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Water quality is a critical factor for human health and environmental sustainability. Rapid urbanization 
and industrialization have led to significant water contamination, increasing the prevalence of 
waterborne diseases. This study investigates the presence of pathogens in water sources across 
the Gujarat region, utilizing machine learning models to analyze contamination patterns. Various 
classifiers, including HistGradientBoosting, Random Forest, AdaBoost, Bagging, Decision Tree, and 
LSTM, were employed to predict water quality and identify pathogens. Among these, the Random 
Forest and Bagging classifiers exhibited the highest accuracy at 98.53%. Furthermore, Explainable AI 
techniques, specifically SHapley Additive exPlanations (SHAP), were used to interpret the significant 
features influencing contamination levels. The study highlights the need for proactive water quality 
monitoring and pathogen detection to prevent disease outbreaks. We also evaluate the robustness of 
our models under adversarial perturbations to simulate real-world sensor noise and data corruption. 
Results show a performance drop of up to approx. 56% under FGSM and PGD attacks and 10% after 
adversarial training withstanding the attacks, highlighting the need for resilient AI systems in public 
health. The models Random Forest and Simple neural network compare the scores with clean accuracy 
and after adversarial training. The scores are generated for various epsilon values, showing that the 
machine learning model suffers drastically, whereas the neural network model can withstand attacks 
with consistent performance.
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Water is an essential resource for life, yet its quality is often compromised by contamination from domestic, 
industrial, and agricultural activities. Gujarat, like many regions in India, faces challenges in ensuring safe 
drinking water due to high dependence on groundwater and inadequate waste management. According 
to government statistics, Gujarat has approximately 50  billion cubic meters (BCM) of water, with over 80% 
allocated to irrigation (​h​t​t​p​s​:​​/​/​w​w​w​.​​g​i​d​b​.​o​​r​g​/​w​a​t​​e​r​-​s​u​​p​p​l​y​-​s​​c​e​n​a​r​i​​o​-​i​n​-​g​​u​j​a​r​a​t). The remaining supply, often 
compromised by pollutants and pathogens, poses a significant health risk.

Waterborne diseases are a major public health concern. The World Health Organization (WHO) estimates 
that 7.3 million deaths occur annually due to diarrheal diseases1, with children being the most affected. Lack of 
awareness and sanitation exacerbates the spread of infections. Traditional water quality assessments focus on 
detecting common contaminants; however, rare pathogens responsible for severe diseases are often overlooked. 
For instance, a recent outbreak of Guillain-Barré syndrome (GBS) in Pune was linked to the pathogen 
Campylobacter jejuni, present in contaminated water (​h​t​t​p​s​:​​/​/​w​w​w​.​​v​a​x​-​b​e​​f​o​r​e​-​t​​r​a​v​e​l​​.​c​o​m​/​p​​u​n​e​s​-​g​​u​i​l​l​a​i​​n​-​b​a​r​​
r​-​s​y​n​d​​r​o​m​e​-​e​​p​i​d​e​m​i​​c​-​r​e​l​​a​t​e​d​-​w​​a​t​e​r​-​q​​u​a​l​i​t​y​​-​2​0​2​5​-​0​3​-​1​0). This highlights the necessity of advanced analytical 
approaches for early pathogen detection.

This study employs machine learning models to analyze water quality data collected from Gujarat, identifying 
potential pathogens and assessing contamination levels. Our contributions to this study make early warning 
signs for the use of potable water for common people. By integrating Explainable AI techniques, the study aims 
to provide transparency in model predictions, ensuring actionable insights for policymakers and public health 
officials. Water sensors can degrade, tampered with, or give inconsistent readings when the model is susceptible 
to attacks. Government or NGO decisions based on wrong predictions can have severe consequences. Most 
water quality studies stop at accuracy metrics. The need for developing robust model arises which survives 
adversarial attacks like FGSM and PGD attacks. In present scenario, this is generally not a common practice 
to assess the reliability or the vulnerability of Machine learning models. The Government organization relies 
completely on the output generated and are not concerned about the vulnerability of model, that could lead to 
misclassification of results and performance variation when tested with Adversarial testing.
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Related study
Multivariate statistical analysis was applied in a Brazilian river pilot study, identifying pollution as a major 
environmental threat in specific areas2. A two-year study further analysed water quality parameters and 42 
pesticides to assess contamination levels3. Non-machine learning approaches have also been explored, such as 
various methodologies for Water Quality Index (WQI) calculation4. A study in Tonle Sap Lake, Sangker River 
(Cambodia) compared five water quality assessment techniques, including the Mekong River Commission WQI, 
the French Water Quality Assessment, and the US Environmental Protection Agency framework5.

Machine learning techniques have been widely applied in water quality assessments. An ensemble learning 
model was used for water quality classification6, while a study in Lam Tsuen River, Hong Kong, utilized the 
WQI with an Extra Tree regression model6. Another study employed an XGBoost classifier, achieving 97.06% 
accuracy using hyperparameter optimization7.

Several hybrid models8‚31 have been explored to enhance predictive accuracy. A study in the Talar catchment 
found that a Bagging classifier with a Random Tree outperformed other machine learning models for river quality 
prediction9. Comparative studies have evaluated multiple classifiers, including Support Vector Machine (SVM) 
32, Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), CATBoost, XGBoost, and Multilayer 
Perceptron (MLP)10. The CATBoost model demonstrated the highest accuracy, with feature importance aligning 
with key pollution indicators10. Spearman rank correlation coefficients were further used to determine significant 
trends in pollution indicators11.

To facilitate early detection of water contamination, researchers in12 developed a predictive model for 
BOD₅ values, using linear regression, support vector regression (SVR), and multi-layer perceptrons (MLP)13. 
Additionally, various chemometric techniques—such as Man-Kendall trend analysis, principal component 
analysis, factor analysis, and agglomerative hierarchical cluster analysis—have demonstrated the vulnerability of 
Selangor’s water system to ammonia pollutants, posing significant risks to water supply14.

The impact of COVID-19 on the Ganges River (India) has been studied extensively15. Various WQI 
methodologies and water quality parameters have been examined in detail16,17. In18,19, Cascaded Fuzzy 
Systems were implemented for water quality prediction, while20 utilized KNN imputation with 10 water quality 
parameters.

The integration of Explainable Artificial Intelligence (XAI) in water quality assessment can help with the 
interpretation of complex machine and deep learning models. SHAP (SHapley Additive exPlanations) has 
been employed to interpret machine learning models, providing transparency in water quality prediction21–25. 
The use of XAI ensures that AI-driven decisions are interpretable and actionable for stakeholders, improving 
trust in automated water quality assessments. With SHAP, the critical features can be identified and help us 
understand the susceptible feature that dominate the dataset. Analysing these identified features can help us with 
precautionary measures to be taken before utilization of such contaminated water.

Research gap
Despite significant advancements in water quality assessment and prediction models, several key gaps remain 
in the existing literature:

Lack of explainability in AI-based water quality predictions
While machine learning models such as XGBoost, Random Forest, and neural networks have shown high 
accuracy in water quality prediction6,7,10, they often operate as black-box models, making it difficult to 
understand how predictions are made. Few studies have incorporated Explainable AI (XAI) techniques like 
SHAP (SHapley Additive ExPlanations) to provide insights into model decisions21–25. However, existing XAI 
applications in water quality assessment remain limited and underexplored.

Insufficient hybrid and ensemble learning approaches
Although individual models such as XGBoost and Support Vector Machines (SVM)26 have demonstrated 
promising results7,10,13, hybrid models and ensemble learning techniques remain underutilized. Studies have 
shown that combining multiple models, such as Bagging classifiers and Random Trees9, can enhance predictive 
performance, but comprehensive evaluations across different water bodies and geographic locations are lacking.

Limited geographic and environmental coverage
Most water quality studies have focused on specific rivers and regions, such as: Lam Tsuen River, Hong Kong6.

Talar Catchment, Iran9, Ganges River, India15. Selangor, Malaysia (chemometric analysis)14.
However, comprehensive datasets covering diverse hydrological conditions and climatic variations are scarce. 

There is a need for models that generalize across multiple regions and water sources, including groundwater, 
lakes, and reservoirs.

Lack of real-time and early warning systems
Most studies rely on historical data for water quality prediction12–14, rather than real-time monitoring and early 
warning systems. The integration of IoT sensors, remote sensing, and AI-driven alert mechanisms for water 
contamination detection remains an open research area.

Insufficient studies on AI-driven decision support systems
While various models assess water quality, few studies explore how AI-based predictions can be effectively 
integrated into policymaking and public health strategies. There is a lack of user-friendly AI-driven decision 
support systems that can help environmental agencies and policymakers take preventive actions before 
contamination reaches critical levels.
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Data imbalance and feature selection challenges
Many studies face imbalanced datasets, where instances of extreme pollution events are rare20. Furthermore, 
feature selection methodologies are often inconsistent, leading to suboptimal model performance. There is a 
need for automated feature selection techniques and strategies to handle data imbalance for more robust AI 
models.

Adversarial training for tabular water data
Many works of research articles focus on achieving accuracy and the work stops till there. To check the robustness 
especially for water critical parameters that might lead to susceptible diseases, can be determined by training the 
models with adversarial training.

Motivation and contribution
This research presents an efficient and promising approach for waterborne disease detection by integrating 
efficient machine learning models with Explainable AI (XAI)25. The key contributions of this study include:

Implementation of advanced machine learning techniques (e.g., XGBoost, Random Forest, and ensemble 
learning) to classify and predict waterborne disease susceptibility based on water quality parameters. Comparison 
of various machine learning models to identify the most accurate and efficient approach for disease prediction.

Utilization of SHAP (SHapley Additive ExPlanations)25 to interpret feature importance, ensuring transparency 
in water quality assessments and disease prediction outcomes.

Identification of the most influential water quality parameters contributing to contamination and disease 
risk, aiding in better decision-making.

Application of data balancing techniques to handle class imbalances in water quality datasets, improving 
model robustness. Feature selection and engineering to enhance predictive performance by reducing noise and 
redundancy in data.

Performance benchmarking against existing models that use traditional Water Quality Index (WQI)2,4 and 
non-explainable ML approaches.

Demonstration of how XAI improves interpretability and decision support compared to black-box models. 
Proposal of an AI-driven decision support system to assist environmental agencies and policymakers in early 
disease outbreak detection.

Contribution
A pilot study was conducted in western parts of Gujarat, Vadodara an analysis of several open and closed gutters 
in the area was surveyed. Along with 250 people surveyed for notable diseases related to water were identified 
and analyzed.

The pilot study was conducted under Indian Council Medical Research (ICMR) (project ID is 2019–8126) 
in Parul University and was approved with consent from all the authors. The data was collected from Parul 
University. All experiments/survey were performed in accordance with the relevant guidelines and regulations. 
During the survey, all the participants’ consent was considered and agreed upon.

As per the Fig 1, study conducted in the western region of India in Gujarat shows the count of disposing the 
waste in open gutter is more as compared other wastewater management areas. The open gutters are an open 
invitation for water contamination.

Figure 1 shows the number of open gutters is more in.
Gujarat’s western region, leading to contamination of water and making it more polluted. Also, the sewage 

lines in most of the areas remain open, and disposal of wastewater from.
industries and households lead to severe waterborne diseases. Around 250 people were surveyed for various 

diseases affected by drinking water or using water repositories near their houses.

Fig. 1.  Disposal of wastewater.
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Figure 2 shows us the identified signs and symptoms observed from 250 people who were also surveyed for 
drinking habits, water reservoirs nearby, and Diarrheal diseases, which were reported and are plotted in the 
graph.

An epidemiological survey was conducted in central Gujarat—covering Ahmedabad, Gandhinagar, and 
Vadodara—to examine the relationship between waterborne diseases and exposure to contaminated water. A 
total of 250 participants were selected using stratified random sampling to ensure representation from both 
urban and rural areas with varying water access.

A structured questionnaire, prepared using Google Forms and Kobo Toolbox, was administered by trained 
personnel. It gathered information on participants’ health status, symptoms of waterborne diseases, hygiene 
practices, sanitation facilities, and sources of drinking water.

Ethical protocols were strictly observed, including informed consent, voluntary participation, and data 
confidentiality. To validate the self-reported health data, medical records from Taluka Health Centres in 
Vadodara were reviewed and compared. This approach provided a reliable understanding of how exposure to 
unsafe water impacts public health across diverse communities in the region.

Table  1, describes the diseases associated with the relevant pathogen categorized as Bacteria, Virus and 
Parasites. Health significance column, relates to the severity of impact with low, moderate and high values, 
including association with outbreaks.

Methdology
Dataset collection
The dataset collected from Central Pollution Control Board consists of more than 2700 data, for 5 years ranging 
from 2017 to 2022. Each attribute in the dataset consists of the water parameters like pH, BOD, Dissolved solids, 
Temperature, Conductivity, Nitrogen, Fecal Coliform, and Fecal Streptococci. The dataset consists of river water 
from various states of India. Overall, 22 states of India were considered. All this data was given to the machine 
learning model for the training phase of the model.

The data is pre-processed to be fed into the learning model/classifiers. This data is cleaned with missing 
values using mean, median methodology. The data is used for training and testing used in the model. Data 
studied and utilized from the pilot study also contains the values that were not detected, those values were also 
removed and are used for testing purposes in the learning model.

Preprocessing steps
The data collected from Pollution board Control of India, consists of attributes with minimum value range and 
maximum value obtained from the region.

•	 As the original dataset had both the values of minimum and maximum values for each of the attributes. We 
have divided the dataset for training the models separately with minimum values and maximum values re-
spectively with pre-defined threshold.

•	 For missing values in the dataset, we have used mean, median, method to fill the missing values if NaN.
•	 For attributes like temperature, we have used mean to fill the values.
•	 For Fecal and Total coliform, we have used median to fill the values missing in the data set. Since these two 

features tend to show high skewness in the dataset with extreme contamination levels.

Fig. 2.  Graph showing the water borne diseases susceptibility to various diseases noted in Gujarat region.
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Machine learning models
HistGradientBoosting Classifier- for Big Data sets of more than 10,000 samples, is much faster than compared 
to GradientBoostingClassifier. This classifier supports the presence of missing values in the dataset. Consider x 
and y with two inputs that have samples N. The function f(xi), maps the feature x, which is input to the variable 
y. The summation is given by the following equation. The function called loss function is given by the difference 
between the actual and the predicted variables.

	 L(f) = ΣN
(i=1)[L(yi, f(xi)]� (1)

Random Forest Classifier - Random Forest supervised machine learning algorithm that combines multiple 
decision trees to form a forest. Here, GE is the generalization error for the random forest and is denoted as Here, 
function f (X, Y) is used to count the average of counts and gives predicted value.

	 GE = Px, y ¬(f (X, Y) < 0� (2)

where X is called the predicted value, and Y is called the outcome of the classification problem.
Bayesian Classifier - Naive Bayes classifier is a machine learning model based on Bayes’ theorem6. It calculates 

the probability of a given input belonging to a particular class. Here in (3), the probabilistic functions to create 
a classifier model is used. The probability of given feature inputs for all possible values of the features of y and 
maximum probability is given as output from the function defined below.

	 y = max(c)Πn
(i=1)c(xi| y)� (3)

c is called the probability of a particular class, and c(xi∣y) is called conditional probability.
Decision tree Classifier- It is a supervised learning technique, hence used for classification and regression for 

various applications. This Tree classifier has nodes that represent the features of the dataset. Branches indicate 
the decision rules, and leaves are the outputs of the algorithm.

Adaboosting Classifier- This classifier is used to remove the faults that occur in training the model. It is a 
machine-learning model used for classification and regression problems. Long short-term memory (LSTM) 
model is used. The LSTM is a deep learning model that retains information for a long series time.

Table 2 describes the Software and Hardware Components that were utilized for implementation of machine 
learning models.

We have used 5-fold cross-validation to evaluate the performance of all models. This method splits the dataset 
into five parts, training on four and validating on the remaining one in each fold, rotating until all parts are used 
for validation. This helps assess the stability and generalizability of each model across different subsets of data.

Adversarial training methods
Fast Gradient Sign Method (FGSM) is a method to perturb input embeddings (text) or feature vectors (tabular). 
FGSM is a single-step, white-box adversarial attack introduced by Goodfellow et al. in 201527,28. It perturbs 
the input data in equation (4) in the direction that increases the model’s loss the most, aiming to cause 
misclassification.

Diseases Bacteria
Health 
Significance Virus

Health 
Significance Parasites

Health 
Significance

Diarrhea

Escherichia coli (E. coli) High Rotavirus High Cryptosporidium High

Campylobacter jejuni High Norovirus High Giardia High

Salmonella High Adenovirus Moderate Entamoeba High

Shigella High Astrovirus Moderate -- --

Yersinia Moderate -- --

Cholera Vibrio cholerae High -- -- --

Hepatitis A Hepatitis A virus 
(HAV) High -- --

Typhoid Salmonella Typhi bacteria High -- --

Giardiasis Giardia duodenalis. Giardia 
intestinalis. High

Pnemonia,
Meningitis,
Urinary Tract infection

Enterohemorrhagic E. coli (EHEC) High -- -- -- ---

Campylobacteriosis
Guillain-Barré Syndrome

• Campylobacter jejuni. Campylobacter 
coli High -- -- -- ---

Cryptosporidiosis --- --- -- -- Cryptosporidium High

Cyclosporiasis --- ---- -- -- Cyclospora cayetanensis High

Shigellosis Shigella bacteria High -- -- ---- --

Vibriosis Vibrio parahaemolyticus High -- -- ---- --

Table 1.  Diseases caused by associated pathogens.
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	 adv_x = x + ϵ × sign(∇ x J(θ, x, y))� (4)

adv_x: Our output adversarial data.
x: The original input embeddings.
y: The ground-truth label of the input data
Ɛ: Small value we multiply the signed gradients by to ensure the perturbations are small enough that the 

human eye cannot detect them but large enough that they fool the neural network.
θ: Our neural network model.
J: The loss function.
Projected Gradient Descent (PGD) is an iterative, white-box adversarial attack considered one of the most 

potent first-order attacks. It extends FGSM by applying it multiple times with small step sizes, projecting the 
perturbed input back onto the valid data domain after each step27–29.

This iterative algorithm fine-tunes model parameters to minimize a given loss function. Mathematically, the 
update rule is expressed as,

	 θ t+1 = θ t − α × ∇ J (θ t)� (5)

where Θₜ represents the parameters at iteration t, α is the learning rate, and ∇ J(Θₜ) is the gradient of the loss 
function.

Algorithm
The dataset was preprocessed by separating each water quality feature into two distinct subsets: one comprising 
minimum values and the other comprising maximum values. Separate machine learning models were trained on 
each subset to analyze their behavior under extreme conditions.

A binary classification schema (0/1) was employed, where each row was labeled to indicate susceptibility to 
waterborne diseases (1 for susceptible, 0 for not susceptible).

The dataset contained missing values, which were carefully examined and handled using imputation 
techniques.

Mean and median imputation methods were applied to address the missing data, depending on the 
distribution characteristics of each feature.

Each processed dataset was used to train multiple machine learning models. The models demonstrated fairly 
strong performance in classifying susceptibility to diseases.

Among the models evaluated, the Random Forest classifier yielded the highest accuracy. To enhance 
interpretability, Explainable AI (XAI) techniques were applied, specifically the SHapley Additive exPlanations 
(SHAP) framework, which provides a comprehensive understanding of feature contributions to model 
predictions.

To assess model robustness, adversarial attacks were conducted using Fast Gradient Sign Method (FGSM) 
and Projected Gradient Descent (PGD). These gradient-based perturbation methods were applied primarily to 
the Random Forest model to evaluate its susceptibility, despite Random Forest not being inherently gradient-
based — highlighting its vulnerability under input manipulation.

The Fig. 3 shows the entire methodology used for models. All the above steps are also depicted in the figure 
below.

Results and discussions
From the observation of experiments conducted, the classifier described in the methodology section is at par 
with the dataset consisting of minimum and maximum values. The machine learning algorithms are trained for 
both minimum and maximum values of water data parameters. The number of layers used is 3, with a dropout 
value of 0.02. The model used is a sequential model for LSTM. For the LSTM model, the number of epochs 
used was 15, and thus we were able to achieve an accuracy of 91.9%. As shown in Table 3., the Random Forest 
and XGBoost models rely on ensemble-based configurations to mitigate overfitting. The MLP employs a two-
layer architecture with ReLU activations, while TabNet uses attention-based feature selection. These values were 
chosen for efficiency and comparison across models.

Component Specification

Python Version 3.11.13

Scikit-learn 1.6.1

SHAP 0.48.0

Operating System Linux (glibc 2.35)

Processor Architecture x86_64

RAM 12.67 GB

Random_seed 42

Table 2.  Software and hardware Configuration.
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Figure 4 gives us the brief of all the classifiers used for the model, both values of datasets are considered, 
minimum values and maximum values. And on both values, all the parameters are trained. The following table 
shows the trained value accuracy for each of the classifiers used.

From the above data, the training loss was calculated that occurred during the training of the deep learning 
model. Deep learning models need huge, networked layers, which increases the complexity of the framework.

Fig. 4.  Accuracy Obtained from Each of The Models Applied on The Maximum and Minimum Values.

 

Model Key Hyperparameters

Random Forest n_estimators = 500, max_depth = 10, min_samples_split = 2, random_state = 42

XGBoost n_estimators = 300, max_depth = 6, learning_rate = 0.1, subsample = 0.8, gamma = 0

MLP hidden_layer_sizes=(100, 50), activation=’relu’, solver=’adam’, max_iter = 1000

TabNet n_d = 32, n_a = 32, n_steps = 5, gamma = 1.5, lambda_sparse = 1e-3, max_epochs = 100

Table 3.  Model Parameters.

 

Fig. 3.  Methodology.
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Performance of the models
HistGradientBoosting Classifier is trained on both values of the dataset, minimum range values of water as well 
as maximum values. Providing fair accuracy of 97 to 98%.

Random Forest outperforms all the other machine learning models. Even though it is one of the traditional 
methods of evaluating historical data, it gives good accuracy over the data set used.

Adaboost, Bagging classifier, and Decision Tree provide fairly good performance in terms of maximum 
values.

Since the data is also trained for deep learning models like LSTM to provide a fair comparison with machine 
learning models, LSTM shows an accuracy of around 91.9%, as most of the deep learning models are used for 
more complex architectures with many hidden layers. This dataset has a varied range right, from minimum 
values to maximum values for each of the features.

Table 4 shows the Accuracy Mean, Standard deviation for all the ML models demonstrated. From the table it 
is evident that Random Forest performs well. As shown in Table 4, Random Forest achieved the highest accuracy 
(0.9857 ± 0.0045) and F1-score, indicating its robustness and generalization. In contrast, TabNet performed 
poorly with large variability, making it unsuitable for this dataset.

To statistically evaluate the performance of models, we conducted the McNemar’s test to compare the 
classification results of Random Forest and Bagging Classifier, which exhibited very close maximum accuracies 
(98.53% vs. 98.53%) and similar minimum accuracies (96.38% vs. 95.06%). The p-value from McNemar’s test 
was p = 0.037, indicating a statistically significant difference in their predictions despite similar accuracy metrics.

To assess robustness against adversarial conditions, we applied the Wilcoxon signed-rank test to adversarial 
drop metrics across multiple runs. For instance, under FGSM attacks, Random Forest showed an average drop of 
56% ± 3%, while Bagging Classifier dropped 58% ± 2.5%, with a p-value of p = 0.042, supporting the significance 
of robustness differences. Additionally, we report 95% confidence intervals for accuracy variation between 
minimum and maximum values:

•	 Histogram Gradient Boosting: 97.67%–98.17%.
•	 Random Forest: 96.38%–98.53%.
•	 Bagging Classifier: 95.06%–98.53%.
•	 Adaboost: 95.60%–96.00%. Alone with machine learning models, enough accuracy is needed to understand 

the water data. Test sets were randomly sampled from the pilot data.

Explainable AI
Explainable AI is also called the interpretability of machine learning models used. Machine learning models 
are thought of as a black box24,25. Since the outcome of each model is difficult to trace back to how the results 
are achieved. Explainable AI helps with the interpretation of each model used. Thus, giving insight into each of 
the features used and trusting our Machine learning model, which can be safely used over a different range of 
applications. Since Random Forest is used with XAI, which has outperformed other models, and look forward to 
getting sustainable results over any other datasets and trust the model in terms of the results obtained.

Here, for Explainable AI, SHAP (Shapley Additive exPlanations) is implemented with the Python framework. 
Explainable AI is implemented with SHAP for Random Forest Classifier, which provides an accuracy of 98.53%. 
Feature evaluation is done with SHAP, which provides very good insights about the model trained and various 
features applied.

Figure 5 is about the beeswarm model of SHAP, showing high and low values, indicating blue color for low-
value impact on the model and red shows high-value impact on the model. Here, temperature shows the high 
impact on the performance of the Random Forest classifier.

In Fig. 6 the waterfall diagram, the x-axis highlights the values of the dependent variable, which is susceptible 
to diseases. x is the observed value, f(x)gives the prediction value of the model for a given input x, and E(x) is 
the expected value of the dependent variable. The average of all predictions is given by (mean(model(f(x))). 
Observation for a certain data value; the Total coliform feature is found to be + 0.58, having more impact as 
compared to other features in the dataset.

Figure 6 outlines the dominant feature for f(x), where total coliform is too high crossing the permissible 
limits. WHO recommends zero total coliforms in any 100 mL sample can be used for human consumption.

Model Accuracy (Mean ± Std) F1-score (Mean ± Std) Interpretation

Random Forest 0.9857 ± 0.0045 0.9857 ± 0.0045 Highest and most stable performance

MLP 0.9495 ± 0.0063 0.9494 ± 0.0063 Good, slightly less consistent than RF

HistGradientBoosting 0.9802 ± 0.0051 0.9798 ± 0.0054 Very strong and consistent performer

AdaBoost Classifier 0.9600 ± 0.0082 0.9580 ± 0.0078 Moderate performance, slightly variable

Bagging Classifier 0.9832 ± 0.0038 0.9829 ± 0.0040 Very high, almost on par with RF

Decision Tree 0.9560 ± 0.0075 0.9542 ± 0.0073 Decent performance, more variability

LSTM 0.9190 ± 0.0000 0.9190 ± 0.0000 Lowest and static performance

MLP 0.9495 ± 0.0063 0.9494 ± 0.0063 Good performance, slightly below RF

TabNet 0.5002 ± 0.0882 0.4169 ± 0.1466 Poor performance;

Table 4.  Performance comparison of ML models.
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Although SHAP provides insights of models. There are some limitations also where SHAP can be manipulated 
by adversarial inputs, where small perturbations lead to very different explanations. This could be critical in 
health care domains25. While SHAP is widely adopted for its theoretical grounding and local interpretability, 
it suffers from several limitations. As discussed by Molnar30, SHAP values assume feature independence and 
model linearity in contributions. In real-world datasets where feature correlations exist (e.g., environmental or 
clinical settings), this can result in misleading attributes. Additionally, SHAP explanations are computationally 
expensive for large datasets.

By identifying which features contribute most to predictions, SHAP helps in understanding why certain 
variables make models more susceptible to attacks. This perspective is crucial and important for policymakers 
and public health agencies, as it ensures that AI-driven systems used in sensitive domains in clinical decision 
support and water quality monitoring are both transparent and resilient. To strengthen the link between 
explainability and robustness allows stakeholders to design guidelines, allocate resources, and implement 
safeguards that directly translate into improved trust, safety, and public health outcomes.

FGSM and PGD method
The experiment set up used for adversarial training was on the trained data and we compared before and after 
attacks for both FGSM and PGD methods.

The model trained for Adversarial examples is Simple Neural network (Simple NN) also denotes a surrogate 
model. As the dataset consists of tabular and structured data, FGSM and PGD works well with differential 
models with gradient function28.

We have also used Random Forest to show how it severely affects and has zero gradient. Because it is made of 
decision tress it fails with FGSM and PGD attacks.

Processing Steps:

•	 Define a SimpleNN model with parameters (criterion = nn.BCELoss(), optimizer = optim.Adam(model.pa-
rameters(), lr = 0.001).

Fig. 6.  Waterfall model- Observed value for f(x).

 

Fig. 5.  Beeswarm model.
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•	 Define FGSM attack function with epsilon values from 0.0 to 0.2.
•	 Define PGD attack function with epsilon values from 0.0 to 0.2.
•	 Run model for clean accuracy.
•	 Perturb the inputs with FGSM, PGD function and run the model for showing performance change in accu-

racy.
•	 Generate Adversarial examples (x_adv = fgsm_attack(model, criterion, X_test_tensor, y_test_tensor, epsi-

lon = eps)) -FGSM and PGD.
•	 Test model on adversarial data to generate accuracy.

Accuracy on clean test data: 0.7477.
Epsilon: 0.00 - Adversarial Accuracy: 0.7477.
Epsilon: 0.01 - Adversarial Accuracy: 0.7386.
Epsilon: 0.05 - Adversarial Accuracy: 0.7112.
Epsilon: 0.10 - Adversarial Accuracy: 0.6819.
Epsilon: 0.15 - Adversarial Accuracy: 0.6399.
Epsilon: 0.20 - Adversarial Accuracy: 0.5905.
Figure 7 displays the model’s performance under Adversarial data. The model also shows steep decline in 

accuracy when faced with adversarial FGSM attack.
With PGD method, the parameters used are alpha = 0.005 and with iteration value = 10, epsilon values 

ranging from 0.0 to 0.2.
Clean Accuracy: 0.7477.
Epsilon: 0.00 - PGD Adversarial Accuracy: 0.6563.
Epsilon: 0.01 - PGD Adversarial Accuracy: 0.6563.
Epsilon: 0.05 - PGD Adversarial Accuracy: 0.6563.
Epsilon: 0.10 - PGD Adversarial Accuracy: 0.6527.
Epsilon: 0.15 - PGD Adversarial Accuracy: 0.6490.
Epsilon: 0.20 - PGD Adversarial Accuracy: 0.6472.
Figure 8 displays the model’s performance under Adversarial data. The model also shows steady decline in 

accuracy when faced with adversarial PGD attack.
Figure 9 demonstrates the Random forest model, tested for adversarial accuracy which exhibits 98% accuracy 

before the attack, and suffers severely when considering epsilon values 0.1, alpha = 0.01 and accuracy dropping 
to 0.4095.

Table  5  shows the adversarial training on Random Forest and Simple Neural Network. We can see that 
machine learning models are too vulnerable and susceptible to misclassification. With clean accuracy, we might 
think the model is giving good accuracy but in terms of robustness of the model to check the security aspect 
using adversarial example, it affects severely. For Simple neural network model even though the accuracy is 74% 
as compared to 98%. It can withstand attacks with FGSM and PGD, even though the accuracy is dropped it does 
not further decrease.

The observed value from the Table 4, shows decline in model performance under adversarial conditions. In 
practical scenario, machine learning models are often relied upon to provide early warnings about contamination 

Fig. 7.  Model Robustness to FGSM Attack.
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or unsafe water conditions. However, the susceptibility of these models to small, malicious or naturally occurring 
perturbations can lead to misclassifications and labelling unsafe water.

The vulnerabilities can cause delaying response to waterborne disease outbreaks for public at large, misguiding 
water treatment protocols and producing unreliable analysis reports. For example, if a model under adversarial 
influence misclassifies high coliform levels as safe, it could result in contaminated water being distributed 
without adequate treatment, increasing the risk of water borne diseases.

Model Clean Accuracy FGSM (Ɛ=0.1) FGSM (Ɛ=0.2)
PGD alpha = 0.02
(Ɛ=0.1)

PGD alpha = 0.02
(Ɛ=0.2)

Random Forest 98% 40.5 43 42.95 40.95

SimpleNN 74.77 68.19 59.05 65.27 64.72

Table 5.  FGSM and PGD attacks after adversarial training.

 

Fig. 9.  Random forest accuracy.

 

Fig. 8.  Model Robustness to PGD attack.
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Furthermore, when we rely on ML predictions, the drop in performance under adversarial attack highlights 
the need for robust mechanisms such as adversarial training. These insights stress the urgency of incorporating 
security-aware AI designs in water monitoring infrastructure to ensure consistent and trustworthy decision-
making in critical environmental health applications.

Conclusion
This study has demonstrated the importance of advanced analytical techniques in water quality assessment and 
pathogen detection. An epidemiological survey was conducted where Stratified random sampling was used to 
ensure representation from both urban and rural areas with varying water access. Through machine learning 
models, particularly Random Forest and Bagging Classifier, exhibit good performance along with MLP and Tab 
Net, while MLP yielded better results as compared to Tab Net which lowered the performance. To gain insight 
into the model trained, we were able to use Explainable AI with the Machine learning model to learn about the 
features that dominate the parameters leading to waterborne diseases. The findings emphasize the urgent need 
for robust water monitoring systems to prevent disease outbreaks and improve water management practices.

We have also demonstrated the robustness of the model with adversarial training using FGSM and PGD 
attacks, models affect severely with Random Forest model but withstand the attacks with Simple neural network 
model. Future research can be extended by incorporating stronger robust model sustaining smallest change 
in the input perturbations and does not cause the model to suffer. This will help the healthcare practitioner to 
safeguard against such attacks.

Data availability
The data is available at ​[​h​t​t​p​s​​:​/​/​k​a​g​​g​l​e​.​c​o​​m​/​d​a​t​a​​s​e​t​s​/​1​2​9​f​1​1​7​3​b​b​2​9​4​8​1​f​0​3​4​3​9​c​4​0​c​7​7​f​2​1​8​5​8​d​9​5​5​1​5​d​5​5​5​a​7​a​5​c​e​e​
d​d​3​0​7​2​d​9​c​d​d​a​2​a​]​.​​
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