learning (ML) and data-driven methods are used for analyzing EV charging 
behavior to maintain significant improvements in the prediction and scheduling fields. Although many 
of these studies have relied on historical charging data to predict the EVs’ State of Charge (SoC) and 
Charging Available Time (CAT), influential features have often been overlooked. These features are 
represented in real-time distance, road characteristics (road type, traffic pattern, and events data), and 
weather data. This study proposes a novel multistage approach, based on a Feedforward Deep Neural 
Network (FDNN) that combines historical charging data with these influential features to predict both 
SoC and CAT. The proposed approach outperforms existing literature with SMAPE scores of 0.00044, 
0.00018 and 0.00014, 0.00012 for initial, required SoC and CAT predictions, respectively. Through 
comparative analyses with prior studies on the same dataset, this research highlights substantial 
improvements in predictive accuracy. It underscores the significance of integrating influential features 
for the precise prediction of EV charging behaviors within smart transportation systems.

Keywords  Electric vehicles (EVs), Deep learning, Charging behavior, Smart cities transportation

Abbreviations
EVs	� Electric vehicles
ML	� Machine Learning
SoC	� State of Charge
BEV	� Battery Electric vehicles
DNN	� Deep Neural Network
CAT	� Charging Available Time
V2V	� Vehicle-to-Vehicle
FDNN	� Feedforward Deep Neural Network
MAE	� Mean Absolute Error
V2H	� Vehicle-to-Home
RMSE	� Root Mean Square Error
V2G	� Vehicle-to-Grid
SMAPE	� Symmetric Mean Absolute Percentage Error
MSE	� Mean Squared Error
KNN	� K-Nearest Neighbours
R2	� Coefficient of Determination
CNNs	� Convolutional Neural Networks
RF	� Random Forest

1Department of Electrical Power and Machines Engineering, Higher Institute of Engineering at El-Shorouk City, 
El-Shorouk Academy, Cairo 11837, Egypt. 2Department of Electrical Power and Machines Engineering, Faculty 
of Engineering, Ain Shams University, Cairo, Egypt. 3Faculty of Engineering and Technology, Future University in 
Egypt, Cairo 11835, Egypt. 4Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, 
KafrelSheikh 33516, Egypt. email: 2002540@eng.asu.edu.eg

OPEN

Scientific Reports |        (2025) 15:37669 1| https://doi.org/10.1038/s41598-025-21625-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-21625-y&domain=pdf&date_stamp=2025-10-27


LSTM	� Long Short-Term Memory
AI	� Artificial Intelligence
SoC-In	� Initial State of Charge
SVM	� Support Vector Machine
HCD	� Historical Charging Data
ANN	� Artificial Neural Network
SL	� Session length
RNNs	� Recurrent Neural Networks
TM3	� Tesla Model 3
SoC-Req	� Required State of Charge

Climate change and global warming have driven the rising trend of EVs. With traditional vehicles contributing 
significantly to high exhaust rates and carbon emissions, the widespread adoption of EVs is crucial to combat 
this pollution. Moreover, EVs play a vital role in peak shaving by utilizing their discharging process during peak 
periods. This research aims to provide a comprehensive investigation of EVs’ impact on reducing pollution levels 
and their effectiveness in peak shaving. The methodology involves rigorous data collection, statistical analysis, 
and modeling techniques to evaluate the environmental benefits and grid stability enhancement provided by EV 
integration; however, it is difficult to deny the continuous development of EVs in several fields. The research has 
begun in this field due to the importance of replacing traditional vehicles with EVs, which shows a comparison 
between them1. Then, the connection of EVs to the network is studied to determine the challenges as a result of 
EV integration. These challenges that appear because of the process of charging EVs are represented in increasing 
power losses and the peak power consumed. Also, the voltage deviation increases with the EV implementation2.

Although EVs are essential, challenges persist, such as EV owners depending on charging stations due to the 
lack of home charging opportunities for all users. Over-reliance on charging at stations causes more pressure on 
the network during peak times. Additionally, the integration of huge-scale EVs will impose restrictions on the 
networks, and Instability in power networks due to uncoordinated EV charging behavior. This research employs 
a methodical approach involving data analysis, and simulation studies to address these hurdles effectively. To 
overcome the spatial constraints limiting the expansion of charging stations for EVs, a strategic approach is 
imperative. Smart scheduling emerges as a viable solution, necessitating an in-depth comprehension of charging 
behaviors2. Coordinated charging entails gathering essential data such as arrival and departure times, trip 
frequency, distances traveled, charger type, and battery SoC. These features are meticulously analyzed in this 
study to devise an efficient scheduling framework. The study optimizes the utilization of existing charging 
infrastructure, minimizes peak power demands, and ensures EV connection to the grid without the need for 
extensive expansion of charging facilities.

The rapid advancement in EV technologies has gained significant attention from researchers and policymakers 
worldwide. So, frequent studies have been implemented to explore various EV aspects, including EV charging, 
discharging, or a combination of both3–9, battery development‎10, and economic issues‎11. This section aims to 
elucidate an overview of the existing literature on these topics, as illustrated in Fig. 1. In the rest of this section, a 
sample of research those are mentioned in Fig. 1 have been discussed as a general background, and then followed 
by the summary of related charging behavior prediction works.

Background
Charging of EVs has emerged as a critical issue in EV topics, which directly impacts the network stability and 
infrastructure. Several researchers have delved into this topic, investigating different aspects of EV charging 
infrastructure and methods. Studies such as in3 demonstrate a schedule for coordinated EVs charging through 
actual data to maintain customer satisfaction using a genetic algorithm of shorthand a multi-objective function 
to a single one using weighting factors. To overcome the network limitations, the fluctuations of load have 
been diminished. The optimization results illustrate that the power consumed difference between peak and 
valley is decreased by 22% from the stochastic charging. However, the financial aspects of EV charging were not 
investigated in3.

An optimal strategy for EVs charging has been introduced in4, which is based on AI. It depends on fast 
charging to reduce the electrical network stress through the duck curve smoothing. In5 optimal parking lots 
sizing and allocation is implemented on 69-bus, 33-bus, and 9-bus networks. Also, EVs’ availability is discussed 
comparing with previous methods, but it requires assuming different values for EVs’ charging power to avoid the 
uncertainty data problem. This uncertainty arises from several assumptions, including each EV’s charging power 
(15 kW), annual failure rate, battery capacity of 50 kWh, and V2G dispatch time.

Also, one of the key areas of research in the field of EVs is discharging. Discharging studies focus on optimizing 
the use of stored energy in EV batteries, as reported in6. A scheduling approach for EV charging/discharging is 
suggested to minimize the operating cost and the peak/valley difference. EV owners have other factors besides 
the charging/discharging prices factor, such as arrival and departure time, which determine the availability of 
the charging period. So, the dynamic time-of-use price used in6 to ensure uncertainty is not enough for the 
availability of EVs to feed the load through the discharging process.

Generally, the discharging topic has been classified into vehicle-to-vehicle, vehicle-to grid, or vehicle-to 
home (V2V, V2G, or V2H) as in7–9. In7 a comprehensive survey of thirty studies is introduced and compared 
in terms of control structure and other various factors. V2G framework is proposed in8 to mitigate the network 
challenges in meeting charging demand during peak. The suggested method in9 achieves regulation effects such 
as reducing and shifting the peak period to the off-peak period. The environmental and economic issues have 
also been enhanced.
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Battery Enhancement is another critical issue in the EV field. The performance, capacity, and lifespan of 
batteries significantly impact the overall efficiency and usability of EVs. Researchers are continuously working 
on developing new battery technologies, improving energy storage capabilities, and enhancing battery durability. 
These advancements aim to address the limitations of current battery technology, such as battery degradation 
over time, restricted driving range, and extended charging duration. A lithium-ion battery is used as a sample 
to evaluate the performance of the method proposed in‎10. This method showed promising results compared 
to previous research, which tested under different conditions, such as ageing, noise, and temperature impacts.

Fig. 1.  Previous EVs research classification.
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Economic considerations also play a significant role in the adoption of EVs. Researchers have examined 
the economic feasibility of EVs, considering factors such as purchase price, operating costs, and potential 
government incentives. These studies help policymakers design effective incentive programs to promote their 
adoption. The suggested hybrid system based on renewable energy in11 may reduce the cost of EV charging 
stations and the environmental impact.

Related works (AI-driven EVs behavior analysis)
Recently, AI models have been used more widely in different fields to support the transition toward EV adoption. 
This shift aims to preserve the environment; so the challenges that affect the spread of EVs must be faced. So, 
research is interested in studying and predicting the EVs’ charging behavior, battery SOC, and also the spread 
of EVs in the market‎12. Some important factors affect EVs’ charging scheduling, such as weather, traffic, and 
predetermined and sudden events. This factor could be taken into consideration during EV behavior prediction. 
In13 charging infrastructure status for the next day could be predicted by ML. Also, the network status and high-
load prices adaptation could be implemented. EVs’ travel behavior has been simulated using a multi-layer ML 
approach in‎14, where an optimal bidding model for EV service providers was also proposed.

SoC estimation has been a key focus in previous studies, such as in15–18. In15 the remaining driving range is 
estimated from the SOC that was predicted using SVR. MAE and R2 are used to evaluate the prediction results 
that depend on the dataset of EV drivers for two weeks. SOC prediction based on EVs battery historical dataset is 
proposed in‎16, where Mileage and EVs battery voltage, current, and temperature are used to train the LightGBM 
model. These EV batteries’ data were also used as input data for the prediction models that were implemented 
in‎17,18. The model of the LSTM neural network model with MLP that was executed in17 was evaluated through 
one evaluation parameter of MSE. The same parameter MSE is used beside MAE, and RMSE to evaluate the 
three implemented models of SVM, KNN, and GPR in‎18. In[‎19 extreme ML is proposed for online prediction of 
the lithium batteries’ SOC.

A four-time series is produced in20 by a Python-based tool that produces BEV profiles. It is called emobpy, 
which is based on empirical mobility statistics and customizable assumptions. EV mobility is the first time series 
produced that depends on some factors, such as driver type, daily trip number, and departure and step time. Trip 
location, destination, duration, and distance per trip must also be available. This first time series is used with 
driving electricity consumption, the second time series, charging station availability, and the charging strategy 
as the emobpy input to get the grid electricity demand for the fourth time series.

A model based on physics and graph attention has been suggested in21 to enhance the prediction of EVs 
charging demand under the dynamic price situations, which was evaluated through the use of over 18 thousand 
EVs as a dataset. It is undeniable that studying and predicting the impact of EV charging on the grid to avoid 
potential grid problems. Therefore, the power consumption of EV charging stations has been predicted through 
three different models in22, for two different states. Also, the charging station operation cost could be obtained 
from these prediction results.

Table 1 summarizes the important parameters for the related previous works on EV Behavior prediction. 
Moreover, a comprehensive comparison table is provided, which contrasts our proposed approach with a set 
of recently published studies on EV charging behavior prediction. This table highlights key aspects such as 
the methodologies employed, datasets used, performance metrics, and external factors. The comparison clearly 
demonstrates the strengths of our multistage deep learning approach, particularly in its ability to integrate 
both historical and real-time data, including distance, road characteristics, and weather data. In contrast, our 
approach achieves superior predictive accuracy, as evidenced by the remarkably low SMAPE scores for SoC and 
CAT predictions. This comparison underscores the novelty and effectiveness of our method, positioning it as a 
significant advancement in the field of EV charging performance prediction.

Research gap and paper contribution
The proposed work covered some of the weak points of previous EV research. These points can be summarized 
as:-.

•	 EVs charging scheduling depending on unrealistic data as outlined in‎5.
•	 Not-applicable assumption for long parking period as reported in23.
•	 Neglecting the departure time in the charging scheduling process23.

The results for EV parameters prediction have been enhanced using the proposed prediction models. Although 
previous studies have applied ML for predicting state of charge, session duration and energy consumption, 
they primarily focused on using Historical Charging Data (HCD). But sometimes additional features were also 
incorporated. Motivated by these approaches, this work investigates the use of additional input features to spot 
their impact on the prediction accuracy.

The key contributions of this work are as follows:

	(1)	 A novel approach is proposed for predicting EV charging behavior (SoC and CAT) that incorporates HCD, 
traffic, and weather data.

	(2)	 A novel implementation-based FDNN architecture is proposed for SoC and CAT estimation.
	(3)	 Performance evaluation indices, i.e. Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute 

Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and coefficient of determina-
tion (R2) are presented for comparison.

Scientific Reports |        (2025) 15:37669 4| https://doi.org/10.1038/s41598-025-21625-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	(4)	 The empirical analysis demonstrates that the proposed work, which incorporates additional data, signifi-
cantly enhances the prediction accuracy compared with previous studies, which relied solely on historical 
charging information.

Paper organization
The rest of the paper is organized as follows: Sect. 2 provides a detailed clarification of the proposed methodology, 
starting with a general overview of the proposed approach, followed by a description of the FDNN structure, 
and concluding with a discussion of the four-stage implementation. This is followed by the results, which are 
outlined and evaluated in Sect. 3. Section 4 presents the results’ discussion and comparison, while the conclusion 
is illustrated in Sect. 5.

The methodology of the proposed prediction approach
The overall flowchart in Fig. 2 clarifies the implementation of the proposed FDNN prediction approach. The 
suggested prediction approach strategy utilizes a single FDNN. The goal of this network is to develop a prediction 

Paper Year Dataset Features Model Prediction Appraisal
Evaluating
Metrics

Ref. ‎12 2023
357 EVs 
monthly sales 
dataset

EVs safety 
specifications
Other EVs 
specifications

LSTM
ConvLSTM
Hybrid LSTM with two-
dimensional Attention and 
Residual network

EVs sale estimation
EVs share in each 
segment
Factors affecting 
EVs sales 
recognition

Motivate the EVs Market
Lack of data needed to improve 
prediction results due to the unavailability 
and inaccessibility of this data, like the 
warehouses EVs number.

MAPE, 
NRSME_range, 
NRSME_mean, 
R2, slope, & 
intercept of 
fitted linear 
regressions

Ref. ‎13 2021

Charging 
station 
occupation
dataset (2019)
Tragic dataset 
(2021)

Weather
Traffic

Average Week
Gradient Boosting 
Classifier
Random Forest Classifier

Charging station 
availability Lake of traffic availability of data.

Accuracy, 
AUC, Recall, 
Precision, F1, 
Kappa, & MCC

Ref. ‎14 2020
Weekends 
and weekdays 
historical data

Current chain start 
time & start Signal Multi-layer ML Algorithm

Travel chain type
Current chain end 
time
Next chain start 
time
Travel distance

The EVs data is required to be updated as 
they were old (2008–2009). Not mentioned

Ref15. 2023 EVs drivers real 
data

EVs battery Data (V, I, 
T). Driver speed.
Ambient temperature.

Support Vector Regression 
(SVR) with a Radial Basis 
Function (RBF)

SoC
RDR

PDR is estimated not predicted.
Data was collected for short period of 2 
weeks.

MAE
R2

Ref[‎16. 2024 EVs battery 
historical data

EVs battery Data (V, I, 
T). Mileage.

LightGBM
Extra Tree Regressor (ETR) SoC

Ignoring features that increase the 
accuracy of the results, such as weather 
conditions.

RMSE
MAE
MSE
R2

Ref17. 2025
Real-life battery 
Discharge 
simulation
datasets

EVs battery Data (V, 
I, T).
charge/discharge cycles 
No.

LSTM Neural Network 
Model with MLP SoC Need to increase the evaluating metrics. MSE

Ref. ‎18 2024 Custom EVs 
dataset

EVs battery Data (V, I, 
T). Humidity.
Ambient temperature.
Motor temperature.

SVM
ANN
GPR

SoC
RMSE
MAE
MSE

Ref19. 2023 UCI datasets Not mentioned
SNN
LSTM
GRN

SoC Need to increase the evaluating metrics. RMSE

Ref[‎20. 2021 German 
mobility data

EVs data
Charging station data
Charging strategy

Emobpy

EVs mobility
Driving electricity 
consumption
Grid availability
Grid demand

The research contributes significantly 
to providing the datasets that is used in 
the prediction as implemented in our 
proposed work.

Proposed 
Prediction 
Approach

2025 Weekdays EVs 
real data

Distance
Road characteristics 
Weather

FDNN SoC
CAT

Integration of heterogeneous data 
sources.
Study the impact of each feature 
separately.
Contribution of advancement of smart 
transportation systems through a 
robust framework for EV SoC and CAT 
prediction.

SMAPE
RMSE
MSE
MAE
R2

Table 1.  Comprehensive comparison between the proposed prediction approach and previous related 
works13–20. PDR: Remaining Driving Range, GBM: Gradient-Boosting Methodology, V: Voltage, I: Current, T: 
Temperature, LSTM: Long Short-Term Memory, MLP: Multilayer Perceptron, SVM: Support Vector Machine. 
ANN: Artificial Neural Network, GPR: Gaussian Process Regression, AUC: Area under the receiver operating 
characteristic curve, Kappa: Cohen’s kappa score, MCC: Matthews correlation coefficient, UCI: University of 
California - Irvine, SNN: Sparse Neural Network, GRN: Gated Recurrent Neural.
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approach by accepting as input the normalized data of the selected BEV, including distance, road characteristics, 
and weather data.

The selected BEV model is the Tesla Model 3 (TM3). The nominal battery capacity ( NBattery = 78.1 kW h) 
is derived from manufacturer data24; all battery data are illustrated in Table 2. The EV charging scenarios have 
three main probabilities, which are charging at home, at stations, or in parking lots. The scenario of charging 
at home is the basis for the proposed work, where the charging period is the period between the arrival and 
departure times. TM3 can be charged according to manufacturing data by using a regular socket or a charging 
station. Charging time depends on the maximum EV’s capacity and the charging station features. EV charging 
differs by country; some countries use 1-phase connections to the network, while others use a 3-phase connection.

Table 3 illustrates the indications of the actual driving range under different conditions. The worst scenario 
represents the cold weather based at 10 °C, which requires heating. Hot weather of 35–40 °C, such as that in 
Egypt, is also considered among the worst scenarios. The mild weather is the greatest scenario based on 23 °C, 

Battery Item Data

Nominal Capacity (kWh) 78.1

Operating Capacity (kWh) 75

Battery Lithium-ion

Cathode Material NCM

Cells Number 4416

Pack Configuration 96s46p

Architecture (V) 400

Nominal Voltage (V) 357

Table 2.  Tesla model 3 battery data24.

 

Fig. 2.  Overall flowchart implementation of the proposed FDNN-based prediction approach.
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which does not need A/C. A fixed speed of 110 km/h is assumed for the highway. The real range will depend on 
speed, driving mode, weather, and road type24.

The predictive scenarios studied
One of the most important parameters for EV charging scheduling is SoC. The proposed model is created to 
predict both the initial SoC (SoC-In) and required (SoC-Req). In addition to other parameters, arrival and 
departure times have been predicted, which are known as CAT. The following two scenarios illustrate the target 
for each prediction model, which is affected by the number of trips and the total distance for each EV.

First scenario (3 inputs & 2 outputs)
The first model is implemented using FDNN, which depends on three main input parameters to predict the 
values of SoC-In and SoC-Req.  The three input parameters are the total distance for each EV trip number, 
weather temperature, and road type. The weather is classified as moderate or not, where the immoderate 
temperature represents the hot or cold weather. The road type may be city, highway, or combined road. Road 
type affects the speed, which also directly affects the energy consumption. So, the selected EV model data explain 
the differences in the total mileage according to the weather and road type, as previously mentioned in Table 3.

The initial SoC is predicted according to the total distance of trips on the previous day. However, the required 
SoC depends on the total distance of trips on the next day for each EV. The number of trips and distance of 
each trip have been stochastically distributed for all EVs according to the percentage in‎20. The road type and the 
weather condition represented in the ambient temperature are used as inputs with the total distance to enhance 
the model prediction results. Figure 3 illustrates the sequence of the proposed prediction model for the first 
scenario.

Second scenario (3 inputs & 4 outputs)
In this scenario, the predicted target is represented in the initial and required SoC, in addition to arrival and 
departure time. The same inputs of the first scenario are also used here to train the second model. The sequence 
of the second proposed model is illustrated in Fig. 4.

Detailed description of FDNN structure
An artificial neural network with more than one hidden layer of neurons between the input and output is referred 
to as a DNN25,26. ANN is a computational model capable of performing both ML and pattern recognition tasks27. 

Fig. 3.  First scenario of 3 inputs & 2 outputs.

 

Road type Weather Distance (km)

City Mild 700

Highway Mild 460

Combined Mild 560

City Cold
Hot 455

Highway Cold
Hot 350

Combined Cold
Hot 400

Table 3.  Tesla model 3 battery data24.
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DNNs are used to simulate complex nonlinear systems. Moreover, DNN computation is efficient because it 
involves solving basic algebraic equations. This feature enables DNNs to address issues promptly28–30.

The FDNN used in this study comprises an input layer with three neurons representing the features: distance, 
road characteristic, and weather data. Two fully connected hidden layers were implemented, consisting of 
30 and 2 neurons, respectively, and activated using ReLU functions. The output layer includes two neurons 
corresponding to the predicted outputs: SoC and CAT, as illustrated in Fig. 5.

This multi-layered structure ensures non-linear feature extraction and robust learning capabilities, 
distinguishing it from simpler ML models. Unlike conventional ML models such as linear regression or single-
layer perceptron’s, the FDNN architecture leverages multiple hidden layers and non-linear activation functions 
to capture complex relationships between diverse input features and output predictions. This enables superior 
generalization across heterogeneous input data. An FDNN can be considered a DNN under certain conditions. 
Specifically, the classification depends on the depth of the network. When the FDNN contains more than two 
hidden layers, it is classified as a DNN. The term “deep” reflects the increased depth of the network, which 
enables it to model complex data patterns and hierarchies. The distinction lies primarily in the depth of the 
architecture, not in the forward-pass structure of the network itself, as both shallow and deep networks can be 
feedforward in nature.

The premise behind the proposed FDNN prediction approach is that input features can quickly reveal their 
impact on the prediction accuracy. These input features include distance (Total distance for each EV’s trips), 
road characteristics, and weather data. Road characteristics are represented by road type, which could be city, 
highway, or combined roads, in addition to traffic patterns and events data. The weather data are represented 
by the ambient temperature, which could be mild or not mild (hot or cold). These data are fed into an FDNN 
for predicting charging behavior. The FDNN-based prediction approach is trained through these input data 
to predict EV parameters, which are the initial SoC (SoC-In), the required SoC (SoC-Req), and the charging 
available time.

Fig. 5.  Visual representation of the suggested FDNN.

 

Fig. 4.  Second scenario for 3 inputs & 4 outputs.
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Finally, the information produced can be utilized in decision-making processes for subsequent control 
operations, such as predicting the initial and required SoC and CAT. A FDNN consists of four main types of 
layers: input, hidden, softmax, and output layers. These layers are commonly used in data-driven prediction and 
diagnostic approaches. To confirm that all values lie within the range [0, 1], feature scaling is applied as follows, 
where (P) is the input vector: -

	
P ′ = P − min (P )

max (P ) − min (P ) � (1)

The following nonlinear transformation is used in the hidden layers to transform the input data into high-
dimensional features. Here, x = (2, . . . , d), Ȳ is the hidden vector, ȳ  is the bias vector, W  is the weight 
matrix, and f  is the activation function applied element-wise. The output of the final hidden layer is transformed 
using Eq. (2) without using the activation function given in Eq. (3).

	
Ȳ1 = f (W1 .P + ȳ )

Ȳx = f : (Wx .Ȳx−1 + ȳx ) � (2)

	 Ȳs = Ws .Ȳd + ȳs� (3)

The softmax function is used to determine the output value of each neuron, as in Eq. (4). Then the label with the 
highest output value is selected as the predicted label for the input data.

	
Qj = eȲs,j

∑
nȲ s
j=1 eȲs,j

� (4)

In the proposed work, the FDNN is used as a prediction framework. Its role is demonstrated through a 
comprehensive four-stage implementation, where each stage builds on the previous one to produce more reliable 
predictions, as outlined in the following sections.

FDNN prediction approach implementation
The proposed FDNN general structure is illustrated in Fig. 6, which consists of four stages:

•	 1 st Stage: Dataset preparation.
•	 2nd Stage: Input data preprocessing and normalization.
•	 3rd Stage: Training of the feedforward deep neural network.

Fig. 6.  Structure of FDNN-based prediction approach.
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•	 4th Stage: Performance metrics evaluation.

1 st stage: dataset preparation
The data taken from‎20 is used to generate a dataset for 1000 EVs. Also, we can produce data for any EVs sample 
size. These data are represented in the number of trips, trip distance, and trip duration time for each EV. Table 4 
illustrates the percentage value of each EV’s trip number for both working and weekend days. These percentages 
are then applied to the 1000 EV dataset for the working-day scenario only, as it is considered more critical than 
the weekend case, as shown in Table 5.

After that, the number of trips is distributed for the whole number of EVs (N = 1000 EVs) randomly. The 
number of trips for working and weekend days are 2042, and 1450 respectively. The total number of trips is 
estimated using Eq. (5) for working days. The duration of each trip is distributed according to the trip distance 
of each EV. Then the distance and duration time are also randomly distributed according to Eq. (6).

	
T T N 1 =

∑
5
t=0(tn ∗ EV n1% ∗ N)/100� (5)

	 TN 1 = (DDEV n% ∗ N ∗ T T N 1) / (100 ∗ N)� (6)

where:

T T N 1  Total No. of working days trips.

tn  Trips No.

EV n1%  Working days EVs No. for each number of trips as percentages.

N   Total EVs No.

TN 1  Trips No. for working days at specific distances and times.

2nd stage: input data preprocessing and normalization
To generate a superior training environment, utilizing multiple datasets is highly effective. Six distinct cases for 
data input are employed using a combination of datasets and training models. The preprocessing of data involves 
cleaning and preparing the collected data by neglecting faulty data, outliers and inconsistencies, to enhance the 
model performance. In this work, we used standardization to convert the data to date-time objects to obtain the 
weather and road type for a particular charging record. This approach allows for the easy extraction of relevant 
information. Rather than determining the traffic level at a definite time, it considered the total traffic time 
through the day, enabling the model to identify the influence of traffic levels on charging performance. As well 
as performing normalization to confirm that the data are on a consistent format and scale, as given by Eq. (2).

The systematic approach used to integrate diverse data types ensures that the FDNN learns meaningful 
feature interactions rather than relying on simple concatenation. The process begins with a robust preprocessing 
pipeline, where continuous variables such as distance, road characteristics, and weather data are normalized 
to a uniform scale, and categorical variables like road types are encoded using methods such as embeddings. 

No. of trips Working Day EVs No. (EV)

0 354

1 0

2 299

3 83

4 125

5 139

Table 5.  EVs trips no. per working and weekend days for 1000EVs.

 

No. of Trips Working Day EVs No. (%) Weekend Day EVs No. (%)

0 35.4 50.7

1 0 0

2 29.9 27.5

3 8.3 4.4

4 12.5 10.2

5 13.9 7.2

Table 4.  EVs for trips no. probability per working and weekend days.
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Embeddings, in particular, transform categorical data into dense numerical representations, enabling the model 
to capture complex relationships between categories, such as urban versus rural road characteristics. This 
fusion of data streams occurs at the input layer of the FDNN, where the architecture is designed to facilitate 
interaction among the preprocessed features. A detailed workflow diagram showcasing the preprocessing steps 
and a schematic representation of the FDNN’s structure are illustrated in Fig. 7, highlighting how the network 
processes and combines features to predict SoC and CAT.

3rd stage: training of FDNN for proposed prediction approach
The design of the FDNN structure requires careful identification of the type and number of layers, the number of 
neurons in each layer and the activation function used. In the proposed approach, a total of 1000 samples were 
considered for the FDNN design.70% (700 samples) were used for training, 15% (150 samples) were used for 
testing, and 15% (150 samples) were used for validation. Figure 8 illustrates how the data were split into training, 
validation, and test sets. Common architectures for prediction approach tasks include Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), such as LSTM networks.

Figure 9 shows the performance of the FDNN prediction model. From the regression plot shown in Fig. 9a, 
it is noticed that the regression value is equal to 1, indicating that the FDNN is accurately trained to identify the 
prediction values under study. The MSE is also very low, further demonstrating the model’s precision.

Moreover, Fig. 10 provides visual validation of the model’s performance, addressing the error metrics and 
model accuracy. Figure  10a provides the residual clustering plot, which illustrates the differences between 
predicted and actual values, with residuals tightly clustering around zero. This indicates minimal bias and 
suggests that the model accurately captures the relationships in the data without significant under-fitting or 
over-fitting. Figure 10b provides the scatter plot comparing predicted and actual values for both SoC and CAT. 
Points clustering closely along the ideal diagonal line signify high predictive accuracy. Separate plots for SoC and 
CAT further highlight the model’s ability to handle multiple output variables effectively. Figure 10c provides the 
predicted vs. actual value plots, showcasing the robustness of the model across diverse scenarios.

For SoC, the plot demonstrates consistency in accurately predicting battery states, which is crucial for EV 
efficiency. For CAT, the plot emphasizes reliable time estimations, which are critical for planning charging 
schedules. Together, these plots validate the model’s ability to generalize across varying input conditions. 
They provide strong evidence against over-fitting and substantiate the low error values reported, ensuring the 
reliability and practical applicability of the predictions in real-world scenarios. To address potential over-fitting, 
we employed cross-validation (5-fold cross-validation) and included regularization techniques such as dropout 

Fig. 8.  Data partitioning workflow.

 

Fig. 7.  Data processing workflow for FDNN.
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layers in the FDNN architecture to confirm that the low error metrics are consistent across different subsets of 
the data. The results confirm that the exceptionally low error values are due to the model’s high precision and 
not over-fitting.

4th stage: performance metrics evaluation
To evaluate the performance of predictions made by the FDNN model, various metrics are utilized, as discussed 
in10. In this study, five measures are defined, which are commonly used in related works to assess the SoC and 
CAT prediction results for the proposed FDNN model. Equations (9)–(13) outline the metrics used to evaluate 
this work, which are applied accordingly.

(i) Symmetric mean absolute percentage error (SMAPE):

	
SMAP E = 1

k

∑
k
i=1

∣∣Ya(i) − Yp(i)
∣∣

(
∣∣Ya(i)

∣∣ +
∣∣Yp(i)

∣∣)/2
∗ 100%� (9)

(ii) Mean absolute error (MAE):

	
MAE = 1

k

∑
k
i=1

∣∣Ya(i) − Yp(i)
∣∣� (10)

Fig. 9.  Regression, performance, training state, and error histogram plots of FDNN-based prediction 
approach.
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(iii) Mean Squared Error (MSE):

	
MSE = 1

k

∑
k
i=1

(
Ya(i) − Yp(i)/ Ya(i)

)2� (11)

(iv) Root mean square error (RMSE):

	
RMSE =

√∑
k
i=1(Ya(i) − Yp(i))2 / k� (12)

(v) Coefficient of determination (R2):

Fig. 10.  Residual analysis, scatter plots, and predicted vs. actual of SoC, and CAT plots of FDNN-based 
prediction approach.
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R2 = 1 −

∑
k
i=1(Ya(i) − Yp(i))2

∑
k
i=1(Ya(i) − ã)2 � (13)

In this context, Ya is the real value while the predicted value is Yp, ã is the mean of real values, and k denotes the 
groups of values in the dataset. Lower scores for RMSE, MAE, and SMAPE indicate accurate predictions, which 
occur when the predicted value Yp is very close to the actual value Ya​. The R2 value measures the goodness of 
fit for regression and typically ranges between 0 and 1. A score of 1 indicates perfect predictions, with higher 
values representing better performance30. The subsequent two sections present and analyze the results of the 
proposed approach, followed by a comparison with prior studies to demonstrate the approach’s effectiveness and 
contributions.

Results and evaluation metrics
The results have been evaluated using various metrics such as SMAPE, MAE, MSE, RMSE, and R2. Equation (9) 
to (13) outline the metrics used in this work, and these performance metrics will be evaluated accordingly. 
Table 6 illustrates the evaluation for the first and second proposed scenarios. The results of the first model are 
distinguished from the second model by a slight difference in accuracy due to several factors. In the first model, 
two parameters are deduced from three inputs, while in the second model, four parameters are deduced from 
the same three inputs. Therefore, to improve the results of the second model, more inputs can be added, or 
the outputs can be obtained separately by predicting the initial and required SoC as in the first scenario. Then, 
predict the other parameters of arrival and departure time.

Tables 7 and 8 show a sample of results, representing the predicted and targeted values. The initial and required 
SoC are the target outputs for the first scenario, while the second scenario has the target outputs of initial and 
required SoC, in addition to the charging available time. The weather and road conditions are illustrated in 
Tables 7 and 8 for each SoC value. The evaluation of the first scenario results is summarized in Fig. 11, while the 
evaluation of the second scenario results is summarized in Fig. 12.

Discussion and comparison
A systematic ablation study to evaluate the contribution of each input feature to the predictive accuracy of the 
model has been implemented. This process involved sequentially removing one input feature at a time and 
observing the resulting performance metrics, such as SMAPE, MAE, and RMSE, to determine how each feature 
impacts the overall prediction of the SoC and CAT. Table 9 summarizes the required SoC results of the second 
scenario, showing how the removal of individual features affects the model’s performance. Figure 13 illustrates 
a bar chart that shows normalized importance scores for each feature in terms of their contribution to SMAPE 
reduction.

Distance Road Type Weather

Initial SoC Required SoC

Actual Predicted Error Actual Predicted Error

58 Combined Not Mild 61.714 61.714 0.0000398 78.625 78.625 −0.00027

140 City Mild 58.333 58.333 0.00012 80.000 80.000 0.000119

162 Combined Not Mild 46.857 46.857 0.000233 85.125 85.125 −0.00039

222 City Mild 51.500 51.500 −0.00016 82.929 82.929 0.000053

248 Highway Mild 39.000 39.000 −0.00030 88.053 88.053 −0.00032

266 City Mild 47.833 47.833 −0.00015 84.500 84.500 −0.00014

291 Highway Not Mild 21.500 21.499 0.001477 95.786 95.786 −0.00034

304 City Mild 44.667 44.666 0.000231 85.857 85.857 −0.00014

312 Highway Not Mild 18.000 17.997 0.003237 97.286 97.287 −0.00106

331 Combined Not Mild 22.714 22.714 0.00013 95.688 95.688 −0.00027

Table 7.  A sample of predicted and targeted values for the first scenario.

 

Scenarios First scenario Second scenario

Index Initial SoC Required SoC Initial SoC Required SoC Arrival time Departure time

SMAPE 0.0007 0.00015 0.00044 0.00018 0.00014 0.00012

MAE 0.00015 0.00013 0.00017 0.00015 0.00022 0.00025

MSE 6.8*10−7 1.8*10−7 5*10−7 4.2*10−7 9.1*10−7 1.4*10−7

RMSE 0.00083 0.00043 0.00071 0.00065 0.00095 0.00037

R2 1 1 1 1 1 1

Table 6.  The first and second scenarios evaluation results.
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Fig. 12.  The evaluation metrics values of the second scenario results.

 

Fig. 11.  The evaluation metrics values of the first scenario results.

 

Distance Road Type Weather

Initial SoC Required SoC

Actual Predicted Error Actual Predicted Error

35 City Mild 67.083 67.083 −0.00005 76.25 76.25 0.00067

64 Highway Mild 62.000 62.000 0.000146 78.000 78.000 −0.00079

126 Combined Mild 57.400 57.400 0.000105 80.478 80.478 −0.00021

210 City Not Mild 43.750 43.750 −0.00028 86.667 86.667 0.000101

259 Highway Not Mild 26.833 26.833 −0.00016 93.500 93.500 0.000242

323 Combined Not Mild 23.857 23.857 0.00069 95.188 95.188 0.00027

Distance Road Type Weather

Arrival Time Departure Time

Actual Predicted Error Actual Predicted Error

35 City Mild 10.000 9.9998 0.0002 200.00 200.00 0.00013

64 Highway Mild 13.800 13.798 0.002 190.00 190.00 −0.0007

126 Combined Mild 19.800 19.800 −0.0001 201.60 201.60 0.0001

210 City Not Mild 27.000 27.000 0.00017 200.00 200.00 −0.00023

259 Highway Not Mild 32.000 32.000 −0.00022 201.20 201.20 0.00008

323 Combined Not Mild 38.000 38.000 0.0004 197.00 197.00 −0.00036

Table 8.  A sample of predicted and targeted values for the second scenario.
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The illustrated results in Table 9 and Fig. 13 show the effect of each feature, highlighting the importance of 
incorporating all contextual features to achieve robust prediction performance. The impact of these features can 
be formulated as follows:

•	 Distance and road characteristics These factors had the most significant impact on predictive accuracy, par-
ticularly for the required SoC.

•	 Weather and traffic patterns These factors were less influential individually but contributed to overall model 
performance when combined with other features, particularly for CAT.

•	 Events data While events data had a smaller impact, it improved prediction accuracy in specific scenarios.

Additionally, scatter plots comparing predicted and actual values were used to visually validate the model’s 
performance as previously illustrated in Fig. 10, which validates model accuracy by showing how well predictions 
align with actual values. These Figures clearly indicate a consistent predictive ability across the test dataset. Also, 
to address potential over-fitting, we employed cross-validation and included regularization techniques such as 
dropout layers in the FDNN architecture. The results confirm that the exceptionally low error values are due to 
the model’s high precision, not over-fitting.

When comparing the proposed prediction approach across various metrics, considering the overall R2 and 
the SMAPE, it appears that predicting the SoC and CAT is particularly challenging. Moreover, across different 
scenarios, we observed that users’ self-predictions of their behavior often differed significantly from their actual 
performance, underscoring the need for predictive analytics. Compared to previous works, the results of this 
study outperformed all prior studies reporting similar evaluation metrics31–35.

Table  10 summarizes the results from these prior works in comparison to those achieved in this study. 
Specifically, for session duration, our results are more accurate than those in31. However, it is important to 
note that all previous work used a different dataset from the one used in this study, making direct comparisons 
potentially unsuitable. Nonetheless, when keeping the comparison within the same dataset, it is evident that the 
inclusion of additional road type and weather led to an enhancement in EVs’ charging performance prediction.

Finally, the FDNN’s novelty lies in its systematic data integration approach and specialized architecture, 
aspects that cannot be fully represented by comparing it to generic models. Highlighting its unique design and 
performance metrics adequately fulfills the study’s objectives. The research emphasizes the integration of diverse 
data types (e.g., distance, road characteristics, and weather data) and demonstrates its impact on prediction 
accuracy, rather than benchmarking against general models that may not be specialized for this context. 
Compared models may not be explicitly designed for the specific task of predicting both SoC and CAT, and 

Fig. 13.  Feature importance for predictive accuracy.

 

Feature Set SMAPE MAE RMSE R²

All Features 0.0001800 0.0001500 0.0006500 0.9999

Without Weather Data 0.0003150 0.0002367 0.0008912 0.9277

Without Road Characteristics 0.0003749 0.0002133 0.0009331 0.9175

Without Distance Data 0.0004550 0.0002733 0.0011000 0.8971

Table 9.  The impact of features on the required SoC prediction in the second scenario.

 

Scientific Reports |        (2025) 15:37669 16| https://doi.org/10.1038/s41598-025-21625-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


adapting them could lead to suboptimal configurations or unfair evaluations. The effort to align existing models 
with the task might dilute the uniqueness of the proposed FDNN approach.

Conclusion
In the proposed work a framework is presented for predicting the most important EV charging behaviors related 
to scheduling, specifically EV state of charge and charging available time (arrival and departure times). Unlike 
previous studies, we incorporated additional features, such as distance, road, and weather data, in addition to 
HCD. FDNN was trained to predict charging behavior and examined how the hidden layers and the number 
of neurons in the final hidden layer impact the network’s performance. Furthermore, the limitations of our 
approach can be mitigated by employing careful feature selection and leveraging domain expertise to address 
these constraints effectively.

The first model was trained using three inputs to predict the initial and required SoC only. The results of 
this model were evaluated using accuracy and error metrics, showing promising outcomes. Specifically, the 
MSE was 1.8*10−7, the MAE was 0.00013, and R² is unity. The second model also demonstrates promising 
results, consistent with the evaluation factors mentioned in previous works. The prediction performance of our 
models is superior to that reported in earlier studies. Furthermore, we have achieved significant improvements 
in predicting charging behavior using the HCD, which demonstrates the potential of incorporating distance, 
road characteristics, and weather data information into charging behavior prediction.

The future extension of this work can be considered as developing new models of ML methodologies with 
more features, such as an in-depth study of the factors affecting EVs’ performance. Consequently, the EV’s 
performance impacts on vehicle consumption and changes in initial and final SoC values. These factors include 
road angle, wind direction, and resistance. Furthermore, these methodologies could be applied to various types 
of EVs and compared to help users choose the most suitable type.

Data availability
The data supporting this study’s findings are available from the corresponding author upon reasonable request.
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Source Prediction Model Features Results Year

First Proposed Prediction Approach Initial SoC
Required SoC FDNN Distance, Road Characteristics, and Weather Data

Index SoC-In SoC-Req

2025

SMAPE 0.0007 0.00015

MAE 0.00015 0.00013

MSE 6.8*10−7 1.8*10−7

RMSE 0.00083 0.00043

R2 1 1

Second
Proposed
Prediction
Approach

Initial SOC
Required SOC
Arrival Time
Departure Time

FDNN Distance, Road Characteristics, and
Weather Data

Index SoC-In SoC-Req

2025

SMAPE 0.00044 0.00018

MAE 0.00017 0.00015

MSE 5*10−7 4.2*10−7

RMSE 0.00071 0.00065

R2 1 1

Ref.31 SoC

ANN
SVM
Linear GPR
Ensemble
Boosting
Ensemble
Bagging

Battery Capacity
Battery Voltage
Battery Current
and Battery
Temperature

MSE 0.00054

2021
MAE 0.00027

RMSE 0.02329

R2 0.999

Ref.32 SL, Energy
Consumption

RF, SVM,
XGBoost, &
ANN

HCD, Weather,
Traffic, Events
Data

SMAPE 9.92%

2021
MAE 66.5 min

SMAPE 11.6% Consumption

R2 0.7

Ref.33 Departure Time XGBoost HCD, Vehicle Type, Charging Location MAE 82 min 2020

Ref.34 Energy
Requirements XGBoost HCD

MAE 4.6 kWh
2020

R2 0.52

Ref.35 SL, Energy
Consumption

Ensemble
Model of
SVM, RF, &
DKDE

HCD SMAPE
10.4% Duration

20197.5% 
Consumption

Table 10.  Comparison between the proposed prediction approach and previous works.
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