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Electric Vehicles (EVs) are increasingly recognized as a fundamental component of intelligent
transportation systems within smart city frameworks. Therefore, several studies in recent decades
have been trying to improve the performance of EVs to maximize the benefits from their connection
to the network. Machine Learning (ML) and data-driven methods are used for analyzing EV charging
behavior to maintain significant improvements in the prediction and scheduling fields. Although many
of these studies have relied on historical charging data to predict the EVs’ State of Charge (SoC) and
Charging Available Time (CAT), influential features have often been overlooked. These features are
represented in real-time distance, road characteristics (road type, traffic pattern, and events data), and
weather data. This study proposes a novel multistage approach, based on a Feedforward Deep Neural
Network (FDNN) that combines historical charging data with these influential features to predict both
SoC and CAT. The proposed approach outperforms existing literature with SMAPE scores of 0.00044,
0.00018 and 0.00014, 0.00012 for initial, required SoC and CAT predictions, respectively. Through
comparative analyses with prior studies on the same dataset, this research highlights substantial
improvements in predictive accuracy. It underscores the significance of integrating influential features
for the precise prediction of EV charging behaviors within smart transportation systems.
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Abbreviations

EVs Electric vehicles

ML Machine Learning

SoC State of Charge

BEV Battery Electric vehicles

DNN Deep Neural Network

CAT Charging Available Time

vav Vehicle-to-Vehicle

FDNN Feedforward Deep Neural Network
MAE Mean Absolute Error

V2H Vehicle-to-Home

RMSE Root Mean Square Error

V2G Vehicle-to-Grid

SMAPE Symmetric Mean Absolute Percentage Error
MSE Mean Squared Error

KNN K-Nearest Neighbours

R? Coefficient of Determination
CNNs Convolutional Neural Networks
RF Random Forest
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LSTM Long Short-Term Memory
Al Artificial Intelligence
SoC-In Initial State of Charge

SVM Support Vector Machine
HCD Historical Charging Data
ANN Artificial Neural Network
SL Session length

RNNs Recurrent Neural Networks
T™3 Tesla Model 3

SoC-Req  Required State of Charge

Climate change and global warming have driven the rising trend of EVs. With traditional vehicles contributing
significantly to high exhaust rates and carbon emissions, the widespread adoption of EVs is crucial to combat
this pollution. Moreover, EVs play a vital role in peak shaving by utilizing their discharging process during peak
periods. This research aims to provide a comprehensive investigation of EVs’ impact on reducing pollution levels
and their effectiveness in peak shaving. The methodology involves rigorous data collection, statistical analysis,
and modeling techniques to evaluate the environmental benefits and grid stability enhancement provided by EV
integration; however, it is difficult to deny the continuous development of EV's in several fields. The research has
begun in this field due to the importance of replacing traditional vehicles with EV's, which shows a comparison
between them'. Then, the connection of EVs to the network is studied to determine the challenges as a result of
EV integration. These challenges that appear because of the process of charging EVs are represented in increasing
power losses and the peak power consumed. Also, the voltage deviation increases with the EV implementation?.

Although EVs are essential, challenges persist, such as EV owners depending on charging stations due to the
lack of home charging opportunities for all users. Over-reliance on charging at stations causes more pressure on
the network during peak times. Additionally, the integration of huge-scale EVs will impose restrictions on the
networks, and Instability in power networks due to uncoordinated EV charging behavior. This research employs
a methodical approach involving data analysis, and simulation studies to address these hurdles effectively. To
overcome the spatial constraints limiting the expansion of charging stations for EVs, a strategic approach is
imperative. Smart scheduling emerges as a viable solution, necessitating an in-depth comprehension of charging
behaviors?. Coordinated charging entails gathering essential data such as arrival and departure times, trip
frequency, distances traveled, charger type, and battery SoC. These features are meticulously analyzed in this
study to devise an efficient scheduling framework. The study optimizes the utilization of existing charging
infrastructure, minimizes peak power demands, and ensures EV connection to the grid without the need for
extensive expansion of charging facilities.

The rapid advancement in EV technologies has gained significant attention from researchers and policymakers
worldwide. So, frequent studies have been implemented to explore various EV aspects, including EV charging,
discharging, or a combination of both®>=, battery development!’, and economic issues!’. This section aims to
elucidate an overview of the existing literature on these topics, as illustrated in Fig. 1. In the rest of this section, a
sample of research those are mentioned in Fig. 1 have been discussed as a general background, and then followed
by the summary of related charging behavior prediction works.

Background

Charging of EVs has emerged as a critical issue in EV topics, which directly impacts the network stability and
infrastructure. Several researchers have delved into this topic, investigating different aspects of EV charging
infrastructure and methods. Studies such as in® demonstrate a schedule for coordinated EVs charging through
actual data to maintain customer satisfaction using a genetic algorithm of shorthand a multi-objective function
to a single one using weighting factors. To overcome the network limitations, the fluctuations of load have
been diminished. The optimization results illustrate that the power consumed difference between peak and
valley is decreased by 22% from the stochastic charging. However, the financial aspects of EV charging were not
investigated in>.

An optimal strategy for EVs charging has been introduced in*, which is based on Al It depends on fast
charging to reduce the electrical network stress through the duck curve smoothing. In®> optimal parking lots
sizing and allocation is implemented on 69-bus, 33-bus, and 9-bus networks. Also, EVs’ availability is discussed
comparing with previous methods, but it requires assuming different values for EVs’ charging power to avoid the
uncertainty data problem. This uncertainty arises from several assumptions, including each EV’s charging power
(15 kW), annual failure rate, battery capacity of 50 kWh, and V2G dispatch time.

Also, one of the key areas of research in the field of EVs is discharging. Discharging studies focus on optimizing
the use of stored energy in EV batteries, as reported in®. A scheduling approach for EV charging/discharging is
suggested to minimize the operating cost and the peak/valley difference. EV owners have other factors besides
the charging/discharging prices factor, such as arrival and departure time, which determine the availability of
the charging period. So, the dynamic time-of-use price used in® to ensure uncertainty is not enough for the
availability of EVss to feed the load through the discharging process.

Generally, the discharging topic has been classified into vehicle-to-vehicle, vehicle-to grid, or vehicle-to
home (V2V, V2G, or V2H) as in’~. In” a comprehensive survey of thirty studies is introduced and compared
in terms of control structure and other various factors. V2G framework is proposed in® to mitigate the network
challenges in meeting charging demand during peak. The suggested method in® achieves regulation effects such
as reducing and shifting the peak period to the off-peak period. The environmental and economic issues have
also been enhanced.
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Fig. 1. Previous EVs research classification.

Battery Enhancement is another critical issue in the EV field. The performance, capacity, and lifespan of
batteries significantly impact the overall efficiency and usability of EVs. Researchers are continuously working
on developing new battery technologies, improving energy storage capabilities, and enhancing battery durability.
These advancements aim to address the limitations of current battery technology, such as battery degradation
over time, restricted driving range, and extended charging duration. A lithium-ion battery is used as a sample
to evaluate the performance of the method proposed int’. This method showed promising results compared
to previous research, which tested under different conditions, such as ageing, noise, and temperature impacts.
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Economic considerations also play a significant role in the adoption of EVs. Researchers have examined
the economic feasibility of EVs, considering factors such as purchase price, operating costs, and potential
government incentives. These studies help policymakers design effective incentive programs to promote their
adoption. The suggested hybrid system based on renewable energy in'! may reduce the cost of EV charging
stations and the environmental impact.

Related works (Al-driven EVs behavior analysis)

Recently, Al models have been used more widely in different fields to support the transition toward EV adoption.
This shift aims to preserve the environment; so the challenges that affect the spread of EVs must be faced. So,
research is interested in studying and predicting the EVs’ charging behavior, battery SOC, and also the spread
of EVs in the market!'?. Some important factors affect EVs’ charging scheduling, such as weather, traffic, and
predetermined and sudden events. This factor could be taken into consideration during EV behavior prediction.
In'3 charging infrastructure status for the next day could be predicted by ML. Also, the network status and high-
load prices adaptation could be implemented. EVs’ travel behavior has been simulated using a multi-layer ML
approach inf, where an optimal bidding model for EV service providers was also proposed.

SoC estimation has been a key focus in previous studies, such as in'>"!%. In'® the remaining driving range is
estimated from the SOC that was predicted using SVR. MAE and R? are used to evaluate the prediction results
that depend on the dataset of EV drivers for two weeks. SOC prediction based on EV's battery historical dataset is
proposed int®, where Mileage and EV's battery voltage, current, and temperature are used to train the Light GBM
model. These EV batteries’ data were also used as input data for the prediction models that were implemented
in!”!8. The model of the LSTM neural network model with MLP that was executed in!” was evaluated through
one evaluation parameter of MSE. The same parameter MSE is used beside MAE, and RMSE to evaluate the
three implemented models of SVM, KNN, and GPR in{'. In™ extreme ML is proposed for online prediction of
the lithium batteries’ SOC.

A four-time series is produced in?® by a Python-based tool that produces BEV profiles. It is called emobpy,
which is based on empirical mobility statistics and customizable assumptions. EV mobility is the first time series
produced that depends on some factors, such as driver type, daily trip number, and departure and step time. Trip
location, destination, duration, and distance per trip must also be available. This first time series is used with
driving electricity consumption, the second time series, charging station availability, and the charging strategy
as the emobpy input to get the grid electricity demand for the fourth time series.

A model based on physics and graph attention has been suggested in?! to enhance the prediction of EVs
charging demand under the dynamic price situations, which was evaluated through the use of over 18 thousand
EVs as a dataset. It is undeniable that studying and predicting the impact of EV charging on the grid to avoid
potential grid problems. Therefore, the power consumption of EV charging stations has been predicted through
three different models in??, for two different states. Also, the charging station operation cost could be obtained
from these prediction results.

Table 1 summarizes the important parameters for the related previous works on EV Behavior prediction.
Moreover, a comprehensive comparison table is provided, which contrasts our proposed approach with a set
of recently published studies on EV charging behavior prediction. This table highlights key aspects such as
the methodologies employed, datasets used, performance metrics, and external factors. The comparison clearly
demonstrates the strengths of our multistage deep learning approach, particularly in its ability to integrate
both historical and real-time data, including distance, road characteristics, and weather data. In contrast, our
approach achieves superior predictive accuracy, as evidenced by the remarkably low SMAPE scores for SoC and
CAT predictions. This comparison underscores the novelty and effectiveness of our method, positioning it as a
significant advancement in the field of EV charging performance prediction.

Research gap and paper contribution
The proposed work covered some of the weak points of previous EV research. These points can be summarized
as:-.

« EVs charging scheduling depending on unrealistic data as outlined inP.
« Not-applicable assumption for long parking period as reported in?.
« Neglecting the departure time in the charging scheduling process.

The results for EV parameters prediction have been enhanced using the proposed prediction models. Although
previous studies have applied ML for predicting state of charge, session duration and energy consumption,
they primarily focused on using Historical Charging Data (HCD). But sometimes additional features were also
incorporated. Motivated by these approaches, this work investigates the use of additional input features to spot
their impact on the prediction accuracy.

The key contributions of this work are as follows:

(1) A novel approach is proposed for predicting EV charging behavior (SoC and CAT) that incorporates HCD,
traffic, and weather data.

(2) A novel implementation-based FDNN architecture is proposed for SoC and CAT estimation.

(3) Performance evaluation indices, i.e. Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and coeflicient of determina-
tion (R2) are presented for comparison.

Scientific Reports |

(2025) 15:37669 | https://doi.org/10.1038/s41598-025-21625-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Evaluating
Paper Year | Dataset Features Model Prediction Appraisal Metrics
EVs sale estimation MAPE,
EVs safet LSTM EVs share in each Motivate the EVs Market NRSME_range,
357 EVs s ecisﬁcat?ons ConvLSTM se Ir:ent ! Lack of data needed to improve NRSME_mean,
Ref. 2 2023 | monthly sales g ther EVs Hybrid LSTM with two- Fagctors affectin prediction results due to the unavailability | R?, slope, &
dataset specifications dimensional Attention and EVs sales 8 and inaccessibility of this data, like the intercept of
P Residual network L warehouses EVs number. fitted linear
recognition .
regressions
Charging
station Average Week Accuracy,
3 occupation Weather Gradient Boosting Charging station . AUC, Recall,
Ref.f 2021 dataset (2019) Traffic Classifier availability Lake of traffic availability of data. Precision, F1,
Tragic dataset Random Forest Classifier Kappa, & MCC
(2021)
Travel chain type
Weekends Current chain end
Current chain start . . time The EVs data is required to be updated as .
4 -
Ref.f 2020 al.ld we ekdays time & start Signal Multi-layer ML Algorithm Next chain start they were old (2008-2009). Not mentioned
historical data time
Travel distance
. EVs battery Data (V, I, | Support Vector Regression PDR is estimated not predicted.
Ref!>. 2023 g;{: drivers real T). Driver speed. (SVR) with a Radial Basis SR%CR Data was collected for short period of 2 II\QAZAE
Ambient temperature. | Function (RBF) weeks.
Ignoring features that increase the RMSE
Refl"® 2024 EVs battery EVs battery Data (V I, | LightGEM SoC accuracy of the results, such as weather MAE
: historical data T). Mileage. Extra Tree Regressor (ETR) racy > MSE
conditions. R2
Real-life battery | EVs battery Data (V,
17 Discharge L, T). LSTM Neural Network . . .
Ref!. 2025 | G lation charge/discharge cycles | Model with MLP SoC Need to increase the evaluating metrics. MSE
datasets No.
Custom EVs "]I:";/S}})jrtrtﬁgt)? watel SVM RMSE
8 . .
Ref. 2024 | Gataset Ambient temperature. élgg SoC mﬁEE
Motor temperature.
SNN
Ref°. 2023 | UCI datasets Not mentioned LSTM SoC Need to increase the evaluating metrics. RMSE
8
GRN
EYS moblhty . The research contributes significantly
EVs data Driving electricity N . .
o German . . ) to providing the datasets that is used in
Ref°. 2021 o Charging station data | Emobpy consumption L = .
mobility data . . R the prediction as implemented in our
Charging strategy Grid availability d work
Grid demand proposed work.
Integration of heterogeneous data
sources.
. Study the impact of each feature SMAPE
Proposed Weekdays EVs Distance SoC separately. RMSE
Prediction | 2025 Road characteristics FDNN A MSE
A real data CAT Contribution of advancement of smart
pproach Weather . S MAE
transportation systems through a R?
robust framework for EV SoC and CAT
prediction.

Table 1. Comprehensive comparison between the proposed prediction approach and previous related

works!?-2%, PDR: Remaining Driving Range, GBM: Gradient-Boosting Methodology, V: Voltage, I: Current, T:
Temperature, LSTM: Long Short-Term Memory, MLP: Multilayer Perceptron, SVM: Support Vector Machine.
ANN: Artificial Neural Network, GPR: Gaussian Process Regression, AUC: Area under the receiver operating
characteristic curve, Kappa: Cohen’s kappa score, MCC: Matthews correlation coefficient, UCI: University of
California - Irvine, SNN: Sparse Neural Network, GRN: Gated Recurrent Neural.

(4) The empirical analysis demonstrates that the proposed work, which incorporates additional data, signifi-
cantly enhances the prediction accuracy compared with previous studies, which relied solely on historical
charging information.

Paper organization
The rest of the paper is organized as follows: Sect. 2 provides a detailed clarification of the proposed methodology,
starting with a general overview of the proposed approach, followed by a description of the FDNN structure,
and concluding with a discussion of the four-stage implementation. This is followed by the results, which are
outlined and evaluated in Sect. 3. Section 4 presents the results’ discussion and comparison, while the conclusion
is illustrated in Sect. 5.

The methodology of the proposed prediction approach
The overall flowchart in Fig. 2 clarifies the implementation of the proposed FDNN prediction approach. The
suggested prediction approach strategy utilizes a single FDNN. The goal of this network is to develop a prediction
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Fig. 2. Overall flowchart implementation of the proposed FDNN-based prediction approach.

Battery Item Data
Nominal Capacity (kWh) | 78.1
Operating Capacity (kWh) | 75

Battery Lithium-ion
Cathode Material NCM

Cells Number 4416

Pack Configuration 96546p
Architecture (V) 400
Nominal Voltage (V) 357

Table 2. Tesla model 3 battery data®..

approach by accepting as input the normalized data of the selected BEV, including distance, road characteristics,
and weather data.

The selected BEV model is the Tesla Model 3 (TM3). The nominal battery capacity ( Npattery = 78.1 KW h)
is derived from manufacturer data®; all battery data are illustrated in Table 2. The EV charging scenarios have
three main probabilities, which are charging at home, at stations, or in parking lots. The scenario of charging
at home is the basis for the proposed work, where the charging period is the period between the arrival and
departure times. TM3 can be charged according to manufacturing data by using a regular socket or a charging
station. Charging time depends on the maximum EV’s capacity and the charging station features. EV charging
differs by country; some countries use 1-phase connections to the network, while others use a 3-phase connection.

Table 3 illustrates the indications of the actual driving range under different conditions. The worst scenario
represents the cold weather based at 10 °C, which requires heating. Hot weather of 35-40 °C, such as that in
Egypt, is also considered among the worst scenarios. The mild weather is the greatest scenario based on 23 °C,
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Road type | Weather | Distance (km)
City Mild 700
Highway | Mild 460
Combined | Mild 560
. Cold
City Hot 455
. Cold
Highway Hot 350
. Cold
Combined Hot 400

Table 3. Tesla model 3 battery data®..
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Fig. 3. First scenario of 3 inputs & 2 outputs.

which does not need A/C. A fixed speed of 110 km/h is assumed for the highway. The real range will depend on
speed, driving mode, weather, and road type*.

The predictive scenarios studied

One of the most important parameters for EV charging scheduling is SoC. The proposed model is created to
predict both the initial SoC (SoC-In) and required (SoC-Req). In addition to other parameters, arrival and
departure times have been predicted, which are known as CAT. The following two scenarios illustrate the target
for each prediction model, which is affected by the number of trips and the total distance for each EV.

First scenario (3 inputs & 2 outputs)
The first model is implemented using FDNN, which depends on three main input parameters to predict the
values of SoC-In and SoC-Req. The three input parameters are the total distance for each EV trip number,
weather temperature, and road type. The weather is classified as moderate or not, where the immoderate
temperature represents the hot or cold weather. The road type may be city, highway, or combined road. Road
type affects the speed, which also directly affects the energy consumption. So, the selected EV model data explain
the differences in the total mileage according to the weather and road type, as previously mentioned in Table 3.
The initial SoC is predicted according to the total distance of trips on the previous day. However, the required
SoC depends on the total distance of trips on the next day for each EV. The number of trips and distance of
each trip have been stochastically distributed for all EVs according to the percentage in?’. The road type and the
weather condition represented in the ambient temperature are used as inputs with the total distance to enhance
the model prediction results. Figure 3 illustrates the sequence of the proposed prediction model for the first
scenario.

Second scenario (3 inputs & 4 outputs)

In this scenario, the predicted target is represented in the initial and required SoC, in addition to arrival and
departure time. The same inputs of the first scenario are also used here to train the second model. The sequence
of the second proposed model is illustrated in Fig. 4.

Detailed description of FDNN structure
An artificial neural network with more than one hidden layer of neurons between the input and output is referred
to asa DNN?326, ANN is a computational model capable of performing both ML and pattern recognition tasks?’.
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Fig. 5. Visual representation of the suggested FDNN.

DNNss are used to simulate complex nonlinear systems. Moreover, DNN computation is efficient because it
involves solving basic algebraic equations. This feature enables DNNs to address issues promptly?8-3.

The FDNN used in this study comprises an input layer with three neurons representing the features: distance,
road characteristic, and weather data. Two fully connected hidden layers were implemented, consisting of
30 and 2 neurons, respectively, and activated using ReLU functions. The output layer includes two neurons
corresponding to the predicted outputs: SoC and CAT, as illustrated in Fig. 5.

This multi-layered structure ensures non-linear feature extraction and robust learning capabilities,
distinguishing it from simpler ML models. Unlike conventional ML models such as linear regression or single-
layer perceptron’s, the FDNN architecture leverages multiple hidden layers and non-linear activation functions
to capture complex relationships between diverse input features and output predictions. This enables superior
generalization across heterogeneous input data. An FDNN can be considered a DNN under certain conditions.
Specifically, the classification depends on the depth of the network. When the FDNN contains more than two
hidden layers, it is classified as a DNN. The term “deep” reflects the increased depth of the network, which
enables it to model complex data patterns and hierarchies. The distinction lies primarily in the depth of the
architecture, not in the forward-pass structure of the network itself, as both shallow and deep networks can be
feedforward in nature.

The premise behind the proposed FDNN prediction approach is that input features can quickly reveal their
impact on the prediction accuracy. These input features include distance (Total distance for each EV’s trips),
road characteristics, and weather data. Road characteristics are represented by road type, which could be city,
highway, or combined roads, in addition to traffic patterns and events data. The weather data are represented
by the ambient temperature, which could be mild or not mild (hot or cold). These data are fed into an FDNN
for predicting charging behavior. The FDNN-based prediction approach is trained through these input data
to predict EV parameters, which are the initial SoC (SoC-In), the required SoC (SoC-Req), and the charging
available time.
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Finally, the information produced can be utilized in decision-making processes for subsequent control
operations, such as predicting the initial and required SoC and CAT. A FDNN consists of four main types of
layers: input, hidden, softmax, and output layers. These layers are commonly used in data-driven prediction and
diagnostic approaches. To confirm that all values lie within the range [0, 1], feature scaling is applied as follows,
where (P) is the input vector: -

P — min (P)

pr= maz (P) —min (P)

(1)

The following nonlinear transformation is used in the hidden layers to transform the input data into high-
dimensional features. Here, © = (2,... ,d), Y is the hidden vector, ¥ is the bias vector, W is the weight
matrix, and f is the activation function applied element-wise. The output of the final hidden layer is transformed
using Eq. (2) without using the activation function given in Eq. (3).

_lef(W1P+?]) (2)

}75 = Ws ~Yd + 275 (3)

The softmax function is used to determine the output value of each neuron, as in Eq. (4). Then the label with the
highest output value is selected as the predicted label for the input data.
Y. .
e
Q o (4)

In the proposed work, the FDNN is used as a prediction framework. Its role is demonstrated through a
comprehensive four-stage implementation, where each stage builds on the previous one to produce more reliable
predictions, as outlined in the following sections.

FDNN prediction approach implementation
The proposed FDNN general structure is illustrated in Fig. 6, which consists of four stages:

» 1st Stage: Dataset preparation.
« 2nd Stage: Input data preprocessing and normalization.
o 3rd Stage: Training of the feedforward deep neural network.
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Fig. 6. Structure of FDNN-based prediction approach.
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No. of Trips | Working Day EVs No. (%) | Weekend Day EVs No. (%)
0 35.4 50.7

1 0 0

2 29.9 27.5

3 8.3 44

4 12.5 10.2

5 13.9 7.2

Table 4. EVs for trips no. probability per working and weekend days.

No. of trips | Working Day EVs No. (EV)
0 354
1 0
2 299
3 83
4 125
5 139

Table 5. EVs trips no. per working and weekend days for 1000EVs.

o 4th Stage: Performance metrics evaluation.

1 st stage: dataset preparation

The data taken from? is used to generate a dataset for 1000 EVs. Also, we can produce data for any EVs sample
size. These data are represented in the number of trips, trip distance, and trip duration time for each EV. Table 4
illustrates the percentage value of each EV’s trip number for both working and weekend days. These percentages
are then applied to the 1000 EV dataset for the working-day scenario only, as it is considered more critical than
the weekend case, as shown in Table 5.

After that, the number of trips is distributed for the whole number of EVs (N=1000 EVs) randomly. The
number of trips for working and weekend days are 2042, and 1450 respectively. The total number of trips is
estimated using Eq. (5) for working days. The duration of each trip is distributed according to the trip distance
of each EV. Then the distance and duration time are also randomly distributed according to Eq. (6).

TT Ny = Z 2o(t, * EVa1% % N)/100 (5)
Tn1 = (DDEV,,%* N «xTTnN1) /(100 % N) (6)
where:
TTn, Total No. of working days trips.
t,, Trips No.
EV ,,; % Working days EVs No. for each number of trips as percentages.
N Total EVs No.
T~y Trips No. for working days at specific distances and times.

2nd stage: input data preprocessing and normalization
To generate a superior training environment, utilizing multiple datasets is highly effective. Six distinct cases for
data input are employed using a combination of datasets and training models. The preprocessing of data involves
cleaning and preparing the collected data by neglecting faulty data, outliers and inconsistencies, to enhance the
model performance. In this work, we used standardization to convert the data to date-time objects to obtain the
weather and road type for a particular charging record. This approach allows for the easy extraction of relevant
information. Rather than determining the traffic level at a definite time, it considered the total traffic time
through the day, enabling the model to identify the influence of traffic levels on charging performance. As well
as performing normalization to confirm that the data are on a consistent format and scale, as given by Eq. (2).
The systematic approach used to integrate diverse data types ensures that the FDNN learns meaningful
feature interactions rather than relying on simple concatenation. The process begins with a robust preprocessing
pipeline, where continuous variables such as distance, road characteristics, and weather data are normalized
to a uniform scale, and categorical variables like road types are encoded using methods such as embeddings.
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Fig. 7. Data processing workflow for FDNN.
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Fig. 8. Data partitioning workflow.

Embeddings, in particular, transform categorical data into dense numerical representations, enabling the model
to capture complex relationships between categories, such as urban versus rural road characteristics. This
fusion of data streams occurs at the input layer of the FDNN, where the architecture is designed to facilitate
interaction among the preprocessed features. A detailed workflow diagram showcasing the preprocessing steps
and a schematic representation of the FDNN'’s structure are illustrated in Fig. 7, highlighting how the network
processes and combines features to predict SoC and CAT.

3rd stage: training of FDNN for proposed prediction approach

The design of the FDNN structure requires careful identification of the type and number of layers, the number of
neurons in each layer and the activation function used. In the proposed approach, a total of 1000 samples were
considered for the FDNN design.70% (700 samples) were used for training, 15% (150 samples) were used for
testing, and 15% (150 samples) were used for validation. Figure 8 illustrates how the data were split into training,
validation, and test sets. Common architectures for prediction approach tasks include Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), such as LSTM networks.

Figure 9 shows the performance of the FDNN prediction model. From the regression plot shown in Fig. 9a,
it is noticed that the regression value is equal to 1, indicating that the FDNN is accurately trained to identify the
prediction values under study. The MSE is also very low, further demonstrating the model’s precision.

Moreover, Fig. 10 provides visual validation of the model’s performance, addressing the error metrics and
model accuracy. Figure 10a provides the residual clustering plot, which illustrates the differences between
predicted and actual values, with residuals tightly clustering around zero. This indicates minimal bias and
suggests that the model accurately captures the relationships in the data without significant under-fitting or
over-fitting. Figure 10b provides the scatter plot comparing predicted and actual values for both SoC and CAT.
Points clustering closely along the ideal diagonal line signify high predictive accuracy. Separate plots for SoC and
CAT further highlight the model’s ability to handle multiple output variables effectively. Figure 10c provides the
predicted vs. actual value plots, showcasing the robustness of the model across diverse scenarios.

For SoC, the plot demonstrates consistency in accurately predicting battery states, which is crucial for EV
efficiency. For CAT, the plot emphasizes reliable time estimations, which are critical for planning charging
schedules. Together, these plots validate the model’s ability to generalize across varying input conditions.
They provide strong evidence against over-fitting and substantiate the low error values reported, ensuring the
reliability and practical applicability of the predictions in real-world scenarios. To address potential over-fitting,
we employed cross-validation (5-fold cross-validation) and included regularization techniques such as dropout
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Fig. 9. Regression, performance, training state, and error histogram plots of FDNN-based prediction
approach.

layers in the FDNN architecture to confirm that the low error metrics are consistent across different subsets of
the data. The results confirm that the exceptionally low error values are due to the model’s high precision and
not over-fitting.

4th stage: performance metrics evaluation
To evaluate the performance of predictions made by the FDNN model, various metrics are utilized, as discussed
in'?. In this study, five measures are defined, which are commonly used in related works to assess the SoC and
CAT prediction results for the proposed FDNN model. Equations (9)-(13) outline the metrics used to evaluate
this work, which are applied accordingly.

(i) Symmetric mean absolute percentage error (SMAPE):

1 Yoy — Yo
SMAPE = + 3" &, Yo ~Yo| 100% )
k (Yo | + Yo )/2
(ii) Mean absolute error (MAE):
1 k
MAE = % Z i=1 ‘Ya(i) — Yo (10)

Scientific Reports |

(2025) 15:37669

| https://doi.org/10.1038/s41598-025-21625-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Expanded Comparison: SoC

2
02 Residual Plot \ — Y \ ° ‘A‘ctual SoC |
® SoC Residuals or \ 9: Eredited SoG
- ® CAT Residuals %) ‘. \ ‘. -
015 S 5 o 3 -
2+ L [ ] ®
0.1 L [ ]
El . -® S0 10 2 0 40 w0 0 8 % 10
o005t Lo °° * Sample Index
< ‘o". .\ ® ° .* Expanded Comparison: CAT
o % ¥ ° ey o ol 3 ¢
0o —————‘th} - - - ®  Acwal CAT
: .. . Ao ° 'D" :w oL s ° P‘r:e!:iamed CAT
LS ® & 4
- S e°* o @ ® °
005 | S . 2 o el e o
°n ° L S & " ®
® -, ° . @ /‘ F 4 /
. | | e 1 }
0'10 20 40 60 80 100 /. =) .,.j / S .
Sample Index o 10 20 a0 40 s 6 70 8 e 100
Sample Index
(a) Residual Analysis Plot of a FDNN prediction approach (b) Scatter plots of a FDNN prediction approach
_ Predicted vs. Actual: SoC _ Predicted vs. Actual: CAT
#
&
0.5 250 /
ol 2t ’/
/
05¢ 15} ’/
2 5 >
w (] .
8 1t 8 L /
g / g /
8 g 8
o
A5} 7 o o5t f 4
2t ’, ol
25 ¢ 05+
/
&
3 " L L ) A . . L )
-3 -2 -1 0 1 A 0 1 2 3
Actual SoC Actual CAT
(¢) Predicted vs. actual of SoC, and CAT plots of a FDNN prediction approach
Fig. 10. Residual analysis, scatter plots, and predicted vs. actual of SoC, and CAT plots of FDNN-based
prediction approach.
(iii) Mean Squared Error (MSE):
1 2
(iv) Root mean square error (RMSE):
RMSE = /3" £y (Yo — o) / b (12)
(v) Coefficient of determination (R?):
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Scenarios | First scenario Second scenario

Index Initial SoC | Required SoC | Initial SoC | Required SoC | Arrival time | Departure time
SMAPE 0.0007 0.00015 0.00044 0.00018 0.00014 0.00012

MAE 0.00015 0.00013 0.00017 0.00015 0.00022 0.00025

MSE 685107 | 1.8*1077 5*1077 421077 9.171077 1.4¥1077
RMSE 0.00083 0.00043 0.00071 0.00065 0.00095 0.00037

R? 1 1 1 1 1 1

Table 6. The first and second scenarios evaluation results.

Initial SoC Required SoC

Distance | Road Type | Weather | Actual | Predicted | Error Actual | Predicted | Error

58 Combined | Not Mild | 61.714 | 61.714 0.0000398 | 78.625 | 78.625 -0.00027
140 City Mild 58.333 | 58.333 0.00012 80.000 | 80.000 0.000119
162 Combined | Not Mild | 46.857 | 46.857 0.000233 | 85.125 | 85.125 -0.00039
222 City Mild 51.500 | 51.500 -0.00016 | 82.929 | 82.929 0.000053
248 Highway Mild 39.000 | 39.000 —0.00030 | 88.053 | 88.053 -0.00032
266 City Mild 47.833 | 47.833 —0.00015 | 84.500 | 84.500 -0.00014
291 Highway Not Mild | 21.500 | 21.499 0.001477 | 95.786 | 95.786 -0.00034
304 City Mild 44.667 | 44.666 0.000231 | 85.857 | 85.857 -0.00014
312 Highway Not Mild | 18.000 | 17.997 0.003237 | 97.286 | 97.287 -0.00106
331 Combined | Not Mild | 22.714 | 22.714 0.00013 95.688 | 95.688 -0.00027

Table 7. A sample of predicted and targeted values for the first scenario.

] 2
R =1 (Yaw = Yow)
> 1 (Ya — a)*

In this context, Y, is the real value while the predicted value is Y},, @ is the mean of real values, and k denotes the
groups of values in the dataset. Lower scores for RMSE, MAE, and SMAPE indicate accurate predictions, which
occur when the predicted value Y} is very close to the actual value Y;. The R? value measures the goodness of
fit for regression and typically ranges between 0 and 1. A score of 1 indicates perfect predictions, with higher
values representing better performance®. The subsequent two sections present and analyze the results of the
proposed approach, followed by a comparison with prior studies to demonstrate the approach’s effectiveness and
contributions.

(13)

Results and evaluation metrics

The results have been evaluated using various metrics such as SMAPE, MAE, MSE, RMSE, and R2. Equation (9)
to (13) outline the metrics used in this work, and these performance metrics will be evaluated accordingly.
Table 6 illustrates the evaluation for the first and second proposed scenarios. The results of the first model are
distinguished from the second model by a slight difference in accuracy due to several factors. In the first model,
two parameters are deduced from three inputs, while in the second model, four parameters are deduced from
the same three inputs. Therefore, to improve the results of the second model, more inputs can be added, or
the outputs can be obtained separately by predicting the initial and required SoC as in the first scenario. Then,
predict the other parameters of arrival and departure time.

Tables 7 and 8 show a sample of results, representing the predicted and targeted values. The initial and required
SoC are the target outputs for the first scenario, while the second scenario has the target outputs of initial and
required SoC, in addition to the charging available time. The weather and road conditions are illustrated in
Tables 7 and 8 for each SoC value. The evaluation of the first scenario results is summarized in Fig. 11, while the
evaluation of the second scenario results is summarized in Fig. 12.

Discussion and comparison

A systematic ablation study to evaluate the contribution of each input feature to the predictive accuracy of the
model has been implemented. This process involved sequentially removing one input feature at a time and
observing the resulting performance metrics, such as SMAPE, MAE, and RMSE, to determine how each feature
impacts the overall prediction of the SoC and CAT. Table 9 summarizes the required SoC results of the second
scenario, showing how the removal of individual features affects the model’s performance. Figure 13 illustrates
a bar chart that shows normalized importance scores for each feature in terms of their contribution to SMAPE
reduction.
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35 City Mild 67.083 | 67.083 —-0.00005 | 76.25 | 76.25 0.00067
64 Highway Mild 62.000 | 62.000 0.000146 | 78.000 | 78.000 —-0.00079
126 Combined | Mild 57.400 | 57.400 0.000105 | 80.478 | 80.478 —0.00021
210 City Not Mild | 43.750 | 43.750 —0.00028 | 86.667 | 86.667 0.000101
259 Highway Not Mild | 26.833 | 26.833 —-0.00016 | 93.500 | 93.500 0.000242
323 Combined | Not Mild | 23.857 | 23.857 0.00069 | 95.188 |95.188 0.00027
35 City Mild 10.000 | 9.9998 0.0002 200.00 | 200.00 0.00013
64 Highway Mild 13.800 | 13.798 0.002 190.00 | 190.00 -0.0007
126 Combined | Mild 19.800 | 19.800 —-0.0001 | 201.60 |201.60 0.0001
210 City Not Mild | 27.000 | 27.000 0.00017 | 200.00 | 200.00 —0.00023
259 Highway Not Mild | 32.000 | 32.000 —0.00022 | 201.20 | 201.20 0.00008
323 Combined | Not Mild | 38.000 | 38.000 0.0004 197.00 | 197.00 —0.00036

Table 8. A sample of predicted and targeted values for the second scenario.
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Fig. 11. The evaluation metrics values of the first scenario results.

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001 -

m Initial SOC

m Required SOC

B Arrival Time

m Departure Time

SMAPE MAE MSE (*107-3) RMSE

Fig. 12. The evaluation metrics values of the second scenario results.
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Feature Set SMAPE | MAE RMSE R

All Features 0.0001800 | 0.0001500 | 0.0006500 | 0.9999
Without Weather Data 0.0003150 | 0.0002367 | 0.0008912 | 0.9277
Without Road Characteristics | 0.0003749 | 0.0002133 | 0.0009331 | 0.9175
Without Distance Data 0.0004550 | 0.0002733 | 0.0011000 | 0.8971

Table 9. The impact of features on the required SoC prediction in the second scenario.
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Fig. 13. Feature importance for predictive accuracy.

The illustrated results in Table 9 and Fig. 13 show the effect of each feature, highlighting the importance of
incorporating all contextual features to achieve robust prediction performance. The impact of these features can
be formulated as follows:

o Distance and road characteristics These factors had the most significant impact on predictive accuracy, par-
ticularly for the required SoC.

o Weather and traffic patterns These factors were less influential individually but contributed to overall model
performance when combined with other features, particularly for CAT.

o Events data While events data had a smaller impact, it improved prediction accuracy in specific scenarios.

Additionally, scatter plots comparing predicted and actual values were used to visually validate the model’s
performance as previously illustrated in Fig. 10, which validates model accuracy by showing how well predictions
align with actual values. These Figures clearly indicate a consistent predictive ability across the test dataset. Also,
to address potential over-fitting, we employed cross-validation and included regularization techniques such as
dropout layers in the FDNN architecture. The results confirm that the exceptionally low error values are due to
the model’s high precision, not over-fitting.

When comparing the proposed prediction approach across various metrics, considering the overall R* and
the SMAPE, it appears that predicting the SoC and CAT is particularly challenging. Moreover, across different
scenarios, we observed that users’ self-predictions of their behavior often differed significantly from their actual
performance, underscoring the need for predictive analytics. Compared to previous works, the results of this
study outperformed all prior studies reporting similar evaluation metrics*!~*.

Table 10 summarizes the results from these prior works in comparison to those achieved in this study.
Specifically, for session duration, our results are more accurate than those in*!. However, it is important to
note that all previous work used a different dataset from the one used in this study, making direct comparisons
potentially unsuitable. Nonetheless, when keeping the comparison within the same dataset, it is evident that the
inclusion of additional road type and weather led to an enhancement in EVs’ charging performance prediction.

Finally, the FDNN’s novelty lies in its systematic data integration approach and specialized architecture,
aspects that cannot be fully represented by comparing it to generic models. Highlighting its unique design and
performance metrics adequately fulfills the study’s objectives. The research emphasizes the integration of diverse
data types (e.g., distance, road characteristics, and weather data) and demonstrates its impact on prediction
accuracy, rather than benchmarking against general models that may not be specialized for this context.
Compared models may not be explicitly designed for the specific task of predicting both SoC and CAT, and
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Source Prediction Model Features Results Year
Index SoC-In SoC-Req
SMAPE | 0.0007 0.00015
Initial SoC MAE 0.00015 0.00013
First Proposed Prediction Approach . FDNN Distance, Road Characteristics, and Weather Data 2025
Required SoC MSE 6.8*1077 1.8*1077
RMSE 0.00083 0.00043
R? 1 1
Index SoC-In SoC-Req
SMAPE | 0.00044 0.00018
Second Initial SOC
Proposed Required SOC Distance, Road Characteristics, and MAE 0.00017 0.00015
- - . FDNN — 2025
Prediction Arrival Time Weather Data MSE 5%10~7 4241077
Approach Departure Time
RMSE 0.00071 0.00065
R? 1 1
ANN MSE 0.00054
SVM Battery Capacity
Linear GPR | Battery Voltage MAE 0.00027
Ref.3! SoC Ensemble Battery Current RMSE | 0.02329 2021
Boosting and Battery
Ensemble Temperature R? 0.999
Bagging '
SMAPE | 9.92%
RE, SVM, HCD, Weather, MAE 66.5 min
Ref.32 EZL’ E‘nergy' XGBoost, & | Traffic, Events 2021
onsumption |4\ Data SMAPE | 11.6% Consumption
R? 0.7
Ref? Departure Time | XGBoost HCD, Vehicle Type, Charging Location MAE | 82 min 2020
MAE 4.6 kWh
Ref Energy XGBoost | HCD 2020
Requirements Rr? 0.52
Ensemble 10.4% Duration
SL, Energy Model of
35
Ref. Consumption SVM, RE & HCD SMAPE 7.5% 2019
DKDE Consumption

Table 10. Comparison between the proposed prediction approach and previous works.

adapting them could lead to suboptimal configurations or unfair evaluations. The effort to align existing models
with the task might dilute the uniqueness of the proposed FDNN approach.

Conclusion

In the proposed work a framework is presented for predicting the most important EV charging behaviors related
to scheduling, specifically EV state of charge and charging available time (arrival and departure times). Unlike
previous studies, we incorporated additional features, such as distance, road, and weather data, in addition to
HCD. FDNN was trained to predict charging behavior and examined how the hidden layers and the number
of neurons in the final hidden layer impact the network’s performance. Furthermore, the limitations of our
approach can be mitigated by employing careful feature selection and leveraging domain expertise to address
these constraints effectively.

The first model was trained using three inputs to predict the initial and required SoC only. The results of
this model were evaluated using accuracy and error metrics, showing promising outcomes. Specifically, the
MSE was 1.8*10~ ", the MAE was 0.00013, and R” is unity. The second model also demonstrates promising
results, consistent with the evaluation factors mentioned in previous works. The prediction performance of our
models is superior to that reported in earlier studies. Furthermore, we have achieved significant improvements
in predicting charging behavior using the HCD, which demonstrates the potential of incorporating distance,
road characteristics, and weather data information into charging behavior prediction.

The future extension of this work can be considered as developing new models of ML methodologies with
more features, such as an in-depth study of the factors affecting EVs’ performance. Consequently, the EV’s
performance impacts on vehicle consumption and changes in initial and final SoC values. These factors include
road angle, wind direction, and resistance. Furthermore, these methodologies could be applied to various types
of EVs and compared to help users choose the most suitable type.

Data availability
The data supporting this study’s findings are available from the corresponding author upon reasonable request.
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