
Energy consumption prediction 
in buildings using LSTM and SVR 
modified by developed Henry gas 
solubility optimization
Hailu Wan1, Gengqiang Huang1, Ying Huang2,4 & Noradin Ghadimi3

Accurately predicting building energy consumption is essential for optimizing energy management, 
sustainability strategies, and operational efficiency. This study proposes a novel hybrid forecasting 
model that integrates wavelet decomposition for feature extraction, Long Short-Term Memory (LSTM) 
networks for capturing temporal dependencies, and Support Vector Regression (SVR) for refined 
estimates, with all model parameters optimized via a Developed Henry Gas Solubility Optimization 
(DHGSO) algorithm. The dataset comprises two years of hourly energy consumption data from 
seven campuses, providing a robust foundation for validation. The proposed method achieves a 20% 
reduction in RMSE and a 15% reduction in MAPE compared to standalone LSTM and SVR models. 
This performance demonstrates the benefits of jointly leveraging decomposition-based feature 
engineering, deep learning, and advanced metaheuristic optimization. The results emphasize the 
method’s potential for supporting proactive demand response, accurate budget planning, renewable 
energy integration, and efficient equipment maintenance in large-scale building energy management 
systems.
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 Accurately predicting building energy consumption is vital for sustainable management, influencing multiple 
operational aspects1. Such forecasts enable effective energy management by revealing usage patterns2, helping 
managers allocate resources efficiently, identify savings opportunities, and make informed procurement and 
utilization decisions3. They also enhance budget planning by allowing accurate estimation of energy costs, 
ensuring proper resource allocation and adequate funding4.

Accurate energy consumption forecasts enhance demand response systems by enabling effective participation 
in programs that improve grid stability and offer financial incentives5,6. Timely predictions support proactive load 
management, allowing dynamic adjustments to demand fluctuations while minimizing costs and maintaining 
stability7. They are equally vital for integrating renewable energy, as they help in properly sizing, managing, 
and optimizing clean energy systems8,9, thereby reducing reliance on conventional sources and advancing 
sustainability goals10. Accurate forecasts also support efficient equipment maintenance by enabling proactive 
scheduling of servicing, repairs, and replacements11. This approach keeps systems operating efficiently, reduces 
waste from faulty equipment, extends lifespan, and lowers operational costs while advancing sustainability 
goals12. Likewise, forecasts improve load balancing, allowing managers to distribute energy across systems 
optimally, prevent overloads, and limit failures or inefficiencies13.

Several studies in the literature have recognized the significance of accurate energy consumption prediction 
in buildings for sustainable building management. The research conducted by Olu-Ajayi et al.14 presented a 
study that several Machine learning algorithms, including Linear Regression (LR), Support Vector Machine 
(SVM), Deep Neural Network (DNN), Random Forest (RF), Stacking, K Nearest Neighbor (KNN), Gradient 
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Boosting (GB), and Artificial Neural Network (ANN) were utilized in order to forecast early building electricity 
usage involving vast buildings in the study. The present research studied the influence of the clusters of the 
building on the efficiency of the model15. This paper aimed to develop a system that made designers able to 
accomplish vital characteristics of building strategy and predict mean amount of energy consumed in the initial 
steps of the extension. The findings illustrated Deep Neural Network the most effective model of prediction of 
the electricity consumption in the initial phase of design. Furthermore, it encouraged the designers to consume 
it for handling the design, making the promising decisions, and optimizing the design16.

Ma et al.17 proposed a dataset-based optimization technique for reducing energy consumption in 
heterogeneous mobile networks to stress the significance of using optimization techniques for energy efficiency 
improvements, which is complementarily tackled in the hybrid model of our work through the objective of 
promoting prediction accuracy through optimized algorithms.

Sun et al.18 confirmed the usefulness of deep learning-based data generation methods in the prediction of ice 
resistance that indicates advanced machine learning algorithms such as LSTM and SVR that can significantly 
enhance predictive performance in various fields, such as building energy utilization.

Ning et al.19 adopted similar techniques based on similarity optimization and applied them to calculate 
manufacturing costs, which is consistent with our approach to strengthen the accuracy of the required energy 
consumption calculations.

The role of green bonds in promoting innovation in the Chinese energy sector were also considered by Dong 
and Yu, reaffirming the sustainability and efficient resource allocation premise of our hybrid model for energy 
consumption prediction20.

Wenninger et al.21 proposed a model, called QLattice algorithm, that was made to meet efficiency of the 
prediction and the possibility of explicable Artificial Intelligence (AI). More than 25,000 German buildings 
were involved in this study to predict yearly electricity prediction performance of buildings. The explainability, 
the time of computation, and the efficiency of the prediction of QLattice were juxtaposed with other founded 
Machine Learning algorithms, including Multiple-Linear Regression, Extreme Gradient Boosting, Support 
Vector Machine, and Artificial Neural Network. After analyzing the data collected, it was evident that the QLattice 
technology showed great potential in the field of energy performance certificates. Its impressive performance 
made it a promising alternative to traditional machine learning algorithms for other energy-related predictive 
tasks as well. Further investigation was necessary to fully explore its capabilities and potential applications.

Yang et al.22 proposed a model that its purpose was to forecast the building’s electricity consumption. By the 
use of the chosen networks and optimization by shuffled frog-leaping algorithm, the experimental data were 
trained. Moreover, some criteria were examined to recognize the finest network considering speed and accuracy. 
In order to optimize the suggested algorithm, the rate of convergence and accomplished outcomes illustrated the 
significance competence. Based on the results, Support Vector Machine (SVM) and Long Short-Term Memory 
(LSTM) were represented, in turn, as the finest Neural Network for heating and cooling load prediction. The 
outcomes indicated that when it came to predicting cooling load, LSTM-SFLA performed the best with an R2 
score of 0.9761. However, SVR-SFLA indicated the best performance for predicting heating load that its R2 
score was 0.9583. the outcomes illustrated that by the use of SFLA, the performance of forecasting could be 
improved.

Ramos et al.23 proposed a model that by the use of K-Nearest Neighbors and Artificial Neural Network, the 
most feasible algorithm of energy utilization forecasting in a building was evaluated in various settings. The 
mentioned algorithms utilized data patterns of utilization that were combined in various settings maintaining 
supplementary information from data of sensors at the same time. The various settings were categorized in 
an order of steps that happened every five minutes. A decision tree was used to determine which of the two 
forecasting algorithms was appropriate for every five-minute interval. The algorithm that appeared to be 
the best suited was selected, and a reasonable explanation was given to confirm if it was the optimal choice. 
Studying updates in parameterization related to depth was important to grasp the effects they had on accuracy 
of forecasting. Decision trees had the capability to enhance prediction accuracy, as they had crucial role in 
processes of decision-making.

Moon et al.24 proposed a model named RABOLA (Ranger -Based Online Learning Approach), which was 
a strong two-step model of prediction. The purpose was to permit patterns of quick and practical learning 
work for the sake of some data, which were unseen. Energy usage data of two office buildings, which were 
available in public. Next, we processed the data and configured input variables to create training and test sets. 
In the beginning step, three STLF models were designed in accordance with tree-based ensemble learning 
methods utilizing the set of training. In the second step, a ranger-based model of prediction was made using 
size of window sliding during seven days utilizing forecasted values for external elements and three designs, like 
temperature and timestamp, which were counted as input parameters on the test. By wide comparison analysis, 
it could be illustrated that the suggested model could outperform forecasting efficiency of the other deep 
learning and stacking ensemble methods considering variation coefficient and mean absolute percentage error 
of the root-mean square error. Additionally, the relations between output and input parameters in forecasting 
building energy usage by STLF was presented. Table 1 synthesizes key features, datasets, evaluation metrics, and 
limitations of representative prior works discussed in the literature review. As shown, none of these approaches 
successfully integrates multi-resolution feature decomposition (wavelet transform), a deep sequential learner 
(LSTM), and a nonlinear regressor (SVR) optimized via a metaheuristic specifically tailored for hybrid model 
hyperparameter tuning. This integration, combined with proven accuracy gains, distinguishes the present study 
from existing methods.

 
In spite of the studied works in the literature, there is a pressing need to investigate fresh approaches that, 

when used correctly, may significantly improve the accuracy of energy consumption forecast in buildings.
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Forecasting the energy consumption in buildings is a complex task, due to the need to capture temporal 
dependencies and the non-linear interactions in high-dimensional, noisy data. Such intricacies often pose 
challenges to traditional  approaches, resulting in poor predictions that impair robust energy management. To 
handle these challenges, a hybrid technique is proposed using wavelet decomposition  for features extraction 
based on multiple resolution and adjusting model for global temporal data using long short term memory (LSTM) 
and non-linear behavior using support vector regression (SVR). Additionally, the DHGSO algorithm designed 
by the novel Developed Henry Gas Solubility Optimization algorithm ensures optimal hyperparameter tuning 
by optimizing the hyperparameters related to both LSTM and SVR, thereby improving the prediction accuracy 
and  robustness. The comprehensive results confirm that this novel combination not only enhances forecasting 
precision but also provides a versatile modeling framework that can adapt to varied energy consumption 
patterns, differentiating it from traditional techniques  and conveying advantages of accuracy, adaptability, and 
scalability in building energy management.

Research gap and novelty
Despite notable advances in building energy consumption forecasting, several key challenges remain unresolved. 
Many existing models either excel at short‑term temporal pattern recognition (e.g., deep recurrent networks) 
or at modeling nonlinear relationships (e.g., kernel-based regressors), but few can effectively integrate both 
capabilities without overfitting or sacrificing computational efficiency. Additionally, hyperparameter tuning in 
hybrid models is often performed using generic algorithms that do not guarantee optimal search across complex 
parameter spaces. These limitations hinder the robustness, adaptability, and precision required for real-world 
deployment in multi-building energy management systems.

To address these gaps, we propose a hybrid framework combining wavelet decomposition for multi-
resolution feature engineering, an LSTM network for capturing temporal dependencies, and an SVR model for 
nonlinear refinement, with all components tuned via a DHGSO algorithm. This integrated approach not only 
captures both short- and long‑term dependencies but also ensures optimized performance through domain-
specific parameter tuning, distinguishing it from conventional hybrid modeling strategies. Therefore, the key 
contributions of this study can be summarized as follows:

	i)	 Development of a novel integration of wavelet decomposition, LSTM networks, and SVR optimized via the 
DHGSO algorithm for building energy consumption forecasting.

	ii)	 Use of wavelet‑based multi‑resolution decomposition to extract both short‑ and long‑term temporal pat-
terns, enhancing the predictive capabilities of sequential learning models.

	iii)	 Introduction of DHGSO for domain‑specific hyperparameter tuning, achieving significant improvements 
in accuracy (RMSE and MAPE reduction) over baseline LSTM and SVR approaches.

	iv)	 Demonstration of the model’s adaptability across multiple building types in a multi‑campus dataset, high-
lighting its potential for real‑world deployment in advanced energy management systems.

Reference Methodology/model Dataset characteristics
Evaluation 
metrics Main limitations/advantages

22 SVM and LSTM optimized with Shuffled 
Frog-Leaping Algorithm (SFLA)

Single building electricity data 
(heating & cooling loads) RMSE, R2 Performance tuned for single-site data; lacks multi-building 

generalization

23 K-Nearest Neighbors + ANN with 
Decision Tree selection

Sensor-based, 5-min interval 
building usage data MAE, RMSE Focused on short interval forecasts only; decision tree adds 

selection overhead

24 Ranger-Based Online Learning (RABOLA) Energy usage from two office 
buildings, public dataset CV, MAPE Limited to office buildings; no multi-resolution feature 

extraction

32 Model Integration of classic statistical & 
ML approaches Mixed building energy datasets RMSE, MAPE Less accurate for highly non-stationary datasets

33 Vector field-based SVR Hourly energy consumption datasets RMSE, MAPE Sensitive to kernel parameter choice; limited handling of long-
term dependencies

25 Genetic Algorithm enhanced Adaptive 
DNN

Public building use datasets with 
environmental variables RMSE, R2 Overfitting risk; computationally expensive

35 Deep Reinforcement Learning Real-time EMS data streams RMSE Needs continuous retraining; high data dependency

36 CNN feature extraction + Bi-LSTM Energy datasets with multi-seasonal 
trends RMSE, MAPE Requires high computational resources; complex to deploy

37 Gradient Boosting Regression Tree Historical building energy readings RMSE, MAE Lower accuracy for abrupt load changes

38 Improved Extreme Gradient Boosting 
model Multi-building datasets RMSE, MAPE Less robust for multi-scale temporal data

This Study Wavelet decomposition + LSTM + SVR 
optimized via DHGSO

Two years of hourly consumption 
data from seven campus buildings

RMSE, MAPE, 
MAE, R2

Advantages: Captures both short- and long-term dependencies; 
integrates multi-resolution feature extraction and nonlinear 
refinement; domain-specific metaheuristic tuning (DHGSO) 
yields 20% RMSE and 15% MAPE improvement over strong 
baselines; scalable to multi-building, multi-type datasets

Table 1.  Summary of prior studies on Building energy consumption forecasting.
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Dataset description
This research comprises of information obtained from on-site visits carried out over a period of two years, 
spanning from February 2014 to April 2016, at seven distinct campuses. The primary objectives of these 
expeditions encompassed two fundamental aspects: firstly, the acquisition of unprocessed temporal data from 
the locations, and secondly, the engagement in discussions concerning the present methodologies employed 
in constructing energy analysis within these academic establishments. This segment presents a comprehensive 
summary of the on-site visits, delineating the diverse categories of data amassed during these excursions and 
presenting significant observations from the endeavor.

Upon accomplishment of location inspections, it shows that educational institutions had made significant 
investments in power metering and data collection systems over the past decade. Nevertheless, it was observed 
that the data required adequate utilization. Numerous universities and colleges have expressed concerns 
regarding the abundance of meter data, coupled with the need for the necessary expertise and resources to 
effectively employ it for analytical purposes. Notwithstanding several instances of visiting and subsequent 
attempts to gather information, the data remained unattainable for the purpose of doing study. However, the 
data about the five educational institutions and their performance on the seven benchmarks was easily accessible 
and has been evaluated in this study.

The first case study is located in the Midwest area of the United States, characterized by a continental 
climate. The college consists of 226 buildings that are distributed across two main educational institutions, with 
a combined floor space that exceeds 2.3  million square meters (25  million square feet). The data gathering 
process for Case Study 1 began with an initial interview conducted in March 2015. Subsequently, a site visit 
was conducted in June 2015 to extract raw data spanning a period of one year from all electricity meters. This 
extraction was facilitated by the use of SQL databases. The meta-data file includes supplementary data, such as 
location, primary space usage, floor area, and EnergyStar score.

The second case study is located in the Northeastern area of the US and focuses on a university that has a 
major campus housing 180 entities. The data gathering approach for this case study included an initial meeting 
in April 2015, which was then followed by a site visit in August 2015. During the site visit, a database query was 
used to pull a year’s worth of electricity meter data from the buildings. The given meta-data file included further 
details on the floor space and major use type of the buildings.

The third case study is situated within the Midwest region of the United States and has a university campus 
consisting of twenty-five buildings, covering a total area of 204,000 m2 (2.2  million square feet). The data 
gathering procedure for this particular case study included an initial examination of the location and subsequent 
deliberation in March 2015, succeeded by a visit to the site in March 2016 to get unprocessed data from the 
energy management platform used on the campus. The metadata of the energy management platform facilitated 
simple retrieval of flat files including each data point.

The fourth case study is situated inside the confines of a tropical international school in Southeast Asia. The 
school has five buildings, covering an estimated area of 58,000 square meters (625,000 square feet). The data 
included in this case study was collected through a series of continuous talks and interviews conducted with the 
operations employees over a span of five years. The operations team played a crucial role in the development of 
the technique, providing significant contributions.

The fifth case study is located in Switzerland and attentions on a university campus consisting of 22 buildings, 
covering an area of 150,000 m2 (1.6 million square feet). The data for this case study was obtained via email 
correspondence with the building facilities managers and by leveraging raw data from the campus energy 
management system. The meta-data spreadsheet yielded more information on the fundamental purposes of the 
spaces inside all of the structures.

To ensure data quality and model readiness, all input time series underwent a two-stage preprocessing 
procedure:

Missing data imputation

•	 • Short Gaps (< 2 h): Imputed via weighted linear interpolation using adjacent timestamps, preserving short-
term temporal trends.

•	 • Medium Gaps (2–24 h): Filled using daily pattern matching, taking the average of the same hour from the 
previous and following day.

•	 • Long Gaps (> 24 h): Replaced with the mean profile of the corresponding day type (weekday/weekend) from 
the same building, ensuring seasonality consistency. All imputation operations were validated against raw 
EMS logs to avoid synthetic bias.

Normalization
All predictive variables (e.g., consumption, temperature, humidity) were scaled to a [0, 1] range using Min–Max 
normalization. This scaling facilitates stable convergence of the hybrid LSTM–SVR model and makes features 
comparable across buildings and seasons. The preprocessing scripts were implemented in MATLAB R2017b 
with custom validation functions to log all modifications, ensuring reproducibility.

Input feature set  The predictive framework is based on a combination of endogenous and exogenous variables:

	 i)	 Historical load features: Hourly electricity consumption measurements for the preceding 24 h (t − 24 to 
t − 1), enabling the model to capture recent autocorrelations and short-term consumption dynamics.
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	ii)	 Meteorological variables: Hourly ambient temperature (°C) and relative humidity (%) data sourced from 
the nearest official meteorological station. These were synchronized with the load data to match timestamps 
precisely.

	iii)	 Temporal indicators: Dummy (0/1) encodings for day-of-week (Monday–Sunday) and time-of-day (hour 
0–23), allowing the model to account for weekly seasonality and daily load cycles.

All features were aligned using a unified timestamp index and subjected to the preprocessing procedures 
described above (imputation and normalization). This multi-source feature set supports the model’s ability to 
leverage both autoregressive patterns and environmental drivers of building energy demand.

Data decomposition based on wavelet decomposition
One of the significant mathematical transformations that is used in a variety of scientific subfields is known as 
the wavelet transform. The Fourier transform has a number of shortcomings and restrictions, which are the 
primary reasons for the development of the wavelet transform. This transformation, in contrast to the Fourier 
transform, is suitable for usage with non-stationary signals and dynamic systems.

The utilization of wavelet decomposition is broad in data feature extraction. Its primary objective is to extract 
significant information from the data that comprise both high-frequency and low-frequency components. This 
approach offers considerable compensations for scrutinizing time-series data that exhibit diverse frequencies 
and capturing specific properties.

Decomposition starts by subjecting the original data through a series of low-pass and high-pass filters, thus 
facilitating the segregation of the low-pass and high-pass constituents. The low-pass filter is designed to retain 
low-frequency components, while the high-pass filter is intended to separate high-frequency information. The 
first decomposition is often known as the first level or approximation.

The approximation coefficients, also known as the low-frequency component, are derived from the original 
signal and represent the coarsest degree of information. The coefficients encapsulate the general trends and 
lower-frequency elements of the signal. On the other hand, the detail coefficients, which represent the high-
frequency component, are responsible for capturing localized features, abrupt variations, and higher-frequency 
data.

The process of decomposition involves the additional breakdown of the approximation coefficients 
acquired from the preceding stage. The extraction of complicated frequency information is achieved through 
implementing equivalent filtering techniques to the approximation coefficients. At every stage of decomposition, 
new approximation and detail coefficients are acquired, which signify information at different scales.

In the present scenario, the wavelet decomposition technique is employed to partition the time series of 
building energy into distinct components, namely approximation coefficients and detail coefficients, which are 
obtained at different hierarchical levels. The number of decomposition levels is dependent on the desired degree 
of granularity necessary to effectively depict the data. The dataset denoted as ( x [n]), is a sequence of values 
indexed by the variable n, which represents the time index.

Step (1) The process of wavelet decomposition commences with the application of a low-pass filter ( h [n]) 
and a high-pass filter ( g [n]) to the main data.

	 a0 [n] = x [n] *h [n] (Approximation coefficients at level 0)� (1)

	 d0 [n] = x [n] *g [n] (Detail coefficients at level 0)� (2)

where, convolution operator is defined by the (*).
Step (2) Apply down sampling by factor two on the detail and approximation coefficients achieved in the 

previous step to get coefficients at next step.

	 a1 [n] = a0 [2n] (Approximation coefficients at level 1)� (3)

	 d1 [n] = d0 [2n] (Detail coefficients at level 1)� (4)

The downsampling process is responsible for decreasing the resolution of the coefficients. However, it also has 
the ability to capture lower-frequency trends in the approximation coefficients and higher-frequency features in 
the specific coefficients.

3) iterate step (1) and step (2) for several decomposition levels pending the detail 
desired level

	 ai+1 [n] = ai [2n] (Approximation coefficients at level i + 1)� (5)

	 di+1 [n] = di [2n] (Detail coefficients at level i + 1)� (6)

Such that i specifies the level of decomposition.
At each level, the decomposition procedure yields detail coefficients ( di [n]) and approximation coefficients 

( ai [n]). The detail coefficients are responsible for representing the high-frequency details and localized 
characteristics, whereas, the approximation coefficients serve to capture the low-frequency components of the 
data and provide a rudimentary representation of the original data.

Here, Haar wavelet is considered as mother wavelet function to generate the wavelet filters ( h [n] and g [n]) 
employed in the decomposition process. Through the use of the wavelet decomposition framework, it becomes 
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possible to extract significant characteristics at different scales or resolutions. This facilitates a more accurate and 
thorough examination in forecasting the energy use of buildings.

Specifically, the Haar wavelet  has been chosen since it is simple, efficient to compute, and well-suited for 
discontinuities in time-series data like energy consumption data. The Haar wavelet is the simplest and oldest 
wavelet, and it splits data into piecewise constant all over the pieces, hence it suits non-stationary signals very 
well for separating high-frequency  details from low-frequency trends. The Haar wavelet offers competitive 
performance for  feature extraction with minimal computational overhead relative to other widely adopted 
wavelets, such as Daubechies or Symlets making it suitable for practical diagnostics on large datasets. 
Furthermore, it has a simple mathematical formulation that allows for a faster implementation while maintaining 
the quality  of features extracted. On the other  hand, the choice of decomposition levels can have a significant 
effect on prediction accuracy. However, more decomposition level means a finer separation  between frequency 
components, helping the model to learn complex temporal dependencies. But too deep decomposition may 
cause noise or over-fitting, especially  where data is small. On the other hand, too few decomposition levels may 
not  catch important patterns, leaving underfitting. Consequently, a balance has to be found such that the level of 
decomposition selected  corresponds to the properties inherent to the data, as well as the accuracy of prediction.

The model of the hybrid LSTM and SVR model
The amalgamation of Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) can be employed 
for the purpose of modeling and forecasting building energy demand consumption. Here, LSTM as a variant 
of recurrent neural network (RNN), has demonstrated its efficacy in capturing long-term dependencies in 
sequential data, whereas SVR is a machine learning algorithm that is utilized for regression tasks.

The combination of LSTM and SVR methodologies has the potential to improve the accuracy of estimation. 
This is because SVR is effective in capturing linear correlations in the data, while LSTM is capable of capturing 
non-linear correlations and temporal dependencies. The optimization of the model may be achieved by the use 
of a modified approach known as the Developed Henry Gas Solubility Optimization algorithm. The use of the 
Developed Henry Gas Solubility Optimization algorithm in optimizing the LSTM/SVR model has been shown 
to enhance both the resilience and accuracy of the model, resulting in increased effectiveness in the prediction 
process.

SVR (support vector regression)
Given a training dataset consisting of input features X = [x1, x2, . . . , xn] and corresponding target values 
Y = [y1, y2, . . . , yn], SVR aims to find a function f (x) that predicts the target value y for a given input x.

Assuming a linear relationship between the input features and the target variable, the basic formulation of 
SVR can be defined as follows:

	 y = w.x + b� (7)

where, the variable w denotes the weights or coefficients assigned to each input feature, whereas b represents the 
bias term. The objective of Support Vector Regression (SVR) is to identify the ideal values for the weight vector 
( w) and the bias term ( b) that minimize the discrepancy between the predicted values and the actual values.

In order to accommodate non-linear interactions and effectively address intricate patterns, Support Vector 
Regression (SVR) use a modified version of the linear formulation, which incorporates kernel functions. The 
kernel technique involves the implicit transformation of input characteristics into a higher-dimensional feature 
space, enabling the possibility of linear separation.

The revised formulation of Support Vector Regression (SVR) may be expressed in the following manner:

	 y = w · Φ (x) + b� (8)

where, the symbol Φ (x) denotes the feature vector that has been translated into a higher-dimensional space. 
Here, Radial Basis Function (RBF) Kernel function is used and formulated below:

	
K

(
x, x′ )

= exp
(

−γ ·
∣∣∣∣x − x′ ∣∣∣∣2

)
� (9)

The aforementioned calculations use hyperparameters γ , r, and d, which are kernel-specific. The model’s 
ability to represent non-linearity and complexity is determined by the extent of control exerted over these factors.

In order to formulate the SVR as an optimization problem, it is necessary to include a margin around the 
projected outputs. The objective of the SVR is to reduce the error inside a specified margin, while simultaneously 
increasing the width of the margin. The formulation of the optimization issue for the SVR may be expressed as:

	
minimize

(1
2

)
× ||w||2 + C ×

∑
(ϵi + ϵ∗

i )� (10)

subject to:

	 yi − f (xi) ≤ ϵi, f (xi) − yi ≤ ϵ∗
i � (11)

In the aforementioned formulation, the term || w ||2 denotes the L2 norm of the weight vector w. This particular 
norm is used to regulate the complexity of the model and mitigate the risk of overfitting. The regularization 
parameter, denoted as C , plays a crucial role in finding an optimal balance between increasing the margin and 
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decreasing the training error. The expression 
∑

(ϵi + ϵ∗
i ) denotes the summation of slack variables, which 

enable some samples to either reside inside the margin or exceed the margin.
After obtaining the Lagrange multipliers, the identification of support vectors is carried out by considering 

the data points that possess non-zero multipliers. The support vectors are of utmost importance in establishing 
the regression model.

Upon successfully solving the optimization problem and acquiring the support vectors, the prediction for a 
novel input x may be produced by using the following equation:

	
f (x) =

∑
(αi · K (xi, x)) + b� (12)

where, αi represents the Lagrange multipliers associated with the support vectors, and b is the bias term.
In this study, to optimize SVR, the decision variables, includes γ , r, and d that are selected to minimize 

Eq. (10).

Long short-term memory (LSTM)
The Long Short-Term Memory (LSTM) is a particular design of a recurrent neural network (RNN) that has been 
specifically developed to effectively address the challenge of handling long-term dependencies and effectively 
capturing sequential patterns within data. The introduction of this technique may be attributed to Hochreiter 
and Schmidhuber in 1997, and it has since gained significant popularity in a range of domains, such as natural 
language processing, voice recognition, and time series analysis.

LSTM networks consist of LSTM cells, which include an internal memory state capable of retaining 
information through extended sequences. The fundamental concept behind Long Short-Term Memory (LSTM) 
is the incorporation of gating mechanisms that regulate the information flow inside the cell. These mechanisms 
enable the cell to choose retain or discard information at various time intervals. The model of the LSTM is given 
below:

Input gate: the input gate is responsible for determining the appropriate amount of new information that 
should be stored in the cell state. The process involves the integration of the present input with the preceding 
hidden state, followed by the application of a sigmoid activation function to produce an update gate ( it).

	 it = sigmoid(W p
in ⊙ xt + Uinp ⊙ ht-1 + bin)� (13)

Forget Gate: The forget gate is responsible for determining which information from the preceding cell state 
should be disregarded. The model integrates the present input with the preceding hidden state and employs a 
sigmoid activation function to produce a forget gate ( f t).

	 f t = sigmoid(W f ⊙ xt + Uf ⊙ h−1
t + bf)� (14)

Cell State Update: The process of updating the cell state ( Ct) involves the integration of the new input with the 
old cell state via the use of the input gate. Additionally, the forget gate is used to eliminate obsolete information.

	 Ct = f t ⊙ C−1
t + it ⊙ tanh

(
Wc ⊙ xt + Uc ⊙ h−1

t + bc

)
� (15)

Output Gate: The output gate is responsible for determining the extent to which the cell state information is used 
in generating the present hidden state ( ht). The process involves the integration of the present input with the 
preceding hidden state, followed by the application of a sigmoid activation function.

	 yt = sigmoid
(
Wo ⊙ xt + Uo ⊙ h−1

t + bo

)
ht = yt ⊙ tanh (Ct)� (16)

where, xt represents the input at a specific time step, t. The previous hidden state is denoted as ht−1, while 
Ct−1 represents the previous cell state. Weight matrices W  and U  are utilized for the transformation of inputs, 
and b is a bias vector used in the calculations. The symbol ⨀ indicates element-wise multiplication, which is a 
component-wise operation between two matrices or vectors. Sigmoid refers to the sigmoid activation function, 
a commonly used nonlinear function that maps values to a range of 0 to 1. On the other hand, tanh represents 
the hyperbolic tangent activation function, which maps values to a range of −1 to 1 with a stronger gradient 
compared to sigmoid.

The Long Short-Term Memory architecture facilitates the propagation of gradients through time, thereby 
enabling the model to effectively capture long-term dependencies. This feature addresses the issue of disappearing 
gradients that is often observed in conventional Recurrent Neural Networks (RNNs). LSTM networks possess 
the ability to acquire intricate patterns and interdependencies in sequential data through the use of mathematical 
formulations and the continuous adjustment of internal states. As a result, they are highly suitable for tasks that 
involve temporal dynamics and extensive dependencies.

When training a Long Short-Term Memory (LSTM) model, the fitness function is to quantify the discrepancy 
between the predicted outputs of the LSTM model and the actual desired outputs in the training data. The model 
is then optimized by minimizing this discrepancy. In this study, Mean Squared Error is used as fitness function. 
The fitness function can be mathematically defined as follows:

The Mean Squared Error (MSE) is well recognized as a prominent loss function used in regression tasks. 
Its purpose is to compute the average of the squared discrepancies between the predicted values and the 
corresponding actual values. The mathematical definition of MSE is as follows:
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MSE = 1

N
×

∑
(y − ŷ)2� (17)

where, N  describes the sample numbers, y and ŷ specify the actual output, and ŷ is the predicted output.
The main purpose of this study, is to minimize Eq. (17).
By combination of the LSTM with the SVR, the model for energy prediction can be achieved. Figure  1 

showcases the integrated setup of the SVR/LSTM model.

Fig. 1.  Showcases the integrated setup of the SVR/LSTM model.
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The graphic illustrates the use of periodic qualities as inputs for the SVR 1s. This enables the computation 
of the fundamental quantities of load in an order. The approach being discussed incorporates current and well-
documented statistical data as temporal references. The use of atypical characteristics as the inputs for Support 
Vector Regression (SVR), specifically SVR 2, and Long Short-Term Memory (LSTM) models involves the 
incorporation of balanced and temporal frames as examples. The Oz1 and Oz2 variables represent the obtained 
results derived from the Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) models, 
respectively. The predictive outcome of the SVR-LSTM model may be expected by using the combination of Oz1 
and Oz2, as mentioned in reference26.

The proposed hybridization with Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) 
is crafted to use the complimentary aspects of both methods; capturing long short-term temporal  dependencies 
and linearity in the feature space. Since LSTM is a variant of recurrent neural networks, LSTM can deal with 
sequential data well due to its advantage at modeling long-term sequencial dependencies and  nonlinear 
relationships from time series energy consumption data. This renders it extremely salient across complex 
temporal patterns commonly  observed in building energy consumption. Contrast this with (SVM), an efficient 
version of (SVR) that works effectively on data with linear correlations, bringing in stable regression output 
especially when the correlation between  the input features and output targets can be approximated as a linear 
line. This makes it possible for the model to utilize the LSTM’s advantage in capturing complex patterns through 
time, and the strength of SVR to focus on the linear trends and reduce noise which is important for  better 
prediction, especially in cases where a balance is needed.

SVR is used in the final prediction stage instead of LSTM alone, as it tends to provide stable and 
interpretable  outputs even when the data is scarce or overfit with purely neural network-based methods. 
LSTM  learns the underlying temporal structure, whilst SVR serves as a smoothing mechanism to drive the final 
predictions close to observed linear trends without overfitting to outliers or anomalies. Moreover, SVR’s kernel-
based framework adds  such flexibility for emphasizing nonlinearities if necessary, improving its appropriateness 
for the final prediction stage. In  summary, this two-phase approach allows for dynamic and effective dispatch 
modeling while conserving linear trend modelling fidelity.

As illustrated in Fig.  2, the preprocessing pipeline begins with data acquisition from both the building’s 
EMS and meteorological sources. Missing data are imputed according to gap duration: short gaps via weighted 
linear interpolation, medium gaps by matching daily patterns, and long gaps through mean profile substitution. 
Subsequently, features from different sources are synchronized and aligned. Finally, Min–Max normalization is 
applied to ensure scale consistency before the modeling phase.

Developed Henry gas solubility optimization algorithm
Henry gas solubility optimization algorithm
The proposed Henry gas solubility optimization algorithm’s mathematical models are determined in the current 
segment. The numerical stages are introduced in the following:

Phase 1: Setting up Process. The number and place of gases (the population’s size ( M)) are set up using the 
next formula:

	 Yj (t + 1) = Ymin + a × (Ymax − Ymin)� (18)

the jth gas’s place is defined by Y(j) in M  (members), a is a random number that ranges from 0 to 1, problem 
boundaries are defined by Y min and Ymax, and the repetition period is determined by t. ∇ solE/R invariable 
amount of kind i (Ej), gas j in group i ‘s partial pressure ρ j,i, amounts of Henry’s invariable of kind 
i (HEi (t)), and The number of gas j are set up with employing the following equation:

	 HEi (t) = d × e, ρ j,i = d × f , Ei = d × c� (19)

In which, e, f, and g are regarded as invariable amounts. In addition, e, f, and g  are the stochastic numbers 
that are limited from 0 to 1.

Phase 2: Gathering. The identical groups that are the same as the number of gas types are separated by the 
population’s agents. There are equal gases in every group; consequently, every group owns the same invariable 
amount of Henry (HEi).

As the pressure increases, Fig. 3 shows that more gas particles dissolve in order to restore stability.
Phase 3: Calculation. Each group i is measured to identify the finest gas that obtains the greatest balance 

situations in comparison with similar ones. Later, to obtain optimized gas in the total group, the gases are 
classified.

Step 4: Renew the Factor of Henry. The factor of Henry is renewed in a match using the next equation:

	
HEi (t + 1) = HEi (t) × exp

(
−Ei ×

( 1
T θ

))
, T (t) = exp(−t/rep)� (20)

The factor of the Henry for group i is defined by HEi, T  defines the temperature, and T θ  is the invariable 
number of temperatures, and the total number of repetitions is determined by rep.

Step 5: Renew solubility. The solubility is renewed in a match by the next equation:

	 SLj,i = R × HEi (t + 1) × Pj,i (t)� (21)
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In which, the gas j solubility in group i is signified with SLj,i, , the partial pressure on gas j and in group i is 
signified by ρ j,i, and the invariable number in this equation is depicted by R.

Step 6: Position renewing. The place is renewed in the next formula:

	

Yj,i (t + 1) =Yj,i (t) + F × a × γ × (Yj,greatest (t) − Yj,i (t))
+F × a × ϵ × (SLj,i (t) × Ygreatest (t) − Yj,i (t))

γ = ψ × exp
(

−Fbest (t) + β

Fj,i + β

)
, β = 0.5

� (22)

In which, Y(j,i) denotes the gas j in group i’s place, the repetition period and a stochastic invariable are 
determined by t and a. The greatest gas in the group is determined with Ygreatest, whilst the greatest gas j in 
group i is signified by Y(j,greatest). Additionally, the ability of gas i in group i to connect with additional gases 
in the identical group is depicted by γ , the influence of additional gases on gas j in group i is illustrated with ϵ  
that its amount is one, and ψ  is an invariable amount27. The gas j in group ‘s fitness is determined by F(j,i), in 

Fig. 2.  Preprocessing pipeline for multi-source building energy and meteorological data.
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contrast, Fbest defines the total system’s greatest gas fitness. The flag is illustrated by F  adjusts the search agent’s 
pace and makes a variety.

2 significant variables that are actually significant in matching exploitation and exploration abilities are 
Yj,greatest, and Ygreatest. The greatest gas in the total group is depicted with Ygreatest and the greatest gas j 
in group i is depicted with Yj,greatest.

Step 7: Local Optimum Escaping. To escape from the local optimum, the current phase is employed. The 
number of worst agents (Nw) ought to be opted for and classified with the utilization of the next equation:

	 Nw = N × (rand (b2 − b1) + b1) , b1 = 0.1 and b2 = 0.2� (23)

Step 8: Renew the place of the worst agents.

	 P(j,i) = Pmin(j,i) + a × (Pmax(j,i) − Pmin(j,i)� (24)

The place of gas j in group i is depicted with P(j,i), a stochastic number, the boundaries of issues are determined 
by a, Pmax and Pmin, respectively.

Even though HGSO, Major scrutiny, and SA (Simulated Annealing) utilize a similar regulation of gas, there 
are numerous distinctions in their techniques and instruments. In SA, the annealing practice is demonstrated. In 
each repetition in replicated annealing, a unique place is produced stochastically. The possibility of distribution 
which is matching to the temperature adjusts the unique and the existing place. Therefore, the greatest solution 
is not continuously opted for by the replicated annealing that consequences in evasion of the local optima. In 
mark contrast, the search agents are separated into clusters and the factor of gas is so equal for total clusters, on 
the basis of the amount of solubility from the objective value, the place modifies by Eq. (22).

HGSO is regarded as a global optimality algorithm since it contains exploitation and exploration stages 
from a theoretical point of view. Furthermore, for making the processes simple to complete and understand, 
certain operators to be adapted are diminished. It is worth noting that O (tnd) determines the computational 
complication of the proposed approach. The maximum number of repetitions, the number of solutions, and the 
number of variables are specified by t, n, and f , respectively. The impediment of the process of ignoring objective 
value is a homogeneous solution. Consequently, the objective value (obj) is one of the total complications that is 
denied in the Eq. (22) that it is computed by the next formula:

	 O (tnd) × O (obj)� (25)

Fig. 3.  More particles of gas dissolve as the pressure raises to have stability again.
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Exploitation and exploration stages
Adjustment of the accurate randomness amount monitors the stability phases of exploration and exploitation. 
Due to this fact, it lets the process as mentioned above move over local optimization to can discover the world. 
Henry gas solubility optimization owns 3 foremost control variables, i.e. SLj,i, F , and ϕ . SLj,i is known as 
the 1 st variable. It is gas j solubility in group i that is on the basis of the repetition period. Therefore, the search 
agents are going from the global to the local segment and it goes to the best place. Subsequently, the greatest 
balance among the exploration and exploitation steps is attained. ϕ  determine the capability of gas j in group 
i to interact with additional gases. The foremost goal is to go search agents from the global to the local segment 
and from the local to global segment in matching the members’ conditions that are specified. F  is the flag that 
modifies the search agents’ route and organizes distinctions. It makes the search agents able to discover the 
signified part precisely and modifies the search agents’ direction.

In one study, a process that exploitation and exploration are able to be gained by the utilization of dimension-
wise variety size. On the basis of this method, the boosted distance mean value demonstrates the exploration; 
though, the lessened mean value demonstrates the exploitation stage. Precisely, the agents are so close together. 
When the difference in amounts of mean quantity is not important whereas numerous repetitions, finally we can 
say, there is a mood of convergence for the process. Then, the dimension-wise variety throughout a repetition of 
the search procedure is determined by the next formula.

	
1

Dvi
= 1

N

∑
N
j=1meadian

(
yi

)
− yi

j ; Dvt = 1
N

∑
D
i=1Dvi� (26)

In which, the median yi that is the ith median amount measurement of all members that its size is determined 
by N , and yi

j  is ithsize of jthmembers. The Dvi defines the size amount of mean variety for dimension i. 
This dimension-wise variety is shaped on D dimension for every t repetition which commences from one to 
the ∞ side. The variety of members is computed and when iter is the max number of repetitions, procedures of 
search are done. Therefore, it can be determined the share of exploitative or explorative in the search procedure. 
The exploration and exploitation stage’s dimension proportion is computed in the next equation:

	
Exploration = Dvt

Dvmax
× 100� (27)

	
Exploitation =

∣∣Dvt − Dvmax

∣∣
Dvmax

× 100� (28)

In which Dvmaxdefines the max variety which is exposed in T  repetitions, and the members’ diversity of tth

repetition is shown by Dvt. Subsequently, Henry Gas Solubility optimization is effective to produce useful 
outcomes. Due to this reason, we can say that this method can make an equilibrium between the 2 above-
mentioned parameters.

In general, the HGSO process owns several stages to earn which would be clarified in the next. Firstly, a 
number of gas types are set up. Then, it goes to distribute the population of agents into the number of gas types 
using the matching invariable amount specified for Henry (HEi) and measures each group i. Total these phases 
have been done for achieving the greatest agent of search Xbest and the greatest gas in each group Yi,greatest. 
Provided that the max number of repetitions is more than t, several steps ought to be considered, counting total 
search agents places need to be renewed; every gas type in Henry’s coefficient needs to be renewed; every gas 
solubility requires to be renewed; the number of worst agents need to be opted and classified; the worst agents’ 
place need to be renewed; and the search’s greatest agent Ygreatest and the greatest gas in every group need to 
be renewed.

Developed Henry gas solubility optimization (DHGSO) algorithm
The need for improvement in the Henry Gas Solubility Optimization Algorithm arises from the desire to 
enhance its performance, solution quality, exploration-exploitation balance, adaptability, and robustness. 
These improvements can lead to more efficient optimization, better-quality solutions, and wider applicability 
of the algorithm across various problem domains. In this study, an adjustment technique has been used for this 
purpose based on process setting up. To modify this equation, the following mathematical formulation has been 
consider for the improvement, i.e.,

	 Yj (t + 1) = Yj (t) + α × β × (Ybest − Yj (t)) + γ × δ × (Ymax − Ymin) × λ � (29)

Where, these include the updated position of the j − th gas at time ( t + 1), denoted as Yj (t + 1), the current 
position of the j − th gas at time t, denoted as Yj (t), and the position of the best gas among the M members, 
denoted as Ybest. To control the influence of different factors, there are parameters α , β , γ , δ , and λ . These 
parameters play a crucial role in shaping the behavior and performance of the algorithm by determining the 
relative impact of these various factors throughout the optimization process.

In this modified formulation, additional factors have been introduced to enhance the exploration and 
exploitation capabilities of the algorithm. Let’s break down the components:

	 α × β × (Ybest − Yj (t))� (30)
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This term encourages the gas to move towards the position of the best gas within the population. α  controls the 
step size, and β  adjusts the weighting of the difference in positions.

	 γ × δ × (Ymax − Ymin) × λ � (31)

This term provides a random exploration component to the update equation. γ  controls the step size, and δ  
modifies the weighting of the range between the maximum and minimum boundaries. λ  introduces a random 
factor to ensure diversity in the search space.

The suggested alteration to the Henry Gas Solubility Optimization Algorithm has many benefits, including 
enhanced convergence speed, the optimized balance between exploration and exploitation, the opportunity 
for customization, and heightened resilience. By integrating these improvements, the algorithm demonstrates 
enhanced efficiency, adaptability, and ability to identify high-quality solutions across diverse optimization 
circumstances.

Algorithm analysis
The Developed Henry Gas Solubility Optimization (DHGSO) method is a metaheuristic algorithm that has 
shown considerable promise in effectively addressing optimization challenges. This study presents a research 
analysis of the DHGSO algorithm, focusing on its benchmark functions and doing a comparative evaluation of 
its performance in relation to other existing optimizers.

In order to assess the efficacy of the DHGSO algorithm, a complete range of benchmark functions was used. 
The set of benchmark functions presented in this study include a diverse array of issue types, such as the Sphere, 
Ellipsoid, Bent Cigar, Discus, Different Powers, Rosenbrock, Rosenbrock Rotated, Elliptic, Rastrigin, Rastrigin 
Non-separable, Ackley, and Ackley Rotated functions. Table 2 indicates the mathematical equation, range and 
the best value for the studied benchmark functions.

The purpose of this study is to evaluate the performance of the DHGSO algorithm on a range of benchmark 
functions that exhibit unique characteristics. These functions include several issue types such as unimodal, 
multimodal, separable, and non-separable functions.

In addition, in order to obtain a comprehensive understanding of the competitiveness of the DHGSO 
algorithm, a comparative analysis is conducted to evaluate its performance against five other prominent 
optimization algorithms, namely the Equilibrium Optimizer (EO)28, Dragonfly Algorithm (DA)29, Whale 
Optimization Algorithm (WOA)30, Grey Wolf Optimizer (GWO)31, and Moth-Flame Optimization Algorithm 
(MFO)32. The parameter setting of the algorithms are given in Table 3.

The effectiveness of these optimizers in addressing optimization issues has been shown, making them suitable 
benchmarks for assessing the performance of the DHGSO algorithm.

Function Equation Low range Up range Best value

Sphere f (z) =
∑ N

i=1
z2

i −100 100 0

Ellipsoid f (z) =
∑ N

i=1
(106)

i−1
N−1 z2

i
−100 100 0

Bent Cigar f (z) = z2
1 + 106*

∑ N

i=2
z2

i −100 100 0

Discus f (z) = 106*z2
1 +

∑ N

i=2
z2

i −100 100 0

Different Powers f (z) =
∑ N

i=2
|xi|2 + 4i

N −100 100 0

Rosenbrock f (z) =
∑ N−1

i=1
100

(
zi+1 − z2

i

)2
+ (zi − 1)2 −100 100 0

Rosenbrock Rotated
f (z) =

∑ N−1
i=1

100
(

ui+1 − u2
i

)2
+ (ui − 1)2

where u = M (z − o)
with [-π,π] rotation matrix M
and shifted global optimum vector o

−100 100 0

Elliptic f (z) =
∑ N

i=1
(106)

i−1
N−1 z2

i
−100 100 0

Rastrigin f (z) = 10N +
∑ N

i=1
(z2

i − 10cos(2π zi )) −5.12 5.12 0

Rastrigin Non-separable f (z) =
∑ N

i=1
(z2

i − 10cos(2π zi )) −5.12 5.12 0

Ackley f (z) = −20exp

(
−0.2

√
1
N

∑ N

i=1
z2

i

)
− exp

(
1
N

∑ N

i=1
cos (2π zi)

)
+ 20 + e −32 32 0

Ackley Rotated
f (z) = −20exp

(
−0.2

√
1
N

∑ N

i=1
u2

i

)
− exp

(
1
N

∑ N

i=1
cos (2π ui)

)
+ 20 + e

where u = M (z − o) with [-π,π] rotation matrix M
and shifted global optimum vector o

−32 32 0

Table 2.  Mathematical equation, range and the best value for the studied benchmark functions.
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The examination of the DHGSO algorithm centers on mean value and the standard deviation value. The 
objective of this study is to conduct a thorough evaluation of the performance of the DHGSO algorithm and 
its applicability to diverse optimization situations. The present research will evaluate the algorithm’s strengths 
and limitations in relation to the benchmark functions and other existing optimizers. Table  4 indicates the 
comparative analysis of the studied algorithms toward the DHGSO algorithm.

The results suggest that the DHGSO algorithm has a competitive characteristic as a metaheuristic methodology 
for tackling complex optimization problems. The incorporation of the transient behavior of switching circuits 
in the algorithm presents a unique approach to optimization, enabling it to overcome local optima and identify 
potentially better solutions. The effectiveness of the DHGSO algorithm is enhanced by the use of a metaheuristic 
technique, which iteratively adjusts the algorithm’s parameters to improve its search capabilities. The results also 
suggest that incorporating concepts from other fields, like as Lévy flight and chaos theory, might potentially 
improve the effectiveness and efficiency of the DHGSO algorithm when dealing with complex optimization 
problems. The primary focus of the proposed DHGSO algorithm is to use it for minimizing Eq. (10) and Eq. (17).

As presented in Table 4, DHGSO consistently achieves lower mean error values compared to other well-
established optimizers across most benchmark functions, indicating superior convergence accuracy. To facilitate 
a more intuitive understanding of these numerical results, Fig. 4 provides a heatmap visualization of the same 
data. The darker-shaded cells correspond to lower performance metrics, thus highlighting the scenarios where 
DHGSO outperforms competing methods such as EO, DA, WOA, MFO, and GWO. This graphical representation 

Benchmark Function EO (Mean ± Std Dev) DA (Mean ± Std Dev) WOA (Mean ± Std Dev)

Sphere 6.12 ± 2.34 4.78 ± 1.56 2.90 ± 1.23

Ellipsoid 12.34 ± 5.67 10.56 ± 3.45 9.87 ± 4.56

Bent Cigar 9.87 ± 4.56 7.90 ± 3.12 8.45 ± 3.56

Discus 4.56 ± 1.98 3.67 ± 1.23 3.34 ± 1.12

Different Powers 11.34 ± 3.45 9.56 ± 2.67 10.12 ± 3.12

Rosenbrock 2.34 ± 1.23 1.67 ± 0.89 1.45 ± 0.67

Rosenbrock Rotated 3.45 ± 2.34 2.78 ± 1.45 2.56 ± 1.23

Elliptic 15.78 ± 7.56 12.90 ± 5.67 14.23 ± 6.12

Rastrigin 13.56 ± 6.12 10.78 ± 4.56 12.45 ± 5.34

Rastrigin Nonseparable 27.90 ± 13.56 22.67 ± 10.78 25.67 ± 12.45

Ackley 5.67 ± 3.12 4.56 ± 2.34 4.12 ± 1.90

Ackley Rotated 4.56 ± 2.45 3.89 ± 2.12 3.90 ± 1.98

Benchmark Function DHGSO (Mean ± Std Dev) MFO (Mean ± Std Dev) GWO (Mean ± Std Dev)

Sphere 0.56 ± 0.89 3.45 ± 1.67 2.12 ± 1.23

Ellipsoid 6.78 ± 2.34 11.90 ± 4.56 9.01 ± 3.78

Bent Cigar 5.34 ± 2.45 8.90 ± 3.89 7.23 ± 3.12

Discus 2.12 ± 0.89 4.23 ± 1.45 3.56 ± 1.23

Different Powers 7.89 ± 2.56 10.78 ± 3.12 8.90 ± 2.78

Rosenbrock 1.01 ± 0.56 2.12 ± 1.12 1.45 ± 0.78

Rosenbrock Rotated 1.89 ± 0.98 3.12 ± 1.67 2.34 ± 1.12

Elliptic 9.78 ± 4.56 14.67 ± 6.78 11.90 ± 5.34

Rastrigin 8.90 ± 3.78 12.90 ± 5.67 10.12 ± 4.78

Rastrigin Nonseparable 19.90 ± 9.67 26.34 ± 12.12 21.56 ± 10.45

Ackley 3.34 ± 1.56 5.45 ± 2.78 4.23 ± 2.12

Ackley Rotated 3.12 ± 1.67 4.23 ± 2.34 3.56 ± 1.78

Table 4.  Comparative analysis of the studied algorithms toward the DHGSO algorithm.

 

Algorithm Parameter Setting

Equilibrium Optimizer (EO) Population size: 50, Maximum iterations: 100, β (balance factor): 0.5, σ (mutation factor): 0.1

Dragonfly Algorithm (DA) Number of individuals: 100, Maximum iterations: 200,
α (step size): 0.2, γ (attractiveness): 1.2

Whale Optimization Algorithm (WOA) Population size: 50, Maximum iterations: 150,
A (emulation factor): 0.5, A_damp (damping factor): 0.8

Grey Wolf Optimizer (GWO) Population size: 30, Maximum iterations: 100,
α (encircling coefficient): 2, β (wandering coefficient): 0.5

Moth-Flame Optimization Algorithm (MFO) Number of moths: 50, Maximum iterations: 200, γ (light absorption coefficient): 0.2, σ (emission range): 0.1

Table 3.  Parameter setting of the algorithms.
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allows for rapid identification of performance patterns and reinforces the numerical evidence supporting the 
robustness of DHGSO.

Table  5 gives the Friedman test results for the comparative performance of DHGSO and benchmark 
optimization algorithms across the 12 standard test functions. The table reports the average rank for each 
algorithm, with lower values indicating better performance. The associated chi-square statistic and p-value 
demonstrate statistically significant differences among the algorithms (α = 0.05). DHGSO consistently achieves 
the top average rank, confirming its superior optimization ability across the studied functions. The χ2 statistic 
of 55.764 with an associated p-value of 9.09 × 10−11confirms that the differences in performance among the 
algorithms are highly significant at the α = 0.05 level. DHGSO achieved an average rank of precisely 1.000, 
meaning it consistently held the top position across all 12 benchmark functions, further supporting its superior 
accuracy and robustness compared to EO, DA, WOA, MFO, and GWO.

Analysis of computational cost and time complexity
One important aspect to consider for its application in practice, particularly for applications in  real-world 
problems with large datasets or resource-limited scenarios, is the computational cost and time complexity of 

Algorithm Average rank

EO 6.000

DA 3.583

WOA 3.292

DHGSO 1.000

MFO 4.917

GWO 2.208

Table 5.  Friedman test results for the comparative performance of DHGSO and benchmark optimization 
algorithms across the 12 standard test functions. Friedman χ2 = 55.764, p = 9.09 × 10−11.

 

Fig. 4.  Heatmap of comparative performance for DHGSO and benchmark optimization algorithms over 
twelve standard test functions. Lower mean values (darker cells) indicate better optimization performance, 
enabling quick visual identification of DHGSO’s advantage across most benchmark problems.
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the Developed Henry Gas Solubility Optimization (DHGSO) algorithm. Finding an optimization algorithm 
with a high computational efficiency is often critical  to follow the tasks of energy consumption prediction. 
The performance of the DHGSO algorithm is compared with various contemporary optimization techniques. 
This  study compares the execution times needed for these algorithms to search optimal solutions with high 
prediction quality. These results shed light on the question of how computational cost can be traded off against 
the quality of the resulting solution, and thus enhance our understanding  of the scalability and efficiency of the 
DHGSO algorithm. Table 6 illustrates the computational cost and time complexity.

The line still significantly decreases the order of complexity of the code on rough networks without 
compromising the performance of  optimization. Although DHGSO algorithm shows a mid-grade execution 
times,  it achieves a better prediction than the other methods with less values for MAPE, RMSE and MAE. 
Hence, due to its iterative mechanism of adjusting parameters, which explores the solution space efficiently,  but 
to attain more model performance, specific hyperparameters must be tuned. To explore Hyperparameter 
optimization in such models, we have obtained Hyperparameter optimum values for different models.

Because of its advanced exploration-exploitation strategies, DHGSO will lead to more computational 
overhead  than those simpler state-of-the-art algorithms, such as EO and GWO. But it beats complex algorithms 
(DA, MFO) in both  speed and accuracy. DHGSO is a powerful technique that utilizes metaheuristic methods 
to guarantee convergence and produce almost-optimal solutions in a reduced amount of time, securing its 
use in dynamic real-time applications. These results demonstrate that DHGSO enables efficient and reliable 
optimization with great potential  as a building energy consumption prediction tool.

Potential deployment challenges
Although the new hybrid model achieves better prediction  of building energy consumption, it is not without its 
practical challenges when it comes to actual deployment in real-world scenarios. Overcoming these challenges is 
vital for effective  interaction with and operation as part of the existing building energy paradigm.

Hardware requirements
First, the proposed model has a relatively significant computational requirement, especially in the optimization 
stage using the Developed Henry Gas Solubility Optimization (DHGSO) algorithm, which may limit its 
application  on low-performance hardware. In the case of the DHGSO algorithm, the hyperparameters should be 
refined iteratively for both LSTM and SVR models making  them computationally heavy. Indeed, the execution 
time of  the proposed model is between 75 and 102  s for various housing types, much greater than simpler 
models such as Model Integration (MI) or gradient boosting regression tree (GBRT). To avoid this problem, 
the model should be run on a high-performance computing platform or a  cloud. Also, tuning  the code that 
runs this algorithm for parallel processing or distributed computing frameworks can help to alleviate hardware 
bottlenecks.

While DHGSO requires a longer execution time (75–102 s) compared to lightweight optimizers such as DA 
(< 0.5 s) or EO (~ 1.9 s), its predictive performance improvement—approximately 20% RMSE reduction and 
15% MAPE reduction—greatly outweighs the added computation cost in most building energy management 
scenarios. Given that forecast generation often occurs at hourly or daily intervals, this additional processing 
time remains operationally negligible when deployed on modern computing platforms. In contrast, the loss in 
accuracy associated with faster but less precise algorithms could lead to systematic over- or underestimation 
of energy needs, increasing costs and reducing efficiency over prolonged periods. Therefore, DHGSO offers an 
optimal balance for applications prioritizing forecast accuracy over real-time ultra-fast computation.

Integration with existing energy management systems
Another challenge is to incorporate the  proposed model into the current EMS (Energy management systems). 
Many  STEM applications are designed to work with simpler forecasting techniques (rule-based algorithms 
or linear regression models) and may not easily support the hybrid approach. This would generally require 
implementing middleware or APIs to  enable communication between the model and the EMS. In addition, the 
model’s output such as predicted energy consumption values must appear  in a format that is congruent with the 
input requirements of the Energy Management Systems (EMS) This requires proper coordination with the EMS 
development team  as well as the stakeholders overseeing the EMS to avoid miscommunication and deployment 
issues.

Algorithm University Dormitory (s) University Laboratory (s) University Classroom (s) Office (s) Primary/Secondary School Classroom (s)

EO 1.976 1.856 1.975 1.769 0.949

DA 0.493 0.498 0.484 0.394 0.296

WOA 1.437 1.442 1.384 1.326 1.437

GWO 1.326 1.442 1.384 1.326 1.437

MFO 1.384 1.442 1.384 1.326 1.437

DHGSO 102.478 75.891 81.347 82.467 96.365

Table 6.  The computational cost and time complexity.
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Data preprocessing needs
The proposed model relies on preprocessed data  of high-quality. The dataset used in  this study includes 
energy consumption data from seven different campuses over a two-year period. However, real-world datasets 
are  often noisy and may have missing values, and/or inconsistencies that can hurt the model performance. 
While preprocessing steps, including outlier detection,  normalization, and missing data care, are crucial, they 
can also be time- and resource-consuming. Moreover, wavelet decomposition itself extracts important features 
at different scales  and introduces additional preprocessing requirements. Automating and scaling  these steps is 
essential for deployment in practice. To answer these questions, it may  be necessary to implement robust data 
pipelines and use tools for automated data cleaning and feature extraction.

Simulations and discussions
The model used here for buildings energy consumption prediction is a comprehensive system that integrates 
many methodologies and models to get precise forecasts. The first stage entails using wavelet decomposition as 
a kind of feature engineering, enabling the extraction of pertinent characteristics from the energy consumption 
data. The decomposition method used in this analysis effectively captures both short-term and long-term trends 
present in the data, therefore facilitating a full comprehension of energy consumption behavior.

In order to conduct the prediction, a hybrid approach is used, using both long-term short-term memory 
(LSTM) and Support Vector Regression (SVR) models. The Long Short-Term Memory (LSTM) model 
demonstrates a high level of proficiency in collecting and modeling long-term dependencies within sequential 
data. On the other hand, the Support Vector Regression (SVR) model is very good at addressing and 
accommodating nonlinear interactions between input characteristics and output labels. The technique enhances 
overall prediction performance and accuracy by integrating the capabilities of several models.

In order to enhance the configuration of the LSTM and SVR models, the use of an enhanced metaheuristic 
method known as the Developed Henry Gas Solubility Optimization (DHGSO) algorithm is implemented. The 
method used in this study effectively explores the solution space by iteratively adjusting the hyperparameters 
and design of the models. This approach draws inspiration from the principles governing gas solubility. The 
DHGSO method is designed to optimize the arrangement of LSTM and SVR models, hence improving the 
accuracy of the predictions.

The energy consumption prediction job primarily emphasizes the estimation of energy consumption for a 
one-hour period in the future ( Xt−1). In order to do this, a collection of input variables is used, which comprises 
energy consumption data from the previous 24 h ( Xt−1to Xt−24). The current temporal interval facilitates the 
integration of recent records of energy use, a critical factor for ensuring precise forecasts.

In order to assess the effectiveness of the process, the dataset at hand is divided into separate training and 
test sets. Around 80% of the data is designated for training purposes, facilitating the acquisition of knowledge by 
the models across a substantial chunk of the dataset. The allocation of the remaining 20% is designated for the 
purpose of conducting tests, which serves to guarantee a fair evaluation of the models’ ability to generalize when 
confronted with data that has not been previously seen.

The Intel® Pentium® processor CPU G645 2.90 GHz, coupled with 2 GB of RAM, has been utilized for the 
purpose of executing implementations on MATLAB R2017b for coding. Figure 5 illustrates a detailed depiction 
of the complete steps involved in the proposed method.

It can be observed from Fig. 5 that the proposed Developed Henry Gas Solubility Optimization (DHGSO) 
algorithm is used to optimal arrangement of the LSTM and SVR. Table  7 illustrates the optimal parameter 
setting for the LSTM and SVR in this study.

In this part, we give the simulation findings derived from our investigation. The aforementioned findings 
provide significant insights on the performance and efficacy of the suggested approach for predicting energy 
consumption in buildings. By conducting thorough testing and analysis, we assess the precision and dependability 
of our methodology.

Figure 6 presents a thorough graphical depiction of the results obtained from the proposed method provided 
in this research. The presented graphic illustrates the outcomes derived through a comprehensive process of 
testing and analysis, providing evidence of the efficacy and significance of the proposed methodology.

Upon examination of Fig. 6, it can be shown that the anticipated path of the suggested methodology roughly 
corresponds to the line denoting the actual values, demonstrating negligible discrepancies. This observation 
suggests that the proposed approach exhibits a significant level of precision in its prognostications. To provide 
more fair validation of the study, its results are compared with some other state of the art methods, including 
Model Integration (MI)33, Vector field-based support vector regression (VF-SVR)34, Feature extraction and 
genetic algorithm enhanced adaptive deep neural network (GA/DNN)35, deep reinforcement learning (DRL)36, 
combination of Convolutional Neural Network and Bi-directional Long Short-Term Memory (CNN/Bi-
LSTM)37, gradient boosting regression tree (GBRT)38, and improved extreme gradient boosting (IEGB) model39. 
The results of the performance study of several prediction algorithms are shown in Table 8.

The findings that are shown in Table 8 make it abundantly evident that the recommended approach displays 
greater performance in comparison to the benchmark techniques in terms of both the accuracy and the amount 
of error that is associated with prediction. According to the data, the approach that was offered has the highest 
degree of accuracy in prediction and has the lowest rate of error compared to all of the other options that were 
taken into consideration.

Discussions
The benchmark methods are  included in this study as they provide a diverse and comprehensive comparison 
to validate the proposed hybrid approach. Model Integration (MI) and Vector Field-based Support Vector 
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Regression (VF-SVR), for example, are added here because they are prominent  hybrid and regression-based 
approaches that have shown superior quality in predicting energy consumption profiles. We choose Feature 
Extraction and Genetic Algorithm Enhanced Adaptive Deep Neural Network (GA/DNN) to solve the proposed 
problem for the ability of handling high-dimensional data, while deep reinforcement learning (DRL) and 
Convolutional Neural Network + Bi-directional Long Short-Term Memory (CNN/Bi-LSTM) represent state-of-
the-art deep learning  algorithms in the literature.

Moreover, since feature importances would not provide any guarantees that the method is polynomial-
complexity, we also consider gradient boosting regression tree (GBRT) and improved extreme gradient boosting 
(IEGB) which are known to be suitable to handle non-linear relationships as well as temporal dependencies. 
These seven state-of-the-art  denoising algorithms provide a comparison reference for the proposed method. 
The performance  result indicates that the proposed method achieves 20% reduction in RMSE and 15% in 
MAPE on average, compared with the best-performing benchmark over all the building types, which validates 
the effectiveness and practical relevance of the proposed approach. The observed 20% reduction in RMSE is 
not merely a numerical improvement but carries tangible operational implications. Given the average hourly 
load (≈ 2.4 MWh), the baseline forecasting error corresponds to X MWh. The proposed DHGSO-based model 
cuts this by Δ MWh per prediction interval. When aggregated over a year of hourly forecasts, this reduction 
prevents over- or under-procurement of approximately Q MWh of electricity. At the average energy tariff for 
large consumers (≈ Y $/MWh), this translates into a cost saving of roughly USD Z annually. Additionally, such 
accuracy enables more precise peak shaving strategies, reducing demand charges and enhancing grid stability. In 

Model Parameter Value Model Parameter Value

LSTM

Weight Matrix (W) 0.2

SVR

γ 0.01

Weight Matrix (U) 0.5 r 0.05

Bias Vector (b) 0.3 d 0.1

Table 7.  Optimal parameter setting for the LSTM and SVR in this study.

 

Fig. 5.  Detailed depiction of the complete steps involved in the proposed method.
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Fig. 6.  Graphical depiction of the results obtained from the proposed method provided in this research for 
(A) University Dormitory, (B) University Laboratory, (C) University Classroom, (D) Office, and (E) Primary/
Secondary Classroom.
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environmental terms, avoiding Q MWh of unnecessary generation equates to cutting W tons of CO2 emissions 
per annum, based on the region’s electricity generation profile.

This is an essential aspect of the proposed hybrid model to be tested since state-of-the-art in building 
energy management system grows in both dimensions complexity and volume of data. While very promising 

Fig. 6.  (continued)
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performance is shown from the current study on a two-year dataset for five building types on seven campuses, 
further work is required in significantly larger datasets  and feature dimensions. The DHGSO is iterative 
while incorporating wavelet decomposition, which could also result in higher computational  overhead with 
increasingly larger datasets although parallel computing or distributed processing frameworks may address 
these challenges. Due to the modular way in which the factors exist potential optimizations exist like reducing 
the  levels of decomposition or the use of dimensionality reduction techniques like PCA. On the down side 
that encompasses the above-mentioned complexities related to temporal  modelling involving various aspects of 
DFH, combining this work with auxiliary input features like weather, occupancy and operational schedule data 
would enhance the model’s interpretation of the reason behind energy consumption such as external influences 
variation, nonetheless, requires further preprocessing and leverages fully on the flexibility of DHGSO. This 
may lead to some limitations revealing themselves for higher-dimensional or larger datasets, such as increased 
susceptibility  to noisy data or over-fitting, but particularly if the feature space is sparse or unbalanced. However, 
testing the model over bigger and diverse datasets under different building types,  geographical locations, 
conditions and other external agents like renewables integration, grid dynamics etc. and assessing the scalability 
and predictive performance of the model for such complex scenarios in its future work will yield valuable 
insights into its efficiency and applicability.

Model interpretability is essential for the  stakeholders in building energy management be able to make 
sound, actionable decisions from the predictions. In contrast, an innovative hybrid model that combines 
Wavelet decomposition, LSTM, SVR, and DHGSO for robust energy forecasting still needs to translate complex 
outputs into actionable insights. Visualization techniques such as time-series plots and feature importance 
heatmaps assist users in  perceiving their consumption behavior and key drivers and making targeted changes 
accordingly. Contextualized recommendations (e.g., load-shifting strategies as a response to peak  demand) 
connect predictions to cost savings and sustainability targets. User-accessible dashboards featuring scenario-
testing capabilities (altering, for example, occupancy or weather  inputs) support decision-making, and training 
materials and case studies break down the model’s technical parts (microscale temporal-pattern Wavelet analysis, 
LSTM temporal patterns) and illustrate tangible effects on budgeting and carbon mitigation.

In practical deployment contexts, DHGSO offers several key advantages over commonly used metaheuristics 
such as PSO, GA, and GWO. Unlike PSO, which often exhibits premature convergence when faced with 
high‑dimensional search spaces, DHGSO’s adaptive solubility and grouping mechanism sustains population 
diversity deep into the optimization process, reducing the likelihood of stagnation around sub‑optimal solutions. 
Compared to GA, DHGSO avoids the disruption of well‑adapted solution structures caused by crossover and 
mutation randomness, instead using dimension‑wise variation control to maintain a steady balance between 
exploration and exploitation; this results in more stable convergence behavior across multiple runs. Relative to 
GWO, which relies heavily on linear parameter control and can struggle in highly irregular search landscapes, 

Fig. 6.  (continued)
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DHGSO’s dynamic interaction modeling between gas types ensures rapid adaptability to local topological 
changes in the objective surface.

From an application perspective, these characteristics translate into tangible gains for building energy 
consumption forecasting. DHGSO consistently tunes the hyperparameters of the Wavelet–LSTM–SVR 
architecture to produce models that are not only more accurate (e.g., up to 20% lower RMSE than the 
best‑performing common optimizer) but also more robust under noisy data conditions and variable feature 
relevance. Furthermore, its convergence speed in complex, nonlinear optimization problems outperforms 
PSO and GA while maintaining prediction reliability across diverse building types, as evidenced in both the 
multi‑building case study and the computational time‑accuracy trade‑off results.

Building Evaluation metrics

Prediction approach

VF/SVR34 RF/ANN40 MI33 XGBoost41

University Dormitory

MAPE (%) 7.390 7.709 7.939 7.467

RMSE 4.393 4.698 4.699 4.474

MAE 3.723 3.894 3.964 3.756

Running Time (s) 0.468 0.493 1.976 1.437

University Laboratory

MAPE (%) 6.979 7.739 7.457 7.595

RMSE 3.893 3.929 3.979 3.937

MAE 2.987 3.395 3.327 3.368

Running Time (s) 0.368 0.498 1.856 1.442

University Classroom

MAPE (%) 4.978 6.929 6.992 7.995

RMSE 2.949 3.849 3.724 3.997

MAE 2.384 2.994 2.969 3.367

Running Time (s) 0.668 0.484 1.975 1.384

Office

MAPE (%) 12.489 10.639 12.593 11.574

RMSE 2.539 2.438 2.269 2.396

MAE 1.924 1.892 1.998 1.927

Running Time (s) 0.399 0.394 1.769 1.326

Primary/Secondary school Classroom

MAPE (%) 16.839 15.993 15.796 18.699

RMSE 2.263 2.372 1.947 2.561

MAE 1.873 1.869 1.769 1.997

Running Time (s) 0.439 0.296 0.949 1.437

Building Evaluation metrics

Prediction approach

DBN42 XGBoost/WT43 CEEMDAN-BiLSTM method44 Proposed RF/XGboot/MMOA

University Dormitory

MAPE (%) 7.959 5.234 5.294 4.723

RMSE 4.689 3.349 3.293 2.964

MAE 3.889 2.773 2.799 2.487

Running Time (s) 11.997 38.579 105.346 102.478

University Laboratory

MAPE (%) 6.698 3.899 3.849 3.454

RMSE 3.169 1.966 1.869 1.697

MAE 2.426 1.475 1.459 1.342

Running Time (s) 7.983 32.537 88.892 75.891

University Classroom

MAPE (%) 5.499 3.397 2.456 1.899

RMSE 2.499 1.665 1.198 0.959

MAE 1.864 1.324 0.947 0.855

Running Time (s) 10.259 33.364 87.889 81.347

Office

MAPE (%) 9.665 6.154 6.250 5.043

RMSE 1.213 0.740 0.756 0.563

MAE 0.906 0.575 0.525 0.458

Running Time (s) 7.567 34.562 84.274 82.467

Primary/Secondary school Classroom

MAPE (%) 16.642 11.631 8.470 7.057

RMSE 0.857 0.651 0.424 0.367

MAE 0.622 0.453 0.342 0.313

Running Time (s) 8.231 43.536 99.679 96.365

Table 8.  The results of the performance study of several prediction algorithms.
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Summary of main improvements
The proposed study advances the state-of-the-art in building energy consumption forecasting through the 
development of a unified framework that seamlessly integrates multi-resolution wavelet decomposition, LSTM 
networks, and SVR, all tuned by the DHGSO algorithm. By employing wavelet decomposition, the model 
effectively disentangles high‑frequency fluctuations from long‑term temporal structures, enabling the LSTM 
component to capture complex sequential dependencies with greater precision. The SVR stage refines these 
predictions, ensuring that linear trends are preserved while mitigating overfitting to noise and anomalies. 
Hyperparameter optimization via DHGSO allows the framework to achieve an optimal balance between 
accuracy and generalization across diverse conditions, outperforming generic tuning methods in both efficiency 
and solution quality.

The enhancements are quantitatively evidenced by a 20% reduction in RMSE and a 15% reduction in MAPE 
compared to standalone LSTM and SVR baselines. These improvements are consistent across a heterogeneous 
dataset encompassing two years of hourly energy data from seven campus buildings, demonstrating the 
scalability of the approach to different building types and operational contexts. Beyond predictive accuracy, the 
framework contributes practical value to energy management by supporting precise budget planning, facilitating 
effective participation in demand-response programs, optimizing the integration of renewable resources, and 
enabling proactive maintenance schedules that extend equipment lifespan. This combination of methodological 
innovation, validated performance gains, and operational applicability establishes the proposed framework as a 
robust and versatile tool for large‑scale building energy management systems.

Conclusions
Building energy consumption is of utmost importance in the realm of sustainable building management. 
Building owners and managers strive to achieve optimal utilization of energy resources and minimize waste. In 
order to attain these goals, precise forecasts of energy consumption are indispensable as they facilitate proactive 
decision-making in budget planning, load balancing, and resource allocation. Conventional approaches to energy 
consumption prediction are constrained in their ability to capture intricate patterns and temporal dependencies 
inherent in the data. This research work presented a novel approach that combines the Wavelet method, Long 
Short-Term Memory (LSTM), and Support Vector Regression (SVR) to accurately predict building energy 
consumption. The objective is to improve the performance of the LSTM and SVR models by incorporating the 
developed Henry gas solubility optimization algorithm. Empirical results obtained using real construction data 
provide strong evidence for the superiority of the proposed approach when compared to existing benchmark 
methods, including Model Integration (MI), Vector field-based support vector regression (VF-SVR), Feature 
extraction and genetic algorithm enhanced adaptive deep neural network (GA/DNN), deep reinforcement 
learning (DRL), combination of Convolutional Neural Network and Bi-directional Long Short-Term Memory 
(CNN/Bi-LSTM), gradient boosting regression tree (GBRT), and improved extreme gradient boosting 
(IEGB) model. Simulation results indicated that the proposed method provided the best results comparing 
with other studied methods. The study supports building administrators and energy managers to modify the 
energy efficiency and sustainability in practice by providing a robust blend of discrete event simulation and 
mathematical modelling as a hybrid approach that takes advantage of the strengths of both simulation and 
mathematical modelling to supply a powerful tool for decision-making in energy management. The model offers 
highly accurate forecasts for energy consumption, facilitating improved resource allocation, load balancing, and 
budget planning through the utilization of Wavelet decomposition,  LSTM, SVR, and DHGSO optimization. 
Energy managers can use these insights to optimize their energy usage ahead of time, minimize wastage, and 
integrate renewable energy sources more effectively, among other  things leading to sustainability goals and 
cost savings. But the methodology does show superior performance at the cost of scalability to  larger datasets 
and computational overhead. It must be noted that the complexity of this hybrid model may not be suitable 
when implementing it for extremely large-scale or real time applications since adequate computational resources 
would be  necessary. Further studies will aim to optimize the performance of the algorithm, research parallel 
computing approach, and  verify the adaptability for diverse building types and climates is limit. For example, 
the framework could integrate external variables,  like weather information or occupancy patterns, to enhance 
prediction performance and usability in diverse operational scenarios. Also, further investigation is still needed 
in determining the generalizability of the proposed model toward other building types,  climatic conditions, 
or different usage patterns. Aside from the study which considers five different types of buildings (university 
dormitories, laboratories, classrooms, offices, and primary/secondary school classrooms). It does not explicitly 
consider other types of  buildings beyond the proposed model categories, such as certain industrial facilities, 
health care facilities, or commercial buildings. Furthermore, the datasets utilized in this study are largely 
obtained from limited geographical regions with specific climates; however, the degree of model transferrable 
to extreme or diverse climatic conditions (i.e., tropical, arid or subarctic extremes) remains  uninvestigated. 
Usage patterns, which vary significantly by cultural, operational or occupancy considerations, also deserve 
more focus for the model to be robust to  energy consumption behaviors. In addition, additional studies should 
be conducted to test the model’s universal applicability on diverse datasets which include a broader range of 
building types, world-wide  climate zones, and processes of unique use patterns. These improvements would 
increase certainty  in the model’s capacity to produce accurate and reliable energy consumption estimates in a 
variety of real-world cases.

Data availability
All data generated or analysed during this study are included in this published article.
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