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Novel Eigen space method for
multiple Spatiotemporal rare
diseases clusters detection: a case
study of waterborne disease

Muhammad Fayyaz?, Alamgir!, Sami Ullah?, Hameed Ali3, Abdulrahman Obaid Alshammari*,
Zeineb Klai*™ & Bilal Himmat®™*

The development of robust and efficient analytical tools for informed decision making, mainly in
epidemiological contexts, remains a persistent challenge. This study presents an enhanced algorithm
designed to accurately detect vulnerable spatiotemporal hotspots associated with unexpected disease
outbreaks. We introduce an improved novel Multi-EigenSpot algorithm by systematically integrating
the functionalities of both EigenSpot and its Multi-HotSpot extension. The EigenSpot algorithm
effectively identifies single spatiotemporal clusters, it is unable to detect multiple hotspots. The Multi-
EigenSpot algorithm overcomes this limitation through an iterative process of cluster detection and
removal. However, challenges persist regarding computational efficiency and sensitivity in identifying
rare clusters. To address these limitations, we propose an efficient Novel Multi-EigenSpot algorithm.
This method is designed to detect multiple irregularly shaped, rare spatiotemporal clusters with
significantly improved computational performance. Furthermore, the proposed algorithm integrates
heatmap visualizations to enhance the interpretability of detected clusters. We evaluated our method
using monthly waterborne disease surveillance data from Khyber Pakhtunkhwa, Pakistan (January -
December 2024), comparing its performance against both the original EigenSpot and Multi-EigenSpot
algorithms. Empirical results demonstrate the proposed algorithm'’s superior performance in accurately
identifying multiple spatiotemporal clusters. Beyond public health surveillance, this algorithm is
readily adaptable to diverse domains, including crime analysis, environmental hazard detection, and
other applications requiring spatiotemporal clustering.

Keywords Waterborne diseases, Spatiotemporal cluster detection, Multi-EigenSpot algorithm, Singular value
decomposition, Rare event detection, Epidemiological hotspot analysis, Heatmap

Access to clean water is a fundamental human right, essential for sustaining life and health. Waterborne diseases,
primarily affecting the gastrointestinal tract, pose a major global public health challenge, arising from diverse
pathogenic organisms including viruses, bacteria, and parasites (WHO, 2023). Inadequate Water, Sanitation, and
Hygiene (WASH) infrastructure remains a primary contributor to the global disease burden!, with associated
deficiencies causing approximately 1.5 million deaths. In low- and middle-income countries (LMICs), nearly
69% of diarrheal mortality is attributed to inadequate WASH facilities (WHO, 2023). Children under five years
of age are disproportionately affected, with waterborne infections persisting as a leading cause of morbidity
and mortality in this demographic. Notably, an estimated 1.4 million diarrheal deaths in 2019 could have been
prevented through effective WASH interventions®.

In Pakistan, only 39-41% of the population has access to safely managed drinking water, while approximately
68% have access to basic sanitation services. Subsequently, waterborne diseases (WBD) account for about 30-
50% of all diseases and up to 40% of deaths. UNICEF reports over 53,000 annual child deaths from diarrhea
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linked to poor WASH systems. Water and sanitation problems also carry out major economic burdens, estimates
suggest annual losses amounting to PKR 343 billion (= USD 1.5 billion). In Khyber Pakhtunkhwa, endemic
water contamination is intensified by old infrastructure, sewage leaks, and insufficient treatment systems. Nearly
80% of water samples in some areas have been found unsafe for consumption, contributing to outbreaks of
cholera, typhoid, hepatitis, and bloody-diarrhea®.

The burden of WBD in Pakistan emphasizes the pressing need for systemic WASH interventions, improving
water quality, sanitation access, hygiene education, and infrastructure monitoring, to save lives and reduce
economic and health consequences. Several epidemiological studies on waterborne diseases have been carried
out in Khyber Pakhtunkhwa, focused on the epidemiological characteristics and risk factor analysis of these
diseases’ ™. However, the proposed work develops algorithms for accurate detection of waterborne disease clusters
to enhance epidemiological decision-making. Spatiotemporal cluster detection is central to epidemiological
research, revealing disease burden distributions and underlying health determinants. By analyzing population
level patterns across regions and time periods, epidemiologists gain insights into transmission dynamics
and prioritize high-risk areas. Such analyses typically require examining ecological, socio demographic, and
infrastructural factors associated with elevated prevalence'®!!. Cluster mapping delineates hotspots and
informs targeted resource allocation. Identifying spatiotemporal disease clusters is pivotal for strengthening
public health surveillance and guiding effective interventions. Health agencies routinely collect spatiotemporal
case data to monitor disease dynamics and mitigate outbreaks. Systematic analysis of these patterns enables
detection of localized incidence surges, facilitating timely resource deployment. A cluster is formally defined
as a spatial or temporal domain where observed cases significantly exceed expected counts'>!. While diverse
statistical techniques detect regularly shaped clusters, scan statistics have emerged as the predominant method,
particularly for circular clusters!*~'6. These methods employ a cylindrical scanning window traversing the study
area: the base defines a circular/elliptical spatial zone, while the height represents the temporal dimension,
capturing both persistent and emerging clusters. As the window expands from minimum to maximum radius,
overlapping regions are evaluated via likelihood ratio tests comparing observed versus expected cases under
spatial randomness. The window maximizing the test statistic and identifies the most likely cluster, indicating
significant disease incidence elevation, an approach proven effective in surveillance contexts!’~1°. Nevertheless,
traditional scan statistics struggle to detect irregularly shaped clusters, especially in geographies constrained
by natural boundaries (rivers, mountains) or urban landscapes, where circular/elliptical windows inadequately
capture disease dispersion. Advanced methods detecting arbitrary-shaped clusters address this limitation?®-2%,
but often rely on restrictive distributional assumptions (Poisson or Gaussian), limiting applicability to complex
modern datasets. Moreover, scan-statistic algorithms inherently require strict parametric assumptions, impairing
performance when these assumptions are violated, particularly for nontraditional or structurally complex data.
In addition, these algorithms are designed to identify regular-shaped clusters and are less efficient for irregular-
shaped clusters. These algorithms require high-quality data, making them vulnerable to noise and outliers®*.

The EigenSpot algorithm was developed by Fanaee-T and Gama?®, as a nonparametric, eigenspace based
algorithm capable of detecting disease clusters without presuming any particular data distribution, quality, or
cluster shape. Yet it can identify only a single hotspot, rendering it inadequate for uncovering multiple high-
risk cluster over space and time. To overcome this, Sami Ullah et al.?® proposed a generalized Multi-EigenSpot
algorithm that, like its predecessor, relies on eigenspace techniques, but substitutes expected case counts for
population data as its baseline, thereby enabling the detection of several spatiotemporal clusters. Eigenspace
methods have since gained widespread application from data mining and signal processing to information
retrieval powering innovations, such as Google’s search engine, famously explained in “The $25 000 000 000
Eigenvector”?, and behind the BellKor team’s 2008 Netflix Prize winning use of singular value decomposition
in collaborative filtering?®.

The pioneering work by Fanaee-T and Gama?> and Ullah et al.2%, introduced eigenspace methods to
epidemiology, marking the first application of these techniques to disease cluster identification. However, related
to clustering and anomaly detection, hotspot detection (also called outbreak or event detection) is distinct. Such
as clustering partitions an entire dataset into groups, anomaly detection flags unexpected individual instances,
and hotspot detection pinpoints areas of statistically significant deviation from a defined baseline.

All of the above-mentioned approaches involve scanning the entire space, being computationally laborious
and time-consuming. The computing time for spatial scan statistics is given as O (N 3) , whereas the computation

time for space-time scan statistics is given as O (N 4) .Several recent initiatives have been undertaken to minimize

this complexity. Spatial scan statistics approach that is more efficient, requiring just O (1 / e *N 2 xlog, (N )) .

Under optimal conditions, the minimal complexity for Sat Scan has not yet reached below O(N?) because it
has not yet achieved that level. This enormous processing cost makes it almost impossible to employ them in
applications that are used in the real world or with large-scale datasets. In terms of time complexity, the Eigenspot
and Multi Eigenspot methods are both considered to be O (K N 2) or O ((mn)z) %5, This is significantly faster

than scanning methods, yet still presents challenges for high-dimensional data due to the super-linear growth
in computational time.
This study covers the following three-fold gap in the literature:

1. Itis not appropriate for detecting clusters of rare diseases.

2. In nations like Pakistan, a zero count frequently denotes unrecorded data or a lack of data availability. How-
ever, a zero that falls between two high counts is misclassified as a disease cluster, which results in erroneous
cluster identification.
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3. Lastly, the EigenSpot methods are computationally costly on large-scale spatiotemporal matrices, especially
when repeated singular value decomposition (SVD) calculations are required for multiple clusters.

The novelty of this works lies in the following ballots:

 To develop an efficient approach for identifying spatiotemporal clusters of rare disease with linear complexity
in both spatial and temporal dimensions.

o To present a novel method designed for identifying spatiotemporal clusters in rare diseases and characterized
by its efficiency in time complexity.

« To integrate singular value decomposition spare (SVDs) instead of SVD to manage false positive detection
of cluster.

« To provide robust alternative of classical tools for finding abnormal components.

The paper is organized into the following sections:

« Section “Methodology” presents the study area, data sources, and the proposed methodology, detailing the
novel EigenSpace algorithm based on SVDs, Z-control charts, and heatmap visualization.

o Section “Results and discussions” describes the implementation steps and computational procedures of the
algorithm, including matrix formation, anomaly detection, and iterative updates.

o Section “Performance evaluation” discusses the results and findings from the application of the proposed
method to typhoid disease data in Khyber Pakhtunkhwa, highlighting detected clusters and comparing per-
formance with existing approaches.

o Section “Discussion and conclusion” evaluates the computational efficiency of the proposed method.

« Section 6 concludes the study with key insights, limitations, and future directions.

Methodology

Materials and methods

Approach

The analytical procedures were implemented in MATLAB R2017, where the proposed Novel EigenSpace
Method was systematically compared against the baseline algorithms. For spatial visualization, the Pakistan
administrative boundary shapefile was obtained from the Humanitarian Data Exchange (HDE)® portal (https:
//data.humdata.org/dataset/cod-ab-pak)®’. The Khyber Pakhtunkhwa shapefile was extracted from this dataset,
and the study area as well as the cluster distribution maps (Figs. 1,9 and 10, and 11) were generated using QGIS*!
Version 3.34 Firenze (QGIS.org, 2025, https://qgis.org ).

Study area

This study is conducted in Khyber Pakhtunkhwa (KP), a northern province of Pakistan distinguished by
varied topography, including mountainous terrains and alluvial plains. The geographic coordinates of Khyber
Pakhtunkhwa is 34.9526205° N latitude and 72.331113° E longitude. Home to approximately 40.85 million
people, KP exhibits considerable disparities in access to safe drinking water and sanitation. The province
experiences recurrent waterborne disease outbreaks, particularly during the monsoon season, largely due to
the contamination of water sources®’. These health vulnerabilities are intensified by deficient infrastructure,
unregulated urban expansion, and climatic fluctuations. Given these conditions, KP serves as a critical setting for
examining spatial distribution and identifying spatiotemporal clusters of waterborne diseases. Figure 1 displays
the study area map of Khyber Pakhtunkhwa, generated by the authors using QGIS software with administrative
boundary data.

Data collection

The dataset used in this study was acquired from the Directorate General (DG) Health Services, Khyber
Pakhtunkhwa, and is available at https://www.nih.org.pk/phb/weekly-bulletin. The data includes 35 districts
and 12 months specific records of WBD taken for the year (2024). Supplementary data, Population estimates
were extracted from the 2017 national census records to support demographic normalization and computation
of expected disease counts in the spatiotemporal analysis.

Computationally efficiency

The algorithms proposed by Fanaee-T and Gama?® and Ullah et al.?® implement the EigenSpace framework
by integrating conventional SVD techniques for dimensionality reduction and matrix factorization within the
spatiotemporal data structure. However, standard SVD is computationally expensive, particularly for large
and sparse datasets. To address the computational and structural limitations essential in EigenSpot and Multi-
EigenSpot, the proposed methods integrate an advanced variant SVDs. Design for efficient processing of high
dimensional and sparse matrices, SVDs significantly improves decomposition accuracy and scalability, making
it particularly effective for analyzing rare disease datasets with limited cases.

The proposed algorithm integrates the following three methodological components:

« SVDs: Employed to extract the principal left and right singular vectors (LSV and RSV) from the K and E
matrices for dimensionality reduction.
« Robust Z-Control Chart: Employed to identify abnormal components in differences vectors.
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Fig. 1. Study area map of Khyber Pakhtunkhwa, generated using QGIS v3.34 Firenze (https://qgis.org) with
administrative boundary data from the HDX.
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« Visualization: A heatmap is used to display the final Relative Risk (RR) matrix, highlighting potential cluster
regions through color intensity variations.

P: Population at risk matrix
K: Typhoid Cases matrix
o. level of significance (0.10)
Input: P, K and a
Output: Heatmap
1. Compute E and R matrices from P and K matrices
2. Compute singular vectors:

a. Apply truncated SVD to K and E.
3. [Se,Ti | = 1 — rank SVDs(K), Cases

4. [Sg Tp | = 1 —rank SVDs(E) baseline,
5. Form difference vectors: [Ef, E]

6. forI=1:mdo

7. DS; = SK; — SE;

8. end for

9. fori=1:ndo

10. DT; = TK; — TE;

11. end for

12. Apply control chart:

a. Standardize [HS),D—T)] using robust z-scores.

b. Identify abnormal elements exceeding threshold a.

¢. Determine combined spatiotemporal abnormal components.

13. Update matrices:
If abnormal components are found:

a. Replace corresponding entries in K by expected values from E.
b. Replace corresponding entries in R by the median.

Repeat Steps 2—5 until no combine abnormal component is_found.

Finalize relative risk matrix:

14. for i=1:m

15. for j=1:n

16.if R;; = A; ., A;.is median value in the matrix R
17.R;; =1

18. else

19.R;; = R

20. end

21. end

In the final updated R, replace all entries other than median by 1.

Algorithm. Novel Multi-EigenSpot.
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Novel multi-eigenspot

The proposed method targets scenarios where disease case data are aggregated across defined spatial units and
temporal intervals. The Population at risk and observed case counts are structured into an m x n spatiotemporal
matrices P and K, where m and n represent the number of spatial regions (Districts) and time points (Months),
respectively. Auxiliary matrices, E (expected cases) matrix is computed from spatiotemporal matrices P and
K and R (relative risk) is computed from spatiotemporal matrices K and E. The relative risk (RR), a standard
epidemiological metric, is computed as the ratio of observed to expected counts.

To extract central spatiotemporal SVD is applied to matrices K and E, yielding LSV and RSV that capture
spatial and temporal patterns, respectively. Formally, the decomposition of K is expressed as K = U DV, where
U and V contain the LSV and RSV, and D is a diagonal matrix of singular values. The principal singular vectors
of K are denoted as SK = (ski, ska, ..., Skm) and TK = (tk1,tks, ..., tkn) for the spatial and temporal
dimensions, respectively. Correspondingly, the principal vectors for E are SE = (se1, ses, ..., sem), and
TE = (tei,tes, ..., tem). Abnormal spatiotemporal components are identified by computing the differences
vectors: DS = SK — SEand DT = TK — TE.

Figure 2 presents a systematic workflow of the novel Multi-EigenSpot algorithm, detailing the integration of
SVDs decomposition, robust Z-control charts for anomaly detection, and iterative matrix updating to identify
spatiotemporal clusters with reduced computational complexity. The proposed algorithms employ a robust
Z-control chart to detect joint spatiotemporal abnormal component by analysing both differences vectors, DS
and DT. Upon identification of simultaneous joint spatiotemporal abnormal component in these vectors, the
observed case matrix K is updated by replacing the corresponding entries with their expected case matrix E
values. Concurrently, the relative risk matrix R is updated by replacing the associated abnormal component with
the median value. This iterative process continues until no further abnormal component are detected in either

The proposed algorithms required two
spatiotemporal matrices K (cases) and P
(population) to compute E (expected
cases) and R (relative risk) matrices.

The algorithms use the truncated form of SVD to
find left and right singular vectors from observed K
and expected E matrices.

|

The algorithms utilize left and right singular
vectors to compute differences vectors (DS and
DT) for both spatial and temporal dimensions.

!

A statistical tools z-score control chart is used to
identify abnormal spatiotemporal component in
both dimension with 0.10 level of significance.

Combine space and True Update the observed

time abnormal 9 cases matrix and Relative
components are found. Risk matrix

I False

In the final updated relative risk matrix R replace
all elements other than median by 1

For clear segmentation of detected
spatiotemporal cluster, visualize
the final updated R matrix on heat
map

Fig. 2. Flow chart of the proposed algorithms.

Scientific Reports|  (2025) 15:37836 | https://doi.org/10.1038/s41598-025-21792-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

@ Population Matrix P

First Iteration

O

Find LSV and RSV using
Rank-1 SVDs from matrix K

| T

Ris | Ry

©

Find LSV and RSV using Rank-
1 SVDs from matrix E

O

ABBRBRE
S, [ 05 [0z [ 05 [0
So | 0n | 0y | On3 | O
Sy | 0 | 03 | 053 | O3
Si | 01| O | Os3 | Ous
Observed Cases @ Expected Cases @ Sﬁla“ﬁz Risk
Matrix K Matrix E trix
| m | |n|n AR AREBRRE
S |0y ]05]|05)04 Sy | By | Epp | Epy | Exy | —p [ Si [ Rus [ Riz | Ria | Ry
Sy |00 | 05 [ O3 [Ons | = [ Se | B | By | B | B S2 | Ros | Ry | Ros | Ros
Sy | 01 | 05 | Os3 | O34 Ss | Esi | Eqp | Ess | Esy S3 | Rss | Ry | Rss | Rsy
S, [0y [0, [ 0504 Sy [ Eux [ | B [ B ST Ml T i
Temporal Singular p S o 3
Temporal Singular Vecg: . ( \
= DT, =T0, - TE,
BRI | P momee U omie
504 Spatial Singular Vector BEEE 07, = 10,7,
Spatal Singular Vector | S0, °
el ARy sy

Differences vectors of spatial
and temporal vectors

@ Population Matrix P

T, T T
O 0z Oy Oy
02 0y 03 0z
03 03 033 0y
O 0z Oy Oy

Observed Cases
Matrix K
Ty T Ty
O 0z O3 Oy
O0n 0z 0Op5 0
O3 0 O35 03
O Oz O3 Ou

!

Temporal Singular
Vector

TO, TO, TO3 TO,

Spatial Singular Vector

T,

Second Iteration

Expected Cases Relative Risk
Matrix E Matrix R
e Wom W T ®om W W
S En B By By g S Ru Re Ry Ry
—> S En Ep En By S Ru Rz Res Ras
Sy En Eyp By Ey 83 Ry Ry Ry Ry,
Si En En By By Si Ra Ry Ry Ry
Temporal Singular @ \ [ DY
Vector
& DS, =50, - SE,
TE, TE, TE; TE || SE 3 =50,
s,

Spatial Singular Vector

-

Find LSV and RSV using
Rank-1 SVDs from matrix K

©)

T
Ry Ry
Res Ry
Rss Rys
M1 1

Ry Ry
Rat Ry
M2 Ry
M2 R,

Replace the abnormal
components by their Median
(M) value and update Matrix R

Ryt | Ry

R

Ra

®<__

()

Using Z control chart to find
combine abnormal components
in differences vectors.

Final Relative Risk Matrix

(D—r

Find LSV and RSV using
Rank-1 SVDs from matrix E.

©

DS, =50, -
bs,

S
SE,

Differences vectors of spatial
and temporal vectors

Replace the abnormal
components by their Median
(M) value and update Matrix R

Updated Relative Risk

Using Z control chart to find
combine abnormal components
in differences vectors

(D)

Matrix

Rss | Rss

Ry | Rip | M1 | M1

Updated Relative Risk
Matrix

Fig. 3. Scheme Illustration of the proposed Algorithm.

the spatial or temporal dimensions. For hotspot visualization, the final updated matrix R is utilized. Elements
in R differing from the median are replaced with 1 to mark potential clusters. A heatmap is then generated to
provide a clear graphical representation and segmentation of the detected disease clusters. Figure 3 visually
demonstrates the iterative cluster detection and removal mechanism of the proposed algorithm, emphasizing
how joint spatiotemporal anomalies are identified and suppressed in the relative risk matrix through recursive
update.

A comprehensive step-by-step process of how these techniques are integrated within the algorithm is given

below.

The total observed cases matrix is denoted by K, and the population at risk matrix is denoted by P.

k11 kin P11

?
Pmi1

Pin
?
Pmn

knL 1

Where k11 is the total disease in the first region (district), first time point (Month), p11 is the total population at
risk in the first region, first time point,m is the total spatial dimensions, andntotal time points.

2. Compute the expected disease cases E and relative risks R matrices for K and P matrices.

FEi1 Ei, R

?
le

Rln

?
Rmn

? andR =

Emn

The primary objective of computing the relative risk matrix R is to enable effective visualization of disease
clusters through a heatmap representation.

3. The one-rank SVDs are used to obtain the principal left and right singular vectors for matrices K and E.

Our approach only requires the principal singular vector corresponding to the highest eigenvalue, as the first
principal singular vector explains the majority of variance in the data. While full-rank SVDs decompose a
matrix into a combination of orthogonal vectors, one-rank SVDs capture the most significant singular value
and corresponding singular vectors, effectively representing the matrix with a single dominant direction.
For matrix K, the principal left singular vector is denoted as SK = (sk1, ska, ..., skn) and the principal
right singular vector is denoted as TK = (tk1,tks, . .., tky,). Similarly, for matrix E, the principal left sin-
gular vector is denoted as SE = (sei, sea, .. ., Sem ), and the principal right singular vector is denoted as
TE = (tei,tea,...,tem). The elements in the principal left singular vectors correspond to the components
in the spatial dimension, while the elements in the principal right singular vectors correspond to the compo-
nents in the temporal dimension.
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4. Abnormal components are identified by computing the difference vectors between the corresponding
singular vector pairs: the spatial differences vector as DS=SK-SE and the temporal differences vector as
DT=TK-TE.

5. Standardized z-score vectors are computed from the differences vectors DS and DT. A robust z-score control
chart is then applied to both vectors at a significance level a=0.10. Elements yielding left-tailed p-values
less than o are considered out of control, indicating abnormal components within the spatial and temporal
dimensions, respectively.

6. If simultaneous abnormal component/components is/are detected in both DS and DT, the observed case
matrix K is updated by replacing the elements corresponding to the joint abnormal spatial and temporal
component with their respective expected values. Likewise, the relative risk matrix R is updated by substitut-
ing the affected entries with the median value.

7. Identify any additional abnormal components in the spatial and temporal dimensions. Repeat Steps (01-06)
until no abnormal components are found in either dimension.

8. The elements in the recently updated matrix R, corresponding to the components (spatial/temporal) not
classified as abnormal, are substituted with the value of 1.

9. Visualize the final updated relative risk matrix R on a heatmap for clear segmentation and interpretation of
detected disease cluster.

Results and discussions

Typhoid, caused by Salmonella enterica serotype Typhi, is classified as a WBD. Typhoid is a major public health
concern in several countries with limited resources, including Pakistan. Annually, 9 to 12 million individuals
are affected by typhoid globally. Typhoid is a major health concern in Pakistan, with thousands of cases reported
annually, particularly in regions characterized by poor sanitation and restricted access to clean water®. The
World Health Organization (WHO) said that Pakistan is at higher risk for typhoid fever, especially in Khyber
Pakhtunkhwa, where environmental and infrastructure conditions increase the likelihood of outbreaks.

This study examined typhoid data in KP, identifying many spatiotemporal hotspots with significantly higher
case counts. Identifying these clusters is crucial for public health, enabling the early detection of high-risk areas,
whichallows for timelyaction, resourceallocation, and awareness campaigns. Spatiotemporal cluster identification
provides governments with evidence-based insights to improve infrastructure, execute immunization programs,
and monitor disease transmission, therefore reducing morbidity and mortality associated with typhoid. Figure 4
displays the population distribution across KP 35 districts, revealing demographic disparities that underpin
the normalization of disease incidence rates and the calculation of expected case thresholds in spatiotemporal
analysis.

From Figs. 5 and 6, it is clear that maximum typhoid disease cases are recorded in district Bannu and
Peshawar, and in the months of May, July, and October.

The alpha threshold was set at 0.10 because, in common diseases, observed cases typically exceed expected
cases in most regions. Setting the alpha threshold at 0.05 or 0.01 could limit the identification of multiple high-
risk locations or lead to undetected hotspots. The results were verified by displaying the observed and expected
typhoid cases for each of the 35 districts every month (January 2024 to December 2024) in the graphs illustrated
in Fig. 7.
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Fig. 4. Total KP district wise population.
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Fig. 6. Monthly observed typhoid disease cases of KP 2024.
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The heatmap illustrates the spatiotemporal distribution of the relative risk matrix for typhoid fever over 35
districts in Khyber Pakhtunkhwa, Pakistan. Figs. 8 and 9 show that the first likely and most significant cluster
was detected in the districts of Bannu and Tor Ghar throughout May and October, with an average relative risk
(RR) of 1.767, as denoted by a deep red colour. The second likely cluster identified in the districts of Bannu, Dir
Lower, Khyber, Tank, and Tor Ghar throughout July, with an average RR of 1.663, highlighted in red. The third
cluster emerged in August inside the districts of Bannu, Khyber, Tank, and Tor Ghat, with a relative risk (RR)
of 1.587. The fourth likely cluster was detected in the districts of Bannu (August and November), Charsadda
(May, October, and November), Dir Lower (May, October, and November), Khyber (August), Tank (August),
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and Tor Ghar (August and November), with an average relative risk of 1.587, denoted by a dark yellow colour. A
fifth likely cluster occurred in September over numerous regions, including Bannu, Charsadda, Dir Lower, and
Kohat, with a relative risk (RR) of 1.414. The RR 1 shows that no abnormal case was found in these districts.
From both Figures, it is clear that Bannue, Charsadda, Dir Lower, Khyber, Tank, and Tor Ghar districts are
highly affected by typhoid disease during the year 2024 for various months, suggesting them as alarming typhoid
disease hotspots.
Performance evaluation
Figure 10 illustrates the efficiency of the proposed approach, through which we conducted a comparison study
against the Eigen Spot and Multi-Eigen Space algorithms for spatiotemporal disease clusters identification. The
map illustrates that the Eigen Spot algorithms identify only a single cluster, Bannu (October), while missing
other broad disease clusters. Multi-Eigen space approaches inaccurately identify a disease cluster in the temporal
domain, detecting numerous spatiotemporal disease clusters including Bannu (March, April, May, October, and
December), Kohat (March and April), D.I. Khan (February), and Swat (June and October). No reported cases
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Fig. 10. Comparative maps of disease clusters identified by EigenSpot, Multi-EigenSpace, and the proposed
method. Maps created in QGIS v3.34 Firenze (https://qgis.org) with shapefile data from HDX>°.
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Features Multi EigenSpace Algorithm | Novel Multi-EigenSpace Algorithm
Data (Matrix Size) 35by 12 35by 12

Method SVD SVDs (Truncated form of SVD)
Loop Nested Loops Vectorized

Allocation Grow in Loop Pre-Allocated

Relative Efficiency Baseline 5 to 10 times faster

0.1t00.5s

Estimated Computation time | 1to 3 s

Table 1. Computational time of the Multi-EigenSpace algorithm vs. the NovelMulti-EigenSpace algorithm.

Approaches Identified Spatiotemporal cluster/detected Spatiotemporal hotspots
EigneSpot Tank (Jul)

Bannu (May, Jul, Aug, Sep, Oct and Nov), Charsadda (May, Sep and Nov), Dir
Novel Multi-EigenSpot (Proposed) | Lowe (May, July, Sep, Oct and Nov), Khyber (July, Aug and Sep), Tor Ghar (May,
Jul, Aug, Oct and Nov) and Tank (Jul and Aug)

SatScan Bannu (Feb and Mar) and Charsadda (Nov and Dec)

Bannu (May, Jul, Sep, Oct and Nov), Charsadda (May, Jul, Nov and Dec), Khyber
(July, Aug and Sep), Tor Ghar (May, Jul, Oct and Nov) and Tank (May and Jul)

DBSCAN

Table 2. Comparison of disease clusters identified by EigenSpot. Novel Multi-EigenSpot (proposed), SaTScan,
and DBSCAN.

were noted in April; however, a temporal cluster was found in Bannu during that month. The suggested Novel
Eigen Space algorithms effectively resolve these two limitations. The suggested techniques identify multiple
disease clusters while minimizing false positives in temporal clusters with no observed cases. The map clearly
illustrates that the suggested techniques identify real clusters with higher precision. This demonstrates its
superiority in identifying significant hotspots in sparse data, making it a more accurate approach for cluster
discovery. Table 1 quantifies the 5-10x speed advantage of the novel algorithm over Multi-EigenSpace, achieved
through SVDs truncation and vectorization (0.1-0.5 s vs. 1-3 s for 35 x 12 matrices.

As shown in Table 2, EigenSpot is limited to detecting a single hotspot (Tank, July), while SaTScan identifies
only a few clusters due to its circular window constraint. DBSCAN performs better, capturing multiple clusters,
but its results are sensitive to parameter selection, sometimes leading to fragmented or spurious detections. In
contrast, the proposed Novel Multi-EigenSpot method consistently identifies a broader set of epidemiologically
reasonable clusters across districts and months, capturing both temporal recurrence and spatial irregularity.
This demonstrates its superior robustness and practical applicability in real-world surveillance settings where
outbreak signals are rare and irregular.

Figure 11 provides a visual comparison of spatiotemporal clusters detected by the proposed Novel Multi-
EigenSpot, DBSCAN, and SaTScan. SaTScan’s results are constrained by its circular scan windows, leading to
under-detection of irregular cluster shapes. DBSCAN identifies several clusters, but its outputs vary depending
on parameter choices, sometimes overestimating cluster boundaries. The proposed method, however, delineates
multiple realistic clusters with higher spatial precision and temporal consistency, closely matching the
epidemiological distribution of typhoid in KP. This visualization reinforces the interpretability and robustness of
the proposed algorithm over existing approaches.

Figure 12 shows the comparative performance of EigenSpot family, SaTScan, and DBSCAN across multiple
evaluation metrics, including Precision, Recall, F1-score, Robustness Index, and computational efficiency. The
results show that the proposed Novel Multi-EigenSpot constantly achieves the maximum accuracy (Precision,
Recall, and F1-score above 80%) and robustness while maintaining the computational time, even on a logarithmic
scale. In contrast, SaTScan and DBSCAN demonstrate relatively lower detection accuracy and robustness,
joined with higher computational costs. These results highlight the superior stability of efficiency, sensitivity,
and robustness achieved by the Novel Multi-EigenSpot method.

From Table 3, it is clear that the proposed method consistently outperforms existing approaches. Unlike
SaTScan, which is limited to circular or elliptical clusters, and DBSCAN, which is highly sensitive to parameter
tuning, the proposed framework efficiently identifies multiple irregularly shaped clusters with minimal
parameter dependence. Compared to EigenSpot and Multi-EigenSpot, it demonstrates stronger performance
on sparse data, faster computation through truncated SVDs, and improved interpretability via clear heatmap
visualizations.

From Table 4, it is evident that the proposed method maintains the highest robustness to missingness across
all situations. While the performance of all methods drops as missingness increases, Novel Multi-EigenSpot
consistently achieves superior F1-scores with lower variability, demonstrating resilience to both MCAR and
MNAR patterns. In contrast, SaTScan shows the weakest robustness, and DBSCAN and EigenSpot exhibit
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Fig. 11. Spatiotemporal clusters detected by the proposed method, DBSCAN, and SaTScan, generated in
QGIS v3.34 Firenze (https://qgis.org) using shapefile data from HDX?°.

moderate but less stable performance. These results highlight the ability of the proposed framework to handle
data imperfections such as missing values and zeros without relying on distributional assumptions.

Discussion and conclusion

The proposed Novel EigenSpace method markedly advances spatiotemporal cluster detection by addressing
two critical shortcomings of the original EigenSpot and Multi-EigenSpot algorithms: the inability to identify
multiple, rare-disease hotspots and prohibitive computational demands. When applied to 2024 typhoid case data
from Khyber Pakhtunkhwa, our approach consistently revealed distinct clusters, both spatially across districts
such as Bannu, Charsadda, Dir Lower, Khyber, Tank and Tor Ghar, and temporally during high-incidence
months, where previous methods either missed secondary hotspots or generated false positives in periods
with zero observed cases. By integrating truncated SVDs with a robust Z-control chart in a recursive update
scheme, we realize a five-to-ten-fold acceleration in computation while preserving the sensitivity of cluster
detection in inherently sparse rare disease datasets. This advancement not only optimizes the efficiency of real
time epidemiological monitoring but also strengthens the robustness of public-health conclusions derived from
erratic, irregularly shaped outbreak signals.

In summary, this study introduces a computationally efficient, distribution-free algorithm that successfully
detects multiple spatiotemporal clusters of rare diseases, overcoming limitations of shape assumption, data
sparsity, and processing time. Although the heatmap representation of the finalized relative-risk matrix offers an
intuitive means of pinpointing hotspots, the current framework does not elucidate the directional propagation
or transmission dynamics that give rise to these clusters. Furthermore, by aggregating data into discrete sub-
regional and monthly slices, the method may obscure phenomena that span administrative borders or persist
across overlapping temporal intervals.

Future research will focus on incorporating spatiotemporal network models to infer propagation routes,
adopting rolling-window analyses for continuous-time detection, and integrating auxiliary covariates (e.g.,
environmental or mobility data) to contextualize outbreak drivers. By broadening the Novel EigenSpace paradigm
along these lines, we aspire to furnish a comprehensive platform for adaptive epidemiological monitoring and
precision targeted intervention design.
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Fig. 12. Benchmarking EigenSpot Family Against SaTScan and DBSCAN: Precision, Recall, F1-score,
Robustness, and Runtime.
Criterion SaTScan (Scan Statistic) | DBSCAN (Density-Based) | EigenSpot Multi-EigenSpot Novel Multi-EigenSpot
Cluster Shape Handling Circular / Elliptical only | Arbitrary / Irregular Single hotspot only sMh:}lat;[s’ le hotspots, irregular ﬁfﬂgﬂe irregularly shaped
None

Distribution Assumptions

Parametric

None (non-parametric)

(distribution-free)

None (distribution-free)

None (distribution-free)

High (eps, minPts tuning

Sensitivity to Parameters | Low (defaults work well) critical) Low Low Low (only a threshold)

Handling Sparse / Rare Weak (low power for rare | Moderate (clusters may Moderate (but false positives | Strong (robust to zeros, rare
Weak . X h X

Data events) fragment) in temporal dimension) counts, and outliers)

Computational Efficiency

High cost

Efficient

Faster (1-2's)

Slower (1-3 s due to iterative
SVDs)

Fastest (0.1-0.5 s via truncated
SVDs)

Interpretability

Moderate (map outputs,
but rigid clusters)

Moderate (depends on
parameter tuning)

Low (single
hotspot only)

Moderate (multiple clusters
but false positives)

High (clean heatmap visualization,
interpretable clusters)

Table 3. Comparative characteristics of baseline and eigenspace-based methods for Spatiotemporal cluster

detection.
Method MCAR 0% | MCAR 5% | MCAR 10% | MCAR 20% | MNAR 20% (zeros)
EigenSpot 0.63+0.08 |0.59+0.09 |0.52+0.10 |0.44+0.12 |0.39+0.14
Multi-EigenSpot 0.68+0.07 |0.63+0.08 | 0.56+0.09 |0.48+0.11 |0.42+0.13
Novel Multi-EigenSpot | 0.75+0.06 | 0.71+0.07 | 0.66+0.08 | 0.58+0.10 | 0.51+0.12
SaTScan 0.57+0.09 |0.51+0.10 | 0.44+0.12 |0.37+0.13 |0.33+0.14
DBSCAN 0.61+0.08 |0.55+0.09 | 0.49+0.11 |0.42+0.12 |037+0.13

Table 4. Robustness to missingness (RR=1.6, |S|=6, |T|=2, Irregular)(Mean F1+ SD over 100 replicates).
EigenSpot methods are distribution-free. Missingness patterns (MCAR: Missing Completely at Random,
MNAR: Missing Not at Random) are imposed only for robustness stress-testing.
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Data availability

The dataset used in this study is publicly available at the National Institute of Health Pakistan website: [https://
www.nih.org.pk/phb/weekly-bulletin] (https:/www.nih.org.pk/phb/weekly-bulletin) . Researchers may use this
dataset freely for replication and validation purposes.
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