www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Multi-ship detection and
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Ship target tracking and detection are essential procedures in the shipping industry that guarantee
ship traffic and marine safety. However, issues including complicated background interference,
multi-scale object recognition, and inadequate training for small sample recognition are common
with classical detection techniques. To address these challenges, this study proposes an enhanced
ship multi-target detection model utilizing a modified YOLOvV8 algorithm. In addition to integrating
the ESSE module and GSConvns technology into the YOLOv8 backbone, the YOLOv8n model acts

as the baseline and integrates Wise-loU technology. This improvement greatly increased multi-scale
feature extraction’s efficacy while maintaining the fewest possible parameters. With this change,
lightweight fusion is accomplished, and the model’s capacity to extract semantic characteristics from
ship photos is enhanced, particularly when it comes to identifying targets against intricate backdrops.
According to testing results on the Dockship, Seaships, and Infrared Offshore Ship datasets, the
enhanced algorithm’s average detection accuracy is 82.1%, 99.1%, and 91.7%, respectively. This is a
considerable improvement over the baseline model. Furthermore, the model’s ability to improve the
features, lightweighting, and detecting capabilities of different ship kinds has been validated by loU
computation and ablation experimental analysis. These results highlight how the suggested approach
could improve ship target detection’s automation, dependability, and quality.

Keywords Artificial intelligence, YOLOVS, Ship detection and classification, Lightweighting, Multi-scale
feature

With the development of the global marine economy, both the importance of ships as the leading carriers and the
demand for ship safety and monitoring have attracted increasing attention'. Although it has made remarkable
achievements in ship inspection technology, there are still many challenges in practical application®. The
complex background environment of the coastal area, where ships are often mixed with disturbing objects such
as cargo, cranes, and buildings, makes it difficult to identify targets®. Additionally, in the far sea area, although
there are fewer interferences, the size of the ship target is relatively smaller than the background environment*.
It is affected by the environment, such as light, and it is also challenging to identify.

Traditional ship detection and classification methods predominantly rely on manual visual observation or basic
image processing techniques.However, these approaches suffer from notable drawbacks, including pronounced
subjectivity, limited efficiency, and suboptimal accuracy. Li et al.” highlighted edge contours to improve image
detection by Canny operator optimization. An enhanced adaptive Canny method was presented by Liu et al.¢ for
ship infrared image edge detection. Cui et al.” discovered that threshold segmentation techniques were effective
and simple, while they are not resilient and need to be adjusted for complex and dynamic situations. Klimkowska
et al.® studied five color Spaces and each channel in the new image, using image segmentation to detect the
target object, and experimentally demonstrated the effectiveness of this method. However, it relies more on
color information. The above detection methods are sensitive to noise and may be significantly affected by light
and the environment. Zhou et al.” tried to detect better multi-scale ship targets in SAR images, which improved
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the feature extraction capability of the model in remote sensing datasets. However, the occlusions and complex
background RGB images need to be improved. The template matching method was effectively applied to find
fractures on ship hulls and bilge keels by Khumaidi et al.!%. However it requires a large number of templates due
to its sensitivity to size, rotation, and deformation. From above, traditional methods are generally sensitive to
environmental changes and have limited accuracy.

With the further development of deep learning, the Two-Stage algorithm is continuously optimized to adapt
to different scenarios. Zhang et al.!! proposed a target detection framework, Faster-RCNN, which provides
a very effective method for ship detection in high-resolution remote sensing images. Guo et al.!? proposed a
rotating Libra R-CNN method. As a remote sensing data set, the DOTA data set was significantly different
from the data set required by our experiment in terms of data characteristics and processing methods. A ship
recognition and segmentation approach based on an enhanced Mask R-CNN model was proposed by Nie et
al.!3, who focused on ship detection in satellite remote sensing images. Two object-oriented ship detectors based
on Faster R-CNN were introduced by Loran et al.'* in response to the restricted visibility of maritime radar.
Wolrige et al.'® proposed the development of Computer Video Analysis (CVA) technology, which uses a new
algorithm to track the water surface near floating structures, successfully improving the accuracy and robustness
of wave interaction measurements, and proving in experiments that it can effectively evaluate the response under
different wave conditions. Two-stage detection algorithms, despite their accuracy advantages, face limitations
including slower detection speed due to candidate region generation, high computational resource demands
hindering deployment on resource-constrained devices, poor performance with small targets like ships, and
insufficient robustness in complex backgrounds such as sea surfaces, resulting in false or missed detections.

With the advancement of technology, more advanced methods are explored to overcome the limitations
in ship detection and classification. An improved ImnYOLOv3 was presented by Chen et al.!® to address the
difficulties associated with ship detection in computer vision. Ye et al.!” proposed the EA-YOLOV4 algorithm,
which incorporated a convolution block attention module (CBAM) into YOLOv4 to enhance feature perception.
Additionally, it adopts an improved effective Joint Crossing (EIoU) loss function to optimize ship detection
of different sizes. Yang et al.'® developed a more lightweight network architecture, EL-YOLO, which achieved
significant advances in detection accuracy and lightweight in different maritime scenarios. Wang et al.’
proposed a new ALF-YOLO architecture integrating AFPN, LSK and the fourth detection head, focusing on
the key features of the ship and eliminating the interference of the complex environment. In addition, Cheng et
al?% proposed a lightweight model, SGST-YOLOVS, for pedestrian and vehicle detection. Chen et al.?! proposed
CD-YOLO, a multi-scale ship detection model in complex scenes based on YOLOV7, aiming at the problems of
missed detection and misidentification in synthetic aperture radar (SAR) images. SED-YOLO is an enhanced
remote sensing image small target identification network developed by Li et al.??, founded on YOLOV5s. They
implement an efficient multi-scale attention (EMA) mechanism at the conclusion of the network to facilitate
multi-scale feature learning.

Despite advancements in YOLO-based enhancement techniques for ship target recognition in recent years,
EL-YOLO exhibits constrained feature extraction skills and inadequate robustness against small targets and
intricate backdrops. ALF-YOLO exhibits significant computational demands and restricted generalization
capabilities. SGST-YOLOWS is tailored for pedestrians and vehicles, yet demonstrates inadequate adaptability for
maritime applications and lacks a multi-scale enhancement mechanism. CD-YOLO is specifically engineered
for SAR images, but shows subpar performance with optical images and possesses high model complexity.
SED-YOLOs feature fusion suffers from low efficiency and presents challenges in achieving a balance between
lightweight design and accuracy. These methods remain inadequate for practical application needs including
feature extraction, small object recognition, background interference suppression, model optimization, and real-
time performance balance. According to relevant research, the average detection accuracy of ship targets in
complex sea conditions is only 78.3%, far below the ideal level. In addition, when the proportion of ship targets
in the image is less than 0.5%, the missed detection rate is as high as 42.3%.

Therefore, an improved YOLOVS ship detection model, GEW-YOLO (GSConvns, Efficient Ship Semantic
Enhancement (ESSE) module, Wise-IoU), is proposed in this paper, which integrates high efficiency and
lightweight. Firstly, based on YOLOv8, Wise-IoU loss function, lightweight GSConvns module and ESSE
module are used to improve the model, which realizes high-precision detection in complex environments. To
verify the validity of the model, three different scenario datasets—Dockship, SeaShips, and Infrared Offshore
Ship datasets, are expanded and experimented with. The results show the significant advantages of the model
in complex environments and in achieving efficient lightweight. Finally, the proposed algorithm is further
analyzed by comparing different improved algorithms through ablation study. The experimental results show
that the proposed algorithm has high detection accuracy for Marine ship image detection, and the calculation
parameters and time complexity of the model are greatly reduced.

The article is organized as follows. Dataset and the proposed method are covered in section “Dataset and
the proposed method” Experiment results and discussion are presented in section “Experiment results and
discussion”. Lastly, section “Conclusions” presents the conclusions.

Dataset and the proposed method

Dataset and preprocessing

To evaluate the effectiveness of the proposed method, this section explains the three ship datasets used in the
experiment. These datasets are Dockship?®, SeaShips?!, and Infrared Offshore Ship Datasets?>.These datasets
provide valuable benchmarks for comparing and evaluating algorithms and are widely used in ship identification.
The sections that follow give a thorough overview of each dataset. Three datasets is divided into training, testing,
and validation sets in a 7:2:1 ratio.
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Dockship Dataset divides ships into seven types based on their appearance, structure, function, and size,
including Venetian kayaks, kayaks, buoys, sailboats, ferries, cruise ships, and origami boats. To prove practical
significance, origami boats are replaced with cargo ships. The updated dataset comprises 1296 images with a
resolution of 1280 x 850, though not exactly uniform.

To expand the scope of the experiment, two additional datasets, SeaShips and Infrared Offshore Ship
datasets, are also conducted. The SeaShips dataset comprises 7000 images with a resolution of 1920 x 1080.
All images are captured by surveillance cameras deployed in the coastal video surveillance system. Numerous
picture variants, such as various sizes, ship sections, lighting conditions, viewpoints, backdrops, and occlusions,
are included in the collection. Six categories, ore ships, general cargo ships, bulk cargo ships, container ships,
fishing boats, and passenger ships. The corresponding are 4900, 1400, and 700 images, respectively. The image
size was adjusted to 640 x 640 to match the input size required by the method. The experimental results were
analyzed and evaluated on the test set.

Different from the above two datasets, the infrared marine vessel dataset mainly comes from infrared sensors,
which can detect objects well while concealing themselves. However, the fewer texture features and lower contrast
of images make it more difficult to detect small targets. It contains 8402 image data in different scenarios. These
images are divided into seven types- cruise ships, bulk carriers, warships, sailboats, canoes, container ships, and
fishing boats. The image resolutions are 384 x 288, 640 x 512, and 1280 x 1024, respectively. There is a well-
balanced number of ships of various categories in the training, testing, and validation sets.

The proposed method

The uneven distribution of ships and the prevalence of small targets at sea present significant challenges for
detection tasks. Furthermore, complex and variable weather conditions and geographical features further
complicate the detection process. Consequently, targeted improvements have been implemented to enhance
both the accuracy and efficiency of detection. A GSConvns-based slim neck, an ESSE module, and a Wise-IoU
loss function are integrated into YOLOVS, which is termed GEW-YOLO.

Lightweight multi-ship detection network architecture
The overall architecture of the proposed GEW-YOLO is illustrated in Fig. 1. Which contains the input layer,
the feature extraction backbone, the feature fusion neck, and the regression classification head. GEW-YOLO
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Fig. 1. Detailed architecture of the proposed GEW-YOLO.
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distinguishes itself with a highly lightweight neck design, which makes it ideal for real-time applications like
ship inspection. At the input layer, data augmentation techniques are employed to enhance the diversity of the
input image data. These techniques include cropping, brightness correction, random rotation, and the addition
of Gaussian noise, which improve the model’s capability to detect ships under complex sea conditions. Cropping
ratio and brightness adjustment are often used procedures in the context of data augmentation. For infrared ship
datasets, random cropping and brightness tweaks work especially well since they accurately replicate changes in
shooting distance and illumination. To improve the model’s resilience to infrared photos, the brightness is set to
plus or minus 30%, and the cropping ratio is set to 0.9, maintaining 90% of the original image area. Furthermore,
ship target detection data is often supplemented with Gaussian noise, add or subtract 15° rotation, and flipping
either horizontally or vertically. These techniques enhance the diversity of ship samples and enhance model
generalization, making them particularly useful for the Dockship and Seaships visible light datasets.

The Resize technique is commonly used for processing image sizes. This method extracts and reorganizes
pixel information according to the target dimensions using methods like pixel clustering and interpolation,
going beyond basic cropping or padding. Consequently, the resized image is scaled to the desired size while
maintaining the majority of the original information. To satisfy model input requirements, the Dockship dataset,
for example, which has 1926 photos of size 1280 x 850, has been shrunk to 640 x 640. A “proportional scaling
+ padding” approach is used to avoid distortion. In particular, the image is scaled down by a factor of 0.5 to make
it 640 x 425 in size, using the long side as the scaling reference. Padding is placed above and below to reach the
desired height because it is less than 640. In order to guarantee conformity with the model’s input criteria, the
Infrared Offshore Ship and Seaships datasets also go through size normalization using the same method, finally
downsizing all photos to 640 x 640. After preprocessing, the image data is sent to the backbone network for
precise detection and additional ship feature extraction.

From the Fig. 1, the backbone network is composed of Conv modules, C2f (shortcut) modules, DySnakeConv?®
modules, and SPPF (Spatial Pyramid Pooling Fast) modules. As shown in Fig. 1a, ¢, these modules are specifically
designed to extract detailed ship information features from images. They also form the foundational framework
of the entire network, ensuring that the model can effectively capture key ship features. Lightweight convolution
methods like GSConvns(Group Shuffle Convolution with Neighborhood Sampling) and VoVGSCSPns(Vision
Optimized Group Shuffle Cross Stage Partial Network with Neighborhood Sampling) modules are selected for
the neck layer.

GSConvns is an improved convolutional module designed to enhance feature extraction efficiency and
improve the model’s adaptability to complex backgrounds. By incorporating group convolution, this module
significantly reduces computational complexity, while the channel shuffle mechanism facilitates cross-group
information interaction, thereby mitigating feature isolation caused by grouping. Furthermore, GSConvns
employs a neighborhood sampling strategy to effectively aggregate local contextual information, thereby
strengthening the model’s ability to perceive fine-grained features. This design is particularly suited for small
object detection tasks in complex environments, such as ship detection in maritime scenes as addressed in this
study.

VoVGSCSPns is a feature fusion module built upon GSConvns. It splits the input feature map into two
branches: one is processed by GSConvns for feature enhancement, while the other preserves the original
information. These branches are subsequently fused through concatenation followed by convolution operations.
This architecture not only alleviates the vanishing gradient problem in deep networks but also enhances
the diversity and robustness of feature representations via a multi-scale contextual sampling mechanism.
VoVGSCSPns significantly improves the model’s generalization capability in complex scenes while retaining
critical information of small objects, demonstrating strong performance in both visible and infrared image
fusion scenarios. By integrating GSConvns and VoVGSCSPns into the YOLOVS framework, the resulting model
achieves a synergistic effect that optimizes both feature extraction and fusion. This combination effectively
reduces the model’s parameter count and computational cost, striking an optimal balance between high accuracy
and lightweight design. Because of its effective design, the model can handle vast amounts of ship picture data
more quickly, satisfying the requirements of real-time detection.

Furthermore, the incorporation of an ESSE attention module successfully avoids intricate dimensionality
reduction and augmentation procedures. This results in lightweight features and improved efficiency. The ESSE
attention module improves maritime focus in the model and lessens background noise in ship detection tasks.
This allows the model to focus more on identifying and classifying ship targets.

Lastly, the loss function is refined in the detecting head by substituting the Wise-IoU loss function for
the CIoU loss function. Ship target recognition and the processing of low-quality samples have significantly
improved as a result of this modification. By successfully improving ship detection and classification accuracy,
the Wise-IoU loss function offers a more dependable and durable assurance for ship detection jobs.

Lightweight neck network module- GSConvns

GSConvns is designed to optimize ship detection and classification tasks. Meanwhile, it strikes a balance
between the accuracy and speed of the model. Firstly, it cleverly combines the advantages of ordinary
convolution and depthwise separable convolution. Although ordinary convolution has strong feature extraction
ability, its computational cost is high; And depthwise separable convolution significantly reduces the number of
parameters and computational complexity by decomposing the standard convolution into depth convolution
and point convolution. GSConvns utilizes this feature to reduce model size while maintaining feature extraction
capability. Secondly, the computational efficiency is further optimized by combining grouped convolution
and spatial convolution (SC). Grouping convolution divides the input channel into several groups and
performs convolution operations separately for each group, effectively reducing the number of parameters and
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(a) Ordinary Separable Convolution (b) Depthwise Separable Convolution (c) GSConvolution

Fig. 2. SC, DSC, and GSConvolution.

o —T— T T— W—— W W W W W S . — -~
/ , N\
{ C2/2 channels \
| |
C —>
Input _r o ¢ ] :
| DWConv Concat —» —>» Shuffle —|—> Output
CI channels | ¢
| J |C2 channels
| |
\ C2/2 ch 1 GSConv /
\ channels B J/

Fig. 3. GSConvns module.

computational complexity. And spatial convolution focuses on spatial feature extraction, combining the two to
make the model more efficient in the process of ship feature extraction.

The core difference between them and traditional depthwise separable convolutions is that although
traditional depthwise separable convolutions effectively reduce the number of parameters and computational
complexity by decomposing standard convolutions into depthwise convolutions and pointwise convolutions,
their information exchange between channels is limited, and they lack sufficient expression of multi-scale
features; GSConvns enhances cross channel information flow and local feature extraction capabilities while
maintaining lightweight by introducing grouping convolution, channel shuffling, and neighborhood sampling
mechanisms. VoVGSCSPns combines multi-path structure and Ghost convolution to achieve efficient fusion
and information preservation of multi-scale features through spatial pyramid pooling. The synergistic effect of
the two significantly reduces model parameters and computational overhead, while effectively improving the
richness of feature expression.

ESSE module

To capture detailed features for ship recognition and classification, GSConvns should be applied to the neck
layer. This prevents semantic information loss that may occur in the top layers. The visualization results of
Separable Convolution(SC), Depthwise Separable Convolution(DSC), and GSConvns are shown in Fig. 2. The
figure indicates that the feature maps of GSConvns and SC are more comparable than those of DSC and SC. This
indicates that the accuracy of the model is very close to that of ordinary convolution?”. The Slim-Neck employs
the GSConvns method to mitigate the adverse effects of DSC defects while fully utilizing its advantages. This
approach enhances target localization and classification capabilities in ship detection and classification.

As shown in Fig. 3, GSConvns implements DSC using DWConv after processing a downscaled version of a
SC. Following these two convolutions, the output is concatenated. Lastly, the information produced by regular
convolution is integrated into each segment of the information provided by DSC using a shuffle operation. The
proposed structure accelerates processing speed and improves model efficiency. Additionally, it enhances the
model’s ability to capture intricate ship details while maintaining detection accuracy.

The introduction of the attention mechanism can markedly enhance the model’s focus on ship features
in detection and classification tasks. Enhance the precision of categorization and detection throughout the
procedure. The ECA module (Efficient Channel Attention)? is a streamlined channel attention method designed
to improve the model’s capacity to capture essential semantic information by adaptively assessing the significance
of various channels and weighting the channel dimensions of feature maps. It solely pertains to interaction inside
the channel dimension and does not handle spatial information, hence limiting its efficacy on targets with dense
arrangements and significant scale variations. The ESSE module augments capabilities from both semantic and

Scientific Reports |

(2025) 15:38075 | https://doi.org/10.1038/s41598-025-21887-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

spatial dimensions, effectively integrating the two forms of information via the Feature Fusion Module (FFO).
The ESSE module possesses the semantic improvement capabilities of the ECA module while also markedly
enhancing the model’s awareness of spatial positioning, target boundaries, and detailed information.

Inthe ESSEmodule, 1 X 1semantic convolutionand3 x 3 spatial convolution operate concurrently in parallel
branches. The 1 x 1 convolution primarily facilitates information exchange and semantic augmentation within
the channel dimension. It possesses minimal computational cost and effectively integrates semantic information
across many channels, hence improving the model’s comprehension of high-level semantics, including ship
classifications and textures. The 3 X 3 convolution emphasizes the extraction of local spatial characteristics,
improving the model’s ability to discern target borders, forms, and spatial configurations by gathering contextual
information from adjacent areas. The ESSE module enhances the model’s semantic comprehension and spatial
feature extraction through labor division and collaboration, without substantially elevating computational
complexity. Figure 4 illustrates the network architecture and operational principle of the ESSE module. The
feature fusion process of the ESSE module is executed by the FFO submodule, which primarily integrates the
output features of 1 x 1 semantic convolution and 3 X 3 spatial convolution using residual connections and a
weighted fusion technique. During the fusion process, FFO incorporates a residual connection mechanism to
integrate the original input features with the fused features, thereby preventing information loss and improving
gradient flow. Ultimately, FFO generates a collection of refined feature maps that encompass both substantial
semantic information and accurate spatial details, yielding superior input for the detection head and enhancing
the model’s ability in detecting ship targets.

The ESSE module is easy to integrate into various CNN structures, avoiding the loss of feature information.
Firstly, through average pooling, the spatial dimension is compressed to obtain the global semantic feature
information. Secondly, a 1 — D convolution (as shown in Fig. 4, K=3) operation with the convolution kernel
size of k is carried out, and the ¢ activation function obtains the weight w of each channel. Finally, normalized
semantic weight of feature channel is multiplied with the corresponding elements of the original input feature
map to get the final output feature map X"’ This process can strengthen the feature semantic information of the
ship, suppress the background noise, and improve the ability of the model to recognize the ship.

Wise-IoU loss function
In maritime vessel detection, ship targets can display considerable scale variations resulting from disparities in
distance and viewpoint. A multitude of small boats are closely positioned, rendering them particularly vulnerable
to background noise interference. Wise-IoU dynamically modifies the loss weights to enhance the model’s focus
on small, challenging-to-detect targets and those that are tough to discover during training.The computational
complexity of Wise-IoU is analogous to that of conventional IoU loss, without imposing any extra processing
demands. This makes it more appropriate for the ship identification system discussed in this study.

Wise-IoU (WIoU)? is a loss function of Bounding Box Regression (BBR) in ship detection in this paper.
The gradient is dynamically adjusted based on the anchor’s mass. This helps the model focus more on ordinary-
quality anchors and reduces over-fitting to low-quality examples, ultimately improving performance. The WIoU
loss function uses an “outlier” instead of the traditional IoU index to enhance the anchor frame quality in ship
inspection.

The WIoU vl used in this article improves the generalization ability of the model in processing low-quality
ship images through its unique focusing mechanism. The diagram of WIoU is shown in Fig. 5.

In Fig. 5, W, and H, represent the minimum size of the closed box. The formula is as follows*.
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Fig. 4. Network structure of ESSE module.
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Fig. 5. Schematic diagram of WIoU.

where, Ljo,u represents Rw ou, which significantly reduces the quality of the anchor box, Rw.uv denotes a
significantly enlarged anchor box Ly,u. The superscript * indicates that to prevent hindering convergence speed,
Wy and H, are separated from the calculation graph.

The formula for WIoU is:

WIoU = IoU” x (1 + ae ?1°V) 3)

Among them, 7, o, and 3 are hyperparameters obtained through experimental tuning. In this article, -y is set to
2.0, av is set to 0.5, and 3 is set to 1.0.

The introduction of the Wise-IoU loss function brings a significant improvement to our proposed GEW-
YOLO model. This model incorporates a dynamic non-monotony focusing mechanism. It adjusts weights based
on target-prediction alignment, thereby prioritizing samples that are difficult to detect and classify. Furthermore,
the Wise-IoU loss function indirectly improves the classification ability of the model by optimizing the accuracy
of the boundary box and reducing classification errors.

Experiment results and discussion
In this section, the performance of the proposed GEW-YOLO model is evaluated through several experiments.

Experimental environment and parameter settings

All dataset samples are annotated by the open-source software Labellmg. The image name, target category, and
size and coordinates of the bounding rectangle are among the annotation labels that are generated by using
rectangular boxes to mark the targets. After being saved in XML format, all annotation data is translated from
PASCAL VOC format to YOLO format for model training.

The experimental environment is based on Python 3.9.19 and implemented using the PyTorch 2.3.1
framework on the Ubuntu 22.04.4 operating system. Use remote server NVIDIA GeForce RTX 3060 GPU (with
12 GB of memory) and CUDA12.2 and CUDNN 8.9.2 accelerated GPU for training and testing. In the image
preprocessing process, the height and width of the image are set to 640 x 640, and the batch size is 8. During
the training process, model stability was observed around 200 epochs. In order to save computing resources,
we adjusted the number of training periods for all models to 400. Use the stochastic gradient descent(SGD)
optimizer with a learning rate of 0.01, momentum of 0.937, and weight decay set to 0.0005. Apply embedded
data augmentation during the training phase. Data augmentation is turned off during the last 10 periods of the
training process. The remaining parameters are set to default values in TensorFlow.

Evaluation indicators
Precision, Recall, mAP50, and mAP0.5-0.95 are used as evaluation criteria for the performance of the detection
model. The specific definitions are as follows.

(1) P, represents Precision, which is the proportion of correctly predicted samples based on the expected results.
The formula is as follows?!.

. TP
Preczswn—m (4)
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where the results of positive cases are indicated by TP (True Positive) and FP (False Positive). The higher the
accuracy value, the more accurate the detection results obtained by the algorithm. This also means fewer cases
are incorrectly marked as positive during detection or classification, leading to more precise detection results.

(2) R, represents the recall rate, which is the proportion of correctly predicted positive class samples to all actual
positive class samples. The formula is as follows®2.

TP
Recall= m (5)

where FN is False Negative, the recall rate plays a crucial role in ensuring that the model can fully cover key
elements, especially in application scenarios where loss detection costs are high. To properly evaluate model
performance, recall rate is typically used in conjunction with other measures like accuracy.

(3) mAP represents Mean Average Precision. mAP is an indicator used to evaluate object detection perfor-
mance of the model that takes into account both the R and P of the model. The detection accuracy of the
model increases with the size of the mAP value. The calculation formulas for AP and mAP are as follows**.

k=n—1
AP = Z [Recalls(k) — Recalls(k + 1)] x Precisions(k) (6)
k=0
1 k=n
AP =15 ap

where AP is the Average Precision, n is the total amount of data, and k is the index of each sample point.
mAP@0.5 indicates the average accuracy when the Intersection over Union (IoU) threshold is 0.5. To be more
precise, acquire mAP@0.5 by averaging the AP of all categories after calculating the AP of all types for each
category. With a step size of 0.05, mAP@0.5-0.95 is the average mAP at various IoU thresholds (varying from

0.5 to 0.95). mAP@0.5 and mAP@0.5-0.95 is an essential indicator for measuring the performance of object
detection models.

(4) F1_Curve. The FI score refers to the harmonic mean of accuracy and recall, aiming to consider both accu-
racy and recall simultaneously. With a maximum value of 1 and a minimum value of 0, the better the model,
the higher its value. The calculation formula is as follows>.

Precision x Recall
F1=2 8
x Precision + Recall ®

The F1 Confidence Curve is a visual graph that shows the continuous changes in F1 score as Confidence
gradually increases. The F1 Confidence curves for the Dockship, Seaships, and Infrared Offshore Ship datasets
are represented by (a), (b), and (c) accordingly in Fig. 6.

(5) P_Curve. P_Curve is a chart used to evaluate the performance of the model, which shows the relationship
between the accuracy and confidence of the model. As Fig. 7 illustrates, detection accuracy rises in tandem
with the confidence level.

F1-Confidence Curve F1-Confidence Curve F1-Confidence Curve

0.0 02 04 06 o8 10 “00 02 04 06 08 10 “00 02 04 0.6
Confidence Confidence Confidence

(a) Dockship (b) Seaships (¢) Infrared Offshore Ship dataset

o8 10

Fig. 6. F1-Confidence Curve. The curve in the figure shows the changes in F1 scores for each type of vessel
under different confidence thresholds.
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Fig. 7. P_Curve. The figure shows the accuracy of model predictions for different ships at different confidence

thresholds.
Recall-Confidence Curve Recall-Confidence Curve Recall-Confidence Curve
" - .» _
o ~—— gondola B —— ~ ore carrier —— canoe
— i emera oz o it
“ —  Makeargosarie toer
08 \ — ;;:::on 08 — cr::‘.;‘:::c'; ;I‘lip —_ :l:l.l;::;ricr
\ eruise passenger ship fishing boat
\ g = all classes 0.99 at 0.000 container ship
\ e all classes 0.90 at 0.000 e alll classes 0.96 at 0.000
06 iy \ 06
= e \ =
g ~ \ 3
g \ F
& ( &
04 \\‘ \ 04
, V— 'l\
X {
\ \
02 N\ 02
N M\
) ‘J\\\\\‘
0.0 I 0.0 y
00 02 04 06 o8 10 0.0 0.2 04 0.6 0.0 0.2 04 0.6 08 1.0
Confidence Confidence Confidence
(a) Dockship (b) Seaships (c) Infrared Offshore Ship dataset
Fig. 8. R_Curve. The figure shows the recall rates predicted by the model for different ships at different
confidence thresholds.
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Fig. 9. PR_Curve. The curve in the figure represents the performance of different types of ships in PR_Curve,
reflecting the comprehensive detection ability of the model for various types of ships.

(6) R-Curve. The R-Curve demonstrates the relationship between the recall and confidence of the model. In
R_curve, when the confidence threshold is 0, the recall rate does not necessarily have to be 1. As shown in
Fig. 8, the height of the curve directly reflects the recall rate of the model at different confidence thresholds.
A higher curve indicates that the model has a higher recall rate.

(7) PR_Curve. PR_Curve describes the link between accuracy and recall at different classification thresh-
olds. The model can sustain high accuracy and high recall while the PR_Curve is in a high position. The
curve will move toward low precision values or low recall rates when the model shows tendencies toward
high-precision values or high recall rates. The PR_Curves of the three datasets are shown in Fig. 9.

(8) IoU. IoU measures the degree of overlap between predicted bounding boxes and real bounding boxes. Its
value ranges from 0 to 1, with the closer it is to 1 indicating a higher degree of agreement between the pre-
dicted results and the actual situation. In addition, IoU can also be used as part of the loss function to help
the model better learn bounding box predictions during the training process.
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Model GSConvns | ESSE | Wise-IoU | Precision(%) | Recall(%) | mAP@0.5(%)
YOLOvVS n n n 80 70.9 78.3
YOLOv8+GSConvns |y n n 86 60 76.6
YOLOvVS8+ESSE n y n 79.4 67.4 77.8
YOLOv8+Wise-IoU | n n y 80.6 62 71.1
y/n GSConvns n y y 78.5 69.6 79.2
y/n ESSE y n y 75.4 70.6 74.1
y/n Wise-IoU y y n 79.4 67.4 75.6
GEW-YOLO(ours) |y y y 79.4 76.9 82.1

Table 1. Different ablation experimental results of GEW-YOLO model on Dockship dataset. y/n represents
none. Significant values are in [bold].

Model GSConvns | ESSE | Wise-IoU | Precision(%) | Recall(%) | mAP@0.5(%)
YOLOvS n n n 94.5 95.5 97.1
YOLOvV8+GSConvns |y n n 95.6 93.8 97.6
YOLOV8+ESSE n y n 97.4 96.4 98.3
YOLOv8+Wise-IoU | n n y 95.9 94 98.4
y/n GSConvns n y y 97.4 97 98.9
y/n ESSE y n y 95.1 95 98.1
y/n Wise-IoU y y n 96.7 96.1 98.7
GEW-YOLO(ours) |y y y 97.6 98.1 99.1

Table 2. Different ablation experimental results of GEW-YOLO model on Seaships dataset. y/n represents
none. Significant values are in [bold].

Model GSConvns | ESSE | Wise-IoU | Precision(%) | Recall(%) | mAP@0.5(%)
YOLOvS n n n 87.2 83.5 89.4
YOLOv8+GSConvns |y n n 90.7 85.7 90.5
YOLOV8+ESSE n y n 91.8 84.2 90.2
YOLOv8+Wise-IoU | n n y 89.6 84.6 89.4
y/n GSConvns n y y 90.4 86.6 91.1
y/n ESSE y n y 89.3 86.4 91.2
y/n Wise-IoU y y n 90.6 83.0 91.0
GEW-YOLO(ours) |y y y 90.7 86.6 91.7

Table 3. Different ablation experimental results of GEW-YOLO model on Infrared Offshore Ship dataset. y/n
represents none. Significant values are in [bold].

Ablation study
Ablation studies are presented to evaluate the contributions of each module in the proposed GEW-YOLO
model. The influence of different techniques on the detection performance of each method is studied. In this
paper, the GEW-YOLO model and the YOLOV8-based comparison model are implemented to ensure that the
hyperparameters are exactly the same in the training process. In addition, the impact of various improvement
modules on the Dockship dataset, Seaships dataset, and Infrared Offshore Ship datasets are evaluated respectively.

YOLOvV8+GSConvns means that the neck structure of YOLOVS is replaced by the GSConvns module.
YOLOVS+ESSE indicates that an attention mechanism is added. YOLOv8+Wise-IoU refers that the GEW-YOLO
model replaces the original YOLOVS8 neck structure. y/n ESSE means that the GEW-YOLO model is without an
ESSE attention module added. y/n Wise-IoU indicates that the GEW-YOLO model retains the original loss
function of YOLOVS.

Tables 1, 2 and 3 show the ablation experimental results of GEW-YOLO models on the Dockship, Seaships,
and Infrared Offshore Ship datasets. The comparing methods refer to certain modules while omitting others.

The experimental results on the Dockship dataset have improved with the addition of the GSConvns module,
ESSE, and Wise-IoU to the YOLOvV8 network. In particular, the GSConvns module reduced Recall by 10%, while
it improved Precision by around 6%. Wise-IoU increased the Precision of the model by 0.6%, demonstrating its
efficacy across different IoU thresholds. With a minor 0.7% decrease in Recall, the GSConvns module increased
ship recognition Precision by 1.1% and mAP by 0.5% for the Seaships dataset. Each metric increased by about
1% as a result of the ESSE module. The introduction of the ESSE module ensures that the detailed features of the
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Fig. 12. Detection performance of GEW-YOLO on Infrared Offshore Ship dataset.

ship are taken into account, thereby improving the detection efficiency of the model. According to Table 3, Recall
and Precision increased by 2.5% and 3.5%, respectively, and mAP@0.5 increased by 2.2% when the integrated
GSConvns module was compared to the baseline YOLOv8 model. It is worth noting that when the baseline model
introduces the ESSE module, the accuracy and mAP@0.5 are improved by 4.6% and 0.8%, respectively. When
introduced separately, the Wise-IoU did not affect mAP@0.5, however, other metrics also showed modest gains.
The improvement in model accuracy but the decrease in recall may be due to two reasons. Firstly, GSConvns and
other modules enhance the ability of model to distinguish positive samples, while also increasing its sensitivity
to negative samples, resulting in some positive samples being misjudged as negative samples; Secondly, these
modules increase the complexity of the model, affecting its generalization ability in small targets or complex
scenarios. Future research will delve deeper into this trade-off relationship.

The suggested GEW-YOLO model performs better overall in terms of Precision, Recall, mAP@0.5. Notably,
in the Dockship dataset, mAP@0.5 rose from 78.3% to 82.1%. The four associated indicators for the Seaships
and another dataset (Table 3) demonstrated increases of 3.1%, 2.6%, 2%, 6.3% and 3.5%, 3.1%, 2.3%, 4.2%,
respectively. It demonstrates the capacity of the model to improve average detection precision and its efficacy in
ship identification tasks, even in intricate marine environments.

Experimental discussion

The heatmaps of GEW-YOLO for object detection on three different datasets—Dockship, Seaships, and Infrared
Offshore Ship dataset are shown in Figs. 10, 11 and 12. The heat map results also indicate the ship type and
confidence, and the detection degree of the model can be clearly seen.

Comparison with improved YOLO based detection methods
To highlight the advantages of the proposed GEW-YOLO model, other detection techniques based on YOLOv8
enhancement and ship field detection techniques are compared in this paper.
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Model Precision(%) | Recall(%) | mAP@0.5(%) | mAP@0.5:0.95(%) | Params(M)
YOLOV5 78.2 73.1 78.4 50.2 1.9
YOLOv6 78.7 74.7 79.5 51.4 43
YOLOv7 80.2 74.2 79.2 52.1 3.2
YOLOV9 80.6 69.5 76.4 49.2 3.3
YOLOV10 80.6 75.6 80.8 52.0 2.7
YOLOv11 79.3 76.7 81.2 53.5 3.3
Faster-RCNN'!! 80.1 734 79.8 51.6 100
YOLO-MS* 81.6 73.0 81.0 51.9 2.5
YOLO-NL3 74.7 71.7 72.5 46.7 45
YOLO-PLY 73.2 74.1 72.6 454 3.5
Gold-YOLO* 75.8 70.2 74.5 46.8 4.1
FFCA-YOLO® 73.6 712 73.9 474 46
SOD-YOLO* 75.7 74.4 74.5 46.9 4.5
GEW-YOLO(ours) |79.4 76.9 82.1 61.1 1.2

Table 4. Experimental results of YOLO based detection method on Dockship dataset. Significant values are in
[bold].

Model Precision(%) | Recall(%) | mAP@0.5(%) | mAP@0.5:0.95(%) | Params(M)
YOLOvV5 93.6 93.5 95.2 78 19
YOLOV6 92.5 91.8 96.6 69.6 43
YOLOv7 95.4 93.7 93.7 79.8 3.2
YOLOV9 95.7 94 96.4 76.5 3.3
YOLOv10 924 94.9 94.7 80.8 2.7
YOLOv11 96.1 98.7 95.3 76.5 3.3
Faster-RCNN'!! 95.5 96.8 94.8 77.6 100
YOLO-MS* 98.2 93.1 94.1 78.4 2.5
YOLO-NL* 90.3 89.4 91.6 64.2 45
YOLO-PLY 91.5 90.2 923 64.6 3.5
Gold-YOLO?® 93.4 96.8 94.6 67.9 4.1
FFCA-YOLO* 94.7 91.4 95.8 67.4 46
SOD-YOLO* 95.3 95.8 96.3 71.6 45
YOLO-HPSD*! - - 98.8 - -
GEW-YOLO(ours) | 97.6 98.1 99.1 86.3 1.2

Table 5. Experimental results of YOLO based detection method on Seaships dataset. Significant values are in
[bold].

We experimented using the publicly accessible Dockship, Seaships, and Infrared Offshore Ship datasets to
validate our suggested model. Numerous YOLO-based models, including YOLOV5 to YOLOv11, have been
created. In addition, the detection accuracy of the two-stage algorithm Faster-RCNN was also considered. These
are noteworthy contributions. Chen et al.*> presented an effective target detector, YOLO-MS, exhibiting robust
performance on the COCO dataset. Zhou® advanced YOLO-NL by augmenting technologies like CSPNet and
PANet, leading to enhanced accuracy in multi-target detection. YOLO-PL? is a lightweight helmet detection
technique that uses an improved PAN (E-PAN) structure with a specially tailored YOLO-P algorithm to increase
accuracy. Wang et al.*® presented the Gather-and-Distribute mechanism, tailored to tackle feature fusion issues
in information fusion, and proposed the Gold-YOLO method. Zhang et al.** developed three novel modules to
improve feature representation and background suppression for the detection of small targets in remote sensing.
This work resulted in the creation of a lightweight method, FFCA-YOLO. Based on YOLOv8, SOD-YOLO by
Li et al.*0 creates a new neck architecture, BSSI-FPN, to handle spatial information sparsity and incorporates
RFCBAM modules to enhance feature extraction.By adding the C2F_iAFF module, MLCA mechanism, and
BiFPN structure optimization feature fusion and information integration mAP@0.5, Zhu et al.*! introduced a
high-precision ship target identification technique called YOLO-HPSD, which increases detection accuracy to
98.86%. The accuracy of the approach suggested in this article is higher than that of the YOLO-HPSD algorithm.

The experimental results of the detection on three datasets are shown in Tables 4, 5 and 6. It can be observed
that GEW-YOLO still performs well in ship detection in complex water scenarios. These comparisons and
experimental results collectively validate the significant advantages of the GEW-YOLO model in the field of ship
detection.
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Model Precision(%) | Recall(%) | mAP@0.5(%) | mAP@0.5:0.95(%) | Params(M)
YOLOvV5 85.7 90.4 90.3 61.2 1.9
YOLOv6 90.7 84.1 90.5 63.4 4.3
YOLOvV7 87.3 84.4 90.2 61.3 32
YOLOvV9 90.1 85.2 89.9 62.1 33
YOLOv10 90.5 86.3 91.0 64.6 2.7
YOLOv11 87.9 87.8 91.6 62.5 33
Faster-RCNN!! 86.4 83.5 89.2 60.6 100
YOLO-MS* 91.3 82.9 90.4 63.9 2.5
YOLO-NL3 87.6 85.4 90.3 62.8 4.5
YOLO-PLY 89.3 84.4 89.7 62.1 3.5
Gold-YOLO* 86.2 82.5 88.4 60.2 4.1
FFCA-YOLO® 90.8 84.0 90.0 63.9 4.6
SOD-YOLO* 90.6 85.5 90.1 62.2 4.5
GEW-YOLO(ours) | 90.7 86.6 91.7 65.4 1.2

Table 6. Experimental results of YOLO based detection method on Infrared Offshore Ship dataset. Significant
values are in [bold].

Model Precision(%) | Recall(%) | mAP@0.5(%) | mAP@0.5:0.95(%) | Params(M)
S3 Det® 97.9 97.3 99 84 23
FE-YOLO® - - 97.6 72.6 2.1
YOLO-Ships** 89.2 90.2 93.5

YOLO-MBS* 97.2 96.9 98.8

GEW-YOLO(ours) | 97.6 98.1 99.1 86.3 1.2

Table 7. Experimental results of YOLO based detection method on Infrared Offshore Ship dataset. Significant
values are in [bold].

This study compared the performance of various enhanced YOLO models in object recognition tasks. YOLO-
LITE achieved the best accuracy in accuracy and YOLOvV11 performs well in Recall. However, mAP@0.5 is far
lower than the model proposed in this paper. Other models are slightly inferior on ship detection data sets.
Overall, GEW-YOLO achieves the best balance between detection accuracy and speed, outperforming other
YOLO-based methods.

Comparison with detection methods in specific ship fields

Due to the limited number of references available for the Dockship dataset and Infrared Offshore Ship datasets,
we chose to compare some methods from specific ship domains on the Seaships dataset. Li et al.*? trained the
5% Det model and improved the detection performance of small ships through technological improvements.
Experimental results have shown better recall and accuracy than the original model. Cai et al.** proposed the
FE-YOLO model. By introducing channel attention and Ghostconv to improve the network structure, the
detection accuracy has been improved. Zhang et al.** proposed a lightweight and effective method for YOLO-
Ships. By improving the Ghost module, designing a ship feature enhancement module, and C3REGhost module,
the feature extraction and detection capabilities have been enhanced. Lu et al.** proposed the YOLO-MBS
algorithm. By using MobileNetv3 as the backbone network, introducing the E-IOU loss function, adding the
SimAM attention mechanism, and employing the BiFPN feature pyramid network, the model parameters were
significantly reduced. Additionally, both computational speed and detection accuracy were improved.

As shown in Table 7, the proposed method performs well in terms of Precision, Recall, mAP@0.5, and
mAP@0.5:0.95. Compared with the S®Det model, although the accuracy decreased by 0.3%, the Recall,
mAP@0.5 and mAP@0.5:0.95 increased by 0.8%, 0.1% and 2.3%, respectively. For key index mAP@0.5, the
improved modules of YOLO-Ships proposed by Zhang et al. have effectively reduced the model’s weight.
However, according to the experimental results, the detection performance still requires significant improvement.
In summary, our proposed model strikes an effective balance between lightweight design and high-precision
performance in ship target detection tasks.

Comparison of test results

Figure 13 illustrates the detection of the identical image from the Dockship dataset with the YOLOv8 and GEW-
YOLO models to validate the influence of different models on detection results. GEW-YOLO clearly surpasses
YOLOVS in detection performance, achieving a 3.8% higher mAP (82.1% vs 78.3%) and effectively recognizing
images with overlapping labels or objects, with a 6% improvement in recall rate for overlapping targets. Figure
14 illustrates that images were randomly selected from the Seaships test dataset for further analysis, identified
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Fig. 14. Comparison results of seaships dataset experiments.

utilizing the YOLOv8 and GEW-YOLO networks. The three chosen photos, which depict sparse things, dense
objects, and small, indistinct target objects, effectively illustrate the detecting capabilities. Additionally, images
from the Infrared Offshore Ship dataset were randomly selected for evaluation using the YOLOv8 and GEW-
YOLO networks; the results are presented in Fig. 15.GEW-YOLO demonstrates superior performance with an
average detection confidence score of 0.87, compared to YOLOvV8’s 0.79, representing a 10.1% improvement in
low-contrast conditions.
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Fig. 15. Comparison results of infrared offshore ship dataset experiments.

The test results clearly indicate that GEW-YOLO outperforms YOLOVS in object detection. GEW-YOLO has
enhanced its detection precision and ability to identify densely packed small objects by the integration of the
GSConvns module, ESSE module, and a revised loss function.

Conclusions

In order to meet the demand for a lightweight, real-time, and accurate multi-target detection system for ships,
this study proposes a state-of-the-art method for detecting and classifying ship images using the improved
YOLOVS algorithm. Recognizing the limitations of existing algorithms in feature learning and their increased
complexity, YOLOvV8n is selected as the baseline model and enhanced with ship feature texture information
using the ESSE module. The GSConvns module is also integrated into the neck network, which significantly
enhances the multi-scale feature fusion while maintaining the lightweight architecture of the model. Finally,
the Wise-IoU loss function is applied in the detection head, which exceeds the traditional CIoU and SIoU
methods and helps the model achieve higher accuracy. Experimental results show that the improved algorithm
has average detection accuracies of 82.1%, 99.1%, and 91.7% on the Dockship, SeaShips, and Infrared Offshore
Ship datasets, respectively.

Compared to YOLOv8 and YOLOv11, the improved YOLOVS8 outperforms these models in terms of mAP
metrics, especially mAP 0.5:0.95, and the number of model parameters is smaller. In addition, the optimized
architecture of the improved YOLOV8 ensures faster inference compared to YOLOvI1 while reducing
computational complexity. The ablation experimental analysis further validates the model’s ability to focus on
the ship’s target area under complex backgrounds, small targets, and different orientations, demonstrating its
robustness in accurately detecting and localizing ships.

This study proposes a more effective method for ship target detection and classification; however, several
limitations remain. The improved module exhibits reduced accuracy when processing images captured under
adverse weather conditions or with low visibility. Additionally, the proposed model’s computational complexity
increases substantially compared to baseline methods, potentially limiting its deployment in real-time systems
with constrained hardware resources. The algorithm also demonstrates diminished performance when
detecting small-scale ship targets or vessels with high aspect ratios, indicating challenges in feature extraction
for such objects. Furthermore, the scope of this study was confined to a limited set of ship types, as evidenced
by the experimental validation. Future research should therefore incorporate a more comprehensive dataset
encompassing a broader spectrum of ship categories and diverse environmental conditions to enhance the
model’s generalization capabilities.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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