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Ship target tracking and detection are essential procedures in the shipping industry that guarantee 
ship traffic and marine safety. However, issues including complicated background interference, 
multi-scale object recognition, and inadequate training for small sample recognition are common 
with classical detection techniques. To address these challenges, this study proposes an enhanced 
ship multi-target detection model utilizing a modified YOLOv8 algorithm. In addition to integrating 
the ESSE module and GSConvns technology into the YOLOv8 backbone, the YOLOv8n model acts 
as the baseline and integrates Wise-IoU technology. This improvement greatly increased multi-scale 
feature extraction’s efficacy while maintaining the fewest possible parameters. With this change, 
lightweight fusion is accomplished, and the model’s capacity to extract semantic characteristics from 
ship photos is enhanced, particularly when it comes to identifying targets against intricate backdrops. 
According to testing results on the Dockship, Seaships, and Infrared Offshore Ship datasets, the 
enhanced algorithm’s average detection accuracy is 82.1%, 99.1%, and 91.7%, respectively. This is a 
considerable improvement over the baseline model. Furthermore, the model’s ability to improve the 
features, lightweighting, and detecting capabilities of different ship kinds has been validated by IoU 
computation and ablation experimental analysis. These results highlight how the suggested approach 
could improve ship target detection’s automation, dependability, and quality.
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With the development of the global marine economy, both the importance of ships as the leading carriers and the 
demand for ship safety and monitoring have attracted increasing attention1. Although it has made remarkable 
achievements in ship inspection technology, there are still many challenges in practical application2. The 
complex background environment of the coastal area, where ships are often mixed with disturbing objects such 
as cargo, cranes, and buildings, makes it difficult to identify targets3. Additionally, in the far sea area, although 
there are fewer interferences, the size of the ship target is relatively smaller than the background environment4. 
It is affected by the environment, such as light, and it is also challenging to identify.

Traditional ship detection and classification methods predominantly rely on manual visual observation or basic 
image processing techniques.However, these approaches suffer from notable drawbacks, including pronounced 
subjectivity, limited efficiency, and suboptimal accuracy. Li et al.5 highlighted edge contours to improve image 
detection by Canny operator optimization. An enhanced adaptive Canny method was presented by Liu et al.6 for 
ship infrared image edge detection. Cui et al.7 discovered that threshold segmentation techniques were effective 
and simple, while they are not resilient and need to be adjusted for complex and dynamic situations. Klimkowska 
et al.8 studied five color Spaces and each channel in the new image, using image segmentation to detect the 
target object, and experimentally demonstrated the effectiveness of this method. However, it relies more on 
color information. The above detection methods are sensitive to noise and may be significantly affected by light 
and the environment. Zhou et al.9 tried to detect better multi-scale ship targets in SAR images, which improved 
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the feature extraction capability of the model in remote sensing datasets. However, the occlusions and complex 
background RGB images need to be improved. The template matching method was effectively applied to find 
fractures on ship hulls and bilge keels by Khumaidi et al.10. However it requires a large number of templates due 
to its sensitivity to size, rotation, and deformation. From above, traditional methods are generally sensitive to 
environmental changes and have limited accuracy.

With the further development of deep learning, the Two-Stage algorithm is continuously optimized to adapt 
to different scenarios. Zhang et al.11 proposed a target detection framework, Faster-RCNN, which provides 
a very effective method for ship detection in high-resolution remote sensing images. Guo et al.12 proposed a 
rotating Libra R-CNN method. As a remote sensing data set, the DOTA data set was significantly different 
from the data set required by our experiment in terms of data characteristics and processing methods. A ship 
recognition and segmentation approach based on an enhanced Mask R-CNN model was proposed by Nie et 
al.13, who focused on ship detection in satellite remote sensing images. Two object-oriented ship detectors based 
on Faster R-CNN were introduced by Loran et al.14 in response to the restricted visibility of maritime radar.
Wolrige et al.15 proposed the development of Computer Video Analysis (CVA) technology, which uses a new 
algorithm to track the water surface near floating structures, successfully improving the accuracy and robustness 
of wave interaction measurements, and proving in experiments that it can effectively evaluate the response under 
different wave conditions. Two-stage detection algorithms, despite their accuracy advantages, face limitations 
including slower detection speed due to candidate region generation, high computational resource demands 
hindering deployment on resource-constrained devices, poor performance with small targets like ships, and 
insufficient robustness in complex backgrounds such as sea surfaces, resulting in false or missed detections.

With the advancement of technology, more advanced methods are explored to overcome the limitations 
in ship detection and classification. An improved ImYOLOv3 was presented by Chen et al.16 to address the 
difficulties associated with ship detection in computer vision. Ye et al.17 proposed the EA-YOLOv4 algorithm, 
which incorporated a convolution block attention module (CBAM) into YOLOv4 to enhance feature perception. 
Additionally, it adopts an improved effective Joint Crossing (EIoU) loss function to optimize ship detection 
of different sizes. Yang et al.18 developed a more lightweight network architecture, EL-YOLO, which achieved 
significant advances in detection accuracy and lightweight in different maritime scenarios. Wang et al.19 
proposed a new ALF-YOLO architecture integrating AFPN, LSK and the fourth detection head, focusing on 
the key features of the ship and eliminating the interference of the complex environment. In addition, Cheng et 
al.20 proposed a lightweight model, SGST-YOLOv8, for pedestrian and vehicle detection. Chen et al.21 proposed 
CD-YOLO, a multi-scale ship detection model in complex scenes based on YOLOv7, aiming at the problems of 
missed detection and misidentification in synthetic aperture radar (SAR) images. SED-YOLO is an enhanced 
remote sensing image small target identification network developed by Li et al.22, founded on YOLOv5s. They 
implement an efficient multi-scale attention (EMA) mechanism at the conclusion of the network to facilitate 
multi-scale feature learning.

Despite advancements in YOLO-based enhancement techniques for ship target recognition in recent years, 
EL-YOLO exhibits constrained feature extraction skills and inadequate robustness against small targets and 
intricate backdrops. ALF-YOLO exhibits significant computational demands and restricted generalization 
capabilities. SGST-YOLOv8 is tailored for pedestrians and vehicles, yet demonstrates inadequate adaptability for 
maritime applications and lacks a multi-scale enhancement mechanism. CD-YOLO is specifically engineered 
for SAR images, but shows subpar performance with optical images and possesses high model complexity. 
SED-YOLO’s feature fusion suffers from low efficiency and presents challenges in achieving a balance between 
lightweight design and accuracy. These methods remain inadequate for practical application needs including 
feature extraction, small object recognition, background interference suppression, model optimization, and real-
time performance balance. According to relevant research, the average detection accuracy of ship targets in 
complex sea conditions is only 78.3%, far below the ideal level. In addition, when the proportion of ship targets 
in the image is less than 0.5%, the missed detection rate is as high as 42.3%.

Therefore, an improved YOLOv8 ship detection model, GEW-YOLO (GSConvns, Efficient Ship Semantic 
Enhancement (ESSE) module, Wise-IoU), is proposed in this paper, which integrates high efficiency and 
lightweight. Firstly, based on YOLOv8, Wise-IoU loss function, lightweight GSConvns module and ESSE 
module are used to improve the model, which realizes high-precision detection in complex environments. To 
verify the validity of the model, three different scenario datasets–Dockship, SeaShips, and Infrared Offshore 
Ship datasets, are expanded and experimented with. The results show the significant advantages of the model 
in complex environments and in achieving efficient lightweight. Finally, the proposed algorithm is further 
analyzed by comparing different improved algorithms through ablation study. The experimental results show 
that the proposed algorithm has high detection accuracy for Marine ship image detection, and the calculation 
parameters and time complexity of the model are greatly reduced.

The article is organized as follows. Dataset and the proposed method are covered in section “Dataset and 
the proposed method”. Experiment results and discussion are presented in section “Experiment results and 
discussion”. Lastly, section “Conclusions” presents the conclusions.

Dataset and the proposed method
Dataset and preprocessing
To evaluate the effectiveness of the proposed method, this section explains the three ship datasets used in the 
experiment. These datasets are Dockship23, SeaShips24, and Infrared Offshore Ship Datasets25.These datasets 
provide valuable benchmarks for comparing and evaluating algorithms and are widely used in ship identification. 
The sections that follow give a thorough overview of each dataset. Three datasets is divided into training, testing, 
and validation sets in a 7:2:1 ratio.
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Dockship Dataset divides ships into seven types based on their appearance, structure, function, and size, 
including Venetian kayaks, kayaks, buoys, sailboats, ferries, cruise ships, and origami boats. To prove practical 
significance, origami boats are replaced with cargo ships. The updated dataset comprises 1296 images with a 
resolution of 1280 × 850, though not exactly uniform.

To expand the scope of the experiment, two additional datasets, SeaShips and Infrared Offshore Ship 
datasets, are also conducted. The SeaShips dataset comprises 7000 images with a resolution of 1920 × 1080. 
All images are captured by surveillance cameras deployed in the coastal video surveillance system. Numerous 
picture variants, such as various sizes, ship sections, lighting conditions, viewpoints, backdrops, and occlusions, 
are included in the collection. Six categories, ore ships, general cargo ships, bulk cargo ships, container ships, 
fishing boats, and passenger ships. The corresponding are 4900, 1400, and 700 images, respectively. The image 
size was adjusted to 640 × 640 to match the input size required by the method. The experimental results were 
analyzed and evaluated on the test set.

Different from the above two datasets, the infrared marine vessel dataset mainly comes from infrared sensors, 
which can detect objects well while concealing themselves. However, the fewer texture features and lower contrast 
of images make it more difficult to detect small targets. It contains 8402 image data in different scenarios. These 
images are divided into seven types– cruise ships, bulk carriers, warships, sailboats, canoes, container ships, and 
fishing boats. The image resolutions are 384 × 288, 640 × 512, and 1280 × 1024, respectively. There is a well-
balanced number of ships of various categories in the training, testing, and validation sets.

The proposed method
The uneven distribution of ships and the prevalence of small targets at sea present significant challenges for 
detection tasks. Furthermore, complex and variable weather conditions and geographical features further 
complicate the detection process. Consequently, targeted improvements have been implemented to enhance 
both the accuracy and efficiency of detection. A GSConvns-based slim neck, an ESSE module, and a Wise-IoU 
loss function are integrated into YOLOv8, which is termed GEW-YOLO.

Lightweight multi-ship detection network architecture
The overall architecture of the proposed GEW-YOLO is illustrated in Fig. 1. Which contains the input layer, 
the feature extraction backbone, the feature fusion neck, and the regression classification head. GEW-YOLO 

Fig. 1.  Detailed architecture of the proposed GEW-YOLO.
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distinguishes itself with a highly lightweight neck design, which makes it ideal for real-time applications like 
ship inspection. At the input layer, data augmentation techniques are employed to enhance the diversity of the 
input image data. These techniques include cropping, brightness correction, random rotation, and the addition 
of Gaussian noise, which improve the model’s capability to detect ships under complex sea conditions. Cropping 
ratio and brightness adjustment are often used procedures in the context of data augmentation. For infrared ship 
datasets, random cropping and brightness tweaks work especially well since they accurately replicate changes in 
shooting distance and illumination. To improve the model’s resilience to infrared photos, the brightness is set to 
plus or minus 30%, and the cropping ratio is set to 0.9, maintaining 90% of the original image area. Furthermore, 
ship target detection data is often supplemented with Gaussian noise, add or subtract 15◦ rotation, and flipping 
either horizontally or vertically. These techniques enhance the diversity of ship samples and enhance model 
generalization, making them particularly useful for the Dockship and Seaships visible light datasets.

The Resize technique is commonly used for processing image sizes. This method extracts and reorganizes 
pixel information according to the target dimensions using methods like pixel clustering and interpolation, 
going beyond basic cropping or padding. Consequently, the resized image is scaled to the desired size while 
maintaining the majority of the original information. To satisfy model input requirements, the Dockship dataset, 
for example, which has 1926 photos of size 1280 × 850, has been shrunk to 640 × 640. A “proportional scaling 
+ padding” approach is used to avoid distortion. In particular, the image is scaled down by a factor of 0.5 to make 
it 640 × 425 in size, using the long side as the scaling reference. Padding is placed above and below to reach the 
desired height because it is less than 640. In order to guarantee conformity with the model’s input criteria, the 
Infrared Offshore Ship and Seaships datasets also go through size normalization using the same method, finally 
downsizing all photos to 640 × 640. After preprocessing, the image data is sent to the backbone network for 
precise detection and additional ship feature extraction.

From the Fig. 1, the backbone network is composed of Conv modules, C2f (shortcut) modules, DySnakeConv26 
modules, and SPPF (Spatial Pyramid Pooling Fast) modules. As shown in Fig. 1a, c, these modules are specifically 
designed to extract detailed ship information features from images. They also form the foundational framework 
of the entire network, ensuring that the model can effectively capture key ship features. Lightweight convolution 
methods like GSConvns(Group Shuffle Convolution with Neighborhood Sampling) and VoVGSCSPns(Vision 
Optimized Group Shuffle Cross Stage Partial Network with Neighborhood Sampling) modules are selected for 
the neck layer.

GSConvns is an improved convolutional module designed to enhance feature extraction efficiency and 
improve the model’s adaptability to complex backgrounds. By incorporating group convolution, this module 
significantly reduces computational complexity, while the channel shuffle mechanism facilitates cross-group 
information interaction, thereby mitigating feature isolation caused by grouping. Furthermore, GSConvns 
employs a neighborhood sampling strategy to effectively aggregate local contextual information, thereby 
strengthening the model’s ability to perceive fine-grained features. This design is particularly suited for small 
object detection tasks in complex environments, such as ship detection in maritime scenes as addressed in this 
study.

VoVGSCSPns is a feature fusion module built upon GSConvns. It splits the input feature map into two 
branches: one is processed by GSConvns for feature enhancement, while the other preserves the original 
information. These branches are subsequently fused through concatenation followed by convolution operations. 
This architecture not only alleviates the vanishing gradient problem in deep networks but also enhances 
the diversity and robustness of feature representations via a multi-scale contextual sampling mechanism. 
VoVGSCSPns significantly improves the model’s generalization capability in complex scenes while retaining 
critical information of small objects, demonstrating strong performance in both visible and infrared image 
fusion scenarios. By integrating GSConvns and VoVGSCSPns into the YOLOv8 framework, the resulting model 
achieves a synergistic effect that optimizes both feature extraction and fusion. This combination effectively 
reduces the model’s parameter count and computational cost, striking an optimal balance between high accuracy 
and lightweight design. Because of its effective design, the model can handle vast amounts of ship picture data 
more quickly, satisfying the requirements of real-time detection.

Furthermore, the incorporation of an ESSE attention module successfully avoids intricate dimensionality 
reduction and augmentation procedures. This results in lightweight features and improved efficiency. The ESSE 
attention module improves maritime focus in the model and lessens background noise in ship detection tasks. 
This allows the model to focus more on identifying and classifying ship targets.

Lastly, the loss function is refined in the detecting head by substituting the Wise-IoU loss function for 
the CIoU loss function. Ship target recognition and the processing of low-quality samples have significantly 
improved as a result of this modification. By successfully improving ship detection and classification accuracy, 
the Wise-IoU loss function offers a more dependable and durable assurance for ship detection jobs.

Lightweight neck network module– GSConvns
GSConvns is designed to optimize ship detection and classification tasks. Meanwhile, it strikes a balance 
between the accuracy and speed of the model. Firstly, it cleverly combines the advantages of ordinary 
convolution and depthwise separable convolution. Although ordinary convolution has strong feature extraction 
ability, its computational cost is high; And depthwise separable convolution significantly reduces the number of 
parameters and computational complexity by decomposing the standard convolution into depth convolution 
and point convolution. GSConvns utilizes this feature to reduce model size while maintaining feature extraction 
capability. Secondly, the computational efficiency is further optimized by combining grouped convolution 
and spatial convolution (SC). Grouping convolution divides the input channel into several groups and 
performs convolution operations separately for each group, effectively reducing the number of parameters and 
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computational complexity. And spatial convolution focuses on spatial feature extraction, combining the two to 
make the model more efficient in the process of ship feature extraction.

The core difference between them and traditional depthwise separable convolutions is that although 
traditional depthwise separable convolutions effectively reduce the number of parameters and computational 
complexity by decomposing standard convolutions into depthwise convolutions and pointwise convolutions, 
their information exchange between channels is limited, and they lack sufficient expression of multi-scale 
features; GSConvns enhances cross channel information flow and local feature extraction capabilities while 
maintaining lightweight by introducing grouping convolution, channel shuffling, and neighborhood sampling 
mechanisms. VoVGSCSPns combines multi-path structure and Ghost convolution to achieve efficient fusion 
and information preservation of multi-scale features through spatial pyramid pooling. The synergistic effect of 
the two significantly reduces model parameters and computational overhead, while effectively improving the 
richness of feature expression.

ESSE module
To capture detailed features for ship recognition and classification, GSConvns should be applied to the neck 
layer. This prevents semantic information loss that may occur in the top layers. The visualization results of 
Separable Convolution(SC), Depthwise Separable Convolution(DSC), and GSConvns are shown in Fig. 2. The 
figure indicates that the feature maps of GSConvns and SC are more comparable than those of DSC and SC. This 
indicates that the accuracy of the model is very close to that of ordinary convolution27. The Slim-Neck employs 
the GSConvns method to mitigate the adverse effects of DSC defects while fully utilizing its advantages. This 
approach enhances target localization and classification capabilities in ship detection and classification.

As shown in Fig. 3, GSConvns implements DSC using DWConv after processing a downscaled version of a 
SC. Following these two convolutions, the output is concatenated. Lastly, the information produced by regular 
convolution is integrated into each segment of the information provided by DSC using a shuffle operation. The 
proposed structure accelerates processing speed and improves model efficiency. Additionally, it enhances the 
model’s ability to capture intricate ship details while maintaining detection accuracy.

The introduction of the attention mechanism can markedly enhance the model’s focus on ship features 
in detection and classification tasks. Enhance the precision of categorization and detection throughout the 
procedure. The ECA module (Efficient Channel Attention)28 is a streamlined channel attention method designed 
to improve the model’s capacity to capture essential semantic information by adaptively assessing the significance 
of various channels and weighting the channel dimensions of feature maps. It solely pertains to interaction inside 
the channel dimension and does not handle spatial information, hence limiting its efficacy on targets with dense 
arrangements and significant scale variations. The ESSE module augments capabilities from both semantic and 

Fig. 3.  GSConvns module.

 

Fig. 2.  SC, DSC, and GSConvolution.
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spatial dimensions, effectively integrating the two forms of information via the Feature Fusion Module (FFO). 
The ESSE module possesses the semantic improvement capabilities of the ECA module while also markedly 
enhancing the model’s awareness of spatial positioning, target boundaries, and detailed information.

In the ESSE module, 1 × 1 semantic convolution and 3 × 3 spatial convolution operate concurrently in parallel 
branches. The 1 × 1 convolution primarily facilitates information exchange and semantic augmentation within 
the channel dimension. It possesses minimal computational cost and effectively integrates semantic information 
across many channels, hence improving the model’s comprehension of high-level semantics, including ship 
classifications and textures. The 3 × 3 convolution emphasizes the extraction of local spatial characteristics, 
improving the model’s ability to discern target borders, forms, and spatial configurations by gathering contextual 
information from adjacent areas. The ESSE module enhances the model’s semantic comprehension and spatial 
feature extraction through labor division and collaboration, without substantially elevating computational 
complexity. Figure  4 illustrates the network architecture and operational principle of the ESSE module. The 
feature fusion process of the ESSE module is executed by the FFO submodule, which primarily integrates the 
output features of 1 × 1 semantic convolution and 3 × 3 spatial convolution using residual connections and a 
weighted fusion technique. During the fusion process, FFO incorporates a residual connection mechanism to 
integrate the original input features with the fused features, thereby preventing information loss and improving 
gradient flow. Ultimately, FFO generates a collection of refined feature maps that encompass both substantial 
semantic information and accurate spatial details, yielding superior input for the detection head and enhancing 
the model’s ability in detecting ship targets.

The ESSE module is easy to integrate into various CNN structures, avoiding the loss of feature information. 
Firstly, through average pooling, the spatial dimension is compressed to obtain the global semantic feature 
information. Secondly, a 1 − D convolution (as shown in Fig. 4, K=3) operation with the convolution kernel 
size of k is carried out, and the σ activation function obtains the weight w of each channel. Finally, normalized 
semantic weight of feature channel is multiplied with the corresponding elements of the original input feature 
map to get the final output feature map X ′′. This process can strengthen the feature semantic information of the 
ship, suppress the background noise, and improve the ability of the model to recognize the ship.

Wise-IoU loss function
In maritime vessel detection, ship targets can display considerable scale variations resulting from disparities in 
distance and viewpoint. A multitude of small boats are closely positioned, rendering them particularly vulnerable 
to background noise interference. Wise-IoU dynamically modifies the loss weights to enhance the model’s focus 
on small, challenging-to-detect targets and those that are tough to discover during training.The computational 
complexity of Wise-IoU is analogous to that of conventional IoU loss, without imposing any extra processing 
demands. This makes it more appropriate for the ship identification system discussed in this study.

Wise-IoU (WIoU)29 is a loss function of Bounding Box Regression (BBR) in ship detection in this paper. 
The gradient is dynamically adjusted based on the anchor’s mass. This helps the model focus more on ordinary-
quality anchors and reduces over-fitting to low-quality examples, ultimately improving performance. The WIoU 
loss function uses an “outlier” instead of the traditional IoU index to enhance the anchor frame quality in ship 
inspection.

The WIoU v1 used in this article improves the generalization ability of the model in processing low-quality 
ship images through its unique focusing mechanism. The diagram of WIoU is shown in Fig. 5.

In Fig. 5, Wg  and Hg  represent the minimum size of the closed box. The formula is as follows30.

	 LWIoUv1 = RWIoULIoU � (1)

	
RWIoU = exp( (x − xgt)2 + (y − ygt)2

(Wg
2 − Hg

2)∗ ) � (2)

Fig. 4.  Network structure of ESSE module.
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where, LIoU  represents RW IoU , which significantly reduces the quality of the anchor box, RW IoU  denotes a 
significantly enlarged anchor box LIoU . The superscript * indicates that to prevent hindering convergence speed, 
Wg  and Hg  are separated from the calculation graph.

The formula for WIoU is:

	 WIoU = IoUγ × (1 + αe−β·IoU ) � (3)

Among them, γ, α, and β are hyperparameters obtained through experimental tuning. In this article, γ is set to 
2.0, α is set to 0.5, and β is set to 1.0.

The introduction of the Wise-IoU loss function brings a significant improvement to our proposed GEW-
YOLO model. This model incorporates a dynamic non-monotony focusing mechanism. It adjusts weights based 
on target-prediction alignment, thereby prioritizing samples that are difficult to detect and classify. Furthermore, 
the Wise-IoU loss function indirectly improves the classification ability of the model by optimizing the accuracy 
of the boundary box and reducing classification errors.

Experiment results and discussion
In this section, the performance of the proposed GEW-YOLO model is evaluated through several experiments.

Experimental environment and parameter settings
All dataset samples are annotated by the open-source software LabelImg. The image name, target category, and 
size and coordinates of the bounding rectangle are among the annotation labels that are generated by using 
rectangular boxes to mark the targets. After being saved in XML format, all annotation data is translated from 
PASCAL VOC format to YOLO format for model training.

The experimental environment is based on Python 3.9.19 and implemented using the PyTorch 2.3.1 
framework on the Ubuntu 22.04.4 operating system. Use remote server NVIDIA GeForce RTX 3060 GPU (with 
12 GB of memory) and CUDA12.2 and CUDNN 8.9.2 accelerated GPU for training and testing. In the image 
preprocessing process, the height and width of the image are set to 640 × 640, and the batch size is 8. During 
the training process, model stability was observed around 200 epochs. In order to save computing resources, 
we adjusted the number of training periods for all models to 400. Use the stochastic gradient descent(SGD) 
optimizer with a learning rate of 0.01, momentum of 0.937, and weight decay set to 0.0005. Apply embedded 
data augmentation during the training phase. Data augmentation is turned off during the last 10 periods of the 
training process. The remaining parameters are set to default values in TensorFlow.

Evaluation indicators
Precision, Recall, mAP50, and mAP0.5-0.95 are used as evaluation criteria for the performance of the detection 
model. The specific definitions are as follows. 

	(1)	 P, represents Precision, which is the proportion of correctly predicted samples based on the expected results. 
The formula is as follows31. 

	
P recision= T P

T P + F P
� (4)

Fig. 5.  Schematic diagram of WIoU.
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	 where the results of positive cases are indicated by TP (True Positive) and FP (False Positive). The higher the 
accuracy value, the more accurate the detection results obtained by the algorithm. This also means fewer cases 
are incorrectly marked as positive during detection or classification, leading to more precise detection results.

	(2)	 R, represents the recall rate, which is the proportion of correctly predicted positive class samples to all actual 
positive class samples. The formula is as follows32. 

	
Recall= T P

T P + F N
� (5)

	 where FN is False Negative, the recall rate plays a crucial role in ensuring that the model can fully cover key 
elements, especially in application scenarios where loss detection costs are high. To properly evaluate model 
performance, recall rate is typically used in conjunction with other measures like accuracy.

	(3)	 mAP represents Mean Average Precision. mAP is an indicator used to evaluate object detection perfor-
mance of the model that takes into account both the R and P of the model. The detection accuracy of the 
model increases with the size of the mAP value. The calculation formulas for AP and mAP are as follows33. 

	
AP =

k=n−1∑
k=0

[Recalls(k) − Recalls(k + 1)] × Precisions(k) � (6)

	
mAP = 1

n

k=n∑
k=1

APk � (7)

	 where AP is the Average Precision, n is the total amount of data, and k is the index of each sample point. 
mAP@0.5 indicates the average accuracy when the Intersection over Union (IoU) threshold is 0.5. To be more 
precise, acquire mAP@0.5 by averaging the AP of all categories after calculating the AP of all types for each 
category. With a step size of 0.05, mAP@0.5-0.95 is the average mAP at various IoU thresholds (varying from 
0.5 to 0.95). mAP@0.5 and mAP@0.5-0.95 is an essential indicator for measuring the performance of object 
detection models.

	(4)	 F1_Curve. The F1 score refers to the harmonic mean of accuracy and recall, aiming to consider both accu-
racy and recall simultaneously. With a maximum value of 1 and a minimum value of 0, the better the model, 
the higher its value. The calculation formula is as follows34. 

	
F 1 = 2 × Precision × Recall

Precision + Recall
� (8)

The F1 Confidence Curve is a visual graph that shows the continuous changes in F1 score as Confidence 
gradually increases. The F1 Confidence curves for the Dockship, Seaships, and Infrared Offshore Ship datasets 
are represented by (a), (b), and (c) accordingly in Fig. 6.

	(5)	 P_Curve. P_Curve is a chart used to evaluate the performance of the model, which shows the relationship 
between the accuracy and confidence of the model. As Fig. 7 illustrates, detection accuracy rises in tandem 
with the confidence level.

Fig. 6.  F1-Confidence Curve. The curve in the figure shows the changes in F1 scores for each type of vessel 
under different confidence thresholds.
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	(6)	 R-Curve. The R-Curve demonstrates the relationship between the recall and confidence of the model. In 
R_curve, when the confidence threshold is 0, the recall rate does not necessarily have to be 1. As shown in 
Fig. 8, the height of the curve directly reflects the recall rate of the model at different confidence thresholds. 
A higher curve indicates that the model has a higher recall rate.

	(7)	 PR_Curve. PR_Curve describes the link between accuracy and recall at different classification thresh-
olds. The model can sustain high accuracy and high recall while the PR_Curve is in a high position. The 
curve will move toward low precision values or low recall rates when the model shows tendencies toward 
high-precision values or high recall rates. The PR_Curves of the three datasets are shown in Fig. 9.

	(8)	 IoU. IoU measures the degree of overlap between predicted bounding boxes and real bounding boxes. Its 
value ranges from 0 to 1, with the closer it is to 1 indicating a higher degree of agreement between the pre-
dicted results and the actual situation. In addition, IoU can also be used as part of the loss function to help 
the model better learn bounding box predictions during the training process.

Fig. 9.  PR_Curve. The curve in the figure represents the performance of different types of ships in PR_Curve, 
reflecting the comprehensive detection ability of the model for various types of ships.

 

Fig. 8.  R_Curve. The figure shows the recall rates predicted by the model for different ships at different 
confidence thresholds.

 

Fig. 7.  P_Curve. The figure shows the accuracy of model predictions for different ships at different confidence 
thresholds.
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Ablation study
Ablation studies are presented to evaluate the contributions of each module in the proposed GEW-YOLO 
model. The influence of different techniques on the detection performance of each method is studied. In this 
paper, the GEW-YOLO model and the YOLOV8-based comparison model are implemented to ensure that the 
hyperparameters are exactly the same in the training process. In addition, the impact of various improvement 
modules on the Dockship dataset, Seaships dataset, and Infrared Offshore Ship datasets are evaluated respectively.

YOLOv8+GSConvns means that the neck structure of YOLOv8 is replaced by the GSConvns module. 
YOLOv8+ESSE indicates that an attention mechanism is added. YOLOv8+Wise-IoU refers that the GEW-YOLO 
model replaces the original YOLOv8 neck structure. y/n ESSE means that the GEW-YOLO model is without an 
ESSE attention module added. y/n Wise-IoU indicates that the GEW-YOLO model retains the original loss 
function of YOLOv8.

Tables 1, 2 and 3 show the ablation experimental results of GEW-YOLO models on the Dockship, Seaships, 
and Infrared Offshore Ship datasets. The comparing methods refer to certain modules while omitting others.

The experimental results on the Dockship dataset have improved with the addition of the GSConvns module, 
ESSE, and Wise-IoU to the YOLOv8 network. In particular, the GSConvns module reduced Recall by 10%, while 
it improved Precision by around 6%. Wise-IoU increased the Precision of the model by 0.6%, demonstrating its 
efficacy across different IoU thresholds. With a minor 0.7% decrease in Recall, the GSConvns module increased 
ship recognition Precision by 1.1% and mAP by 0.5% for the Seaships dataset. Each metric increased by about 
1% as a result of the ESSE module. The introduction of the ESSE module ensures that the detailed features of the 

Model GSConvns ESSE Wise-IoU Precision(%) Recall(%) mAP@0.5(%)

YOLOv8 n n n 87.2 83.5 89.4

YOLOv8+GSConvns y n n 90.7 85.7 90.5

YOLOv8+ESSE n y n 91.8 84.2 90.2

YOLOv8+Wise-IoU n n y 89.6 84.6 89.4

y/n GSConvns n y y 90.4 86.6 91.1

y/n ESSE y n y 89.3 86.4 91.2

y/n Wise-IoU y y n 90.6 83.0 91.0

GEW-YOLO(ours) y y y 90.7 86.6 91.7

Table 3.  Different ablation experimental results of GEW-YOLO model on Infrared Offshore Ship dataset. y/n 
represents none. Significant values are in [bold].

 

Model GSConvns ESSE Wise-IoU Precision(%) Recall(%) mAP@0.5(%)

YOLOv8 n n n 94.5 95.5 97.1

YOLOv8+GSConvns y n n 95.6 93.8 97.6

YOLOv8+ESSE n y n 97.4 96.4 98.3

YOLOv8+Wise-IoU n n y 95.9 94 98.4

y/n GSConvns n y y 97.4 97 98.9

y/n ESSE y n y 95.1 95 98.1

y/n Wise-IoU y y n 96.7 96.1 98.7

GEW-YOLO(ours) y y y 97.6 98.1 99.1

Table 2.  Different ablation experimental results of GEW-YOLO model on Seaships dataset. y/n represents 
none. Significant values are in [bold].

 

Model GSConvns ESSE Wise-IoU Precision(%) Recall(%) mAP@0.5(%)

YOLOv8 n n n 80 70.9 78.3

YOLOv8+GSConvns y n n 86 60 76.6

YOLOv8+ESSE n y n 79.4 67.4 77.8

YOLOv8+Wise-IoU n n y 80.6 62 71.1

y/n GSConvns n y y 78.5 69.6 79.2

y/n ESSE y n y 75.4 70.6 74.1

y/n Wise-IoU y y n 79.4 67.4 75.6

GEW-YOLO(ours) y y y 79.4 76.9 82.1

Table 1.  Different ablation experimental results of GEW-YOLO model on Dockship dataset. y/n represents 
none. Significant values are in [bold].
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ship are taken into account, thereby improving the detection efficiency of the model. According to Table 3, Recall 
and Precision increased by 2.5% and 3.5%, respectively, and mAP@0.5 increased by 2.2% when the integrated 
GSConvns module was compared to the baseline YOLOv8 model. It is worth noting that when the baseline model 
introduces the ESSE module, the accuracy and mAP@0.5 are improved by 4.6% and 0.8%, respectively. When 
introduced separately, the Wise-IoU did not affect mAP@0.5, however, other metrics also showed modest gains.
The improvement in model accuracy but the decrease in recall may be due to two reasons. Firstly, GSConvns and 
other modules enhance the ability of model to distinguish positive samples, while also increasing its sensitivity 
to negative samples, resulting in some positive samples being misjudged as negative samples; Secondly, these 
modules increase the complexity of the model, affecting its generalization ability in small targets or complex 
scenarios. Future research will delve deeper into this trade-off relationship.

The suggested GEW-YOLO model performs better overall in terms of Precision, Recall, mAP@0.5. Notably, 
in the Dockship dataset, mAP@0.5 rose from 78.3% to 82.1%. The four associated indicators for the Seaships 
and another dataset (Table  3) demonstrated increases of 3.1%, 2.6%, 2%, 6.3% and 3.5%, 3.1%, 2.3%, 4.2%, 
respectively. It demonstrates the capacity of the model to improve average detection precision and its efficacy in 
ship identification tasks, even in intricate marine environments.

Experimental discussion
The heatmaps of GEW-YOLO for object detection on three different datasets—Dockship, Seaships, and Infrared 
Offshore Ship dataset are shown in Figs. 10, 11 and 12. The heat map results also indicate the ship type and 
confidence, and the detection degree of the model can be clearly seen.

Comparison with improved YOLO based detection methods
To highlight the advantages of the proposed GEW-YOLO model, other detection techniques based on YOLOv8 
enhancement and ship field detection techniques are compared in this paper.

Fig. 12.  Detection performance of GEW-YOLO on Infrared Offshore Ship dataset.

 

Fig. 11.  Detection performance of GEW-YOLO on the Seaships dataset.

 

Fig. 10.  Detection performance of GEW-YOLO on Dockship dataset.
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We experimented using the publicly accessible Dockship, Seaships, and Infrared Offshore Ship datasets to 
validate our suggested model. Numerous YOLO-based models, including YOLOv5 to YOLOv11, have been 
created. In addition, the detection accuracy of the two-stage algorithm Faster-RCNN was also considered. These 
are noteworthy contributions. Chen et al.35 presented an effective target detector, YOLO-MS, exhibiting robust 
performance on the COCO dataset. Zhou36 advanced YOLO-NL by augmenting technologies like CSPNet and 
PANet, leading to enhanced accuracy in multi-target detection. YOLO-PL37 is a lightweight helmet detection 
technique that uses an improved PAN (E-PAN) structure with a specially tailored YOLO-P algorithm to increase 
accuracy. Wang et al.38 presented the Gather-and-Distribute mechanism, tailored to tackle feature fusion issues 
in information fusion, and proposed the Gold-YOLO method. Zhang et al.39 developed three novel modules to 
improve feature representation and background suppression for the detection of small targets in remote sensing. 
This work resulted in the creation of a lightweight method, FFCA-YOLO. Based on YOLOv8, SOD-YOLO by 
Li et al.40 creates a new neck architecture, BSSI-FPN, to handle spatial information sparsity and incorporates 
RFCBAM modules to enhance feature extraction.By adding the C2F_iAFF module, MLCA mechanism, and 
BiFPN structure optimization feature fusion and information integration mAP@0.5, Zhu et al.41 introduced a 
high-precision ship target identification technique called YOLO-HPSD, which increases detection accuracy to 
98.86%. The accuracy of the approach suggested in this article is higher than that of the YOLO-HPSD algorithm.

The experimental results of the detection on three datasets are shown in Tables 4, 5 and 6. It can be observed 
that GEW-YOLO still performs well in ship detection in complex water scenarios. These comparisons and 
experimental results collectively validate the significant advantages of the GEW-YOLO model in the field of ship 
detection.

Model Precision(%) Recall(%) mAP@0.5(%) mAP@0.5:0.95(%) Params(M)

YOLOv5 93.6 93.5 95.2 78 1.9

YOLOv6 92.5 91.8 96.6 69.6 4.3

YOLOv7 95.4 93.7 93.7 79.8 3.2

YOLOv9 95.7 94 96.4 76.5 3.3

YOLOv10 92.4 94.9 94.7 80.8 2.7

YOLOv11 96.1 98.7 95.3 76.5 3.3

Faster-RCNN11 95.5 96.8 94.8 77.6 100

YOLO-MS35 98.2 93.1 94.1 78.4 2.5

YOLO-NL36 90.3 89.4 91.6 64.2 4.5

YOLO-PL37 91.5 90.2 92.3 64.6 3.5

Gold-YOLO38 93.4 96.8 94.6 67.9 4.1

FFCA-YOLO39 94.7 91.4 95.8 67.4 4.6

SOD-YOLO40 95.3 95.8 96.3 71.6 4.5

YOLO-HPSD41 - - 98.8 - -

GEW-YOLO(ours) 97.6 98.1 99.1 86.3 1.2

Table 5.  Experimental results of YOLO based detection method on Seaships dataset. Significant values are in 
[bold].

 

Model Precision(%) Recall(%) mAP@0.5(%) mAP@0.5:0.95(%) Params(M)

YOLOv5 78.2 73.1 78.4 50.2 1.9

YOLOv6 78.7 74.7 79.5 51.4 4.3

YOLOv7 80.2 74.2 79.2 52.1 3.2

YOLOv9 80.6 69.5 76.4 49.2 3.3

YOLOv10 80.6 75.6 80.8 52.0 2.7

YOLOv11 79.3 76.7 81.2 53.5 3.3

Faster-RCNN11 80.1 73.4 79.8 51.6 100

YOLO-MS35 81.6 73.0 81.0 51.9 2.5

YOLO-NL36 74.7 71.7 72.5 46.7 4.5

YOLO-PL37 73.2 74.1 72.6 45.4 3.5

Gold-YOLO38 75.8 70.2 74.5 46.8 4.1

FFCA-YOLO39 73.6 71.2 73.9 47.4 4.6

SOD-YOLO40 75.7 74.4 74.5 46.9 4.5

GEW-YOLO(ours) 79.4 76.9 82.1 61.1 1.2

Table 4.  Experimental results of YOLO based detection method on Dockship dataset. Significant values are in 
[bold].
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This study compared the performance of various enhanced YOLO models in object recognition tasks. YOLO-
LITE achieved the best accuracy in accuracy and YOLOv11 performs well in Recall. However, mAP@0.5 is far 
lower than the model proposed in this paper. Other models are slightly inferior on ship detection data sets. 
Overall, GEW-YOLO achieves the best balance between detection accuracy and speed, outperforming other 
YOLO-based methods.

Comparison with detection methods in specific ship fields
Due to the limited number of references available for the Dockship dataset and Infrared Offshore Ship datasets, 
we chose to compare some methods from specific ship domains on the Seaships dataset. Li et al.42 trained the 
S3Det model and improved the detection performance of small ships through technological improvements. 
Experimental results have shown better recall and accuracy than the original model. Cai et al.43 proposed the 
FE-YOLO model. By introducing channel attention and Ghostconv to improve the network structure, the 
detection accuracy has been improved. Zhang et al.44 proposed a lightweight and effective method for YOLO-
Ships. By improving the Ghost module, designing a ship feature enhancement module, and C3REGhost module, 
the feature extraction and detection capabilities have been enhanced. Lu et al.45 proposed the YOLO-MBS 
algorithm. By using MobileNetv3 as the backbone network, introducing the E-IOU loss function, adding the 
SimAM attention mechanism, and employing the BiFPN feature pyramid network, the model parameters were 
significantly reduced. Additionally, both computational speed and detection accuracy were improved.

As shown in Table  7, the proposed method performs well in terms of Precision, Recall, mAP@0.5, and 
mAP@0.5:0.95. Compared with the S3Det model, although the accuracy decreased by 0.3%, the Recall, 
mAP@0.5 and mAP@0.5:0.95 increased by 0.8%, 0.1% and 2.3%, respectively. For key index mAP@0.5, the 
improved modules of YOLO-Ships proposed by Zhang et al. have effectively reduced the model’s weight. 
However, according to the experimental results, the detection performance still requires significant improvement. 
In summary, our proposed model strikes an effective balance between lightweight design and high-precision 
performance in ship target detection tasks.

Comparison of test results
Figure 13 illustrates the detection of the identical image from the Dockship dataset with the YOLOv8 and GEW-
YOLO models to validate the influence of different models on detection results. GEW-YOLO clearly surpasses 
YOLOv8 in detection performance, achieving a 3.8% higher mAP (82.1% vs 78.3%) and effectively recognizing 
images with overlapping labels or objects, with a 6% improvement in recall rate for overlapping targets. Figure 
14 illustrates that images were randomly selected from the Seaships test dataset for further analysis, identified 

Model Precision(%) Recall(%) mAP@0.5(%) mAP@0.5:0.95(%) Params(M)

S3Det42 97.9 97.3 99 84 2.3

FE-YOLO43 - - 97.6 72.6 2.1

YOLO-Ships44 89.2 90.2 93.5 - -

YOLO-MBS45 97.2 96.9 98.8 - -

GEW-YOLO(ours) 97.6 98.1 99.1 86.3 1.2

Table 7.  Experimental results of YOLO based detection method on Infrared Offshore Ship dataset. Significant 
values are in [bold].

 

Model Precision(%) Recall(%) mAP@0.5(%) mAP@0.5:0.95(%) Params(M)

YOLOv5 85.7 90.4 90.3 61.2 1.9

YOLOv6 90.7 84.1 90.5 63.4 4.3

YOLOv7 87.3 84.4 90.2 61.3 3.2

YOLOv9 90.1 85.2 89.9 62.1 3.3

YOLOv10 90.5 86.3 91.0 64.6 2.7

YOLOv11 87.9 87.8 91.6 62.5 3.3

Faster-RCNN11 86.4 83.5 89.2 60.6 100

YOLO-MS35 91.3 82.9 90.4 63.9 2.5

YOLO-NL36 87.6 85.4 90.3 62.8 4.5

YOLO-PL37 89.3 84.4 89.7 62.1 3.5

Gold-YOLO38 86.2 82.5 88.4 60.2 4.1

FFCA-YOLO39 90.8 84.0 90.0 63.9 4.6

SOD-YOLO40 90.6 85.5 90.1 62.2 4.5

GEW-YOLO(ours) 90.7 86.6 91.7 65.4 1.2

Table 6.  Experimental results of YOLO based detection method on Infrared Offshore Ship dataset. Significant 
values are in [bold].

 

Scientific Reports |        (2025) 15:38075 13| https://doi.org/10.1038/s41598-025-21887-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


utilizing the YOLOv8 and GEW-YOLO networks. The three chosen photos, which depict sparse things, dense 
objects, and small, indistinct target objects, effectively illustrate the detecting capabilities. Additionally, images 
from the Infrared Offshore Ship dataset were randomly selected for evaluation using the YOLOv8 and GEW-
YOLO networks; the results are presented in Fig. 15.GEW-YOLO demonstrates superior performance with an 
average detection confidence score of 0.87, compared to YOLOv8’s 0.79, representing a 10.1% improvement in 
low-contrast conditions.

Fig. 14.  Comparison results of seaships dataset experiments.

 

Fig. 13.  Comparison results of dockship dataset experiments.
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The test results clearly indicate that GEW-YOLO outperforms YOLOv8 in object detection. GEW-YOLO has 
enhanced its detection precision and ability to identify densely packed small objects by the integration of the 
GSConvns module, ESSE module, and a revised loss function.

Conclusions
In order to meet the demand for a lightweight, real-time, and accurate multi-target detection system for ships, 
this study proposes a state-of-the-art method for detecting and classifying ship images using the improved 
YOLOv8 algorithm. Recognizing the limitations of existing algorithms in feature learning and their increased 
complexity, YOLOv8n is selected as the baseline model and enhanced with ship feature texture information 
using the ESSE module. The GSConvns module is also integrated into the neck network, which significantly 
enhances the multi-scale feature fusion while maintaining the lightweight architecture of the model. Finally, 
the Wise-IoU loss function is applied in the detection head, which exceeds the traditional CIoU and SIoU 
methods and helps the model achieve higher accuracy. Experimental results show that the improved algorithm 
has average detection accuracies of 82.1%, 99.1%, and 91.7% on the Dockship, SeaShips, and Infrared Offshore 
Ship datasets, respectively.

Compared to YOLOv8 and YOLOv11, the improved YOLOv8 outperforms these models in terms of mAP 
metrics, especially mAP 0.5:0.95, and the number of model parameters is smaller. In addition, the optimized 
architecture of the improved YOLOv8 ensures faster inference compared to YOLOv11 while reducing 
computational complexity. The ablation experimental analysis further validates the model’s ability to focus on 
the ship’s target area under complex backgrounds, small targets, and different orientations, demonstrating its 
robustness in accurately detecting and localizing ships.

This study proposes a more effective method for ship target detection and classification; however, several 
limitations remain. The improved module exhibits reduced accuracy when processing images captured under 
adverse weather conditions or with low visibility. Additionally, the proposed model’s computational complexity 
increases substantially compared to baseline methods, potentially limiting its deployment in real-time systems 
with constrained hardware resources. The algorithm also demonstrates diminished performance when 
detecting small-scale ship targets or vessels with high aspect ratios, indicating challenges in feature extraction 
for such objects. Furthermore, the scope of this study was confined to a limited set of ship types, as evidenced 
by the experimental validation. Future research should therefore incorporate a more comprehensive dataset 
encompassing a broader spectrum of ship categories and diverse environmental conditions to enhance the 
model’s generalization capabilities.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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Fig. 15.  Comparison results of infrared offshore ship dataset experiments.
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