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Modern malware evolves continuously, posing persistent challenges to cybersecurity. Conventional 
classification approaches typically group malware by its primary objective, emphasising dominant 
behaviours while overlooking the complex and overlapping strategies common in real-world 
attacks. Here we present DECODE (DEep Classification Of Dynamic Exploits), a proportional multi-
label, context-aware framework that combines object detection, explainable artificial intelligence 
(XAI), and agent-based large language models (LLMs) to deliver interpretable and comprehensive 
malware analysis. DECODE introduces the first object detection dataset specifically for malware 
classification, generated through an automated annotation pipeline that removes the need for manual 
labelling and remains effective even for visually indistinguishable malware features. To improve 
attribution reliability, we extend Gradient-weighted Class Activation Mapping (Grad-CAM) with a 
Bayesian formulation, enabling uncertainty-aware visualisation of discriminative regions linked 
to multiple categories. The regions identified through object detection are subsequently mapped 
to their corresponding API call sequences and interpreted via a multi-agent reasoning module, 
which incorporates critique-and-verification loops to reduce hallucinations and bias. Experimental 
evaluation shows multi-label and binary classification accuracies of 0.8513 and 0.9380, respectively, 
outperforming conventional deep learning baselines. By combining visual localisation, proportional 
multi-label scoring, and human-readable behavioural narratives, DECODE enables malware to be 
classified not only by intended impact but also by fine-grained structural and behavioural traits, 
offering a richer understanding of complex threats.
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Deep learning has significantly advanced the detection and classification of malware variants, offering superior 
performance over traditional methods1. However, its decision-making processes remain opaque, creating a 
“black box” problem that limits trust and interpretability. Explainable AI (XAI) addresses this challenge by 
clarifying how black-box models operate and how predictions are derived2, a capability of particular importance 
in cybersecurity, where understanding the rationale behind classifications is essential3.

Existing interpretable malware classification methods, however, primarily focus to explain individual 
decisions and rarely rarely capture the compositional structure of malware, particularly the proportional 
contributions of overlapping behavioural categories. Modern malware often exhibits complex, multi-faceted 
behaviours that cannot be adequately represented by a single dominant category. Restricting interpretation to the 
most salient behaviour risks oversimplifying a sample’s functional scope and obscuring latent, yet operationally 
relevant, capabilities. For example, WannaCrypt (also known as WanaCrypt0r, WCRY, WanaDecrypt0r, 
WCrypt) is classified as ransomware yet demonstrates worm-like propagation, self-replicating across networks 
while encrypting files and demanding ransom4. Such cases emphasise the need for frameworks that account for 
behavioural overlap rather than enforcing single-category assignments.

Several works have explored more granular or behaviourally aware classification paradigms. MAEC5 
standardises the characterisation and exchange of malware behaviours across tools and organisations, while 
Yavvari et al.6 model malware as modular behavioural units, recognising that a single sample may exhibit 
multiple behaviours. Trizna et al.7 employ knowledge graph embeddings to represent malware entities and 
their relationships in an n-dimensional space, enabling interpretable characterisation through structured 
relationships and description logic-based explanations. Li and Fung8 build functional profiles from API call 
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sequences, map them to assembly-level function clusters, and quantify each cluster’s contribution, providing 
fine-grained interpretability. However, none of these approaches quantify the proportional contributions of 
overlapping categories within a sample or provide direct, visually grounded feature attribution.

To address these gaps, we introduce DECODE, a proportional multi-label classification framework that 
quantifies the percentage representation of multiple malware categories within a single sample. By integrating 
multi-label classification with visual explanation techniques, DECODE enables classification not only by 
dominant effects but also through a comprehensive examination of hybrid and overlapping traits, thereby 
enhancing interpretability and operational insight. Behavioural features are transformed into image-based 
representations, and object-level feature detection is applied to localise discriminative regions and associate them 
with specific categories. An automated annotation pipeline extends Grad-CAM with a Bayesian formulation to 
produce uncertainty-aware and reliable discriminative regions from behaviour-derived images, ensuring that 
only the most informative features are selected. These curated annotations form a high-quality object detection 
dataset used to train the multi-label classification model. For previously unseen samples, detected regions are 
mapped back to their corresponding API call sequences and interpreted using a multi-agent reasoning module, 
generating human-readable and verifiable behavioural narratives. Our findings show that malware samples often 
display characteristics from multiple categories simultaneously, highlighting the complexity of modern threats 
and the limitations of single-category classification.

Contributions of this work are: 

	1.	 We introduce the first object detection dataset for malware classification, generated through an automated 
annotation pipeline capable of localising discriminative features even when visually indistinguishable.

	2.	 We propose a Bayesian extension to Grad-CAM to enable uncertainty-aware feature attribution, enhancing 
interpretability and reliability.

	3.	 We develop a proportional multi-label scoring mechanism that attributes distinct behavioural feature re-
gions to multiple categories, providing a richer representation of hybrid and overlapping behaviours.

The rest of this paper is organised as follows. Section II presents a new concept of ‘explainability through 
visualisation’ using a multi-labelling approach, addressing existing gaps in the literature and discussing the 
construction of the framework. Section III summarises the experimental results obtained in the research, 
emphasising the enhancement of transparency in the decision-making process. Section IV provides a brief 
conclusion and suggests directions for future research.

Method
Standardising malware characterisation through behaviours, artifacts, and attack patterns accurately captures 
how malware operates and the actions it performs. This approach enhances detection capabilities while also 
aiding in the assessment of malware objectives and potential risks5. Key feature extraction and identification 
form the first and most crucial step of our study to uncover the “DNA” of malware.

The proposed framework comprises several components essential for exploring the potential of explainability 
in the malware detection process. As shown in Fig. 1, the framework is divided into two stages: feature 
extraction and identification in the first stage, followed by feature localisation and detection in the second 
stage. The architectural design integrates multiple critical elements into a unified system. It involves generating 
images from raw malware data, identifying features, creating datasets based on the extracted features, and 
uncovering key characteristics through detection and classification. To further enhance interpretability, the 
framework incorporates a multi-agent module. This module translates the detected feature regions back into 
their corresponding API call names utilising a newly developed multi-agent module, consisting of Reviewer, 
Adversarial, Consensus, and Verifier agents, to generate human-readable explanations. These explanations 
provide insights into the intent and functional significance of each detected feature, grounded in domain-
specific knowledge, the MITRE ATT&CK framework. This step ensures that the entire detection process is not 
only accurate but also transparent and explainable to analysts and end users.

Key feature extraction and identification
This section outlines the dataset generation process for the object detection task, which constitutes the first stage 
of the DECODE framework. The pipeline includes multiple stages: behavioural feature extraction, malware image 
generation, discriminative region identification using a Bayesian extension of Grad-CAM, and the grouping 
and scoring of key feature regions by malware category. Together, these steps constitute an automated pipeline 
for constructing a malware object detection dataset. Emphasis is placed on achieving visual interpretability of 
malware behaviours and supporting a multi-label classification framework that reflects the complex, overlapping 
nature of real-world malware threats.

Dataset
Static analysis examines binary files without execution, extracting structural features such as strings and headers 
to infer malware intent. It is fast and computationally efficient but remains vulnerable to obfuscation techniques. 
In contrast, dynamic analysis involves executing malware within a controlled virtual environment to observe its 
behaviour in real time. Unlike static methods, dynamic analysis offers greater robustness against obfuscation9 and 
provides valuable insights into the operational goals and behaviours of malware. These methods often leverage 
the frequency and sequence of API calls, as such patterns reveal distinctive behavioural characteristics critical for 
detecting malicious activity. The frequency of API calls indicates their importance to the malware’s functionality, 
while the sequence provides details about its step-by-step actions. API functions, integral components of the 
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operating system, facilitate access to essential system resources, such as file systems, processes, and the Windows 
registry10.

Kakisim et al.10 evaluate the effectiveness of various malware detection strategies by analysing dynamic 
features, including API calls, interactions with system libraries, and manipulations of mutexes, registries, and files. 
Their study highlights the API-Bigram approach, which combines frequency analysis with sequential context, 
as a powerful method for distinguishing malware families and identifying suspicious programs. The findings 
demonstrate that both the API-Bigram and API-Frequency approaches deliver superior results for classifying 
malware families across diverse datasets. Building on this foundation, the next step involves selecting features 
that can effectively distinguish between malware categories. By leveraging the behavioural patterns captured 
during dynamic analysis, we identify key characteristics that highlight the distinct nature of each category.

Image-based malware data provide a more efficient method for managing and analysing malware behaviour, 
as instances of the same type often display recognisable and consistent patterns. To address the absence of 
publicly available dataset for malware dynamic feature images, we developed our own image-based dataset. 
We collected samples from eight categories: worm, ransomware, spyware, dropper, adware, downloader, virus, 
and benign, with approximately 1,000 samples per category. To ensure a balanced and diverse dataset, malware 
samples were sourced from MalwareBazaar11, VirusShare12, and VirusTotal13, all of which are regularly updated 
repositories. MalwareBazaar and VirusTotal provide labelled datasets that support family-based sampling. To 
ensure the accuracy of labels from MalwareBazaar and to assign labels to samples from VirusShare, we used 
the VirusTotal API. Each malware sample was labelled according to the most frequently detected malware type 
across multiple antivirus engines. For benign applications, we downloaded executable files from a curated list of 
popular Windows programs14 and confirmed their benign status using the VirusTotal API. Files that produced 
no alerts from any antivirus engine were classified as benign.

Executable samples were analysed using CAPE Sandbox to extract network, registry, file system, and process 
features, enabling detailed examination of behavioural patterns. In DECODE, we convert the extracted features 
into an image with pixel values ranging from 0 to 255, mapping each string in the report to an integer. This 
representation facilitates the identification of unique patterns associated with different malware categories. It 
is important to note that certain API names are deliberately duplicated by malware authors to mislead analysts 
and obscure behavioural patterns. To mitigate this, consecutive duplicate API calls are filtered, retaining only a 
single instance of each repeated entry. For each feature type, a fixed image size of 128×128 pixels (16,384 pixels 
in total) is employed. This resolution was selected to balance semantic richness and computational efficiency. On 
average, malware samples contained approximately 20,000 API calls per feature type. To fully populate the image 
frame, sequence elements are repeated as necessary; however, to minimise redundancy and maintain structural 

Fig. 1.  Two-Stage Framework for Malware Analysis. Step A - Feature Extraction and Identification: raw 
malware behavioural data is transformed into image representations, and Bayesian Grad-CAM is applied 
to highlight key discriminative regions across malware types. These highlighted regions are then grouped 
according to visual and behavioural similarity to construct an object detection dataset that captures category-
specific patterns. Step B - Feature Localisation and Detection: the identified regions are isolated for object 
detection and classification. The detected visual features are mapped back to their corresponding API calls 
and explained using a multi-agent LLM framework to enhance interpretability and provide human-readable 
reasoning.
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integrity, the image size per feature type is strictly capped at 16,384 pixels. This ensured compatibility with CNN-
based models and avoided distortions that can occur from arbitrary resizing.

When a sequence exceeded this threshold, an iterative cleaning procedure was applied to reduce redundancy 
across all behavioural feature types. This process includes up to 20 refinement steps and employs two primary 
strategies: (1) the iterative removal of consecutive duplicate API calls using a fixed group size that increases 
with each iteration, and (2) a sliding window-based approach that removes variable-size repeated groups. The 
sliding window is initially configured with a size of 10 and expands incrementally up to half the sequence length, 
enabling detection and elimination of recurring API call groups. To evaluate the impact of this cleaning process, 
three dataset variants were prepared: 

	1.	 baseline without repeated-group cleaning,
	2.	 sliding-window minimum size = 5, and
	3.	 sliding-window minimum size = 10.

Following group-level cleaning, a final pass eliminated any residual consecutive duplicates. The refinement 
continued until the sequence length was reduced to at most 16,384 elements. If the number of API calls remained 
below this threshold, existing entries were duplicated sequentially from top to bottom until the fixed frame was 
fully populated. This procedure ensured that all samples were represented with a consistent image layout while 
retaining the most informative API calls for downstream analysis.

To upscale the final 128×128 images to 256×256 resolution, we employed the Resampling.NEAREST method 
from the Pillow library. This technique duplicates pixel values without interpolation, thereby preserving the 
structural integrity of individual pixels. In contrast, the Resampling.LANCZOS method introduced noticeable 
blurring and distortion during upsampling. As a result, Resampling.NEAREST was selected to maintain 
consistent and undistorted feature representation.

Each set of four distinct features corresponds to a specific region within the image, which is then divided into 
frames (256, 256). These frames are allocated to individual features for analysis or processing. For instance, in 
an image of one instance (512, 512), the initial frame coordinates (0, 256, 0, 256) pertain to the network feature.

Since many malware samples exhibit shared or similar behaviours, some of the initially generated images are 
found to be identical. To address this, we implemented a cleaning process to remove such duplicated images and 
increase the diversity of the dataset. This process involves iterative removal of fixed-size duplicate groups (e.g., 2, 
3, or 4 consecutive API names). For example, we first remove duplicate groups of size 2. If identical images are 
still detected after this step, we continue the cleaning process by removing repeating groups of size 3, and so on. 
This progressive deduplication strategy helps generate more distinct images, thereby reducing redundancy in the 
training set and mitigating the risk of overfitting during model training.

Initially, each category consisted of around 1,000 samples: adware (903), virus (905), ransomware (895), 
worm (928), spyware (904), dropper (1,015), downloader (1,009), and benign (956). Following the data cleaning 
procedure, which involved removing duplicates and retaining only distinct images, the sample distribution 
changed to: adware (548), virus (846), ransomware (844), worm (784), spyware (837), dropper (647), downloader 
(890), and benign (953).

The substantial decrease in unique samples within the adware and dropper categories indicates that their 
behaviours are highly repetitive, resulting in frequent duplication across images. Conversely, the benign category 
displayed considerable behavioural diversity, with only three duplicates identified, each corresponding to an 
identical behavioural pattern.

Feature grouping and ranking
Each type of malware exhibits unique characteristics based on its primary objectives. By identifying these 
specific features, we can extract hereditary traits unique to each malware type. This allows us to analyse malware 
images to uncover their “DNA,” revealing which features are derived from which types of malware. To identify 
these features, we trained a classification model and utilised our modified Bayesian Grad-CAM to highlight the 
regions that most influence the model’s predictions for each specific class. The similarity between highlighted 
regions is analysed to cluster similar features, which are then ranked to identify the most commonly used 
features for each specific type of malware.

Our dataset, derived from malware behavioural data, is pattern-based and contains complex features. For 
feature learning, we trained several architectures, including VGGNet, InceptionV4, ResNet101, ResNet50, and 
ResNet34 due to their proven effectiveness in a wide range of deep learning tasks in malware detection, to 
identify the model with the best classification performance for learning complex patterns and features from our 
dataset.

VGGNet is particularly valued for its simplicity and depth, making it highly efficient for feature extraction 
with a systematic approach to learning hierarchical features. ResNet, on the other hand, addresses the vanishing 
gradient problem by incorporating residual connections, which enables the training of deeper networks. 
We enhanced the ResNet models with attention modules, SENet15, and CBAM16, which selectively focus on 
informative features while disregarding irrelevant ones. Lastly, InceptionNet is recognised for its capacity to 
capture multi-scale features through its inception modules, making it ideal for tasks involving varying feature 
sizes.

Following comparative evaluation of several architectures, VGG16 was selected as the most effective baseline. 
Its architecture was customised by inserting dropout layers after the 4th, 9th, 16th, and 23rd layers to enable 
Bayesian approximation via Monte Carlo dropout during Bayesian Grad-CAM analysis.

To enhance the discriminative capability of the learned features, we implemented a joint loss function in 
VGG16 as proposed by Wen et al.17, combining softmax loss and center loss supervision, as shown in (1) and 
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(2). This joint supervision approach amplifies inter-class feature differences while minimising intra-class feature 
variations, enabling more effective identification of subtle intra-class features. The following Equations (1) and 
(2) represent the joint supervision formula. The loss function is defined as:

	 L = LS + λLC � (1)

Expanding the terms:

	
L = −

m∑
i=1

log e
W T

yi
xi+byi

∑n

j=1 e
W T

j
xi+bj

+ λ

2

m∑
i=1

∥xi − cyi ∥2
2� (2)

Building upon these refined feature representations, we next create an object detection dataset by detecting 
and segmenting category-specific behavioural features in the images for each category. Due to the overlapping 
nature of malware behaviours, it is important to identify distinctive and key features of each malware type 
that differentiate them from other classes. Techniques such as Grad-CAM [6] produce activation maps that 
emphasise parts of the image critically affecting the model’s decision-making process. By focusing on features 
that positively influence class prediction and disregarding negative features as irrelevant to the class, we gain 
valuable insight into the most impactful features.

Qiu et al.18 applied Grad-CAM to a range of deep learning models and observed some differences in the 
resulting heatmaps across different architectures. They suggested that these variations are likely influenced by 
the underlying architecture, such as pure convolutional networks, residual networks, or transformer based 
models as well as differences in network size and depth. Chattopadhyay et al.19 also observed that Grad-CAM 
frequently encounters difficulties in localising multiple instances of the same class within a single image. Due to 
the repetitive and structurally complex patterns present in malware images, Grad-CAM may likewise struggle 
to accurately identify and localise key feature regions, which could limit its effectiveness in malware analysis 
applications.

Due to model uncertainty and instability, as well as the presence of noisy behavioural data with repeated 
patterns, further refinement is required to generalise its applicability beyond image-based architectures while 
maintaining meaningful interpretability. To address the instability of Grad-CAM in such contexts, we propose a 
Bayesian extension that incorporates uncertainty by performing multiple stochastic forward passes using Monte 
Carlo dropout.

The Bayesian Grad-CAM introduces an enhanced version of the traditional Grad-CAM by incorporating 
Bayesian pooling to improve robustness and reliability unlike traditional Grad-CAM, which uses global average 
pooling. The Bayesian Grad-CAM approach improves upon traditional Grad-CAM by integrating uncertainty 
into the visualisation of a model’s decision making process. During inference, the input is passed through the 
model multiple times, capturing feature maps at a designated target layer while the model operates in stochastic 
mode with dropout activated. Backpropagation is then employed to calculate the gradients of the output with 
respect to the feature maps at the target layer. These gradients reveal how minor changes in the feature maps 
affect the class score, emphasising the significance of each region.

This method gathers the feature maps and gradients from multiple forward passes using Bayesian statistics, 
computing both the mean and standard deviation. The process of averaging and modelling uncertainty leads to a 
more reliable Class Activation Map (CAM), as it takes into account variability in the model’s activations. Figure 2 
illustrates how the Bayesian Grad-CAM method generates CAM. The mathematical formulation of this process 
is detailed in Equations (3)-(11).

	
∂y

∂Ai
� (3)

After multiple forward passes (n passes), calculate the mean µA (4) and standard deviation σA (5) of the feature 
maps across these passes, and the certainty of features (CA) as calculated in Equation (6):

	
µA = 1

n

n∑
i=1

Ai � (4)

	

σA =

√√√√ 1
n

n∑
i=1

(Ai − µA)2 + ϵ � (5)

	
CA = 1

σA
� (6)

where ϵ is a small constant to prevent division by zero.
Similarly, the mean of the gradients is computed as shown in Equation(7):

	
µG = 1

n

n∑
i=1

∂y

∂Ai
� (7)
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The weights for the certainty map are computed by taking the activation value at each spatial location and 
normalising it across all feature maps by dividing by the sum of activations at that location, with a small epsilon 
added to ensure numerical stability, as shown in Equation (8):

	
w = µA∑C

c=1 µc
A + ϵ

� (8)

Here, ϵ is a small constant to avoid division by zero. The weighted certainty map is calculated by multiplying the 
certainty of the features (CA) by the normalised weights (w) and summing across the feature channels, as shown 
in Equation (9):

	
WC =

C∑
c=1

(Cc
A × wc)� (9)

The Class Activation Map (CAM) is obtained by multiplying the mean of gradients by the weighted certainty 
map, as shown in Equation (10):

	
CAM =

C∑
c=1

µG,c × WC,c� (10)

Finally, the ReLU function is applied to ensure non-negative values, as in Equation (11):

	 CAMReLU = ReLU(CAM)� (11)

Algorithm  1 shows the full process. The core novelty in Bayesian pooling in Grad-CAM lies in aggregating 
feature maps and gradients across multiple forward passes, not just averaging them, but also considering their 
variability, as captured by the standard deviation. While traditional Grad-CAM assumes a deterministic model 
and calculates the contribution of each spatial location using the most likely (maximum a posteriori) gradients 
and activations, it does not account for uncertainty.

Fig. 2.  The Bayesian Grad-CAM overview depicts the process of generating a Class Activation Map (CAM) 
using a Bayesian approach. This method involves multiple forward passes to capture both feature maps and 
gradients, allowing for the calculation of their mean and standard deviation using Bayesian principles. The 
CAM is generated by multiplying the mean gradients with a certainty map. The contribution of each feature to 
the final CAM is determined by its certainty CA.
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Algorithm 1.  BayesianGradCAM: Sampling and Heatmap Generation

By using Bayesian approximation, this modified Grad-CAM accounts for uncertainty, leading to a more 
robust CAM. The result is a more trustworthy interpretation of which regions of the input image are important 
for the model’s prediction, as it considers both the average and the variability in feature maps across multiple 
forward passes. This method highlights the critical regions of the image most significant for class prediction, 
providing reliable and stable interpretations even when the model’s predictions lack high confidence. By 
effectively managing variability, the Bayesian Grad-CAM generates more informative visualisations.

Fig. 3.  Bayesian Grad-CAM and Grad-CAM visualisations exhibit notable differences. By applying LIME 
to identify and highlight the regions most influential in the model’s prediction for a given class label, it is 
observed that Bayesian Grad-CAM primarily aligns with these key regions, indicating a closer correspondence 
to the features driving the model’s decision.
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In Fig. 3, we compare the visualisations produced by traditional Grad-CAM, our proposed Bayesian Grad-
CAM, and LIME. The results demonstrate that Bayesian Grad-CAM more consistently highlights the critical 
regions identified by LIME, indicating better localisation of the important features.

We first use Bayesian Grad-CAM on the target class to extract distinguishing regions from the images, 
resulting in highlighted areas that represent the key features of the class, as illustrated in Fig. 4. This process 
is repeated across all images for target classes, allowing us to capture their distinctive features. The extracted 
regions are saved for further analysis to better understand the distribution and significance of the key features 
identified by Bayesian Grad-CAM.

Next, we employ sliding windows to compare all the extracted regions of the same malware type with one 
another. We use a combination of Mean Squared Error (MSE), Histogram of Oriented Gradients (HOG) with 
Cosine Similarity, and Local Binary Patterns (LBP) to capture different aspects of the behaviour. MSE helps detect 
exact pixel-level differences, making it useful for finding small changes between nearly identical behaviours. 
HOG captures structural patterns, focusing on the overall flow or shape while being resilient to minor noise. LBP 
identifies textural differences, allowing us to detect local variations in behaviour. By combining these methods, 
we can accurately detect exact matches, structural similarities, and subtle behavioural variations.

MSE is first used to detect identical feature regions through a dynamic thresholding strategy. Rather than 
relying on a static similarity threshold, which can distort the similarity measurement, we use a dynamic 
threshold determined by the pixels being compared between features. As the extracted masks may include 
extensive black (background) areas, the threshold is scaled according to the non-black, information-rich portion 
of the image. The comparison is limited to non-black areas, allowing for consistent and accurate similarity 
evaluation regardless of the size or proportion of background pixels. This adaptive threshold adjusts to the image 
content, improving the accuracy of similarity measurements by concentrating on the relevant information and 
ignoring the background. This method reduces the influence of large uniform background areas. MSE is applied 
exclusively to non-black regions, focusing on the segmented content rather than the entire bounding box. This 
ensures that the similarity measure is sensitive to meaningful features and not influenced by background pixels, 
thereby enhancing its reliability across diverse conditions.

For MSE, we first calculate the total number of pixels in the template image. Next, we determine the 
percentage of black pixels in both images by counting the pixels with a value of zero and dividing this by the total 
pixel count. We proceed with the comparison only if both images contain at least 60 pixels and the percentage of 
black pixels does not exceed 50%.

To focus on informative parts of the image, we create masks to identify non-black pixels and combine them 
into an overlap mask, highlighting shared regions. We then extract and compare the non-background pixels 
from these areas. If MSE fails to find a match, HOG and LBP are then used to capture variations in the features. 
T﻿he dynamic threshold is computed as following Equation (12):

	
Dynamic Threshold = threshold ×

(Total Number of Non-Black Pixels in Overlapping Area
Total Number of Pixels

)
� (12)

We observed that the HOG value changes significantly depending on the feature size. When the compared 
features cover a smaller area, the computed HOG value is larger compared to those from larger features. This 
discrepancy leads to unstable comparisons, as larger areas may show more differences even when they share 
similar patterns. To address this issue, we define a dynamic threshold for HOG and also LBP similarity. Given 
HOG’s higher sensitivity to variations, it is assigned a lower base threshold compared to LBP. Equations (13) and 
(14) illustrate how we compute the threshold based on the size of features being compared:

	
HOGthreshold = 0.4 + 10

width × height � (13)

Fig. 4.  Process of key feature extraction by Bayesian Grad-Cam.
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LBPthreshold = 0.45 + 10

width × height � (14)

We begin by identifying features for each malware type by analysing and comparing the extracted regions 
within images of the same type. When the compared regions differ in size, a sliding window is applied. With 
this, the smaller region is systematically moved across the larger one to enable localised comparison. If a high 
degree of similarity is identified, the matching area within the larger region is cropped using the corresponding 
coordinates and saved.

To maintain consistent spatial scale within a class, the smaller region can only be assigned the same label as 
the larger one if the differences in width and height are no greater than 4 pixels. We then limit our analysis to 
regions where the width is at least 30 pixels; any regions smaller than this threshold are excluded from grouping. 
This constraint ensures that the extracted feature patterns are structurally meaningful and facilitates the accurate 
retrieval of relevant API call names when converting pixel values back into string representations.

As previously stated, images are composed of four frames, with each frame representing a specific type of 
behavioural feature (network, file system, process, or registry API call names). Therefore, if the compared feature 
is not in the same frame as the first element of the class, it will not be added to the group.

Following this grouping process, we select the top 50 feature classes with the largest number of features. 
In the refinement stage, each feature is compared to the first element of each selected class and reassigned 
to the class it most closely resembles. This iterative reassignment improves clustering accuracy and reduces 
the likelihood of missing highly similar patterns during the initial grouping, resulting in a more robust and 
consistent classification of key malware features.

Among the top features selected for each class (after removing overlapping feature classes), we retain only 
the feature groups for each malware type that contain more than 500 objects. Since the feature classes are highly 
imbalanced, we redefine the threshold to balance the number of samples across classes. The resulting dataset, 
with the selected feature groups, includes 75 feature classes for 8 categories, as shown in Table 1. After converting 
the dataset to COCO20 format, we calculate the Intersection over Union (IoU) of bounding boxes within the 
same image to detect overlapping objects. For any overlapping objects, we retain the one that is most similar to 
the first object in its category. Using these results, we have created our own object detection dataset in COCO 
format for malware detection, focusing solely on essential features. Notably, no malware dataset currently exists 
for object detection.

When analysing the key feature groups in our dataset, the Sankey diagram (Fig. 5) shows that each malware 
category includes feature groups derived from all four types of API calls, process, file system, registry, and 

Benign Downloader Adware Virus

Feature Class No. Feature Feature Class No. Feature Feature Class No. Feature Feature Class No. Feature

B_F1 627 DW_F1 568 A_F1 560 V_F1 615

B_F2 615 DW_F2 567 A_F2 552 V_F2 614

B_F3 600 DW_F3 563 A_F3 543 V_F3 599

B_F4 587 DW_F4 560 A_F4 537 V_F4 597

B_F5 577 DW_F5 546 A_F5 535 V_F5 595

B_F6 571 DW_F6 519 A_F6 526 V_F6 575

B_F7 566 DW_F7 516 A_F7 513 V_F7 562

B_F8 556 DW_F8 497 A_F8 503 V_F8 554

B_F9 556 DW_F9 494 V_F9 540

B_F10 547 V_F10 518

Spyware Worm Ransomware Dropper

Feature Class No. Feature Feature Class No. Feature Feature Class No. Feature Feature Class No. Feature

S_F1 603 W_F1 622 R_F1 581 D_F1 603

S_F2 586 W_F2 585 R_F2 581 D_F2 600

S_F3 586 W_F3 566 R_F3 570 D_F3 598

S_F4 572 W_F4 545 R_F4 565 D_F4 592

S_F5 570 W_F5 542 R_F5 562 D_F5 588

S_F6 569 W_F6 521 R_F6 549 D_F6 581

S_F7 566 W_F7 520 R_F7 538 D_F7 576

S_F8 546 W_F8 461 R_F8 534 D_F8 558

S_F9 535 R_F9 526 D_F9 548

S_F10 534 R_F10 503 D_F10 535

Table 1.  Number of annotations in the malware object detection dataset, grouped by malware supercategory. 
Each subtable presents the key features defined for that class. (B_F: Benign Feature, DW_F: Downloader 
Feature, A_F: Adware Feature, V_F: Virus Feature, S_F: Spyware Feature, W_F: Worm Feature, R_F: 
Ransomware Feature, D_F: Dropper Feature).
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network. However, process-related API features are especially prominent across categories, often emerging as 
the most influential in distinguishing behavioural patterns. In contrast, registry API calls appear less frequently 
as dominant key features. These insights highlight the varying discriminative power of API categories in 
characterising different malware behaviours.

Feature localisation and detection
Using the COCO-based object detection dataset we developed, to identify key feature regions, we trained 
EfficientDet models (variants D1, D2, and D3) using different backbone architectures. Features localised and 
detected by the selected object detection model are utilised for quantitative malware composition analysis. To 
determine the proportion of malware types within a given sample, we applied a scoring strategy that accounts for 
both the diversity of detected features (i.e., distinct feature classes) and the weighted confidence scores associated 
with each detection.

Each malware type is defined by more than eight distinct features, making it essential to evaluate how many 
of these features are identified within a malware sample. Due to the repetitive nature of malware behaviour, 
the frequency or quantity of detected features reflects how often those features are predicted with the detection 
confidence, offering insights into the model’s focus and reliability. When quantifying features, it is also critical 
to account for confidence scores, as they indicate the model’s certainty in its predictions. To achieve this, 
predictions are weighted by their confidence scores and aggregated for each malware type, ensuring a more 
accurate representation of their significance.

While the quantity of confidence predicted features provides insight into the reliability characteristics of 
malware, diversity offers a deeper understanding of the range of actions and intentions associated with different 
malware types. To balance these aspects, we combine both the weighted confidence scores of predictions, which 
prioritise high confidence scores to ensure that more reliable predictions are given greater weight, and the 
normalised number of distinct features (i.e., diversity). This calculation accounts for both the confidence of the 
predictions and the diversity of features present in each sample for a given category.

As outlined in Equation (15), the score for each identified category is calculated by applying weights to 
prioritise higher-confidence scores. Equation (16) provides likelihood of each detected class combining weighted 
confidence score with the normalised diversity, which is based on the maximum number of distinct feature 
classes among the detected categories. Here, diversitycategory is the count of distinct features detected for a 
malware type, representing diversity, while 

∑N

i=1 f(confi) is the aggregated and weighted confidence score 

Fig. 5.  Sankey diagram of key feature type distribution across malware categories in the dataset. This diagram 
visualises the composition of feature groups for each malware supercategory, indicating the source of features 
based on API call types. Each malware category (e.g., virus, adware, ransomware) is linked to the four 
behavioural API call groups, Process, File System, Registry, and Network, from which the annotated object 
features were derived. The flow thickness reflects the proportion of feature annotations originating from each 
API group, highlighting how different malware families rely on distinct behavioural characteristics.
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for all predictions associated with a malware type. This scoring mechanism helps prioritise categories, enabling 
the identification of the most critical malware types or features for further investigation, thereby optimising 
detection and analysis efforts.

This dual-weighted approach effectively integrates both diversity and quantity into the decision-making 
process, enabling a more comprehensive and reliable analysis of malware behaviour.

	

f(confi) =





0.6 · confi, if confi > 0.5
0.5 · confi, if confi > 0.4
0.4 · confi, if confi > 0.3
0.3 · confi, if confi > 0.2
0.1 · confi, otherwise

� (15)

	
Scorecategory =

N∑
i=1

f(confi) ×
diversitycategory

max_diversity
� (16)

We use Bayes’ Theorem for scoring labels, enabling a balanced and context-aware classification by integrating 
prediction scores with class distributions. This approach prioritises high-confidence predictions while reducing 
the impact of uncertain detections.

Specifically, Bayes’ Theorem is employed for both binary and multi-label classification. The posterior 
probability, for a given category is calculated by multiplying the likelihood of its detection, Equation (17), by its 
prior probability P (categoryi), defined by the frequency of that category in the dataset. This product is then 
normalised by the total probability across all detections, as described in Equation (18).

	 P (detections | categoryi) ≈ Scorecategoryi � (17)

The final classification is based on the highest posterior probability. If multi-label classification predicts benign, 
but binary classification predicts malware, we select the second-highest posterior probability to refine the 
classification decision.

	

P (categoryi | detections) = P (detections | categoryi) · P (categoryi)
N∑

j=1
P (detections | categoryj) · P (categoryj) � (18)

In imbalanced datasets, Bayes’ Theorem adjusts for class importance using prior probabilities, ensuring that rare 
or underrepresented categories are properly accounted for, thereby preventing overfitting to dominant classes. 
Moreover, its interpretability allows us to trace and justify classification decisions, making it particularly valuable 
in malware classification.

Understanding detection via multi-agent-based reverse engineering
As part of our goal to develop a visually explainable malware detection system, we extract and report the 
corresponding API call names associated with the detected feature regions for each analysed image, serving as 
the final step in our detection process. To make the predictions understandable to end users, we display each 
detected feature region alongside its corresponding class label. This enhances explainability by illustrating which 
features influence the prediction of a specific class.

Analysing these decoded features alongside their predicted labels provides valuable insight into the 
behavioural intent of the malware. To support analysts in interpreting these results, we employ a large language 
model (LLM) to generate clear and comprehensible explanations. However, LLMs present a significant challenge 
known as hallucination, in which the model produces responses that appear coherent and plausible, yet are 
factually incorrect or entirely fabricated. This issue stems from the way LLMs are trained, by learning from vast 
amounts of data and identifying statistical patterns, without any grounded understanding of the real world. As a 
result, LLMs are unable to reliably distinguish truth from fiction21.

To enhance the reasoning capabilities of LLMs, Wei et al.22 introduced chain-of-thought (CoT) prompting, 
which guides models through a coherent sequence of intermediate reasoning steps in a few-shot format. Their 
findings show that CoT prompting enables sufficiently large models to perform complex reasoning tasks 
more effectively than smaller models or traditional prompting methods. It also improves interpretability and 
performance while requiring only a few in-context examples.

To address the limitations of conventional CoT, particularly the lack of iterative refinement and external 
validation, Sanwal23 proposed Layered Chain-of-Thought (Layered-CoT) Prompting in multi-agent LLM 
systems. This approach decomposes reasoning into distinct stages, each producing a partial output that is 
independently verified using external resources such as domain-specific databases, knowledge graphs, or 
expert feedback via interactive dialogue. Unlike standard CoT, which validates only the final output, Layered-
CoT applies verification throughout the reasoning pipeline. This layered validation enhances factual accuracy, 
coherence, and transparency. When combined with a multi-agent architecture, it gains modularity, enabling 
specialised agents to perform tasks such as retrieval, verification, and user interaction, thereby forming a more 
robust and adaptable framework. Multi-agent LLM systems further support collaborative reasoning and cross-
verification among agents, enabling more dynamic and context-aware problem-solving.

According to Ghosmar and Dhal24, utilising multiple specialised agents within a coordinated pipeline 
can significantly reduce hallucinations in Large Language Models (LLMs). By following the initial content 
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generation with structured review stages, designed to insert disclaimers, refine speculative language, and 
minimise potentially misleading factual claims, the approach leads to a clear reduction in hallucination rates. In 
multi-agent collaboration for LLM cross-examination, each agent is responsible for a specific task. These tasks 
may include aggregation, scoring, judgement, revision, and other roles that collectively enhance the reliability 
and factual consistency of the model’s output.

Among the available LLM models, LLaMA and Mistral are freely distributed for research and commercial 
use. LLaMA 3 incorporates 8 billion parameters along with improved attention mechanisms and a broader 
context window, enabling it to manage sophisticated reasoning challenges that involve detailed, long-term 
contextual understanding25. The strength of Mistral-7B-Instruct-v0.3 lies in its capacity to generate summaries 
that are both varied and highly readable. It produces outputs that are not only precise but also clear and easy for 
readers to comprehend26.

Building on these developments, we propose a multi-agent module extending the Mistral-7B-Instruct-v0.3 
model to improve the reliability and factual consistency of malware behaviour explanations. Each agent is 
guided by a role-specific prompt, employing in-context learning and zero-shot instruction, which removes the 
necessity for task-specific fine-tuning. Prior work by Reynolds and McDonell27 showed that well-crafted zero-
shot prompts may outperform few-shot prompts, as the inclusion of examples can lead models to interpret them 
narratively rather than as categorical instructions28. To reduce hallucinations and ground the reasoning process, 
we generate a reference mapping of the MITRE ATT&CK framework29. These grounded inputs support domain-
aware explanation refinement at intermediate stages.

The first stage of the framework (illustrated in Fig. 6) generates improved explanations through a structured 
multi-agent process. It begins with an initial baseline explanation derived from the observed API features, 
retained solely as a reference point for verification. Independently, the Reviewer Agent develops an explanation 
grounded in the observed API features, interpreting their functional implications and aligning the identified 
behaviours with official MITRE ATT&CK technique names. This explanation is then critically evaluated by the 
Adversarial Agent, whose role is to identify overgeneralised statements, unsupported assumptions, or omissions. 
A Consensus Agent then synthesises the outputs from both the Reviewer and Adversarial agents, producing a 
final explanation that is more accurate, coherent, and balanced.

Fig. 6.  Multi-agent pipeline for malware behaviour analysis. The Initial Generator produces a baseline 
explanation from the observed API features, serving solely as a verification benchmark. The Reviewer Agent 
independently develops an explanation grounded in the observed API features and aligns behaviours with 
official MITRE ATT&CK technique names. The Adversarial Agent critically evaluates this explanation, 
identifying omissions or overclaims. The Consensus Agent integrates these perspectives to produce a coherent 
final explanation. Finally, the Verifier Agent assesses the output against the baseline, providing a Correctness 
Verdict and an Improvement Score.
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Each agent in the pipeline has a specialised function. The Reviewer incorporates domain-specific knowledge 
to clarify the behavioural intent of the observed API features. the Adversarial Agent critically challenges 
the Reviewer’s output by identifying overgeneralised claims, omissions, or unsupported assumptions. This 
adversarial framework helps mitigate individual model biases and facilitates a more nuanced, context-aware 
evaluation of LLM performance30. The Consensus Agent integrates both viewpoints into a unified explanation 
that reflects precision and completeness.

To assess the quality of the final output, a Verifier Agent is employed, powered by the Meta-LLaMA-3-8B-
Instruct model. Unlike the other agents, the Verifier has access to grounded reference materials, specifically 
the MITRE ATT&CK framework29. It uses this information to evaluate whether the explanation accurately 
captures system-level behaviours, aligns with documented adversarial techniques, and constitutes a meaningful 
improvement relative to an initial baseline explanation. The Verifier provides a structured assessment including 
a Correctness Verdict, an Improvement Score, and a Justification, thereby offering transparent and evidence-
based validation. The consensus explanation incorporates adversarial feedback by critically reassessing the 
Reviewer’s assumptions and adopting a more cautious, evidence-based, and context-aware interpretation of 
observed behaviours. For example, while the Reviewer links file creation and registry access to persistence or 
reconnaissance, the Adversarial Agent points out that such actions are also common in legitimate software, such 
as installers or configuration utilities. In response, the consensus explanation acknowledges the dual-use nature 
of these APIs and treats them as potential indicators of malicious activity only when corroborated by additional, 
stronger signals. This more nuanced interpretation avoids overgeneralisation and promotes a balanced, evidence-
driven assessment of the sample’s intent.

The Verifier supports this balanced and accurate assessment, stating that the explanation thoroughly 
covers system-level behaviours, aligns with relevant MITRE ATT&CK techniques, and directly addresses 
the Adversarial Agent’s concerns. Overall, it is recognised as a strong refinement, as reflected in the assigned 
improvement score of 8.

Results
In this section, we present experimental results evaluating the effectiveness of the proposed DECODE framework. 
We first report a series of ablation studies that analyse the contribution of individual components. We then 
provide the final comparative evaluation against CNN baselines in both binary and multi-label settings, followed 
by qualitative analyses to demonstrate interpretability.

Ablation study
Dataset cleaning
To evaluate the effectiveness of repeated-group cleaning on dataset quality and downstream model performance, 
we conducted an ablation study using different hyperparameters settings for the sliding-window process. Three 
configurations were compared: 

	1.	 SWSD-MSL10-RGC: Minimum Segment Length = 10, repeated-group cleaning enabled,
	2.	 SWSD-MSL5-RGC: Minimum Segment Length = 5, repeated-group cleaning enabled, and
	3.	 SWSD-NoRGC: Repeated-group cleaning disabled (baseline).

All experiments employed identical training and validation splits to ensure direct comparability. The dataset 
comprised the following per-class sample counts (training, validation): adware (426, 107), ransomware (675, 
169), spyware (669, 168), benign (762, 191), worm (625, 157), downloader (712, 178), virus (600, 151), and 
dropper (517, 130).

Among the tested configurations, the model trained with repeated-group cleaning and a minimum segment 
length of 10 (SWSD-MSL10-RGC) consistently achieved the highest values across all evaluation metrics. The 
complete set of comparative metrics and extended analyses are available in the project repository. These findings 
demonstrate that applying repeated-group cleaning with a larger segment size improves dataset representativeness 
by reducing redundancy while preserving meaningful behavioural semantics.

Feature learning
We first compared candidate model architectures (VGG16, ResNet34/50/101, and InceptionV4) to determine 
the most effective backbone for feature extraction (Table 2). The dataset is partitioned into two subsets, a training 
set comprising 5,076 samples and a validation set containing 1,273 samples. The training set is distributed across 
eight categories as follows: Adware (438), Virus (676), Ransomware (675), Worm (627), Spyware (669), Dropper 
(517), Downloader (712), and Benign (762). The validation set follows a similar distribution, consisting of 
Adware (110), Virus (170), Ransomware (169), Worm (157), Spyware (168), Dropper (130), Downloader (178), 
and Benign (191). VGG16 achieved superior performance across accuracy, F1 score, MCC, and ROC AUC, and 
was therefore selected as the primary model for subsequent experiments.

To determine the optimal dropout rate, models with dropout values of 0.3 and 0.5 were evaluated. The 0.3 
configuration consistently outperformed 0.5 across all metrics (Table 2) and was adopted in the final model. 
Although the dropout-enhanced VGG16 showed a slight reduction in accuracy compared with the non-dropout 
baseline, it achieved a substantially lower false positive rate (FPR).

We then investigated the impact of loss function design. A joint loss was compared against softmax alone. 
The joint loss produced superior performance by improving inter-class separability and reducing intra-class 
variance. This effect is evident in the t-SNE visualisations (Fig. 7), where the joint loss model (Plot B) exhibits 
clearer separation of classes compared with the softmax-only baseline (Plot A). Well-defined clusters are 
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observed for Dropper, Ransomware, and Virus, while Spyware and Benign remain poorly separated, reflecting 
their behavioural overlap with other classes.

Grad-CAM vs Bayesian Grad-CAM
To assess the impact of uncertainty modelling on visual explanation quality, we compared traditional Grad-CAM 
with the proposed Bayesian Grad-CAM. Figure 8 provides a comparative analysis of traditional Grad-CAM 
and our newly developed Bayesian Grad-CAM techniques on the ImageNet dataset. The visualisations reveal 
that while traditional Grad-CAM highlights large areas encompassing both key object features and background 

Fig. 7.  t-SNE plots illustrating the image feature representations extracted by two VGG16 models trained on 
the malware dataset. Plot A corresponds to training with softmax loss, while Plot B corresponds to training 
with joint loss. The joint loss model shows enhanced inter-class separation and reduced intra-class variance.

 

Model Accuracy Precision Recall F1 Score ROC AUC Specificity NPV FPR FNR Balanced Accuracy MCC

VGG16 with Joint Loss 0.8264 0.8287 0.8263 0.8253 0.9007 0.9001 0.8832 0.0999 0.1737 0.8632 0.7928

VGG16 with Joint Loss + Dropout (0.3) 0.8052 0.8218 0.8182 0.8194 0.8959 0.9720 0.9721 0.0280 0.1922 0.8899 0.7770

VGG16 with Softmax Loss + Dropout (0.3) 0.8036 0.8093 0.8028 0.8054 0.8873 0.8093 0.8028 0.1907 0.1972 0.8060 0.7748

VGG16 with Joint Loss + Dropout (0.5) 0.7894 0.7969 0.7899 0.7928 0.8798 0.9445 0.9596 0.0554 0.2251 0.8597 0.6949

ResNet34 with CBAM and Softmax Loss 0.7683 0.7906 0.7662 0.7715 0.8664 0.7906 0.7662 0.2094 0.2338 0.7784 0.7357

ResNet50 with SENet and Softmax Loss 0.7510 0.7908 0.7448 0.7566 0.8543 0.7908 0.7448 0.2092 0.2552 0.7678 0.7173

InceptionV4 with Softmax Loss 0.7416 0.7547 0.7435 0.7438 0.8531 0.7547 0.7435 0.2453 0.2565 0.7491 0.7050

ResNet101 with Softmax Loss 0.7211 0.7389 0.7202 0.7190 0.8400 0.7389 0.7202 0.2611 0.2798 0.7296 0.6830

ResNet34 with SENet and Softmax Loss 0.7101 0.7653 0.7084 0.7196 0.8333 0.7653 0.7084 0.2347 0.2916 0.7368 0.6750

ResNet50 with Softmax Loss 0.6544 0.6799 0.6578 0.6528 0.8040 0.6799 0.6578 0.3201 0.3422 0.6688 0.6067

ResNet34 with Softmax Loss 0.6630 0.7025 0.6548 0.6587 0.8030 0.7025 0.6548 0.2975 0.3452 0.6786 0.6179

ResNet50 with CBAM and Softmax Loss 0.6512 0.6859 0.6511 0.6510 0.8004 0.6859 0.6511 0.3141 0.3489 0.6685 0.6045

ResNet101 with CBAM and Softmax Loss 0.6222 0.6761 0.6251 0.6253 0.7853 0.6761 0.6251 0.3239 0.3749 0.6506 0.5739

ResNet101 with SENet and Softmax Loss 0.6159 0.6576 0.6145 0.6223 0.7795 0.6576 0.6145 0.3424 0.3855 0.6361 0.5613

Table 2.  NPV : Negative Predictive Value; FPR : False Positive Rate; FNR : False Negative Rate; MCC : 
Matthews Correlation Coefficient. All models were trained and evaluated on the generated malware image 
dataset. Metric values are reported as proportions between 0 and 1. Higher values for Accuracy, Precision, 
Recall, F1 Score, ROC AUC, Specificity, NPV, Balanced Accuracy, and MCC indicate better performance, 
while lower values for FPR and FNR are preferred. All models used the softmax loss, except for the first two 
VGG16 models, which were trained with a Joint Loss approach. For both VGG16 with Joint Loss and VGG16 
with softmax loss, dropout layers were applied as indicated. All reported metrics fell within expected ranges, 
with no NaN or missing entries observed. Distributions of Precision, Recall, and MCC across samples showed 
consistent trends without outliers, indicating no statistical anomalies or data integrity issues during model 
evaluation.
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elements, Bayesian Grad-CAM offers more targeted activation. Specifically, Bayesian Grad-CAM zeroes in on 
the essential features of objects, significantly diminishing attention to the background and non-relevant regions. 
This improved focusing ability of Bayesian Grad-CAM highlights its superiority in delivering clearer and more 
precise interpretations of model predictions.

A further comparison on multi-object images (Fig.  9) shows that Grad-CAM often fails to accurately 
localise all relevant objects. In contrast, Bayesian Grad-CAM offers a more stable and comprehensive focus, 
effectively identifying and highlighting nearly all instances of the target class. This capability is especially critical 
in applications where the exclusion of relevant objects could undermine the reliability and completeness of 
the model’s explanation. These qualitative results demonstrate that incorporating uncertainty into the pooling 
process improves both spatial precision and class specificity of attribution maps.

To qualitatively assess the capability of Bayesian Grad-CAM to emphasise class-specific features, we created 
two datasets by segmenting images using heatmaps from Grad-CAM and Bayesian Grad-CAM, respectively. 
A custom VGG16 model was trained on each dataset under identical training and validation distributions. 
The model trained on Bayesian Grad-CAM-segmented images consistently outperformed the one trained 
on Grad-CAM-segmented images. This finding suggests that Bayesian Grad-CAM more effectively captures 
discriminative category features, and that removing irrelevant information from the training data can enhance 
classification performance. Full comparative results are provided in the associated GitHub repository.

Comparative evaluation with baseline classifiers
We evaluated the EfficientDet object detection model on our custom malware dataset. Among the tested variants, 
EfficientDet-D2, which employs the EfficientNetV2-S backbone, demonstrated the better overall accuracy. A 
detailed comparative analysis is provided in the accompanying GitHub repository. To evaluate the effectiveness of 
the proposed DECODE framework, which integrates object detection with quantitative multi-label behavioural 
analysis, we conducted comparative experiments against several baseline CNN classifiers. These CNN models 
were fine-tuned on the same domain-specific malware behaviour image dataset commonly used in malware 
image classification tasks, thereby ensuring their relevance to the problem domain.

Fig. 8.  Comparison of Grad-CAM and Bayesian Grad-CAM visualisations on the ImageNet dataset. 
Visualisations are generated using a customised ResNet-50 architecture, in which a Dropout layer (with 
probability 0.5) is inserted after the second BatchNorm layer (bn2) in each Bottleneck block. Panel A 
corresponds to the target class tiger cat: Grad-CAM highlights both dog and cat regions, indicating class 
ambiguity, while Bayesian Grad-CAM more precisely focuses on cat-specific features, demonstrating improved 
class specificity. Panel B corresponds to the target class pug dog: Bayesian Grad-CAM broadens the highlighted 
area across the full dog region and suppresses attention to background and irrelevant objects.
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The evaluation dataset comprised a total of 5,708 training samples and 1,177 validation samples, distributed 
across eight categories. The training set included 635 samples of spyware, 634 ransomware, 385 adware, 730 
benign, 646 virus, 573 worm, 588 downloader, and 517 dropper. The validation set contained 161 spyware, 156 
ransomware, 96 adware, 185 benign, 162 virus, 143 worm, 146 downloader, and 128 dropper samples.

Across both binary and multi-label classification tasks, DECODE consistently outperformed the baseline 
models. By assigning class labels based on the highest proportion of behavioural traits detected within each 
image, the framework achieved competitive classification performance while maintaining interpretability. These 

Fig. 9.  Comparison of Grad-CAM and Bayesian Grad-CAM visualisations using the custom ResNet-50 on 
ImageNet validation data. Bayesian Grad-CAM provides clearer, more stable attribution maps, accurately 
highlighting multiple instances of the target class, outperforming standard Grad-CAM in both precision and 
consistency.
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results highlight the advantages of incorporating behaviour-aware visual features into the decision-making 
process for malware analysis.

In the context of multi-label classification, we use evaluation metrics such as Hamming Loss, F1-Score, and 
overall accuracy (ACC). In addition, we evaluate label-based accuracy to assess performance across individual 
classes. Hamming Loss, which measures the ratio of misclassified labels to the total number of labels, is 
particularly useful in the multi-label setting. For binary classification, we use Accuracy (ACC), F1 Score, False 
Positive Rate (FPR), and Matthews Correlation Coefficient (MCC).

For binary classification accuracy, as shown in Table 3, DECODE improves performance by approximately 
1.8%, increasing from 92% with InceptionResNetV2, the highest-performing baseline model, to 95.8%. Regarding 
the Matthews Correlation Coefficient (MCC), DECODE achieves the highest score, providing a balanced and 
robust evaluation of binary classification performance.

In the multi-label classification setting, DECODE achieves an accuracy of 85.13%, outperforming InceptionV4, 
which achieved 81.81% (Table 4). It also demonstrates a significantly lower Hamming Loss (HL) score compared 
to other models, reflecting fewer incorrect label predictions. These results validate the effectiveness of our multi-
label classification approach, offering a more nuanced and comprehensive malware detection framework based 
on feature-level analysis.

Figure 10 presents an example visualisation of the detection results. The image is classified as spyware but 
also exhibits features associated with ransomware, benign software, and viruses. Based on the analysis, the 
sample predominantly demonstrates spyware-like behaviour, accounting for 48.29% of the detected features, 
represented by eight distinct key feature classes. Additionally, it contains 16.05% ransomware-related features 
spanning four feature classes, 29.29% benign-related features across seven classes, and 6.36% virus-related 
features represented by a single feature class. This analysis enables precise localisation of the relevant regions 
and reveals the underlying behavioural patterns,effectively capturing the “behavioural DNA” of both malware 
and benign samples.

Discussion
Building object detection dataset is traditionally performed through manual annotation. This process however 
is time-consuming and impractical for large-scale datasets. This study minimises human effort by automatically 
identifying key features through our newly developed Bayesian Grad-CAM to extract salient regions and 
grouping similar regions to generate object detection annotations. This method is particularly useful for cases 
where differences between malware types are not visually distinguishable to the human eye. Although this 

Metric/Label DECODE InceptionV4 ResNet18 ResNet34 VGG16 ResNet50 IncepResNetV2

ACC 0.8513 0.8181 0.8173 0.8088 0.8011 0.7162 0.8113

F1-Score 0.8515 0.8202 0.8202 0.8121 0.8036 0.7155 0.8144

HL 0.0372 0.1818 0.1827 0.1912 0.1988 0.2838 0.1886

Adware 0.9785 0.9636 0.9687 0.9632 0.9696 0.9227 0.9667

Benign 0.9382 0.9286 0.9206 0.9078 0.9165 0.9069 0.9300

Downloader 0.9554 0.9491 0.9562 0.9374 0.9514 0.9387 0.9462

Dropper 0.9825 0.9800 0.9742 0.9731 0.9736 0.9142 0.9680

Ransomware 0.9683 0.9647 0.9588 0.9576 0.9560 0.9580 0.9627

Spyware 0.9310 0.9185 0.9169 0.8855 0.9213 0.8942 0.9235

Virus 0.9769 0.9665 0.9604 0.9460 0.9468 0.9445 0.9612

Worm 0.9747 0.9743 0.9635 0.9746 0.9736 0.9567 0.9772

Table 4.  Multi-Label Classification Performance Comparison Between DECODE and Baseline Methods. ACC: 
Accuracy; HL: Hamming Loss; Class-Based Accuracy is reported separately for Adware, Benign, Downloader, 
Dropper, Ransomware, Spyware, Virus, and Worm. All metrics range from 0 to 1.

 

Model ACC F1 Score FNR FPR MCC

DECODE 0.9380 0.9619 0.0655 0.0432 0.8032

InceptionResNetV2 0.9200 0.9599 0.0343 0.2486 0.7370

ResNet18 0.9170 0.9562 0.0301 0.1910 0.7023

InceptionV4 0.9170 0.9441 0.0484 0.1892 0.7414

ResNet34 0.9140 0.9568 0.0479 0.2171 0.7181

VGG16 0.9060 0.9520 0.0585 0.1946 0.7137

ResNet50 0.8880 0.9455 0.0872 0.1711 0.5951

Table 3.  Binary Classification Performance Analysis Between DECODE and Baseline Methods. The metrics 
include ACC (Accuracy), FPR (False Positive Rate), FNR (False Negative Rate), and MCC (Matthews 
Correlation Coefficient). All values range from 0 to 1.
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reduces the reliance on manual annotation, it is computationally intensive and time-consuming when processing 
large volumes of data.

The resulting object detection dataset enables the application of object detection techniques with bounding 
boxes, allowing the localisation of feature regions associated with different malware types. This facilitates the 
identification of multiple behavioural traits exhibited by various malware types within a single sample, supporting 
multi-label analysis. Given the complex and multi-functional nature of malware, single-label classification 
approaches may lead to misleading conclusions by focusing only on the dominant trait. Our comparative 
analysis shows that classification performance improves when images are analysed based on the distinct features 
associated with each malware category. Both multi-label and binary classification show superior performance 
compared to baseline methods. The proposed approach achieves notably lower HL, along with higher overall 
accuracy and improved per-class accuracies. In the binary classification setting, it outperforms other methods 
in terms of accuracy, F1-score, and MCC. While other models achieve lower FNRs, they exhibit significantly 
higher FPRs. In contrast, DECODE maintains both low FNR (0.0655) and FPR (0.0432), demonstrating a 
more balanced and effective detection performance. This indicates a stronger capability to accurately detect 
malware while minimising the misclassification of benign files. Such a balance is crucial for real-world detection 
scenarios, as it ensures that legitimate files are not mistakenly flagged, while real threats are reliably identified.

To support explainable analysis, we extract the corresponding API call features from the detected key feature 
regions to provide detailed behavioural interpretations. This level of interpretability helps analysts understand 
how malware operates and assess the potential impact. Furthermore, DECODE offers a flexible framework for 
adapting to evolving malware, which may exhibit behaviours beyond those traditionally associated with its 
category. It learns the key features of malware categories and is thus capable of addressing real-world variants. 
Even when new variants are released, they often exhibit behavioural similarities and share intent with known 
malware categories. By identifying these behaviours, we can detect malicious activity. However, to ensure 
continued effectiveness and generalisability, the dataset must be regularly updated with more diverse behavioural 
patterns. Achieving this requires access to a large volume of data encompassing a wide range of malware families 
and behavioural variations.

To further improve the proposed approach, incremental or continual learning can be applied to adapt the 
model and dataset to emerging malware behaviours. This would not only enrich the dataset with greater variance 
but also capture previously unidentified patterns within each malware category. To enhance the explanation of 
malware behaviour in its final stages and provide more detailed insights into its intent, supplementary contextual 
information could be incorporated into the dataset. This would help address the dual-use nature of certain 
APIs, as some of these are also commonly used by legitimate software. By incorporating supporting data such 
as API call arguments, parent-child process relationships, network destinations, and execution context, the 
model’s ability to confidently explain the intent behind behaviours, and to distinguish between legitimate and 
malicious activity, can be significantly enhanced. Future work will also establish objective evaluation metrics 

Fig. 10.  Visualisation of a Spyware sample with bounding boxes, illustrating the percentage distribution of 
detected behavioural features associated with different malware types.
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in collaboration with domain experts, including structured user studies and task-based evaluations assessing 
accuracy, efficiency, and error reduction. Correctness will be benchmarked against expert-annotated datasets to 
ensure reliable assessment of explanation quality.

In real-world malware detection scenarios, the proposed DECODE framework offers several practical 
advantages. By automating the generation of object detection datasets and enabling multi-label classification 
with explainable visual insights, it reduces the dependency on manual labour while significantly enhancing 
detection depth and accuracy. This is particularly critical in enterprise and national security environments 
where rapid and reliable identification of emerging threats is essential. The integration of interpretability not 
only aids cybersecurity analysts in understanding the reasoning behind detection outcomes but also supports 
actionable decision-making in threat response and mitigation. Furthermore, DECODE’s ability to detect and 
explain behavioural patterns in novel or obfuscated malware variants makes it a valuable tool for proactive 
threat hunting. Its balanced performance, minimising false positives and false negatives, helps maintain system 
integrity while avoiding disruption to legitimate operations, a key requirement in high-stakes, real-time 
cybersecurity environments.

Conclusion
We strongly believe that this study advances beyond traditional malware detection by introducing a novel 
visual and explainable framework that dissects and interprets the behavioural traits of malware with greater 
granularity. By highlighting distinctive features of various malware types and localising them within visual 
representations, this approach empowers analysts to detect, understand, and respond to threats with enhanced 
precision. Such capabilities are crucial for strengthening cybersecurity resilience in an environment where cyber 
threats continue to evolve in complexity and scale.

This study addresses key limitations of conventional detection practices through this seminal multi-label 
classification strategy, which outperforms single-label models in both binary and multi-label contexts. The 
ability to localise salient feature regions and map them back to API call sequences enables a transparent and 
interpretable detection process. Further enhancing interpretability, we integrate a multi-agent module that 
explains these features and their associated labels, transforming complex technical outputs into human-readable 
insights. Together, these components establish a fully visual and explainable malware detection pipeline, bridging 
the gap between raw data and actionable intelligence.

Another significant contribution of this work is the introduction of a Bayesian modification of Grad-CAM, 
which generates uncertainty-aware heatmaps for more reliable visual explanations. We also present the first 
object detection dataset for malware, enabling the application of advanced object detection techniques in 
cybersecurity for the first time. Beyond malware analysis, this framework holds potential for broader use cases 
requiring automated, interpretable dataset generation tailored to complex classification challenges.

By reducing manual annotation requirements, improving interpretability, and maintaining strong 
classification performance, DECODE offers substantial real-world value. Its balanced detection metrics and 
ability to generalise to unseen malware behaviours make it particularly well-suited for practical deployment in 
enterprise and research settings. Ultimately, this work lays a foundation for scalable, explainable, and adaptive 
threat detection systems that can keep pace with the dynamic threat landscape.

Data availability
Data that support the findings of this study have been deposited in ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​d​t​u​u​b​​a​/​D​E​C​​O​D​E​-​D​E​​e​p​
_​C​l​a​​s​s​i​f​i​c​​a​t​i​o​n​_​O​f​_​D​y​n​a​m​i​c​_​E​x​p​l​o​i​t​s.

Code availability
The source code for DECODE is available at: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​d​t​u​u​b​​a​/​D​E​C​​O​D​E​-​D​E​​e​p​_​C​l​a​​s​s​i​f​i​c​​a​t​i​o​n​_​O​f​_​D​
y​n​a​m​i​c​_​E​x​p​l​o​i​t​s.
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