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To address the limitations of single-modal approaches in bearing fault diagnosis under complex 
operating conditions, this study proposes SCBM-Net—a novel deep learning model based on a 
dual-channel multimodal fusion architecture. The model innovatively combines Continuous Wavelet 
Transform (CWT) and Variational Mode Decomposition (VMD) to extract complementary features from 
time–frequency images and temporal signals, respectively. Specifically, the first channel employs a 
Swin Transformer to effectively model both local and global representations of CWT-based images 
through a hierarchical window-based attention mechanism. The second channel adopts a CNN-BiGRU-
Attention network to dynamically capture temporal dependencies from intrinsic mode functions 
decomposed by VMD. Features from both channels are deeply fused using a Multimodal Compact 
Bilinear Pooling (MCB) module, enhancing fault feature representation and overall model robustness. 
Experimental results on the CWRU dataset show that SCBM-Net achieves an accuracy of 99.83% under 
clean conditions. Even under a few-shot learning setting with only 60 training samples per class, the 
model still maintains a high recognition accuracy of 98.64%, demonstrating strong generalization 
in low-data scenarios. On an imbalanced dataset, SCBM-Net exhibits stable performance for both 
majority and minority classes, achieving an average accuracy of 97.33%. In a generalization test on the 
SEU bearing dataset, the model achieves an accuracy of 98.33%, further validating its cross-platform 
and cross-domain robustness and transferability. Moreover, under severe noise interference at − 10 
dB, SCBM-Net retains a fault recognition accuracy of 80.67%, outperforming comparable models and 
demonstrating excellent noise robustness and practical applicability.
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With the rapid development of industrial automation and intelligent manufacturing technologies, the reliability 
and stability of equipment operations have attracted increasing attention. As one of the most critical components 
in mechanical transmission systems, bearing fault diagnosis has become a key research topic in the field of 
industrial condition monitoring.

In recent years, traditional bearing fault diagnosis methods have mainly relied on time-domain, frequency-
domain, and time–frequency analysis techniques1. Time-domain feature extraction methods, such as envelope 
analysis and statistical indicators, can reflect amplitude and energy variations in vibration signals but are often 
sensitive to noise interference2. Frequency-domain methods obtain spectral information through Fourier transform 
and are effective in identifying periodic faults, but they struggle to characterize the non-stationary nature of signals3. 
To address these limitations, time–frequency methods such as Continuous Wavelet Transform (CWT) and Empirical 
Mode Decomposition (EMD) have been widely adopted. For instance, Xu et al.4 employed CWT for multi-resolution 
analysis of bearing fault signals, effectively extracting local fault features; Boudiaf et al.5 employed Ensemble Empirical 
Mode Decomposition (EEMD) to decompose vibration signals and applied wavelet threshold denoising, which 
significantly improved diagnostic accuracy; however, the issue of mode mixing remained unresolved .

With the advancement of deep learning, Convolutional Neural Networks (CNNs) have achieved remarkable 
results in bearing fault diagnosis6. Ince et al.7 proposed a one-dimensional CNN model that enables end-to-end 
classification of temporal vibration signals, enabling real-time fault detection. Janssens et al.8 introduced a CNN 
framework that uses spectrum images as input and achieves higher robustness and accuracy than traditional 
methods through deep feature learning. Jia et al.9 also achieved promising results with CNN-based feature 
extraction methods. However, most of these studies were conducted under low-noise laboratory conditions, and 
the challenges posed by noise interference in real-world scenarios have yet to be fully addressed.
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For fault diagnosis in noisy environments, Variational Mode Decomposition (VMD) has been widely studied 
due to its capability to suppress mode mixing. Traditional VMD methods often rely on empirical or exhaustive 
approaches to select parameters, which are prone to local optima and may compromise decomposition 
quality and subsequent feature extraction accuracy. Chen et al.10 enhanced signal clarity by selecting modal 
components based on the kurtosis criterion, while Du et al.11 integrated wavelet thresholding to improve 
denoising performance; however, the issue of parameter sensitivity remains unresolved. To address this, Ma 
et al.12 proposed the RIME-VMD method, which employs the RIME algorithm for global optimization and 
automatically determines the optimal parameter combination for VMD, significantly improving decomposition 
efficiency and accuracy while avoiding modal redundancy and feature omission. Wang et al.13 further introduced 
a method that optimizes VMD parameters via SSA and utilizes RCMDE to extract multiscale complexity features 
of the signal, thereby enhancing robustness under complex and noisy conditions. Nevertheless, these approaches 
mostly rely on single-channel temporal modeling with VMD, which limits their ability to fully capture the 
spectral evolution and spatiotemporal coupling characteristics inherent in fault signals.

In recent years, multimodal information fusion has gradually become a key approach to improving diagnostic 
accuracy and robustness. Xiao et al.14 proposed a multi-scale 1D CNN to fuse multi-channel features, enhancing 
the model’s ability to distinguish between various fault types. Lin et al.15 implemented cross-domain semi-
supervised diagnosis based on meta-learning techniques, demonstrating the model’s generalization capability 
across different datasets. However, most existing multimodal approaches still focus on shallow fusion at the input 
or decision level, failing to deeply integrate temporal and time–frequency domain information. Consequently, 
there remains a trade-off between representation accuracy and model interpretability in the current fusion 
mechanisms.

With the success of Vision Transformers (ViT) in image classification tasks, their hierarchical structure and 
global attention mechanism have also been introduced into bearing fault diagnosis16. Tang et al.17 utilized a 
ViT-based model to extract features from CWT-generated time–frequency images, leveraging multi-head self-
attention to capture spectral patterns at multiple scales, which enabled the effective recognition of weak fault 
signals. Ji et al.18 integrated a sliding window attention mechanism into ViT to reduce computational complexity 
and achieved over 98% diagnostic accuracy on both the CWRU and Southeast University datasets. Furthermore, 
to enhance noise robustness, Deng19 introduced a multi-head attention module that significantly improved the 
model’s noise immunity and generalization capability .

Given the non-stationarity and long-range dependencies in one-dimensional vibration sequences, the 
bidirectional gated recurrent unit (BiGRU) has emerged as an effective sequential modeling technique by 
capturing contextual information from both past and future time steps. Zhang et al.20 combined BiGRU with 
channel attention to perform spatiotemporal feature fusion and employed dual-channel attention (DCA) to 
extract weighted features from vibration signals, enabling effective diagnosis under complex conditions. Hou 
et al.21 further extended the temporal attention mechanism to a multi-head design, allowing the model to 
simultaneously focus on the temporal evolution of multiple frequency bands, and validated its superiority under 
variable working conditions. However, using Transformer or BiGRU alone still limits the model to learning 
features from a single type of data, making it incapable of simultaneously capturing both image-based and 
temporal modality information.

Although the aforementioned methods have achieved progress in their respective domains, single-modal 
feature extraction and shallow fusion strategies still struggle to simultaneously capture both global and local 
information, as well as temporal and time–frequency characteristics. To address these limitations, this study 
proposes a bearing fault diagnosis method based on a parallel dual-channel model. In this framework, one 
channel utilizes Continuous Wavelet Transform (CWT) to convert raw vibration signals into time–frequency 
images, from which discriminative features are extracted using a Swin Transformer. The other channel 
decomposes the signal using Variational Mode Decomposition (VMD), and constructs a feature extraction 
network based on Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Units (BiGRU), and 
an attention mechanism to effectively model the intrinsic mode components.The features extracted from both 
channels are fused via Multimodal Compact Bilinear Pooling (MCB), enabling efficient representation of fault 
information, followed by classification through a fully connected layer.

To ensure the practical applicability of the model across various data sources, it is essential to verify its 
generalization capability in cross-scenario settings. For instance, Lin et al.15 proposed a cross-domain semi-
supervised bearing fault diagnosis method based on meta-learning and validated their model on multiple 
datasets. Inspired by this, the present study not only evaluates the diagnostic performance of the proposed model 
under different noise levels, but also conducts experiments on multiple rolling bearing datasets and imbalanced 
data distributions to comprehensively demonstrate its cross-domain generalizability. Accordingly, the necessity 
of this research is reflected in the following aspects.

	(1)	 Multimodal Information Fusion: By fully leveraging the complementary advantages of CWT time–fre-
quency images and VMD-decomposed signals, a deep fusion of image and sequential data is achieved.

	(2)	 Feature Extraction Network Design: The Swin Transformer and CNN-BiGRU-Attention architectures are 
respectively employed to enable efficient extraction and modeling of features from different modalities.

	(3)	 Compact Bilinear Pooling: The introduction of the MCB module effectively integrates features from the two 
channels, thereby enhancing both the accuracy and generalization capability of fault diagnosis.

	(4)	 This paper proposes SCBM-Net, a dual-channel model for rolling bearing fault diagnosis, which effectively 
extracts fault features from non-stationary signals by leveraging both one-dimensional time-series data and 
two-dimensional time–frequency images. The model achieves accurate and reliable diagnosis performance. 
To evaluate its generalization capability, extensive experiments including ablation studies, cross-domain 
validation, few-shot learning, imbalanced data analysis, and noise robustness tests were conducted. The 
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results demonstrate that the proposed model exhibits superior performance across a range of challenging 
conditions.

Relevant theories
Continuous wavelet transform
The Continuous Wavelet Transform (CWT)22 is a time–frequency analysis method widely used for signal 
processing, capable of simultaneously providing localized information in both the time and frequency domains. 
Unlike traditional Fourier Transform, CWT performs localized analysis by employing a set of scalable and 
translatable mother wavelets. This allows for more effective handling of non-stationary signals and transient 
features, which is particularly significant in practical applications such as bearing fault diagnosis.

Letx(t)be a continuous signal, and letψ(t)be a mother wavelet that satisfies certain admissibility conditions 
(e.g., zero mean,

´ +∞
−∞ ψ(t)dt = 0), The Continuous Wavelet Transform (CWT) ofx(t)is defined as:

	
W (a, b) = 1√

a

ˆ +∞

−∞
x(t)ψ∗

(
t − b

a

)
dt� (1)

Here, α is the scale parameter, which controls the dilation or compression of the wavelet function;β is the 
translation parameter, determining the position of the wavelet in the time domain; ψ∗(·)denotes the complex 
conjugate of the mother wavelet; and 1√

a
is the normalization factor, used to ensure energy consistency across 

different scales.
The core idea of the CWT lies in computing the inner product between the signal and a family of self-similar 

wavelet functions, allowing the extraction of localized features at various scales and positions. Specifically, when 
the scale parameterαis small, the wavelet is compressed, resulting in high-frequency resolution; conversely, a 
largerαstretches the wavelet, capturing low-frequency components. This multi-scale analysis capability makes 
CWT particularly suitable for detecting signal discontinuities, impacts, and other transient features, which often 
serve as critical indicators in mechanical fault diagnosis.

Theoretically, as long as the mother wavelet satisfies certain conditions (such as the admissibility condition), 
the original signal x(t)can be perfectly reconstructed from its CWT. The inverse transform is given by:

	
x(t) = 1
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Here,Cψis the wavelet admissibility constant, defined as:

	
Cψ =

ˆ +∞

0

∣∣ψ̂(ω)
∣∣2

ω
dω� (3)

Where ψ̂(ω) denotes the Fourier transform of the mother wavelet in the frequency domain.
In this study, the CWT is employed to transform one-dimensional vibration signals into two-dimensional 

time–frequency images. After comparative analysis, the mother wavelet selected is ‘cmor100-1’, where cmor 
refers to the complex Morlet wavelet. In this configuration, the parameter 100 specifies the bandwidth, and 
1 denotes the center frequency. This selection enables effective capture of transient variations and localized 
frequency information within the signal, thereby providing a robust data representation for subsequent feature 
extraction using the Swin Transformer.

The resulting time–frequency images not only intuitively illustrate the time-varying characteristics of fault 
signals but also enhance the identification of subtle fault features. Figure 1 presents the CWT time–frequency 
images for different faulty bearings. As clearly illustrated in Fig. 1, the time–frequency images corresponding to 
different fault types exhibit significant differences, with well-defined structures and distinct features.

Variational mode decomposition
Signal processing is a critical component of fault diagnosis, and the application of effective signal processing 
techniques can significantly enhance diagnostic performance23. Variational Mode Decomposition (VMD)24, as 
an adaptive time–frequency analysis method, is capable of handling nonlinear and non-stationary signals with 
high analytical precision.

VMD is a non-recursive and adaptive signal decomposition method. Its adaptiveness lies in its ability to determine 
the number of Intrinsic Mode Functions (IMFs) based on the characteristics of the signal. When the signal is 
decomposed into K IMFs, the corresponding constrained variational model can be formulated as follows:

	

min
|uk| , |ωk|

{
ϑt

[(
δ(t) + j

πt

)
· uk(t)

]
e−jωkt2

2

}

s.t.
K∑

k=1
uk = x(t)

� (4)

In the formulation above: – K is the number of modes to be decomposed (a positive integer); x(t) denotes the 
input signal; uk represents the k-th Intrinsic Mode Function (IMF); wk denotes the center frequency of each 
IMF.

Scientific Reports |        (2025) 15:37904 3| https://doi.org/10.1038/s41598-025-21665-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To obtain the optimal solution to the variational problem, the Lagrangian function is introduced, leading to 
the augmented Lagrangian expression:

	

L({uk}, {ωk}, λ) = α
∑

k

∥∥∥ϑt

[(
δ(t) + j

πt

)
· uk(t)

]
e−iωkt

∥∥∥
2

2

+

∥∥∥∥∥x(t) −
∑

k

uk(t)

∥∥∥∥∥
2

2

+ λ(t) · x(t) −
∑

k

uk(t)
� (5)

α is the penalty parameter, which helps ensure reconstruction accuracy under noisy conditions; λ is the Lagrange 
multiplier.

Equation (5) is solved using the Alternating Direction Method of Multipliers (ADMM) to find the saddle 
point of the Lagrangian function, which corresponds to the optimal solution of the constrained variational 
model.

Both the penalty parameter αand the number of modes K significantly affect the decomposition results. 
While αprimarily influences the precision of the decomposition, an inappropriate choice of K may lead to 
modal components that do not correspond well to the actual characteristics of the signal, thereby degrading the 
effectiveness of subsequent analysis. In this study, K is empirically set to 4 by comparing the center frequencies 
obtained under different values of K with the frequency content of the original signal.

Convolutional neural network
Convolutional Neural Networks (CNNs) are a class of deep neural networks specialized in extracting 
local features and are widely used in image processing and signal analysis. In recent years, researchers have 
increasingly applied CNNs to time-series data to enhance feature extraction capabilities. Essentially, CNNs use 
filters to extract features from raw data and generate feature vectors, and employ activation functions to solve 
classification or regression tasks.

Fig. 1.  CWT time-frequency images of different faulty bearings.
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In this study, one-dimensional convolution is adopted to extract local features from each mode decomposed 
by VMD. The convolution operation captures localized time–frequency patterns, while pooling reduces noise 
and dimensionality, thereby providing enriched feature representations for subsequent sequence modeling.

Let the input signal be x (with a length of n), the one-dimensional convolutional kernel be w (with a length 
of k), and the bias term be b, Then, the convolution output at position i is given by:

	
y[i] = f

(
k−1∑
j=0

w[j] · x[i + j − p] + b

)
� (6)

f (·) denotes the Rectified Linear Unit (ReLU) non-linear activation function; p is the padding size, which is 
selected p = k−1

2  to preserve the same output length as the input.
The pooling layer is formulated as:

	 y[i] = maxj∈R(i)x[j]� (7)

R(i)denotes the pooling region (receptive field) centered at position i.
In this study, after multiple layers of convolution and pooling, the feature maps extracted by the CNN are 

utilized for subsequent sequence modeling. The purpose is to transform the rich local features embedded in the 
raw signal into higher-level representations.

Bidirectional gated recurrent unit
The Gated Recurrent Unit (GRU)25 is an improved variant of the traditional Recurrent Neural Network (RNN)26, 
designed to mitigate the vanishing gradient problem commonly encountered in long sequences by introducing 
gating mechanisms. The Bidirectional GRU (BiGRU) further enhances the model by simultaneously processing 
the sequence in both forward and backward directions, allowing it to capture contextual information from both 
past and future time steps. This bidirectional structure significantly improves the network’s ability to extract and 
model sequential dependencies.

In this study, BiGRU is employed to perform temporal modeling on the sequential features extracted by the 
CNN. This enables the network to effectively capture the dynamic variations and long-term dependencies within 
the vibration signals.

For a single GRU unit, let the current input be xt and the hidden state from the previous time step be ht − 1​
. The computation steps are as follows:

	(1)	 Update Gate:

	 zt = σ (Wzxt + Uzht−1 + bz)� (8)

	Where W z is the input weight matrix, Uz is the recurrent weight matrix, and bz​ is the bias vector of the update 
gate. The function σ(·) denotes the sigmoid activation, whose output lies in the range [0, 1], controlling the 
trade-off between retaining the previous information and incorporating new input.

	(2)	 Reset Gate:

	 rt = σ (Wrxt + Urht−1 + br)� (9)

	where W r, Ur, and br​ are the input weights, recurrent weights, and bias vector of the reset gate, respectively.

	(3)	 Candidate Hidden State:

	 h̃t = tanh (Whxt + Uh (rt ⊙ ht−1) + bh)� (10)

	W h: Input weight matrix for the candidate hidden state; Uh: Recurrent weight matrix for the candidate hidden 
state; bh: Bias vector for the candidate hidden state; ⊙: Element-wise multiplication operator; tanh(·)Hyper-
bolic tangent activation function, which introduces nonlinearity and maps the output to the range [− 1, 1].

	(4)	 Hidden State Update:

	 ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t� (11)

	This equation blends the previous hidden state ht − 1​ and the candidate hidden state h̃t​ according to the update 
gate zt, thereby determining how much of the past information is preserved.

In the Bidirectional GRU (BiGRU), both forward and backward GRUs are computed at each time step:
Forward GRU: Processes the sequence in the original time order to compute the forward hidden state ⃗ht​.
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Backward GRU: Processes the sequence in reverse time order to compute the backward hidden state 
←−
ht ​.

Finally, the forward and backward hidden states are concatenated at each time step to form the combined 
hidden representation:

	
hbi

t =
[

h⃗t;
←
ht

]
∈ R2dh � (12)

This concatenation ensures that the hidden representation at each time step contains information from both 
the past (forward direction) and the future (backward direction), thereby capturing comprehensive temporal 
features of the sequence.

Swin transformer
The Swin Transformer16 is a hierarchical vision transformer designed to address the limitations of traditional 
transformers in terms of computational complexity and their inefficiency in processing high-resolution images. The 
Swin Transformer divides an input image into several non-overlapping windows and performs local self-attention 
within each window. By employing a hierarchical architecture, it progressively merges features across layers, which not 
only reduces computational cost but also enables the extraction of multi-scale information. Within each local window, 
the Swin Transformer computes self-attention to capture local contextual relationships. This localized attention 
mechanism significantly lowers the computational burden while preserving critical local features.

To overcome the limitations imposed by fixed window partitions, the Swin Transformer introduces a shifted 
window mechanism, in which the windows are shifted across adjacent layers. This strategy allows for cross-
window interactions, thereby facilitating feature fusion across different spatial regions. Similar to conventional 
transformers, the Swin Transformer employs a multi-layer perceptron (MLP) following the self-attention 
modules. Additionally, residual connections and layer normalization are incorporated to enhance model stability 
and overall performance.

For the feature representation within a local window X ∈ RN×d (where N denotes the number of patches in 
the window and d represents the feature dimension), linear projections are first applied to obtain the Query (Q), 
Key (K), and Value (K) matrices:

	 Q = XW Q, K = XW K , V = XW V � (13)

Where W Q, W K , W V ∈ Rd×d are learnable weight matrices.
The attention scores are computed and normalized as follows:

	
Attention(Q, K, V ) = softmax

(
QKT

√
d

)
V � (14)

Equation (15) performs self-attention within each local window. Specifically, the similarity between queries and 
keys is calculated using the dot product, scaled by 

√
d to mitigate the effect of large dot product values, and 

normalized using the Softmax function. The resulting weights are then used to compute a weighted sum of the 
value matrix V, yielding the output feature representations.

To capture more comprehensive information, the Swin Transformer typically employs a multi-head self-
attention mechanism. This involves executing the self-attention operation in multiple distinct subspaces in 
parallel, then concatenating the results and projecting them through a linear transformation:

	 MultiHead(X) = Concat(head1, . . . , headh)W O � (15)

Each attention head is computed as:

	 headi = Attention(XW Q
i , XW K

i , XW V
i )� (16)

Where W Ois the output projection matrix.
After the attention operation in each Transformer layer, residual connections and layer normalization are 

applied:

	 X̂ = LN(X + MultiHead(X))� (17)

This is followed by a two-layer Multi-Layer Perceptron (MLP) module:

	 X ′ = LN(X̂ + MLP(X̂))� (18)

The MLP typically consists of two fully connected layers interleaved with a non-linear activation function, 
enhancing the model’s representational capacity.

Multimodal compact bilinear pooling
Multimodal Compact Bilinear Pooling (MCB)27 enables efficient approximation of outer product interactions 
between multiple modalities by projecting the input features into a higher-dimensional space using randomized 
mappings and convolution in the frequency domain. While originally proposed for visual question answering, 
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MCB can be effectively applied to bearing fault diagnosis due to its ability to capture high-order correlations 
between heterogeneous modalities, such as time–frequency representations (from CWT) and sequential signal 
features (from VMD). By modeling cross-modal interactions, MCB enhances fault-discriminative information 
that may not be apparent when modalities are considered separately, thus providing domain-specific adaptation.

Assuming the input feature vectors x ∈ Rdx and y ∈ Rdy ​, and a target fusion dimension d, the MCB process 
comprises four main steps:

Random hashing and sign mapping
Two randomized hash functions hx, hy : [1, dx] → [1, d]are defined to map original feature indices to the target 
fusion space:

	 hx(i) ∼ Uniform{1, d}, hy(j) ∼ Uniform{1, d}� (19)

Corresponding sign functions sx, sy : [1, dx] → {−1, +1}are generated independently:

	 sx(i) ∼ Bernoulli(0.5), sy(j) ∼ Bernoulli(0.5)� (20)

These parameters control how the original features are randomly distributed across the fused space. A larger 
fusion dimension d reduces approximation error, thereby improving the quality of cross-modal interactions.

	(1)	 Count Sketch Projection:

	The input features are projected into the fusion space using Count Sketch:

	 x̃ = CountSketch(x, hx, sx), ỹ = CountSketch(y, hy, sy)� (21)

	This step approximates the outer product between x and ywithout explicitly computing the dx × dymatrix, pre-
serving second-order interactions efficiently.

	(2)	 Frequency-Domain Convolution.

	Apply Fast Fourier Transform (FFT) to x̃and ỹ​:

	 X = FFT(x̃), Y = FFT(ỹ)� (22)

	Element-wise multiplication in the frequency domain yields:

	 Z = X ⊙ Y � (23)

	This operation corresponds to convolution in the Count Sketch space and encodes cross-modal correlations 
while maintaining computational tractability.

	(3)	 Inverse Transformation and Real Component Extraction.

	Apply inverse FFT and take the real part to obtain the fused feature vector:

	 z = Re(FFT−1(Z))� (24)

	The resulting vector z ∈ Rdapproximates the full second-order interactions between the original feature vectors. 
This fused representation enhances fault-discriminative information by integrating complementary insights 
from time–frequency images and sequential signal features while significantly reducing memory and compu-
tation costs.

	By explicitly stating the role of random projections and sign mappings, MCB provides a theoretically grounded 
and domain-adapted method for multimodal fusion in bearing fault diagnosis, balancing approximation ac-
curacy and computational efficiency.

SCBM-net method
CWT Channel: To effectively capture the time-frequency characteristics of vibration signals, the image branch 
employs Continuous Wavelet Transform (CWT) to convert raw one-dimensional signals into two-dimensional 
time-frequency representations. Specifically, the complex Morlet wavelet function (cmor100-1) is utilized to 
perform CWT on the input signal, generating a time-frequency image (TFI) of size 224 × 224. This image reflects 
the energy distribution of the signal across different time and scale domains, enabling robust characterization of 
non-stationary behavior and modal diversity. The generated TFI is then fed into a Swin Transformer-based feature 
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extractor. This network consists of four hierarchical stages (Stage 1–4), each comprising patch partitioning (with 
a patch size of 4 × 4), linear embedding (embedding dimension = 96), window-based multi-head self-attention 
(window size = 7), and multi-scale feature aggregation. The final output is a global image-level feature vector with 
a dimensionality of 768, which serves as input for subsequent multimodal fusion.

VMD Channel: To enhance the model’s capability in representing local mode components within non-stationary 
signals, the sequence branch applies Variational Mode Decomposition (VMD) followed by a lightweight hybrid 
modeling module based on CNN and BiGRU. VMD decomposes each input signal into K = 4 Intrinsic Mode 
Functions (IMFs), which are stacked into a multi-channel input tensor of shape (4, 1024). This structure preserves 
distinct frequency components and facilitates the modeling of complementary modal information.

The multi-channel tensor is processed through a feature extraction backbone consisting of three one-
dimensional convolutional layers followed by a single-layer bidirectional gated recurrent unit (BiGRU). The 
convolutional block performs convolution, non-linear activation (ReLU), and max pooling operations to capture 
localized temporal patterns. The resulting sequence is fed into the BiGRU module, which models bidirectional 
temporal dependencies. An attention mechanism is then applied to perform weighted aggregation over the 
BiGRU outputs, producing a sequence-level feature vector with a dimensionality of 128. This architecture is 
designed to effectively extract and integrate temporal features for industrial fault diagnosis tasks.

To further evaluate the computational cost of each module in the dual-channel fault diagnosis framework, 
we computed the parameter counts and floating-point operations (FLOPs) for Swin Transformer, CNN, BiGRU, 
Attention, and the MCB fusion module. The results are summarized in Table 1.

It is evident that the Swin Transformer constitutes the majority of both parameters and FLOPs, while the 
VMD branch modules contribute relatively minor computational load. This distribution is consistent with 
the design rationale: the CWT branch, processed by the Swin Transformer, extracts rich hierarchical spatial 
features from time-frequency images, which are critical for accurate fault discrimination. Meanwhile, the VMD 
branch provides complementary temporal features through CNN, BiGRU, and attention, requiring relatively less 
computation. Therefore, the Swin Transformer dominating the overall computational complexity is reasonable 
and aligned with its primary role in capturing the most informative fault-related patterns.

The overall fault diagnosis procedure of the SCBM-Net model is illustrated in Algorithm 1 and Fig. 2. The 
detailed steps are as follows:

Step 1: The original vibration signals are preprocessed using a sliding window technique. Overlapping time 
series segments of equal length are generated with a fixed stride, ensuring temporal continuity between samples. 
The dataset is then divided into training and testing sets according to a predefined ratio to maintain consistency 
and balance.

Step 2: Continuous Wavelet Transform (CWT) is applied to the preprocessed time series signals, converting 
one-dimensional vibration data into two-dimensional time-frequency representations. CWT effectively 
preserves the time-frequency dependency of the signals, maintains the integrity of the features, and introduces 
spatial characteristics that enhance classification performance. Additionally, the relatively small size of the 
CWT-generated images reduces storage and computational costs.

Step 3: Variational Mode Decomposition (VMD) is employed to decompose the raw signals into a set of 
Intrinsic Mode Functions (IMFs). This adaptive decomposition enhances the discriminability of fault-related 
features and effectively suppresses noise interference. VMD allows for the extraction of key features across 
multiple temporal scales, improving the separability of different modal components in the feature space.

Step 4: A multimodal dataset is constructed, ensuring the consistency of inputs between the two channels. 
The time-frequency images generated by CWT and the sequential tensor data obtained from VMD are aligned 
via a strict sample ID matching mechanism. This guarantees synchronization of input data across both channels 
and enables joint feature extraction from time-frequency images and time-domain signals.

Step 5: A parallel dual-channel deep learning model is constructed. In Channel 1, a Swin Transformer is used 
to extract features from the CWT time-frequency images. Its hierarchical representation structure and shifted 
window self-attention mechanism allow effective modeling of both local and global information, enhancing the 
network’s capability to express image features. In Channel 2, a CNN-BiGRU-Attention network is employed 
to extract features from the VMD-decomposed sequential signals. CNN captures local temporal patterns, 
BiGRU models temporal dependencies in both forward and backward directions, and the attention mechanism 
adaptively emphasizes key fault-related features while suppressing irrelevant information.

Step 6: The features extracted from both channels are fused to enhance fault classification performance. 
A Multimodal Compact Bilinear (MCB) pooling module is used to deeply integrate features from both 
channels, achieving complementary enhancement of multimodal information. Adaptive average pooling and 
dimensionality reduction are applied to reduce computational complexity. In the final classification stage, a fully 
connected layer followed by a Softmax classifier is used to identify fault types. The effectiveness and robustness 
of the model are validated through experimental evaluation metrics and visualization analyses.

Module Parameters FLOPs

Swin transformer 86.87 M 15466.9 M

CNN 31.3 K 19.66 M

BiGRU 494.6 K 1346.37 M

Attention 98.7 K 134.48 M

MCB 0 57.34 K

Table 1.  Model complexity analysis of each module (parameters and FLOPs).
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Theoretical justification of SCBM-Net
To provide a rigorous theoretical foundation for the proposed SCBM-Net and explain why its architectural 
design achieves superior performance in bearing fault diagnosis, this section presents a detailed analysis 
from three complementary perspectives: feature complementarity, dual-channel design effectiveness, and the 
representational advantages of multimodal compact bilinear (MCB) fusion.

Algorithm 1.  SCBM‑net fault diagnosis.
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Complementarity of CWT and VMD features
Let x(t) denote the raw vibration signal. The Continuous Wavelet Transform (CWT) represents the signal as:

	
Wx(a, b) =

ˆ ∞

−∞
x(t)ψ∗

a,b(t)dt� (25)

Fig. .  (continued)
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where a and b are the scale and translation parameters, and ψa,b(t) is the wavelet basis function. Small values 
of a emphasize high-frequency transient components, whereas large a capture low-frequency oscillatory trends. 
Hence, CWT effectively encodes localized transient and impact features, which are essential for identifying fault 
events in bearings.

On the other hand, Variational Mode Decomposition (VMD) decomposes x (t) adaptively into K intrinsic 
mode functions (IMFs):

	
x(t) =

K∑
k=1

uk(t), uk(t) ∼ narrow-band signal with center frequency ωk.� (26)

Lower-order IMFs represent high-frequency impulsive patterns, while higher-order IMFs capture low-frequency 
oscillatory behavior. VMD thus provides an alternative representation of the signal dynamics, focusing on 
intrinsic oscillatory modes and long-range temporal dependencies.

From a representational perspective, CWT and VMD features are complementary: CWT emphasizes local 
transient information, while VMD captures global oscillatory patterns. This justifies the dual-channel design: 
single-modality models cannot simultaneously encode local impacts and global oscillatory dynamics, whereas 
a dual-channel architecture integrates both sources of information, theoretically enhancing discriminative 
capacity.

Representational advantage of MCB fusion
A key innovation of SCBM-Net is the use of Multimodal Compact Bilinear (MCB) pooling, which captures 
second-order interactions between heterogeneous features. Let fCWT ∈ Rd1  and fVMD ∈ Rd2 denote the feature 
vectors extracted from the CWT and VMD channels, respectively. The fused representation is approximated as:

	 fMCB ≈ fCWT ⊗ fVMD� (27)

where ⊗ denotes the vector outer product. Unlike simple concatenation, MCB encodes nonlinear cross-modal 
dependencies, improving feature separability in the joint latent space.

Specifically, for sample , the fusion can be expressed as:

	 (fMCB)i = F−1 (F(CS(fCWT)) · F(CS(fVMD)))� (28)

where CS(·)denotes Count Sketch projection, F  and F−1are Fourier transform and its inverse, and the 
pointwise multiplication  in the frequency domain implements convolution. This mechanism systematically 
captures second-order cross-modal interactions, which theoretically increases discriminative power in complex 
fault scenarios.

Feature redundancy and complementarity
While CWT and VMD provide distinct perspectives of the same vibration signal, it is theoretically necessary 
to characterize the relationship between their extracted features in terms of redundancy and complementarity. 

Fig. 2.  Flowchart of the SCBM-Net Model.

 

Scientific Reports |        (2025) 15:37904 11| https://doi.org/10.1038/s41598-025-21665-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Let fCW T ∈ Rd1 and fV MD ∈ Rd2 ​ denote the feature vectors obtained from the CWT and VMD channels, 
respectively.

Feature Redundancy: Redundancy reflects the extent of overlapping information between modalities. It can 
be quantitatively defined using normalized mutual information:

	
R(fCW T , fV MD) = I(fCW T ; fV MD)

min{H(fCW T ), H(fV MD)} � (29)

where I(·; ·)denotes the mutual information and H(·)the Shannon entropy. A large R value indicates high 
redundancy, meaning that both feature sets carry similar information.

Feature Complementarity: Complementarity describes the additional information gained when combining 
features from both modalities. It can be measured by:

	 C(fCW T , fV MD) = H(fCW T , fV MD) − max{H(fCW T ), H(fV MD)}� (30)

where H(fCW T , fV MD) is the joint entropy. IfC > 0, the fused representation encodes more information than 
any single modality, demonstrating the presence of complementary characteristics.

These definitions provide a rigorous theoretical basis for the dual-channel design: CWT emphasizes localized 
transient dynamics while VMD encodes oscillatory modes, and their fusion is expected to maximize C while 
controlling R. This justifies the use of MCB pooling to exploit second-order interactions while mitigating 
redundant correlations.

Uniqueness of the dual-channel architecture
SCBM-Net’s advantage does not arise merely from combining existing modules, but from a carefully designed 
sample-aligned dual-channel architecture:

CWT Channel: The Swin Transformer models hierarchical spectral structures in CWT images, providing 
global–local contextual representation of fault transients.

VMD Channel (CNN-BiGRU-Attention): CNN extracts local IMF patterns, BiGRU captures long-range 
temporal dependencies, and the attention mechanism adaptively highlights the most fault-relevant modes.

MCB Fusion Layer: Achieves second-order interactions in the feature space, theoretically enhancing 
representational capacity and improving separability.

The precise alignment between CWT images and their corresponding VMD decompositions ensures that 
complementary information is maximally leveraged, which cannot be achieved by naive feature concatenation 
or independent unimodal models.

Theoretical insight and methodological significance
In summary, SCBM-Net’s theoretical advantage and uniqueness can be outlined as follows:

Integrates complementary information from CWT and VMD features, capturing both local transients and 
global oscillatory behavior.

Utilizes MCB pooling to encode second-order cross-modal interactions, enhancing feature separability and 
discriminative capacity.

Employs a sample-aligned dual-channel architecture with attention-guided selection of informative VMD 
modes, further improving fault-relevant feature representation.

This design is theoretically justified: the dual-channel architecture systematically exploits complementary 
signal representations, and MCB fusion captures nonlinear cross-modal dependencies. These aspects provide 
clear theoretical reasoning for the superior empirical performance of SCBM-Net over simple module 
combinations or unimodal approaches.

Experimental validation
Data source
To evaluate the effectiveness of the proposed fault diagnosis method, experiments were conducted using the 
publicly available bearing dataset provided by Case Western Reserve University (CWRU), USA. This dataset 
includes bearing vibration signals collected under various fault conditions and operating scenarios. The 
experimental testbed is illustrated in Fig. 3.

In this study, vibration signals were collected from the drive-end sensor under an operational condition with 
a motor speed of 1772 RPM and a sampling frequency of 12 kHz. The investigated bearing faults include three 
typical defect types: inner race, outer race, and ball faults, with defect diameters of 0.1778 mm, 0.3556 mm, and 
0.5334 mm, respectively. The detailed information on the dataset, including samples from normal bearings and 
ten different fault categories, is summarized in Table 2.

All experiments were conducted using the PyTorch deep learning framework. The hardware configuration 
used for training and evaluation comprises an Intel(R) Core(TM) i9-14900 K CPU at 3.20 GHz, an NVIDIA 
GeForce RTX 4090 GPU, and 64 GB of RAM. To ensure the reliability and consistency of the experimental 
results, each experiment was repeated with different random seeds, and the average performance was reported.

The model training time per epoch was approximately 7 s. Memory consumption is moderate, with each 
batch of 32 samples requiring approximately 3–4 GB of GPU memory. The proposed method is amenable to 
parallelization across multiple GPUs, which enables potential scalability to larger datasets. Inference is sufficiently 
fast for real-time industrial fault diagnosis applications, demonstrating that the method is both computationally 
efficient and practically deployable.
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To eliminate the possibility of cherry-picking, all critical hyperparameters were optimized through systematic 
grid search combined with validation performance monitoring. Candidate values for the learning rate were set 
to {1e-5, 1e-4, 1e-3}, while batch sizes of {16, 32, 64} were tested. The optimal configuration was determined 
based on the highest average F1-score on the validation set.

Model training was performed with the Adam optimizer and weight decay for regularization. A StepLR 
scheduler was applied to reduce the learning rate by a factor of 0.1 every 10 epochs, thereby facilitating stable 
convergence. The batch size was set to 32, which provided a good balance between convergence stability and 
GPU memory efficiency. Early stopping with a patience of 5 epochs on the validation accuracy was used to 
prevent overfitting, and dropout (p = 0.2) was applied in the BiGRU layers. The cross-entropy loss was employed 
as the optimization objective. Training proceeded for up to 50 epochs, and the model parameters that achieved 
the best validation accuracy were preserved for testing.

To ensure reproducibility, all experiments were conducted with fixed random seeds applied to PyTorch, 
NumPy, and Python’s random module, and deterministic behavior was enforced by disabling non-deterministic 
CUDA operations. The main implementation environment included Python 3.10, PyTorch 2.6.0 with CUDA 
12.4, and torchvision 0.21.0 with CUDA 12.4. All critical training and model parameters, including optimizer 
settings, learning rate schedule, batch size, number of epochs, early stopping criteria, regularization techniques, 
model dimensions, and random seed, are summarized in Table 3, providing sufficient information for replication 
of all reported results.

VMD data processing
The continuous one-dimensional time-series vibration signals are segmented into multiple samples of fixed 
length, each containing 1024 data points, using a sliding window approach with a 50% overlap rate. Each 
sample is assigned a unique global sample ID and its corresponding fault label. To ensure data balance across 
different fault categories, 200 samples are randomly selected from each fault type. These are further divided into 
140 training samples and 60 testing samples per category, ensuring that the dataset satisfies the experimental 
requirements.

In this study, the Variational Mode Decomposition (VMD) algorithm is employed to preprocess the original 
signals, which are subsequently converted into PyTorch tensors. For each sample, the VMD algorithm adaptively 
decomposes the signal into a series of Intrinsic Mode Functions (IMFs). Taking the IR007 fault signal as an 
example, the time-domain decomposition results are illustrated in Fig. 4(a). The original signal is decomposed 

Fault type Label Damage diameter (mil) Training set Test set

N 0 – 140 60

IR007 1 7 140 60

B007 2 7 140 60

OR007 3 7 140 60

IR014 4 14 140 60

B014 5 14 140 60

OR014 6 14 140 60

IR021 7 21 140 60

B021 8 21 140 60

0R021 9 21 140 60

Table 2.  Public bearing dataset collected by CWRU.

 

Fig. 3.  CWRU bearing vibration dataset experimental platform.
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into multiple IMFs (IMF1–IMF4), each exhibiting distinct oscillatory characteristics corresponding to different 
frequency components. Lower-order IMFs primarily capture high-frequency transient impact features, 
highlighting sharp fault pulses, whereas higher-order IMFs reflect more stable low-frequency trends, aiding 
in the representation of global vibration patterns and slow-varying features. This multiscale time-domain 
decomposition enables a clear separation of fault-related information across various frequency bands, thus 
enhancing the input quality for downstream feature extraction tasks.

Figure 4(b) presents the frequency-domain decomposition of the VMD-processed signal. Each IMF shows 
concentrated spectral energy in specific frequency bands: IMF1 and IMF2 exhibit prominent peaks in the 
high-frequency range, capturing transient impact signatures, while IMF3 and IMF4 concentrate energy in the 
mid- and low-frequency bands, representing broader structural vibrations and global trends. Compared with 
the spectrum of the original signal, the decomposed components exhibit cleaner spectral characteristics with 
reduced noise interference, thereby improving the discriminability of fault features.

Figure  4(c) compares the original signal, the reconstructed signal, and the residual. The reconstructed 
signal (red dashed line) closely overlaps with the original signal (black solid line), while the residual (green 
line) shows minimal amplitude with no apparent periodic patterns. This indicates that VMD decomposition 
effectively preserves the principal signal components while suppressing noise, thereby achieving high-fidelity 
signal reconstruction.

In summary, the VMD algorithm, through its multimodal decomposition strategy, enhances fault-related 
features across both time and frequency domains. It successfully retains the global trend while extracting 
local transient details, providing rich and high-quality input features for subsequent fault classification and 
identification.

To rigorously justify the selection of the decomposition mode number K and evaluate the quality of VMD 
decomposition, we conducted a systematic analysis using both quantitative metrics and physical validation.

The selection of the decomposition mode number K is critical for ensuring that Variational Mode 
Decomposition (VMD) can effectively separate the intrinsic mode functions (IMFs) corresponding to different 
vibration components in bearing signals. To systematically justify the choice of K, we evaluated K = 2,3,4,5,6 and 
quantified the decomposition quality using reconstruction error (RE) and orthogonality index (OI). In addition, 
the classification performance of the VMD-based channel model—including accuracy, precision, recall, and F1 
score—was assessed for each K. The results are summarized in Table 4.

Analysis of Table  4 shows that K = 4 achieves the best trade-off between decomposition fidelity and 
orthogonality, while simultaneously maximizing classification accuracy. Lower K values result in insufficient 
mode separation, leading to overlapping frequency components and reduced classification performance. 
Conversely, higher K values introduce redundant IMFs without improving classification, and can even slightly 
degrade performance due to mode splitting.

The penalty parame αand convergence tolerance τare critical hyperparameters in VMD that control 
the trade-off between mode bandwidth and reconstruction fidelity. We performed a grid search with 
α ∈ {1000, 2000, 5000}andτ ∈ {10-6, 10-7, 10-8}, and evaluated the resulting decomposition quality (RE, 
OI) and classification performance. The results are summarized in Table 5.

The optimal combination of α= 2000 and τ = 1 × 10−7 yields both low reconstruction error and high 
orthogonality while achieving the highest classification accuracy (97.50%) and F1-score (0.9732). These results 
demonstrate that proper tuning of α and τ  is essential to ensure that each IMF captures a physically meaningful 
component rather than numerical noise.

To validate the physical significance of the extracted intrinsic mode functions (IMFs), a representative 
analysis was conducted using the de_7_inner bearing signal, which is known to contain an inner race fault 
with a theoretical characteristic frequency of 161 Hz. Figure 5 presents the envelope spectra of the four IMFs 
obtained via the VMD algorithm with parametersK = 4, α  =  2000, and τ = 1 × 10−7. Each IMF exhibits 
distinct frequency components corresponding to different vibration modes of the bearing, and the theoretical 
fault frequency (161 Hz), marked by a black dashed line, aligns closely with the dominant peaks across the four 
IMFs. The clear separation of frequency components demonstrates the effectiveness of the modal decomposition 
and confirms that the extracted IMFs capture physically meaningful fault-related signals.

The above analysis demonstrates that choosing K = 4with optimized parameters α and τ  yields IMFs of 
high quality and clear physical interpretability. This configuration not only minimizes reconstruction error 
and enhances mode orthogonality, but also facilitates superior classification performance, as the downstream 

Category Parameter Value/range

Optimizer Adam lr = 0.0001, weight decay = 1e − 5

Learning rate schedule StepLR Step size = 10, gamma = 0.1

Batch size – 32

Epochs – 50

Early stopping Validation accuracy Patience = 5

Loss function – CrossEntropyLoss

Dropout BiGRU layers 0.2

Random seed – 42

Table 3.  Model training parameters and hyperparameter values.
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CNN-BiGRU-Attention model can effectively extract discriminative features from the well-separated IMFs. 
Consequently, the VMD parameter selection is justified both quantitatively, through reconstruction error and 
orthogonality index, and physically, through envelope spectrum validation, thereby providing a robust and 
reliable basis for bearing fault diagnosis.

Fig. 4.  VMD decomposition of the vibration signal and its frequency-domain representation.
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CWT data processing
The vibration signal samples in the dataset are transformed into two-dimensional time–frequency images 
using the Continuous Wavelet Transform (CWT) algorithm. These images are then used as the input data 
for the Swin Transformer network. As illustrated in Fig. 6, the time–frequency images corresponding to the 
ten different bearing conditions exhibit notable variations in texture patterns and energy distributions. These 
visual differences provide the fault diagnosis model with critical discriminative information, thereby enhancing 
classification accuracy and robustness to noise.

In scenarios involving similar fault types or complex noise backgrounds, the refined time–frequency features 
extracted by CWT offer more informative representations. These features facilitate multi-level convolution 
and attention mechanisms within the model, enabling the network to acquire deeper discriminative cues and 
ultimately achieve accurate identification of fault modes.

To rigorously validate the selection of the mother wavelet and its associated parameters for rolling bearing fault 
diagnosis, a comparative study was conducted. Specifically, six representative wavelets were evaluated: complex 
Morlet wavelets (cmor40-1, cmor100-1, cmor160-1), Daubechies wavelet (db8), Mexican Hat wavelet (mexh), 
and the classical Discrete Wavelet Transform (DWT) approach. All experiments employed the same dataset, 
a consistent sliding window segmentation strategy, and fixed training configurations to ensure comparability. 

Fig. 5.  Example envelope spectrum for de_7_inner operating condition.

 

α τ RE OI Accuracy (%) Precision Recall F1-score

1000 10-6 0.185133 0.339019 94.00% 0.9442 0.9400 0.9347

1000 10-7 0.184928 0.339040 94.33% 0.9508 0.9433 0.9409

1000 10-8 0.184867 0.339051 95.33% 0.9544 0.9533 0.9516

2000 10-6 0.261097 0.282827 96.83% 0.9695 0.9683 0.9677

2000 10-7 0.260675 0.282948 97.50% 0.9726 0.9750 0.9732

2000 10-8 0.260630 0.282974 96.50% 0.9651 0.9650 0.9643

5000 10-6 0.393508 0.090837 97.00% 0.9698 0.9700 0.9697

5000 10-7 0.393401 0.090806 96.50% 0.9660 0.9650 0.9638

5000 10-8 0.393400 0.090808 96.67% 0.9672 0.9667 0.9662

Table 5.  Performance comparison at different parameters αand τ .

 

K RE OI Accuracy (%) Precision Recall F1-score

2 0.532234 0.002951 85.83% 0.8676 0.8583 0.8453

3 0.302973 0.113116 91.83% 0.9223 0.9183 0.9147

4 0.260675 0.282948 97.50% 0.9726 0.9750 0.9732

5 0.208848 0.254858 94.67% 0.9496 0.9467 0.9446

6 0.172572 0.337792 94.67% 0.9497 0.9467 0.9442

Table 4.  Performance comparison at different modal numbers K.
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Representative time–frequency comparison images of sample signals are shown in Fig. 7, and these images were 
used as inputs to the Swin Transformer network. The corresponding classification performance is summarized 
in Table 6.

As illustrated in Fig.  7, the comparative visualization further demonstrates that the cmor100-1 wavelet 
provides a clearer capture of transient impulses and generates more stable and compact time–frequency features.

As summarized in Table 6, the cmor100-1 wavelet achieves the best classification performance among all 
considered wavelets. This superiority can be attributed to the consistency between its theoretical characteristics 
and the inherent frequency properties of rolling bearing fault signals.

Theoretical basis for parameter selection: Based on a 12  kHz sampling frequency and typical bearing 
geometric parameters, bearing fault pulse signals are primarily concentrated in the 1–10 kHz frequency range. 
In the cmor100-1 wavelet, the bandwidth parameter (Bandwidth = 100) was specifically selected to enhance 
frequency resolution, enabling precise separation of narrowband pulse components associated with local faults. 
Meanwhile, the center frequency (Center frequency = 1) ensures time fidelity, minimizing distortion of transient 
events and preserving the sharp signal features required for accurate fault diagnosis.

Time-Frequency Resolution Trade-off: The continuous wavelet transform (CWT) inherently exhibits a 
fundamental trade-off between temporal and spectral resolution. Mathematically, the time resolution Δt and 
frequency resolution Δf satisfy the inequality:

	
∆t · ∆f ⩾ 1

4π
� (31)

Fig. 7.  Comparison of mother wavelets for time–frequency representation.

 

Fig. 6.  Two-dimensional time-frequency images.
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Increasing the bandwidth improves frequency resolution but compromises temporal localization, whereas 
decreasing the bandwidth enhances temporal resolution at the expense of frequency discrimination. Considering 
that rolling bearing fault diagnosis relies critically on capturing narrow-band impulsive events, cmor100-
1 provides an optimal compromise between time and frequency resolution, balancing the need for detailed 
frequency information and accurate temporal representation.

To further evaluate robustness, a sensitivity study was conducted by varying the bandwidth parameter across 
[40, 100, 160] and the center frequency across [0.5, 1, 2]. The classification accuracy fluctuated within ± 0.9%, 
This confirms that the proposed diagnostic approach does not critically depend on a narrowly tuned mother 
wavelet, thereby ensuring generalizability.

In conclusion, the selection of cmor100-1 is strongly justified by (i) its theoretical capacity to balance time-
frequency resolution in accordance with the characteristics of bearing fault signals, (ii) its superior empirical 
performance in classification tasks, and (iii) its demonstrated robustness under parameter variations.

CWT channel network design
To provide theoretical support for the architectural choices in the proposed dual-channel model, we analyze the 
use of Swin Transformer in the CWT channel from multiple perspectives, including hierarchical representation, 
patch and window size selection, computational efficiency, and the shifted window attention mechanism.

The continuous wavelet transform (CWT) converts vibration signals into time-frequency images that 
simultaneously contain local transient impulses and global spectral patterns. The hierarchical structure of Swin 
Transformer is particularly suitable for extracting multiscale features from such images: lower layers capture 
fine-grained local patterns corresponding to early-stage fault impulses, while higher layers encode more global 
frequency information. This multiscale modeling aligns naturally with the characteristics of CWT images and 
facilitates discriminative feature learning, which may be less efficiently captured by standard ViT or CNN 
architectures due to their fixed-scale receptive fields.

The choice of patch size and window size plays a critical role in balancing local detail extraction and 
computational efficiency. To systematically evaluate these parameters, we conducted experiments with varying 
patch sizes {4, 8} and window sizes {5, 7, 9}. The results, summarized in Table 7, indicate that a patch size of 4 × 4 
combined with a window size of 7 × 7 achieves the best trade-off between fine-grained feature extraction and 
global context modeling, justifying its selection.

To further validate the design, we compared Swin Transformer with alternative architectures including 
ViT, ConViT, DeiT-S, and Mixer-B under identical dataset and training conditions. As shown in Table 8, Swin 
Transformer achieves the highest overall accuracy while maintaining moderate computational complexity 
(FLOPs) and parameter size, demonstrating a favorable balance between representation capacity and efficiency.

An important component contributing to Swin Transformer’s effectiveness is the shifted window attention 
mechanism, which partitions the feature map into non-overlapping windows and alternates window positions 
across layers. This design allows cross-window information exchange while keeping computational complexity 
linear with respect to image size. Compared with standard multi-head self-attention, the shifted window 
approach enhances the model’s ability to capture long-range dependencies in CWT images, which is critical for 
identifying bearing fault patterns distributed across both time and frequency domains.

In summary, the hierarchical multiscale representation, systematically optimized patch and window sizes, 
and shifted window attention mechanism collectively provide a theoretically grounded and empirically validated 
rationale for employing Swin Transformer in CWT-based bearing fault diagnosis.

Patch size Window size Accuracy Precision Recall F1 Score

4 5 98.50% 0.9870 0.9850 0.9850

4 7 99.33% 0.9938 0.9933 0.9951

4 9 98.50% 0.9858 0.9850 0.9850

8 5 99.17% 0.9920 0.9917 0.9917

8 7 97.83% 0.9798 0.9783 0.9781

8 9 99.00% 0.9904 0.9900 0.9900

Table 7.  Patch size and window size optimization for Swin Transformer.

 

Mother wavelet Accuracy (%) Precision Recall F1-score

cmor40-1 98.50% 0.9857 0.9850 0.9850

cmor100-1 99.33% 0.9938 0.9933 0.9951

cmor160-1 99.00% 0.9900 0.9900 0.9900

morl 94.67% 0.9517 0.9467 0.9459

mexh 92.67% 0.9305 0.9267 0.9271

DWT 50.50% 0.5165 0.5050 0.4906

Table 6.  Classification performance with different mother wavelets.
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Ablation study
Validation based on the CWRU dataset shows the training loss and accuracy curves as depicted Fig. 8.

The figure reveals that training loss rapidly decreases and approaches zero within the first few epochs, while 
training accuracy increases sharply and stabilizes near 100%. This indicates that the proposed model achieves 
effective convergence within a limited number of iterations, demonstrating strong fitting and convergence 
capabilities.

Furthermore, Under the conditions of the publicly available CWRU dataset, the proposed model ultimately 
achieved an accuracy of 99.83%, as illustrated in Fig. 9.

To further assess the robustness and reliability of the model, a 5-fold cross-validation was conducted, in 
which the dataset was randomly partitioned into training (80%) and validation (20%) subsets in each fold, 
ensuring no sample overlap between folds. The performance metrics of Accuracy, Precision, Recall, and F1-score 
were computed for each fold, and the mean and standard deviation across folds are presented in Table 9. These 
results demonstrate the model’s stability and reproducibility.

To verify the superiority of the proposed parallel dual-channel multimodal fusion diagnostic model, the 
CWRU dataset was separately input into CNN, CNN-BiGRU, CNN-BiGRU-Attention, and Swin Transformer 
models for training. The comparative results are presented in Fig. 10.

The comparative results of the ablation study are presented in Fig. 11, which combines line and bar charts to 
clearly illustrate the performance improvements contributed by each module.

The results demonstrate that each module contributes significantly and positively to the overall model 
performance. The baseline CNN model achieves only 82.00% accuracy on the test set, indicating certain limitations 

Fig. 8.  Training loss and accuracy curves of the proposed model on the CWRU dataset.

 

Model Accuracy Precision Recall F1 Params FLOPs Overall Accuracy

Swin 99.33% 0.9938 0.9933 0.9951 86.75 M 15.19GMac 99.83%

ViT 96.00% 0.9611 0.9600 0.9592 85.81 M 12.02GMac 96.00%

ConViT 93.33% 0.9543 0.9333 0.9310 85.78 M 16.83GMac 98.67%

DeiT-S 96.83% 0.9684 0.9683 0.9681 85.82 M 12.08GMac 99.17%

Mixer-B 98.33% 0.9843 0.9833 0.9832 59.12 M 12.64GMac 99.33%

Table 8.  Comparison of Swin transformer with alternative architectures.
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in extracting temporal features. Incorporating BiGRU improves the accuracy to 87.50%, reflecting enhanced 
capability in capturing temporal dependencies and enriching feature representation. Further introduction of 
the attention mechanism leads to a substantial increase in accuracy to 97.50%, validating its effectiveness in 
emphasizing critical features while suppressing redundant information. When used independently, the Swin 
Transformer module attains 99.33% accuracy, demonstrating its superior global modeling capability for time-
frequency images. Ultimately, the integrated model combining Swin Transformer with CNN-BiGRU-Attention 
achieves an accuracy of 99.83%, realizing optimal performance through the synergistic effect of multiple 
submodules. These results thoroughly confirm the vital role of each key component in improving fault diagnosis 
accuracy and highlight the superiority of the proposed model architecture in feature extraction and fusion.

To quantitatively evaluate the effectiveness of MCB, we conducted comparative experiments using four 
alternative fusion strategies: Feature-level Concatenation (FLC), Decision-level Fusion (DLF), Learnable Fusion 
Weights (LFW), and Cross-Attention Fusion (CAF). Feature-level concatenation is a first-order fusion approach, 
which simply stacks features without modeling inter-modal interactions. Decision-level fusion averages 
the output probabilities of each branch. Learnable fusion weights introduce trainable coefficients to balance 
contributions from each modality, while cross-attention mechanisms model pairwise dependencies but in a 
parametric attention space.

The performance of these fusion methods was evaluated on the CWRU bearing dataset, and the key metrics 
including accuracy, precision, recall, and F1-score are summarized in Fig. 12.

Fold Accuracy Precision Recall F1-score

1 0.9964 0.9966 0.9964 0.9964

2 0.9929 0.9931 0.9929 0.9929

3 0.9964 0.9966 0.9964 0.9964

4 1.0000 1.0000 1.0000 1.0000

5 0.9929 0.9930 0.9929 0.9929

Mean ± Std 0.9957 ± 0.0027 0.9958 ± 0.0027 0.9957 ± 0.0027 0.9957 ± 0.0027

Table 9.  Performance of the proposed model under 5-fold cross-validation on CWRU.

 

Fig. 9.  Experimental results on the Public CWRU dataset.
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From the results, it is evident that MCB outperforms all other fusion strategies, demonstrating the benefit of 
capturing second-order interactions between modalities. In contrast, simpler first-order approaches (e.g., FLC) 
achieve slightly lower performance, while decision-level fusion and cross-attention underperform, likely due to 
insufficient inter-modal correlation modeling or limited training data.

Potential overfitting risks introduced by MCB’s high-dimensional feature space are mitigated by several 
measures: (1) randomized projections via CountSketch reduce the effective dimensionality while preserving 
interactions; (2) batch normalization and dropout in the downstream classifier; (3) early stopping during 
training. No significant overfitting was observed, as evidenced by the comparable training and testing accuracies.

Overall, this study demonstrates that MCB not only preserves the discriminative information from both 
modalities but also enhances fault classification by modeling higher-order interactions, which is critical for 
accurate and robust bearing fault diagnosis.

Generalization experiment
To further evaluate the effectiveness and generalization capability of the proposed model, this study also utilizes 
the Southeast University bearing dataset, which includes mixed fault types. The experimental platform setup is 
illustrated in Fig. 13.

The Southeast University bearing dataset includes five fault categories: ball fault, inner ring fault, outer ring 
fault, compound fault (combined faults on both inner and outer rings), and healthy operating state. Each fault 
category corresponds to two working conditions: 20 Hz (1200 rpm) at 0 V load (0 Nm) and 30 Hz (1800 rpm) 
at 2 V load (7.32 Nm), resulting in a total of ten fault types. The dataset is divided into training and testing sets 
with a 70:30 ratio. Detailed dataset information is presented in Table 10.

The experimental results are presented in Fig. 14. Despite the increased complexity and difficulty in fault 
identification due to the inclusion of compound faults in the Southeast University dataset, the proposed model 
still achieved a high accuracy of 98.33%, demonstrating its excellent generalization capability and robustness.

To further validate the superiority of the proposed SCBM-Net model, the Southeast University dataset was 
separately fed into each individual model for training. The comparative test accuracy results of different models 
on the two datasets are presented in Table 11.

The comparison in Table  11 clearly shows that the proposed dual-channel model outperforms the single 
models and single-channel architectures in terms of accuracy, achieving an average accuracy above 99%. 
Therefore, the SCBM-Net dual-channel model proposed in this paper demonstrates a distinct advantage.

Fig. 10.  Ablation study results on the CWRU dataset.
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Fig. 12.  Comparison of fusion methods (line chart).

 

Fig. 11.  Ablation study comparative results.
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Few-shot experiment
To further evaluate the recognition capability of SCBM-Net under limited data conditions, a few-shot 
experiment was conducted. Specifically, the experiment was based on the CWRU bearing fault dataset. For each 
fault category, only 60 samples were randomly selected for training, while the remaining 140 samples were used 
for testing. The detailed sample distribution is shown in Table  12. This setting simulates practical industrial 
scenarios where fault data is scarce. All other experimental configurations were kept consistent with the full-
sample setting to ensure fair comparability.

To better illustrate the classification effectiveness of the SCBM-Net model, the t-Distributed Stochastic 
Neighbor Embedding (t-SNE) method is employed to visualize the feature distributions on the test set. 
Specifically, the original data distribution, the classification results of the two single-channel branches, and the 
final classification results of SCBM-Net are presented separately, as shown in Fig. 15.

As shown in Fig. 15(a), the original data distribution is chaotic and disordered, lacking any clear clustering 
structure. After feature extraction through the VMD channel (Fig. 15(b)) and the CWT channel (Fig. 15(c)), 
the samples exhibit a certain degree of clustering tendency and class separation, but there is still considerable 
overlap between different classes, resulting in limited classification performance. In contrast, Fig. 15(d) shows 
that the SCBM-Net model, after fusing time-frequency features, significantly improves the class discrimination 
ability. The samples are distributed more compactly and with clearer boundaries in the feature space, successfully 
achieving effective differentiation of 10 types of bearing faults. Under small sample conditions, the model can 
still reach a classification accuracy of 98.64%, fully demonstrating its superior feature representation capability 
and fault diagnosis performance.

Fault type Label Speed/load Training set Test set

Ball_0 0 20/0 210 90

Ball_1 1 30/2 210 90

Comb_0 2 20/0 210 90

Comb_1 3 30/2 210 90

Health_0 4 20/0 210 90

Health_1 5 30/2 210 90

Inner_0 6 20/0 210 90

Inner_1 7 30/2 210 90

Outer_0 8 20/0 210 90

Outer_1 9 30/2 210 90

Table 10.  Publicly available bearing dataset from Southeast University.

 

Fig. 13.  Bearing test rig structure at Southeast University.
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Unbalanced dataset experiment
To further verify the robustness and generalization capability of the proposed SCBM-Net model under practical 
complex working conditions, a comparative experiment based on an unbalanced dataset was designed and 
conducted. In industrial equipment operation, the distribution of fault categories typically exhibits significant 
imbalance, where some fault types occur less frequently and thus constitute minority classes. It is necessary to 
evaluate the model’s ability to recognize various fault types under such imbalanced data distributions.

The experimental data is constructed based on the CWRU bearing fault dataset. To simulate an imbalanced 
scenario, four major fault categories (Normal, IR007, IR014, IR021) each retain 200 samples, with 140 samples 
for training and 60 for testing; the remaining six minor categories (B007, OR007, B014, OR014, B021, OR021) 
are each limited to 45 samples, divided into 30 for training and 15 for testing. The detailed composition of this 
unbalanced dataset is shown in Table 13.

Model

Dataset

Accuracy (%) Average accuracy (%)CWRU SEU

VMD + CNN
√ 82.00%

56.78%
√ 31.56%

VMD + CNN-BiGRU
√ 87.50%

66.31%
√ 45.11%

VMD + CNN-BiGRU-Attention
√ 97.50%

76.42%
√ 55.33%

CWT + Swin transformer
√ 99.33%

98.50%
√ 97.67%

SCBM-Net
√ 99.83%

99.08%
√ 98.33%

Table 11.  Experimental accuracy comparison.

 

Fig. 14.  Experimental results based on the Southeast University bearing dataset.
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The SCBM-Net model was trained and tested on the aforementioned imbalanced dataset while retaining the 
same training parameter settings. The confusion matrix on the test set is shown in Fig. 16.

Based on Fig.  16, the proposed model achieves 100% recognition accuracy on majority classes such as 
Normal, IR007, IR014, and IR021. It also correctly classifies minority classes including OR007, B014, OR014, 
B021, and OR021 without errors, demonstrating stable recognition capability for these less frequent fault types. 
For class B007, the model correctly classifies 11 samples but misclassifies 4 samples as B021, resulting in an 
accuracy of 73.3%, which is slightly lower than other categories. This indicates some confusion between feature-
similar classes when sample size is relatively small.

Fig. 15.  T-SNE visualization of classification results.

 

Fault type Label Damage diameter (mil) Training set Test set

N 0 – 60 140

IR007 1 7 60 140

B007 2 7 60 140

OR007 3 7 60 140

IR014 4 14 60 140

B014 5 14 60 140

OR014 6 14 60 140

IR021 7 21 60 140

B021 8 21 60 140

0R021 9 21 60 140

Table 12.  Sample distribution of the few-shot dataset based on CWRU.
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To further comprehensively evaluate the diagnostic performance of the proposed method, we incorporated 
additional metrics beyond accuracy. The proposed model achieves a precision of 0.9715, a recall of 0.9667, an 
F1-score of 0.9662. Furthermore, Fig. 17 illustrates the ROC curves of the proposed model across different fault 
categories. The macro-average AUC of 0.9992 highlights the strong discriminative capability and stability of 
SCBM-Net in distinguishing among various fault types.

Overall, SCBM-Net maintains strong discriminative ability under severely imbalanced class distributions, 
achieving an average accuracy of 97.33% across all 10 fault categories. The model effectively extracts 
complementary multimodal features and accurately classifies faults despite class imbalance, highlighting its 
enhanced capability to capture both time-frequency and temporal characteristics. This further verifies the 
model’s robustness and applicability in complex real-world operating conditions.

Noise experiment
In practical engineering scenarios, the acquisition of rolling bearing vibration signals is inevitably affected by 
multi-source interference noise, including mechanical structure resonance, electromagnetic coupling effects, 
and other complex environmental factors. Adding noise to the original signals can create industrial condition 
datasets with high realism, thereby enhancing the generalization ability and engineering applicability of fault 
diagnosis models.

Fig. 16.  Confusion matrix of test results based on the imbalanced dataset.

 

Fault type Label Damage diameter (mil) Training set Test set

N 0 – 140 60

IR007 1 7 140 60

B007 2 7 30 15

OR007 3 7 30 15

IR014 4 14 140 60

B014 5 14 30 15

OR014 6 14 30 15

IR021 7 21 140 60

B021 8 21 30 15

0R021 9 21 30 15

Table 13.  Based on the imbalanced CWRU dataset.
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Gaussian noise, as a typical additive noise model, follows a zero-mean normal distribution and can effectively 
characterize random fluctuations caused by typical interference sources such as electronic device thermal 
noise and atmospheric background radiation. The introduction of Gaussian noise can realistically simulate the 
complex noise environment encountered in engineering practice, helping to evaluate and optimize the model’s 
performance.

In this experiment, samples of length 1024 were selected from the CWRU dataset, and Gaussian noise with 
signal-to-noise ratios (SNR) ranging from − 10 dB to 10 dB was added. The results are shown in Fig. 18.

As shown in Fig.  18, the performance of all three methods degrades to varying degrees with increasing 
noise; however, the parallel dual-channel model consistently maintains the highest accuracy, demonstrating the 
advantage of multimodal fusion in noise robustness. Under noise-free conditions, all methods achieve over 95% 
accuracy. When the signal-to-noise ratio (SNR) drops to 0 dB, the parallel model still achieves approximately 
97% accuracy, while the single-channel models for CWT and VMD channels decline to about 95% and 90.17%, 
respectively. At − 5 dB SNR, the fusion model’s accuracy remains above 93%, whereas the CWT and VMD 
channels fall below 90%. Under extreme noise conditions (− 10 dB), the fusion model achieves about 80.67% 
accuracy, significantly outperforming the CWT channel (58%) and VMD channel (74.83%). This indicates that 
multimodal fusion not only enhances the overall classification performance but also improves robustness against 
severe noise interference. These results validate the effectiveness of the proposed model’s parallel extraction and 
fusion of time–frequency image features and time-series signal features.

To comprehensively evaluate the proposed dual-channel fault diagnosis method, we compare it with several 
baseline and state-of-the-art approaches under various noise conditions.

The ACNN-LFSwinT is a dual-channel framework that utilizes both one-dimensional vibration signals 
and two-dimensional time-frequency images. In one channel, intrinsic mode functions (IMFs) extracted via 
CEEMDAN are processed by an attention-based CNN (ACNN) for feature extraction. In the other channel, time-
frequency images from STFT are input into a Local Feature Swin Transformer (LFSwin Transformer) to capture 
spatial features. Features from both channels are concatenated for classification, enabling robust multimodal fault 
diagnosis.The CNN-BiLSTM combines convolutional neural networks (CNNs) and bidirectional long short-

Fig. 17.  ROC curves of the proposed model for different fault classes.
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term memory networks (BiLSTM) to capture both local spatial features and long-term temporal dependencies 
from vibration signals. This hybrid structure enhances the recognition of fault patterns across both spatial and 
temporal domains. The Multi-Scale Dilated CNN + Self-Attention (MSDCSA) employs dilated convolutions at 
multiple scales to enlarge the receptive field, extracting features from both short-term and long-term signal 
patterns, while a self-attention mechanism emphasizes the most informative features for classification. The TST 
(Time Series Transformer) leverages the transformer architecture to process raw vibration sequences, capturing 
global temporal dependencies via self-attention, providing an effective framework for sequential modeling of 
vibration signals. Finally, the feature-based machine learning (Feature-based ML) approach extracts classical 
time-domain and frequency-domain features—including mean, RMS, skewness, kurtosis, spectral RMS, and 
spectral kurtosis—which are then fed into an MLP classifier as a baseline for comparison with deep learning and 
multimodal approaches.

Additionally, we include two recently published multimodal fault diagnosis methods from 2022 to 2024 
to provide a state-of-the-art comparison. MLF-MSI28 (A Multi-Level Fusion Framework for Bearing Fault 
Diagnosis Using Multi-Source Information) employs a multi-level fusion strategy to integrate features from 
multiple information sources for robust fault classification. MS-ResidualNet29 (Multi-Source Information-Based 
Bearing Fault Diagnosis Using Multi-Branch Selective Fusion Deep Residual Network) utilizes multi-branch 
residual networks to combine various signal modalities, enabling effective and accurate fault diagnosis under 
different operating conditions.

The models were evaluated under different Gaussian noise levels, with signal-to-noise ratios (SNR) ranging 
from − 10 dB to 10 dB. The comparison results, summarized in Table 14 and illustrated in Fig. 19, demonstrate 
the robustness of the proposed method relative to other approaches. As shown, the proposed dual-channel 
method achieves the highest accuracy across all SNR levels, outperforming ACNN-LFSwinT, CNN-BiLSTM, 
MSDCSA, TST, Feature-based ML, MLF-MSI, and MS-ResidualNet under both high- and low-SNR conditions. 
To ensure a fair comparison, all baseline methods were re-implemented using the same dataset, preprocessing 
procedures, and consistent hyperparameter settings.

Conclusion
This study presents SCBM-Net, a novel dual-channel multimodal fusion model designed for robust bearing 
fault diagnosis under complex operating conditions. By leveraging the complementary characteristics of time–
frequency representations and temporal sequences, SCBM-Net integrates Continuous Wavelet Transform 

Fig. 18.  Diagnostic performance under various noise conditions.
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(CWT) and Variational Mode Decomposition (VMD) into a unified architecture. Specifically, a Swin 
Transformer is employed in the image channel to extract both local and global features from CWT-based time–
frequency images, while a CNN-BiGRU-Attention network captures temporal dependencies from the intrinsic 
mode functions generated by VMD in the sequential channel. These heterogeneous features are effectively 
fused via a Multimodal Compact Bilinear (MCB) pooling module, substantially enhancing the model’s feature 
representation capability.

Extensive experiments conducted on the CWRU and Southeast University datasets validate the proposed 
model’s superior diagnostic accuracy, generalization performance, and robustness to noise. SCBM-Net 
achieves 99.83% accuracy under noiseless conditions, 98.33% in cross-domain evaluations, and maintains 
80.67% accuracy at a low signal-to-noise ratio of − 10 dB. Additionally, it demonstrates strong performance on 
imbalanced datasets, accurately identifying both majority and minority fault classes. Ablation studies further 
confirm the contribution of each core module to the overall performance gains. Furthermore, under small-
sample conditions, SCBM-Net still achieves a high classification accuracy of 98.64%, highlighting its excellent 
feature representation capability and adaptability in data-scarce scenarios.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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